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Abstract 

An experimental analysis of the use of different neural models for the supervised classification of multisensor 
remote-sensing data is presented. Three types of neural classifiers are considered: the Multilayer Perceptron, a kind of 
Structured Neural Network, proposed by the authors, that allows the interpretation of the network operation, and a 
Probabilistic Neural Network. Furthermore, the k-nearest neighbour statistical classifier is also considered in order to 
evaluate the validity of the aforementioned neural networks, as compared with that of classical statistical methods. The 
results provided by the above classifiers are compared. 
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I.  Introduct ion 

Classical statistical methods, like the maximum 
likelihood and the k-nearest neighbour classifiers, 
have been traditionally used to perform classification 
of remote-sensing images (Swain and Davis, 1978). 
However, in recent years, the remote-sensing com- 
munity has focused attention on the neural-network 
approach to data classification, mainly because this 
approach does not require any a priori knowledge of 
the statistical distribution of data and is characterized 
by intrinsic parallelism and fast classification time 
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(Bischof et al., 1992). On the other hand, some 
difficulties arise when using neural networks, related 
to the choice of the neural model and of the network 
architecture, to the dependence of classification re- 
suits on training conditions, and to the difficulty with 
interpreting the network behaviour. 

Several works dealt with neural networks for 
remote-sensing data classification. Lee et al. (1990), 
Bischof et al. (1992), Hwang et al. (1993), Salu and 
Tilton (1993), and Paola and Schowengerdt (1995a) 
applied neural networks to the classification of im- 
ages acquired with a Multispectral Scanner and a 
Thematic Mapper of Landsat. Decatur (1989) and 
Azimi-Sadjadi et al. (1993) used the neural approach 
to classify synthetic aperture radar (SAR) data. Neu- 
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ral classifiers were applied to multisource remote- 
sensing data by Benediktsson et al. (1990), Ersoy 
and Hong (1990), Serpico and Roli (1995). Recently, 
Benediktsson et al. (1995) applied neural networks to 
the classification of very-high-dimensional data pro- 
vided by an Airborne Visible-Infrared Imaging Spec- 
trometer (AVIRIS). 

This paper reports the results of an experimental 
investigation into multisensor (optical and SAR) re- 
mote-sensing image classification by using two non- 
parametric approaches, i.e., the neural-network and 
the statistical approaches. The choice of non-para- 
metric methods is due to the difficulty with repre- 
senting the distributions of multisensor data by a 
parametric model. Three neural models were consid- 
ered: the Multilayer Perceptron, a kind of Structured 
Neural Network, proposed by the authors, that al- 
lows the interpretation of the network operation, and 
a Probabilistic Neural Network. A brief description 
of such neural classifiers and the definition of the 
architectures used in our investigation are reported in 
Section 2. Experimental results are presented and 
compared with those obtained with one of the most 
widely used non-parametric statistical classifiers, i.e., 
the k-nearest neighbour classifier (k-nn) (Section 3). 
Results are discussed in Section 4, where conclu- 
sions are also drawn. 

2. Neural models  and architectures 

2.1. Multilayer perceptron 

Multilayer Perceptrons (MLPs) (Rumelhart et al., 
1986; Hush and Home, 1993) are the most widely 
used neural networks for the classification of 
remote-sensing images (Paola and Schowengerdt, 
1995b). They are multilayer feedforward networks 
composed of multiple layers of neurons: an "input 
layer", one or more "hidden layers" and an "out- 
put layer". 

In our experiments, we used as many neurons in 
the input layer as the number of attributes that 
characterized each pixel to be classified; the output 
layer consisted of a number of neurons equal to the 
number of data classes. Input neurons just propagate 
input attribute vectors to the next layer. As activation 
function for the neurons of the hidden layers and of 

the output layer, we used the sigmoid function (Hertz 
et al., 1991). The classification of each pixel was 
carried out by assigning each pixel to the class 
corresponding to the output unit with the highest 
output (Winner-Takes-All (WTA) decision rule), with 
no threshold margin between the maximum output 
and the other outputs. Thanks to an appropriate data 
representation and to an appropriate learning of the 
network (Richard and Lippmann, 1991), this deci- 
sion rule corresponds to the selection of the most 
probable class, as estimated by the network. 

