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Abstract—Classification of remote-sensing images is usu-
ally carried out by using approaches aimed at minimizing the
overall error affecting land-cover maps. However, in several
remote-sensing problems, it could be useful to perform classifi-
cation by taking into account the different consequences (and
hence the different costs) associated with each kind of error.
This allows one to obtain land-cover maps in which the total
classification cost involved by errors is minimized, instead of the
overall classification error. To this end, in this paper, an approach
to feature selection and classification of remote-sensing images
based on the Bayes rule for minimum cost (BRMC) is proposed.
In particular, a feature-selection criterion function is presented
that permits one to select the features to be given as input to a
classifier by taking into account the different cost associated with
each confused pair of land-cover classes. Moreover, a classification
technique based on the BRMC and implemented by using a neural
network is described. The results of experiments carried out on
a multisource data set concerning the Island of Elba (Italy) point
out the ability of the proposed minimum cost approach to produce
land-cover maps in which the consequences of each kind of error
are considered.

Index Terms—Bayes rule for minimum cost, feature selection,
image classification, remote sensing, risk assessment.

I. INTRODUCTION

RODUCTION of land-cover maps by using automatic

classification techniques is one of the main applications
of remotely sensed images [1]. Such maps can be utilized for
various purposes. In recent years, ever-increasing attention
has been devoted to employing land-cover maps to define
policies for environmental interventions based on the spatial
distribution of different land covers in the area considered.
In some cases, these interventions aim to reduce the risks of
natural disasters (e.g., forest fires, floods, etc.) in areas with
land covers characterized by high risk levels. In other cases,
the purpose of interventions is to realize infrastructures on the
basis of the land-covers in the regions selected. In all such
cases, different kinds of errors (i.e., different confused pairs
of classes) may lead to different wrong interventions on the
land that may result in consequences of different severity.
Therefore, each kind of error can be associated with a more
or less high cost, depending on the implications of the error.
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Such a cost should be taken into account in the classification
process in order to minimize the errors that cause the most
severe consequences to a given application.

In the literature, several methodologies for automatic classi-
fication of remote-sensing images used to produce land-cover
maps have been presented [1]-[9]. These methodologies (e.g.,
neural networks [2]-[5], fuzzy logic [7], [8], and knowledge-
based paradigms [8], [9]) face various aspects of automatic clas-
sification. Many of the proposed approaches are based directly
or indirectly on the Bayes rule for minimum error (BRME),
which aims at a classification that is affected by a minimum
overall error [10]. On the contrary, little attention has been de-
voted to the development of approaches to performing a classi-
fication that takes into account the different cost that each kind
of error involves for the application considered [11], [12]. How-
ever, in some cases, it may be more appropriate to design a clas-
sification system aimed at minimizing errors that result in high
costs, rather than minimizing the overall classification error. To
this end, an approach based on the Bayes rule for minimum cost
(BRMC) [10], which aims to minimize the total classification
cost, should be adopted.

In this paper, an approach to feature selection and classifi-
cation based on the BRMC is presented as a valid alternative to
the approaches based on the BRME for remote-sensing applica-
tions, in which different kinds of errors result in different costs.
In particular, a feature-selection criterion function is proposed
that selects effective subsets of features to be given as input to
a classifier by taking into account the cost associated with each
confused pair of land-cover classes. In addition, a classification
technique that implements the BRMC by using a neural net-
work is presented. Such a classification technique, which is of
the nonparametric type, is suitable to process multisource data.
Experiments are described concerning the problem of obtaining
land-cover maps suited to generating risk maps of forest fires
by using both remote-sensing images and ancillary data. The re-
sults of these experiments confirm the validity of the proposed
approach.

