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Abstract. One of the main phases in the development of a system for the
classi� cation of remote sensing images is the de� nition of an e� ective set of
features to be given as input to the classi� er. In particular, it is often useful to
reduce the number of features available, while saving the possibility to discriminate
among the di� erent land-cover classes to be recognized. This paper addresses this
topic with reference to applications that involve more than two land-cover classes
(multiclass problems). Several criteria proposed in the remote sensing literature
are considered and compared with one another and with the criterion presented
by the authors. Such a criterion, unlike those usually adopted for multiclass
problems, is related to an upper bound to the error probability of the Bayes
classi� er. As the objective of feature selection is generally to identify a reduced
set of features that minimize the errors of the classi� er, the aforementioned
property is very important because it allows one to select features by taking into
account their e� ects on classi� cation errors. Experiments on two remote sensing
datasets are described and discussed. These experiments con� rm the e� ectiveness
of the proposed criterion, which performs slightly better than all the others
considered in the paper. In addition, the results obtained provide useful informa-
tion about the behaviour of di� erent classical criteria when applied in
multiclass cases.

1. Introduction
The availability of automatic classi� cation systems devoted to producing reliable

and accurate thematic maps is an important requirement for the development of
numerous remote sensing applications. To this end, it is fundamental to provide a
classi� er with e� ective features to distinguish accurately among di� erent land-cover
classes. Such features may be obtained both by developing new types of sensors (e.g.
hyperspectral sensors (Richards 1993, Schowengerdt 1997)) and by improving the
techniques for extracting information from images acquired in di� erent spectral
channels (e.g. by computing texture features, vegetation indexes, etc. (Richards 1993,
Schowengerdt 1997)). In both cases, a large amount of features can be obtained that
are usually strongly correlated, particularly when one uses sensors with high spectral
resolution that acquire images in a large number of very close spectral bands. The
consequent redundancy of the feature set (i.e. the presence of features containing
similar information) suggests reducing the number of features given as input to a
classi� er, while maintaining classi� cation accuracy as high as possible (Swain and
Davis 1978, Fukunaga 1990, Richards 1993). A reduction in the number of features
given as input to a classi� er makes it possible to decrease both the computational
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time required by the classi� cation process and, in some cases, the costs of the
computation of features and of the storage of the images from which features are
extracted. Moreover, a reduction in the number of features may also increase
classi� cation accuracy (Hughes phenomenon) (Fukunaga 1990).

Several techniques aimed at reducing the number of features have been proposed
in the literature (Kailath 1967, Swain and Davis 1978, Thomas et al. 1987, Fukunaga
1990, Mausel et al. 1990, Richards 1993). In particular, two di� erent approaches can
be de� ned:

(i ) It is possible to extract some features that compress the information con-
tained in the original features through the application of appropriate linear
or nonlinear transformations to the original feature space. This approach is
usually named feature extraction;

(ii ) It is possible to derive a subset of the original set of features that allow one
to separate accurately the land-cover classes considered. This approach is
usually called feature selection.

The techniques belonging to the � rst approach (e.g. Principal Component Analysis
(Richards 1993, Schowengerdt 1997) and the Decision Boundary method (Lee and
Landgrebe 1993)) have the advantage of compressing the information available in
the original feature set into a subset of uncorrelated features. Unfortunately, they
exhibit the drawback of losing the physical signi� cance of features. At the end of the
transformation process, it is di� cult to understand which real physical parameters
are used by the classi� er to distinguish the information classes.† In some remote
sensing applications, this fact may represent a limitation on the understanding of
the behaviour of the implemented classi� cation system and hence on the validation
of its performance.

The second approach generally involves both a search algorithm and a criterion
function. The search algorithm generates and compares possible ‘solutions’ of the
feature-selection problem (i.e. subsets of features) by utilizing the criterion function
as a measure of the e� ectiveness of each considered feature subset. The best feature
subset found in this way is the output of the feature-selection algorithm.