A problem with the use of MLPs is the selection 
of the optimal architecture of the network (Moody, 
1991), i.e., the number of hidden layers, the number 
of neurons per layer and the connections among 
them. According to a well-known theoretical result 
(Hertz et al., 1991), one hidden layer is sufficient to 
approximate any continuous function. However, this 
result is difficult to use in applications, as it does not 
suggest how many neurons per layer should be in- 
cluded; moreover, this number may be large. A 
heuristic approach suggests selecting the number of 
hidden layers and the number of neurons per layer 
according to a tradeoff between complexity of repre- 
sentation and generalization ability (Musavi et al., 
1994) of the net. The complexity of representation 
depends on both the number of hidden layers and the 
number of neurons per layer: each neuron provides a 
different nonlinear transformation, and each hidden 
layer increases the complexity of the nonlinear trans- 
formations of inputs. On the other hand, the capabil- 
ity of generalization of the network decreases with 
the increase in the number of parameters (i.e., the 
number of neurons and connections). 

In our experiments, we used fully connected net- 
works. To choose the number of parameters W, we 
used a simplified version of the rule suggested in 
(Baum and Haussler, 1989), i.e., 

W < e m ,  (1) 

where m is the number of training pixels and e is 
the desired error probability in the classification of 
unknown samples. Using the aforementioned simpli- 
fied rule, we experimented with different architec- 
tures, with one or two hidden layers and various 
numbers of units per layer. Several learning tech- 
niques were proposed for MLPs (Vogl et al., 1988; 
Hinton, 1989; Tollenaere, 1990; Hertz et al., 1991). 
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In our experiments, we used the classic error back- 
propagation algorithm (Hertz et al., 1991). 

2.2. Structured neural network 

The Structured Neural Networks (SNNs) we uti- 
lized in our comparative investigation are MLPs with 
structured architectures tailored to multisensor classi- 
fication problems (Serpico and Roli, 1995). Their 
main feature lies in the possibility of obtaining a 
simplified network representation that allows a quan- 
titative and detailed interpretation of the network 
operation. Such a representation may be utilized by 
photointerpreters for the validation of the neural 
classifier. 

SNNs have one-net-one-class architectures, that 
is, a separate network is devoted to each class. Each 
Class-Related Network (CRN) has a not fully con- 
nected architecture with an input layer, two hidden 
layers, and an output layer (Fig. 1). The input layer 
has as many neurons as the number of sensor chan- 
nels; each neuron of the first hidden layer imposes a 
constraint on the intensity in a sensor channel. A 
neuron is included in the second hidden layer for 
each sensor to combine the results of the application 
of constraints related to the channels of that sensor. 
The output layer is composed of one neuron which 
combines the output of sensor-related neurons of the 
second hidden layer; such an output neuron com- 
putes an estimate of the probability that an input 
pixel belongs to the class associated with the CRN 
considered. A WTA decision block compares the 
outputs of the different CRNs and makes the final 
decision on classification. Each CRN is trained sepa- 
rately (in our experiments, we adopted the same 
learning procedure as for the MLPs, i.e., the back- 
propagation algorithm), then it is used to classify 
data. 

For the purpose of interpreting the network be- 
haviour, two transformations (which save the input- 
output response of the network) are then applied to 
each CRN in order to obtain a simplified representa- 
tion of the network (Serpico and Roli, 1995). The 
first transformation makes the importance of the 
contribution of a neuron to the input to a neuron of 
the next layer correspond directly to the weight of 
the connection between the two neurons. The second 
transformation provides a piecewise-linear approxi- 

mation of neuron activation functions and channel 
constraints in order to make the comprehension of 
the network behaviour easier. After these transforma- 
tions, the simplified representation of a CRN (see, 
for example, Fig. 2) allows one to interpret the 
network as a hierarchical arrangement of committees 
that judge on the hypothesis that a pixel belongs to a 
given class. In particular, each couple of neurons of 
the first hidden layer is transformed into an equiva- 
lent neuron that provides its judgment on the basis of 
a constraint on the intensity values in a channel; this 
equivalent neuron is a member of a "Sensor-Related 
Committee" (SRC). Each neuron of the second hid- 
den layer is a "Vote-Taking Unit" (VTU) of an 
SRC, that is, it combines the votes of the members 
of its SRC. In addition, the members of the second 