The paper is organized into six sections. The BRME and the
BRMC are briefly defined in Section II. In Section III, a fea-
ture-selection criterion function that takes into account the cost
of each error is proposed. A neural-network classification tech-
nique based on the BRMC is presented in Section IV. In Section
V, the data set used for experiments, the preprocessing applied
to data, and the strategy adopted to define the cost matrix are
described. Moreover, experimental results are reported and dis-
cussed. Finally, conclusions are drawn in Section VI.
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II. BAYES RULE FOR MINIMUM ERROR (BRME) AND BAYES
RULE FOR MINIMUM CoOST (BRMC)

Let us consider a remote-sensing image in which a
generic pixel, described by an n-dimensional feature vector
z = (z1, T2, - -+, Tp) in the feature space X, is to be assigned
to one of p different land-cover classes 2 = (w1, wa, -+, Wp)
characterized by the a priori probabilities P(w;), w; € Q. Let
p(z/w;) be the conditional density function for the feature
vector z given the class w; € Q. Let C be the cost matrix
of dimension p x p in which each element c;; represents the
cost of deciding on £ € w; when z € wj (the decisions of the
classifier are given in the matrix rows, while the true classes
are given in the columns). A high cost ¢;; corresponds to a
situation in which the confusion of the class w; with the class
w; is very critical.

It is well known that a classifier based on the BRME assigns
the pixel characterized by the feature vector z to the class wy, if
the posterior probability P(wy/z) is the highest one [10]
if P(wi/z) = max {P(wi/z)}. (1)
However, a classifier based on the BRMC associates the pixel

described by the feature vector  with the class wy, if the condi-
tional cost R(wy/x) is the lowest one [10],

if R(wi/x) = méré {R(w;/z)} )
where R(w;/z) is defined as [10]

R(wq/a:) = cilP(wl/z) + cigP(wz/:z:) =+ -
+ cip Pwp/x), Vw; € Q. 3)

The classification carried out by using the BRME minimizes
the overall error expressed as [10]

E= /min[P(wl)p(x/wl), P(wa)p(x/ws), -+,

T € wy,

T € wy

Plwp)p(z/wp)] dz @

while the classification carried out by using the BRMC mini-
mizes the total cost expressed as [10]

R = / min[R(wl/z),l R(wy/z), -+, R(wp/x)] dz. (5)

Consequently, the methods based on the BRMC usually
yield a classification affected by a lower total cost and a higher
overall error, as compared with the classification provided by
the methods based on the BRME.

III. FEATURE-SELECTION CRITERION FUNCTION BASED ON
THE BRMC

The choice of a set of features that can best discriminate
among land-cover classes to be recognized by a classifier is one
of the main problems involved in the development of a classi-
fication system. In remote sensing, besides the features related
to the spectral channels acquired by sensors, other features ex-
tracted by the processing of the information contained in these
spectral channels (e.g., texture featurés [13]) or related to ancil-
lary data [14] are often considered. Even though these features
may increase the capability to distinguish land-cover classes,
the resulting feature set often contains redundant information.
Consequently, in the phase of the system design, it is recom-
mended that only the most effective features from the set of

available ones be selected and that the redundant ones be dis-
carded. From a more formal point of view, feature selection aims
at choosing a subset of m features from among n available ones
(with m < n) that provide the best separation of land-cover
classes in the feature space. The reduction in the number of fea-
tures results in a decrease in the computational time taken by
the processing system, thanks to the lower computational loads
of the feature-extraction and classification tasks. Moreover, in
practical situations involving a limited number of training sam-
ples, a reduction in the number of features may also increase
classification accuracy (Hughes phenomenon) [10].

Feature-selection techniques usually involve a criterion func-
tion and a search algorithm. The former aims at evaluating the
separability of classes for a given subset of features. The latter
identifies the subset of features that maximize the adopted cri-
terion function. In this paper, the focus is on criterion functions,
with particular emphasis on the definition of a criterion function
thatevaluates the degree of effectiveness of features by taking into
account the costs associated with errors. Search algorithms are
not considered here, because any classical search algorithm (e.g.,
branch and bound [10], [15], sequential forward-floating selec-
tion [16], etc.) canbe applied to the proposed criterion function.