As the objective of feature selection is to select features that minimize the overall
error of the classi� er, it would be appropriate to adopt criterion functions related
to the behaviour of the error made by the classi� er used. But, in multiclass remote
sensing problems, only in a few cases do the adopted criterion functions exhibit such
a characteristic (Bruzzone et al. 1995). This is true, even though, within the framework
of information theory, several works de� ned bounds to the error probability in
multiclass cases (Lainiotis 1969, Hellman and Raviv 1970, Lainiotis and Park 1971,

Devijver 1974, Garber and Djouadi 1988). This depends on the fact that most of
such bounds are rather complex; therefore, using them in real applications is not
practical (Devijver 1974). In this sense, it seems interesting to consider criteria that
are related to the error probability, and that are simple enough from a computational
viewpoint.

Concerning the search algorithm (Jain and Zongker 1997), both optimal strategies
(e.g. the branch and bound technique (Fukunaga 1990)) and suboptimal strategies

†It is worth noting that it is usually possible to associate particular properties of land
covers with the response in each spectral band.
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(e.g. the sequential forward selection and the sequential backward selection (Pudil
et al. 1994), � oating search methods (Pudil et al. 1994), and genetic algorithms
(Siedlecki and Slansky 1989)) have been proposed. After � xing the desired number
of features in the selected set, optimal strategies identify the best set of features
according to the adopted criterion function. Unfortunately, these strategies often
turn out to be unsuitable from a computational viewpoint, due to their intrinsic
combinatorial complexity (Jain and Zongker 1997). In such cases, suboptimal
strategies can be adopted, which allow a good set of features (but not necessarily
the best one) to be selected.

In this paper, we focus attention on criterion functions devoted to feature selection
in multiclass cases for classi� cation of remote sensing images acquired by passive
sensors. The choice of considering multiclass cases stems from the fact that they are
very frequent in remote sensing problems; the interest in passive sensors results from
the wide use of such sensors in real applications. In particular, we present a simple,
yet e� ective, criterion function that can be adopted in multiclass cases, and that is
related to an upper bound to the error probability of the Bayes classi� er, under the
hypothesis of Gaussian distribution (commonly assumed for passive-sensor data). In
addition, we report experimental results obtained on two remote sensing datasets to
compare the performance of the above-mentioned criterion function with those of
several feature-selection techniques commonly used in remote sensing for multiclass
problems.

2. Feature selection in multiclass problems
For feature selection in multiclass problems, one can adopt criterion functions

that have been de� ned for multiclass cases, or one can consider criterion functions
originally de� ned for two-class cases and generalize them to multiclass ones. In the
following, attention will be focused on some criterion functions that are among
the most widely used in remote sensing applications.

Criterion functions are typically measures of the statistical separability of classes
in a given feature space. For remote sensing applications, the divergence criterion
(Swain and Davis 1978, Thomas et al. 1987, Mausel et al. 1990, Richards 1993), the
transformed divergence criterion (Swain and Davis 1978, Thomas et al. 1987, Mausel
et al. 1990, Richards 1993), the Bhattacharyya distance (Kailath 1967, Swain and
Davis 1978, Thomas et al. 1987, Mausel et al. 1990, Richards 1993), the Je� reys–
Matusita (J–M) distance (Swain and Davis 1978, Thomas et al. 1987), and the
criteria based on scatter matrices (Fukunaga 1990, Liu and Jernigan 1990) are the
most widely used criteria. Our analysis will be restricted to the separability indexes
based on the Bhattacharyya distance, the J–M distance, and one from among a
number of possible separability measures based on scatter matrices because these
separability indexes are representative of the main types of feature-selection criteria.

Let us consider a classi� cation problem in which each pattern, described by an
n-dimensional feature vector x= (x1 , x2 , . . . , x

n
) in the feature space X, is to be

assigned to one of c di� erent classes V= (v1 , v2 , ..., v
c
) characterized by the a priori

probabilities P (v
i
) (i=1, 2, . . . , c). Let p (x/v

i
) be the conditional probability density

functions for the feature vector x, given the class v
i

(i=1, 2, . . . , c). The objective of
feature selection is to select the best subset of m features (with m< n) according to
the optimization of the criterion function (e.g. maximization of a separability index
or minimization of an error bound).

Various authors have proposed both theoretically based and empirically
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developed generalizations of two-class distances to multiclass cases. The most
common strategy is to use the weighted average distances computed for all pairs of
classes (Swain and Davis 1978, Thomas et al. 1987, Mausel et al. 1990, Richards 1993).