SRC =-Member-1 of Global Committee 

Ch. 1 

Ch. 2 

Ch. L ~ ~ l~mWfx) 
? -  

/ V-IU of 
/ Global 

Committee 

Ch. 1 ~ ] Member-1 / 

Ch. Z 

=, 

Ch. R 

Fig. I. Architecture of  a Structured Neural Network (SRC stands 
for Sensor-Related Committee and VTU stands for Vote-Taking 
Unit). 



1334 S.B. Serpico et al. / Pattern Recognition Letters 17 (1996) 1331-1341 

arm ch2 

arm ch3 

arm ch5 0 . ~ r r n X " ~  558,65 

arm ch7 

arm ch9 

atm_chl 0 

sar._c_hh 

sar. c_hv 

sm.._c_w 

sar I_hh 

sar2_hv 

sarJ_w 

sar_p_hh 

sar_p_hv 

o @0 

571,64 

1.000 

SUGAR BEETS 

Fig. 2. Simplified representation of the CRN related to the Sugar Beets class; it was obtained by training the original CRN and transforming 
its representation. 
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hidden layer are members of the "global committee" 
whose votes are taken by the neuron of the output 
layer to compute the final decision about the proba- 
bility that a pixel belongs to a given class. The 
importance of both channels and sensors for the 
output of each CRN depends on their "vot ing 
power" in the related committee, i.e., on the values 
(normalized to 1000) of the weights associated with 
the related connections. The decisions are made by 
each VTU on the basis of majority rules applied to 
the sums of the votes of all members of the related 
committee. These rules are defined by piecewise- 
linear functions in the simplified representation 
(Fig. 2). Such a representation allows a photointer- 
preter to understand if the network operation is in 
agreement with his a priori knowledge and with the 
visual analysis of the input image. If there is no 
agreement, the network may be trained again with 
different random starting weights. An example of the 
network interpretation is given in the next section. 

2.3. Probabilistic neural network 

Probabilistic Neural Networks (PNNs) are a model 
for supervised classification based on multivariate 
probability estimation (Specht, 1990). They are 
founded on an extension of the Parzen approach to 
univariate probability estimation (Fukunaga, 1990). 
Given a set of N samples X i drawn from a statistical 
distribution p(X), the Parzen approach provides an 
asymptotic, unbiased and consistent estimate /3(X) 
of the related probability density function by using 
an appropriate "kernel function" k( . )  which is ap- 
plied to each sample considered, i.e., 

1 N 
~( X) = ~ E k( X -  X,). (2) 

i=1 

PNNs are founded on an extension of such an ap- 
proach to the multivariate case (Cacoullos, 1966), 
based on the use of the Gaussian kernel function. 

The typical architecture of a PNN is shown in 
Fig. 3. The network is composed of an input layer, 
one hidden layer and an output layer. For our experi- 
ments, also in this architecture the number of neu- 
rons in the input layer is equal to the number of 
attributes. The hidden layer has as many neurons as 
the number of training patterns; as a kernel function, 

x 1 )(2 Xm 

~ Input Units 

Class 1 i f - - ~ . ~  f ~ q Class n 
Pattern ~ ( ) ( ~ ~ I ( ) ( ) I Pattern 
Units / ~  ~ ~ ~.J__/ Units 

~ -  J ................ - - - ' ~ O u t  put Units 

Fig. 3. Typical architecture of a Probabilistic Neural Network. 

each neuron has an activation function of the Gauss- 
ian type, and is centred on the attribute vector of the 
corresponding training pixel. The output layer has as 
many neurons as the number of  data classes consid- 
ered; the activation function of each output neuron 
computes the sum of the inputs to the neuron. The 
neurons of the hidden layer propagate their outputs 
only to the neuron of the output layer corresponding 
to the class the training pixel belongs to. Given the 
attribute vector of an unknown pixel as input to the 
net, the neurons of the output layer provide the 
estimates of the probability that the unknown pixel 
belongs to the corresponding data classes. The classi- 
fication is carried out by using the WTA decision 
rule to identify the most probable class. Training 
PNNs consists in the optimization of the Gaussian 
kernel by trials with different values of the "smooth- 
ing parameter" (Specht, 1990) which tunes the width 
of the Gaussian function. 

3. Exper imenta l  results  

3.1. Data set description 

The considered data set refers to an agricultural 
area near the village of Feltwell (UK). We selected a 
section (250 × 350 pixels) of the scene acquired with 
two imaging sensors installed on an airplane: a 
Daedalus 1268 Airborne Thematic Mapper (ATM) 
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scanner and a PLC-band, fully polarimetric, 
NASA/JPL SAR sensor; as an example, Fig. 4(a) 
shows channel 9 of the ATM sensor and Fig. 4(b) 
shows channel L-HV (band L, polarization HV) of 
the SAR sensor. Images were registered by using the 
radar image as a reference. The ground truth was 
used to prepare a reference map to assess the classi- 
fication accuracy (Fig. 5(a)). We considered the five 
numerically most representative agricultural classes 
(55657 pixels). The agricultural fields were ran- 
domly subdivided into two disjoint sets; 5124 train- 
ing pixeis were taken from the fields of one set, and 
5820 test pixels from the fields of the other set. 
Fifteen channels were selected to form an "attribute 
vector" for each pixel. We selected the six ATM 
channels corresponding to TM channels in the visi- 
ble and in the infrared spectrum, and the nine SAR 
channels in the PLC-band and HH, HV and VV 
polarizations. The noise affecting the intensity values 
was reduced by applying a simple running mean 
filtering to both the ATM (5 x 5 window) and the 
SAR (9 x 9 window) channels. 

3.2. Results 

Five MLPs with one or two hidden layers were 
used (Table 1), all with fifteen input units and five 
output units as the numbers of attributes and data 
classes, respectively. The number of neurons per 
hidden layer were chosen such that the condition in 
Eq. (1) holds, with ~ set to 0.15. Training was 
carried out by the error backpropagation learning 
procedure using different "learning rates" "O (i.e., 
0.05 and 0.01). As an indication of the computa- 
tional cost of learning, the best architecture on the 
training set (15-30-5 ,  -q = 0.05) converged in 264 
epochs to a mean square error value below a thresh- 
old set to 0.005. Table 1 gives the accuracies pro- 
vided by the considered MLPs on both the training 
and test sets. The third column in Table 2 shows the 
class-by-class accuracies provided by the best archi- 
tecture on the test set (i.e., 5-8-15 ,  r /=  0.01). The 
MLP with this architecture was then applied to the 

Fig. 4. Multisensor image utilized for experiments: (a) channel 9 
of the ATM sensor and (b) channel L-HV (band L, polarization 
HV) of the SAR sensor. 
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Table 1 
Percentages of correctly classified pixels by using MLPs. Different architectures with one or two hidden layers and various numbers of units 
per layer were used. Two "learning rates" (7) were used for learning 

Architecture Training set Test set Training set Test set 
(n = 0.01) (n = 0.01) (n = 0.05) (n = 0.05) 

15-15-8-5 98.7% 79.9% 98.5% 86.3% 
15-7-5-5 96.9% 82.3% 98.1% 76.1% 
15-15-5 97.3% 87.9% 98.7% 86.0% 
15-30-5 97.2% 88.2% 98.8% 86.2% 
15-8-5 96.5% 89.6% 98.0% 82.3% 
Mean value 97.3% 85.6% 98.4% 83.4% 

whole image. Considering only the pixels belonging 
to the five classes selected, we obtained the classifi- 
cation map shown in Fig. 5(b) with a classification 

accuracy of  88.4%. 
With regard to the SNNs, five CRNs were de- 

fined, i.e., one for each class; each CRN had the 
same architecture as the network depicted in Fig. 2. 
The fourth column of  Table 2 gives the classification 
results provided by the SNNs on the test set. The 
SNNs were then applied to the whole image: the 
classification accuracy was equal to 86.5%; the clas- 
sification map obtained is shown in Fig. 5(c). 