Applying this strategy to the Bhattacharyya distance (Kailath 1967), we obtain:

B
ave
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i=1
� c

j=1
P(v

i
)P(v

j
)B

ij
(1)

where B
ij

is the Bhattacharyya distance between two classes, v
i

and v
j
, and can be

expressed as (Kailath 1967, Swain and Davis 1978, Fukunaga 1990, Mausel et al.
1990):
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x
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B
ij

represents a measure of the average statistical distance between the conditional
probability density functions related to the two classes. For remote sensing data
acquired by passive sensors, it is usually assumed that classes have Gaussian
distributions. In this case, B

ij
can be simpli� ed (Swain and Davis 1978) as:
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where mi , mj and S
i
, S

j
are the mean vectors and the covariance matrices, respectively,

for the classes v
i

and v
j
.

The same generalization strategy can be applied to the J–M distance:
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where J
ij

, that is, the J–M distance between v
i

and v
j
, is de� ned as (Swain and

Davis 1978, Thomas et al. 1987):

J
ij

= GP
x

[ Ó p(x/ vi
) Õ Ó p(x/ vj

)]2 dxH1 /2

(5)

Under the assumption of Gaussian distribution of classes, also the above distance
can be simpli� ed, as the J–M distance J

ij
between two classes can be rewritten as a

function of the Bhattacharyya distance B
ij

between the two classes (Swain and Davis
1978, Thomas et al. 1987, Mausel et al. 1990):

J
ij

= [2 (1 Õ e Õ Bij )]1 /2 (6)

and B
ij

can be computed according to equation (3).
One can perform feature selection by selecting the feature subset that maximizes

equations (1) or (4). Unlike what happens in two-class cases, in multiclass cases the
Bhattacharyya and the J–M criteria may select di� erent subsets of features (Swain
and Davis 1978). This depends on the fact that the Bhattacharyya distance between
two classes continues to increase signi� cantly even when the topological distance
between them (e.g. the distance between the mean vectors) reaches values correspond-
ing to well-separated classes. On the contrary, the J–M distance, by analogy to the
error probability, exhibits a ‘saturating’ behaviour for large distance values. Thanks
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to this similarity of the J–M distance to the error probability behaviour, the criterion
based on the J–M distance is usually more e� ective (Swain and Davis 1978).
Accordingly, for the other generalizations to multiclass cases considered in the
following, we shall focus attention just on the J–M distance.

In a previous paper (Bruzzone et al. 1995), the authors pointed out that the J–M
distance can be applied to multiclass cases, according to the Bhattacharyya bound
to the Bayes error, as follows:

J
bh

= � c

i=1
� c

j> i

Ó P(v
i
)P(v

j
)J2

ij
(7)

One can use the J–M distance for feature selection in multiclass cases also by
selecting the set of features that maximize the separability index J

min
given by (Swain

and Davis 1978):

J
min

= min

i,j
{J

ij
} i= 1,..., c ; j= 1, ..., c; i Þ j (8 )

that is, the set of features that can best separate the least distinguishable pair of
classes are selected. The analysis of J

ave
, J

bh
and J

min
highlights how the di� erent

generalizations of the J–M distance to multiclass cases may provide di� erent results.
J

ave
is the most classical generalization typically used in the literature. J

bh
, being

based on the Bhattacharyya upper bound to the Bayes error probability, is the only
generalization that makes it possible to maintain a theoretical relation between
selected features and error probability. Moreover, as discussed in Bruzzone et al.
(1995), such generalization gives greater importance to data classes with low a priori
probabilities in the selection process, as compared with J

ave
. On the contrary, J

min
,

which is based on an entirely di� erent concept, guarantees the accurate separation
of the two most critical classes, but it may consequently lead to the selection of
features that are not e� ective for other classes.

Other feature-selection criteria evaluate the e� ectiveness of features by computing
within-class (S

w
) and between-class (S

b
) scatter matrices, de� ned in a general

multiclass case as (Fukunaga 1990):
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where c is the number of classes and m0 denotes the expected vectors of the ‘mixture’
distribution given by:

m0 = � c

i=1
P(v

i
)mi (11)

From the matrices S
w

and S
b
, several separability indexes can be derived (Fukunaga

1990, Liu and Jernigan 1990). As an example, a separability index is the following
(Liu and Jernigan 1990):

F =
|S

w
+S

b
|

|S
w

|
(12)

This index evaluates the e� ectiveness of features by considering their capability to
provide a large inter-class separation and a small intra-class spread by analysing
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together samples of all classes. Even though the indexes based on scatter matrices
are widely used, they present the drawback of not exhibiting a saturating e� ect for
large distance values.