As an example of  network interpretation, let us 
consider the simplified representation of  the CRN 
depicted in Fig. 2, which relates to the " suga r  
bee t s"  class. The importance of  the A T M  and SAR 
sensors in determining the output of  the network is 
provided by the values of  the weights between each 
sensor-related neuron and the output neuron. In the 
case of  sugar beets, the two sensors have similar 
importance, as voting powers equal to 550 for the 
ATM sensor and to 450 for the SAR sensor were 
obtained. In order to understand the contribution of  

each channel to the output of  its Sensor-Related 
Committee,  it is necessary to consider the voting 
power indicated on the connection starting from the 
related equivalent neuron of  the first hidden layer. 
Concerning the ATM-Rela ted  Committee,  channel 9 
is the most important in the identification of  sugar 
beets (voting power equal to 527), while channels 3 
and 10 are not practically useful to identify such a 
class (voting powers equal to 2 and 19, respectively). 
The other channels all have an intermediate impor- 
tance. Analogously,  for the SAR-Rela ted  Committee,  
the most important channels are the band L with 
polarization HV and the bands P and C with polar- 
ization HH (voting powers equal to 277, 223 and 
213, respectively), whereas the least important chan- 
nels are the band C with polarizations HV and VV 
(voting powers equal to 11 and 15, respectively). It 
is also interesting to consult  the piecewise-l inear 
representation of  constraints on the spectral response 
of  each class in each spectral channel. For  example,  
in the case of  the ATM sensor and o f  the CRN of  
sugar beets, a pixel should be light in channels 5 and 
10, from medium gray level to light in channel 2, 

Table 2 
Class-by-class accuracies in the classification of test pixels by using the best MLP on the test sets, SNNs, PNNs and the k-nn classifier. The 
overall accuracy is also provided that is given in terms of the percentage of correctly classified pixels and of the Kappa coefficient 

Class Number of MLP SNNs PNNs k-nn 
pixels 15-8-5, 7/= '0.01 

Sugar beets 2043 99.8% 99.5% 97.8% 97.4% 
Stubble 1371 84.6% 85.9% 82.4% 88.4% 
Bare soil 555 80.9% 79.3% 79.6% 76.0% 
Potatoes 884 80.9% 74.2% 81.8% 86.4% 
Carrots 967 88.2% 75.2% 89.3% 87.1% 
Correct classification 89.6% 86.5% 88.6% 89.8% 
Kappa coefficient 0.863 0.820 0.850 0.869 
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Fig. 5. Classification maps of the scene in Fig. 4: (a) reference map; (b) classification results of the MLP with the 15-8-5 architecture, 
trained with 71 = 0.01; (c) classification results of the SNNs; (d) classification results of the PNNs; (e) classification results of the k-nn 
classifier; (f) legend. 

and dark in channel 9, in order to give rise to a high 
output value of  each equivalent neuron of  the first 
hidden layer. 

Concerning the PNNs, a three-layer network was 
defined, with a number of  input units, a number of  
pattern units, and a number of  output units that were 
equal to the numbers of  attributes (15), of  training 
pixels (5124), and of  classes (five), respectively. A 
value 0.1 of  the smoothing parameter of  the Gauss- 
ian kernel function was selected experimentally as a 
result of  the training phase. The classification accu- 
racies on the test set that were obtained by using the 
PNNs are summarized, class by class, in the fifth 
column of  Table 2. A classification accuracy of  
88.7% was obtained on the whole image; the classifi- 
cation map provided by the classifier is shown in 
Fig. 5(d). 