When data acquired by passive sensors are used, all the aforementioned criteria
can be adopted, under the reasonable assumption of Gaussian distributions of classes.
Only the criterion based on scatter matrices does not explicitly require any hypothesis
on class distributions; however, it is e� ective only if classes have unimodal and
symmetric distributions (Fukunaga 1990). It is worth noting that when no simple
assumptions on the distributions of classes can be made, it is necessary to apply
criteria suited to solving problems characterized by non-parametric or multimodal
distributions (Novovicova et al. 1996, Krishnan et al. 1996).

3. The proposed criterion
The criterion we present in this paper is based on an upper bound to the Bayes

error formulated under appropriate simplifying hypotheses. We de� ne the criterion
for two-class cases and then generalize it to multiclass cases.

Let us consider two classes, v
i
and v

j
. The error probability of the Bayes classi� er

for the minimum error is given by (Tou and Gonzalez 1974, Fukunaga 1990):
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where D
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Under the hypotheses of Gaussian distributions and of two classes with equal
covariance matrices (i.e. S

i
= S

j
= S

ij
), equation (13) can be rewritten as (Tou and

Gonzalez 1974):

P
e
(v

i
, v

j
)= P(v

i
)C1 Õ QAa Õ Æ d

ij
Ó d

ij
BD+P(v

j
)QAa +Æ d

ij
Ó d

ij
B (16)

where Q(x)=
1

Ó 2pP +2

x

e Õ j
2

/2 dj, the value a depends on the optimal decision

threshold computed using the maximum a posteriori probability (MAP) rule, i.e.

a= log
P (v

j
)

P (v
i
)

(17)

and d
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is the Mahalanobis distance between the two classes v
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and v
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by (Tou and Gonzalez 1974, Richards 1993):
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As d
ij

in equation (16) depends on the feature considered, once the number of
features to be selected has been � xed, one can perform feature selection by minimizing
(16), used as a criterion function. In order to simplify the computation, one can
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consider the upper bound to equation (16) provided by:
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which corresponds to � xing the threshold at the middle point of the Mahalanobis
distance between the two classes, instead of using the optimal threshold computed
according to the MAP rule.

Equations (16) and (19) can be used only in a two-class case. In order to choose
from the literature (Lainiotis 1969, Hellman and Raviv 1970, Lainiotis and Park
1971, Devijver 1974, Garber and Djouadi 1988) a suitable upper bound to the error
probability in multiclass cases for the purpose of our work, we evaluated two opposite
requirements: the tightness of the bound to the error probability and the load for
the computation of this bound. The former is a desirable property for an upper
bound; however, bounds tightly related to the error probability are usually too
complex to use (Devijver 1974). Therefore, in order not to increase the computational
complexity too much, we selected a simple upper bound. It is provided by the sum
of pairwise errors, computed for all pairs of classes as (Devijver 1974):
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upper bounds (19) instead of the errors (16), we can also write:
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Feature selection can be performed according to the minimization of E1 or E2 . The
use of E1 guarantees a better approximation for the error probability; on the other
hand, the use of E2 slightly reduces the computational load.

Equations (16) and (19) have been derived under the hypothesis of classes with
equal covariance matrices. However, in practical cases, covariance matrices may be
di� erent. Therefore, for each pair of classes, we empirically compute S

ij
, which

appears in equation (18), as the mean value of the two covariance matrices S
i

and
S

j
(Fukunaga 1990), i.e.:

S
ij
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)

2
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4. Procedure and data used for performance evaluation
4.1. Performance evaluation procedure

In order to compare the di� erent criteria discussed in §2 with one another and
with the proposed one, we utilized the classi� cation accuracy obtained by giving the
features (selected by the di� erent algorithms) as input to the Bayes classi� er (i.e. the
classi� er based on the Bayes rule for minimum error). To better isolate the e� ects of
the various criterion functions on classi� cation accuracy, we adopted an optimal
search algorithm (otherwise, the result of the comparison might depend on the
adopted suboptimal search algorithm). Consequently, we had to choose datasets
with a moderate number of features so as to make optimal search algorithms
applicable. In particular, we used the Branch and Bound algorithm (Fukunaga 1990,
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Jain and Zongker 1997), which makes it possible to obtain optimal solutions in a
reduced computation time, as compared with an exhaustive search.

We considered two di� erent remote sensing datasets related to two agricultural
areas, which are located in the ‘Val Tiberina’ (Italy) and near the village of ‘Feltwell’
(UK). For both datasets, the same kinds of experiments were carried out. In particu-
lar, each feature selection technique was used to select, from among n available
features, the optimal subset of m features, for m= 1, 2, . . . ,n Õ 1. It is worth noting
that, as our experiments aimed at evaluating the e� ectiveness of feature selection
criteria, they were carried out on training sets, without considering any test set, as
is usually done for this kind of problem. In fact, the evaluation of the e� ectiveness
of each feature set on the test set would also be in� uenced by the generalization
capabilities of the features and not only by the e� ectiveness of each separability
index. In our experiments, we assumed that data were Gaussian distributed. For the
evaluation of the proposed criterion, we utilized E2 , which is computationally less
expensive than E1 .

4.2. Description of the dataset related to the ‘Val T iberina’
The study area is part of the upper Tiber River Valley, delimited by the mountain

chain of the Apennines to the east and by the subapennine hills to the west. A set
of multitemporal remote sensing images, acquired by the Thematic Mapper (TM)
sensor of the Landsat satellite (Richards 1993), were considered (� gure 1). For our

Figure 1. Image of the ‘Val Tiberina’ test site: channel 4 of the TM sensor.
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experiments, two multispectral images (512 Ö 512 pixels) related to the same area
were selected from two scenes taken on 16 March and 17 August 1991, respectively.
Between the two acquisition dates, no change took place in the land cover of the
area considered. The six non-thermal bands were chosen for each multispectral
image. The analysis was carried out on a pixel basis, i.e. each pixel was considered
as a pattern and characterized by a vector of 12 features. This feature vector was
obtained by ‘stacking’ the feature vectors related to the images acquired at the single
times. It is worth noting that the use of multitemporal features may improve the
capability of the resulting set of features for distinguishing among di� erent land-
cover classes (some classes are separable by using features related to the � rst date,
other classes are separable by using features related to the second date). From the
available ground data, we selected the following four agricultural classes to be used
in our experiments: wheat, corn, sun� owers and tobacco. A training set composed
of 4592 samples was generated and utilized for the experiments (see table 1).

4.3. Description of the ‘Feltwell’ dataset
A section (250 Ö 350 pixels) of an image acquired by a multispectral scanner

installed on an airplane (i.e. a Daedalus 1268 Airborne Thematic Mapper (ATM)
scanner (Richards 1993)) was considered (� gure 2). The � ight took place in July
1989. In order to characterize each pixel, the six spectral bands corresponding to
the TM channels (with the exception of the thermal channel ) were employed. In
addition, 11 nonlinear combinations of spectral channels (the so-called ‘vegetation
indexes’ (Swain and Davis 1978, Richards 1993)) were used. According to the
common denominations of the TM channels (Richards 1993), the following combina-
tions were considered: (TM4 Õ TM3)/(TM4+TM3), (TM5 Õ TM4)/(TM5+TM4),
TM3/TM1, TM3/TM2, TM4/TM1, TM4/TM2, TM4/TM3, TM4/TM5, TM4/TM7,
TM5/TM1 and TM7/TM3. As a result, each pixel was characterized by a vector of
17 features. The use of the aforementioned vegetation indexes introduces redundant
information into the feature set. Consequently, it makes the tests of the considered
feature-selection criteria more interesting. A training set composed of 1431 samples
belonging to � ve di� erent agricultural classes was generated and utilized for the
experiments (see table 2). The considered agricultural classes were wheat, sugar beets,
potatoes, carrots and stubble.

5. Experimental results
5.1. Results on the ‘Val T iberina’ dataset

Figure 3 shows the behaviour of the classi� cation accuracies obtained by applying
the Bayesian classi� er to the features extracted by the considered criteria. In particu-
lar, the accuracies have been plotted versus the numbers of selected features. For the

Table 1. Classes and related numbers of pixels in the
considered Val Tiberina training set.