The results provided by the aforementioned three 
neuronal classifiers were then compared with those 

provided by the k-nn classifier. The multisensor data 
set was classified using different k values, from 
k = 3 up to k = 50. The best classification accuracy 
on the test set (i.e., 89.8%) was obtained by k = 25 
(Table 2). By this value of  k, a classification accu- 
racy of  89.9% was achieved on the whole image (the 
classification map is shown in Fig. 5(e)). 

Finally, in order to better compare the accuracies 
provided by all the classifiers, the Kappa coefficient 
(Congalton et al., 1983; Rosenfield and Fitzpatrick- 
Lins, 1986) was computed (Table 2) as an effective 
measure to assess the accuracies of  the different 
types of classifiers. 

4. Discussion and conclusions 

The results reported in the previous section show 
that the best classification accuracy on the test set, 
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among the neural classifiers considered, was pro- 
vided by the MLP with the architecture 15-8-5,  
trained with 77 = 0.01. The PNNs performed a little 
worse than such an MLP and a little better than the 
SNNs (there were differences of about 1% and 2% 
on the test set, respectively). However, the SNNs 
had the advantage of using classification criteria that 
are intelligible. 

By analyzing the classification maps provided by 
the different classifiers (Fig. 5), one can see that 
some classification errors were common to all the 
classifiers. This is the case of some errors located on 
boundary pixels, due to the presence of both spurious 
ground coverings (e.g., trees, lanes) and mixed pixels 
between neighbouring fields. In addition, as both the 
training and test sets were taken from disjoint re- 
gions, fields of the test set with spectral responses 
not represented in the training set were likely to be 
completely misclassified by all the classifiers. A 
strong resemblance is evident in the errors produced 
by the PNNs and the k-nn classifier. This can be 
explained by the theoretical relationship existing be- 
tween PNNs and k-nn, as also the k-nn classifier is 
based on the Parzen approach to density estimation 
(Fukunaga, 1990). On the other hand, also the maps 
provided by the SNNs and by the MLP exhibit 
strong similarities, due to the fact that SNNs are 
MLPs with particular architectures. 

The SNNs and the PNNs had the advantage of 
requiring a simpler phase of architecture design than 
the MLPs, as they did not need experiments with 
different architectures. 

From the viewpoint of processing time, the SNNs 
and the MLPs were slower than the PNNs in the 
training phase. The training of the PNNs was fast, as 
it required only a search in a one-dimensional space 
for the selection of the smoothing parameter. On the 
other hand, for the PNNs the size of the network and 
the classification time grow proportionally to the size 
of the training set. Therefore, with very large train- 
ing sets, more complex techniques for the definition 
of the network are required (Burrascano, 1991). 
However, for our data set, all the network classifiers 
considered were quite fast in the classification phase. 

Concerning the k-nn classifier, it provided a clas- 
sification accuracy a little higher than those of all the 
neural classifiers considered. However, whereas the 
k-nn classifier was faster than the MLPs and the 

SNNs in the training phase, it was much slower than 
all the considered neural networks in the classifica- 
tion phase. Depending on the application, speed may 
be more important in one or the other phase. 

Considering the Kappa coefficient (Table 2), the 
differences among the accuracies provided by the 
various classifiers slightly increase. However, the 
above conclusions are substantially confirmed. 

All the neural classifiers considered provided sim- 
ilar classification accuracies, only slightly worse than 
that of the k-nn classifier. This substantial equiva- 
lence of neural and statistical classifiers from the 
viewpoint of performances, which is basically in 
agreement with the results reported in the literature, 
was also confirmed by other experiments we carried 
out on different data sets (Roli, 1996). As a specific 
contribution, this paper should help to choose, on the 
basis of the requirements for the application at hand, 
from among different neural models, including the 
considered SNNs, which are interesting when an 
interpretation of the network operation is desired. 

Finally, further research regarding SNNs is in 
progress: in particular, we are applying the concept 
of neural-network ensembles in order to improve the 
classification accuracy and the reliability of SNNs. 
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