Class Number of pixels

Wheat 2129
Corn 1274
Sun� owers 589
Tobacco 600



L . Bruzzone and S. B. Serpico558

Figure 2. Image of the ‘Feltwell’ test site: channel 9 of the ATM sensor.

Table 2. Classes and related numbers of pixels in the
considered Feltwell training set.

Class Number of pixels

Wheat 283
Sugar beets 583
Potatoes 156
Carrots 256
Stubble 153

computation of the classi� cation accuracy, the percentage of correctly classi� ed
pixels, with respect to the total number of pixels in the training set, has been utilized.
From the behaviours given in the diagram, it is easy to deduce that, for this dataset,
it is not useful to consider more than seven features. With seven features, the
classi� cation accuracy curve becomes � at for most of the criteria (i.e. addition of
further features does not signi� cantly improve classi� cation accuracy). The analysis
of � gure 3 points out how the proposed criterion function (i.e. E2 ) allows us to
obtain an accuracy that is often higher than the ones reached by using the features
selected by the other criteria. To better evaluate the obtained results, � gure 4 presents
the histograms of the average classi� cation accuracies computed for all the considered
techniques. The average accuracies were computed by summing the accuracies
obtained by using the selected subsets of features (with the numbers of features
ranging between 1 and 7) and by dividing the sum total by 7. The best results were
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Figure 3. Comparison of the classi� cation accuracies provided by the considered techniques
for the ‘Val Tiberina’ dataset. (B

ave
= average Bhattacharyya distance; J

ave
= average

J–M distance; J
bh

= J–M distance generalized according to the Bhattacharyya bound
to the Bayes error; J

min
= J–M distance between the least distinguishablepair of classes;

F= index based on scatter matrices; E= proposed criterion.)

Figure 4. Average classi� cation accuracies provided by the considered techniques for the ‘Val
Tiberina’ dataset (the averages were computed by using numbers of selected features
ranging between 1 and 7).

obtained by our criterion. It performed slightly better than the criterion based on
scatter matrices, which turned out to be the best of the classical criteria. Average
accuracies close to those obtained by the F index were obtained by J

bh
and J

ave
,

which always selected the same subsets of features from the aforesaid dataset. The
performances of B

ave
and J

min
were worse.

5.2. Results on the ‘Feltwell’ dataset
Figure 5 shows the behaviour of the classi� cation accuracies obtained by the

di� erent algorithms versus the number of selected features. For this dataset, in order
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Figure 5. Comparison of the classi� cation accuracies provided by the di� erent techniques
for the ‘Feltwell’ dataset.

to reach the saturating e� ect of the classi� cation accuracy, eight can be regarded as
a suitable number of features to be provided as input to the classi� er. Therefore, in
order to compare the performances of the di� erent techniques, each average classi-
� cation accuracy was computed considering a number of selected features from one
to eight (� gure 6). As was the case with the ‘Val Tiberina’ dataset, the proposed
criterion provided the best average accuracy. It performed slightly better than the
J

bh
index, which gave the best average accuracy among the classical techniques. J

ave
and J

min
provided average accuracies close to that of J

bh
. By contrast, F and B

ave
yielded de� nitely worse performances.

5.3. Discussion of results
A global analysis of the obtained results suggests that, for both datasets, the

proposed criterion turned out to be the most e� ective, as the subsets of features
selected according to it allowed us to obtain the highest average classi� cation

Figure 6. Average classi� cation accuracies provided by the considered techniques for the
‘Feltwell’ dataset (the averages were computed by using numbers of selected features
ranging between 1 and 8).
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accuracy. Concerning the classical criteria, it is possible to state that J
bh

and J
ave

behaved rather well, providing average classi� cation accuracies that were slightly
worse than those attained by the proposed approach. The F index behaved in a
di� erent way on the two datasets: on the ‘Val Tiberina’ dataset, it provided an
average classi� cation accuracy that was very close to the best one, whereas, on the
‘Feltwell’ dataset, it reached an unsatisfactory average classi� cation accuracy. The
J

min
index exhibited behaviours opposite to the ones of the F index on the two

datasets. In particular, it provided an acceptable average classi� cation accuracy only
on the ‘Feltwell’ dataset. The criterion based on B

ave
provided low average accuracies

on both datasets.
In our opinion, even if, in some cases, the above results may appear contradictory,

they can be interpreted as a con� rmation that the critical point concerns the way in
which the considered criteria combine the separability of each pair of classes in the
computation of the global multiclass separability measure. Therefore, satisfactory
results were obtained, on both datasets, by applying the three considered criteria
(i.e. E2 , J

ave
and J

bh
) that take into account the separability of all couples of classes

and weight them in a similar way, as they in� uence the overall classi� cation error.
The best choice between the two generalizations of the J–M distance, J

bh
and

J
ave

, in a general case, depends on the importance assigned to minority classes, as
J

bh
gives a greater weight to classes with low a priori probabilities, as compared with

J
ave

(Bruzzone et al. 1995). Concerning J
min

, results con� rm that considering only
the couple of least separable classes may cause the selection of a feature subset that
is globally not e� ective.

The low performances of the Bhattacharyya distance prove what is already well
known in the literature, i.e. the non-saturating behaviour of this distance limits its
e� ectiveness in feature-selection problems involving more than two classes.

Finally, the fact that the F index considers the distances of classes from the
overall distribution of all samples (and not pairwise class distances, see equation (10))
and the lack of saturation e� ect for increasing distances may also explain the
low performances of this criterion on the ‘Feltwell’ dataset. Therefore, it may be
considered less reliable and not suited to all situations.

6. Conclusions
In this paper, we have focused attention on the feature-selection problem in

multiclass cases. We have considered and compared various classical feature-selection
criteria with one another and with the criterion proposed by us. In particular, for
one of the considered classical criteria (i.e. the J–M distance), we have analysed three
generalizations of two-class cases to multiclass ones. Experiments on two remote
sensing datasets have been described.

For both datasets, the proposed criterion turned out to be particularly e� ective,
as the subset of features it selected allowed us to obtain the highest average classi� ca-
tion accuracy. Several experiments, not reported in this paper, were carried out to
evaluate the accuracies provided by the features selected by the other formulation
(i.e. E1 ) of the proposed technique. However, no improvements were obtained over
the classi� cation accuracies reached by the feature subsets selected by E2 .

The proposed criterion has been formulated for data characterized by classes
with Gaussian distributions, which can be considered a reasonable assumption in
remote sensing applications involving the use of passive sensors. It is worth noting,
however, that the proposed criterion performed well also when we used the dataset
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including vegetation indexes, for which the assumption of Gaussian distributions of
classes does not hold.

It is worth providing some information about the computational loads required
by the di� erent criteria. Neglecting the aspects related to the search algorithms (as
they are beyond the scope of this work), it is interesting to note the di� erent
computational loads required to calculate the functionals for the di� erent criteria
considered. After � xing the number of features, the criteria can be compared by
considering the matrix computations (which are the most time-consuming ) needed
by the di� erent algorithms. It is easy to observe that the proposed criterion E2

requires only the computation of one inverse matrix for each couple of classes (see
equations (18) and (19)), whereas the B

ave
criterion and all the considered J–M

criteria require also the computations of one determinant for each class and of one
determinant for each couple of classes (see equations (3) and (6)). Only the computa-
tion of the F index is simpler than that of the criterion function E2 because it requires
the calculation of one determinant of two global matrices instead of the calculation
of several determinants for each class or couple of classes (see equation (12)). By the
contrast, the F index seems to be less reliable, as was con� rmed in one of our
experiments.

The results of the described investigation can also be useful in selecting the bands
of hyperspectral remote sensing images, as all the considered criterion functions
can be applied to such images. However, given the very large number of bands
involved, the resulting huge computational complexity makes it mandatory to adopt
suboptimal search algorithms.

Although multiclass criteria based on error bounds have been presented in the
pattern recognition literature, such criteria are not usually utilized by the remote
sensing community. The criterion proposed in this paper is based on an error bound
and, from a computational viewpoint, is less expensive than classical criteria such as
those based on the Bhattacharyya distance and on the J–M distance. In addition, it
proved e� ective for the real remote sensing data considered in our experiments.
Therefore, in our opinion, it can be regarded as a valid alternative to other classical
criteria commonly applied to remote sensing data acquired by passive sensors.
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