Criterion functions are usually based on separability indexes
that express the effectiveness of each subset of features. Several
separability indexes have been proposed in the remote-sensing
literature [1], [17]-[20]. When more than two classes are con-
sidered, these indexes are generally based on an average dis-
tance among classes d,. defined as [1], [17]

PP
duve = 3 3 P(wi)P(w;) dig (®)
i=1 j=1
where d;; is a statistical distance between the pair of classes
w; and w; and depends on the set of features considered. Many
statistical distances d;; have been used in remote-sensing prob-
lems (e.g., Euclidean distance, divergence, transformed diver-
gence, Bhattacharyya distance, and Jeffreys-Matusita distance
(171-{21D).

Criterion functions based on d,,.-weight pairwise distances
without taking into account the costs associated with classes.
Therefore, they are effective to select features that are suitable
to minimize the overall classification error, but they are not ap-
propriate to select features suitable to minimize the total classi-
fication cost. As a consequence, the use of these criterion func-
tions may lead to the choice of features that are not effective
in distinguishing classes that, if confused, involve high costs.
For this reason, the criterion functions based on the average dis-
tance should be reformulated on the basis of the BRMC in order
to make them able to select features by taking into account the
costs associated with each confused pair of classes.

In order to derive a minimum-cost formulation of de, it is
useful to analyze the differences between the BRME and the
BRMC. In particular, to understand how one can weight the
pairwise distances d;; by considering the cost related to each
confused pair of classes, let us consider the aforementioned de-
cision rules in the case of only two classes wy and wsy. In this
case, the BRME [see (1)] can be rewritten as [10]

w1

P(Wl)P(z/wl);2 P(wz)p(z/w2). (7
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Fig. 1. Block diagram of the proposed classification technique.

Similarly, it is possible to prove that the BRMC [see (2)] can be

rewritten as [10]
wy

(21 — 011)P(wl)p(-t/wl)E2 (e12 = ca2) P(w2)p(x/wz). (8)

By comparing (8) with (7), one can observe that the use of the
BRMC is equivalent to “modifying” the a priori probabilities of
classes in the BRME. In fact, the BRMC weights the conditional
density functions of classes by using costs in addition to a priori
probabilities. This makes it possible to take into account that
a wrong decision on one class may be more critical than that
on another class. On the basis of this observation, in order to
select features by taking into account the cost of each error, the
following minimum-cost formulation of (6) is proposed:

P p

deost = D Y (i — ¢55)(e5i — cat) P(wi) P(w;)ds.

i=1 j=1

Given a fixed number m of features to be selected, the subset
of features that maximizes d,.s;, as compared to the one that
maximizes dq.., provides a better separation of classes that
would result in high costs if misclassified. This is a consequence
of the fact that the importance given to the separability of each
pair of classes obtained by using d.,,; depends not only on the a
priori probabilities of both classes but also on the cost entailed
by the confusion of the two classes.

The application of a feature selection based on d.,4: requires
the definition of the cost matrix C, the estimation of the a priori
probabilities P(w;) of the classes, and the computation of the
distance d;; between each pair of classes. The definition of the
cost matrix C'is a very critical step. It should be performed in
close cooperation with experts in the considered application (or
with end-users) who well realize the consequences of each type
of error in practical situations. Concerning a priori probabili-
ties, they can be estimated, as usually done in remote-sensing
applications, on the basis of the frequency of each class in the
training set [22]. Finally, distance computation depends on the
kind of separability index adopted (e.g., divergence [17], Jef-
freys—Matusita distance [17], [20]).

)

IV. NEURAL-NETWORK CLASSIFICATION TECHNIQUE BASED
ON THE BRMC

Let us assume that, at the end of the feature-selection phase,
a generic pixel is described by an m-dimensional feature vector
x' = (i, 2%, - -, z}, ) composed of the selected features only.

Such features have to be given as input to a classifier to produce
a land-cover map.

Classification based on the BRMC is performed by assigning
each pixel to the land-cover class wy, for which the estimated
conditional cost is the lowest [see (2)]. Given the cost matrix
C, it is therefore necessary for each pixel to be analyzed to es-
timate the posterior probabilities P(w; /'), Vw; € £, in order
to compute the conditional costs R{w;/z’), Vw; € Q [see (3)].

A block diagram of the proposed classification scheme is
shown in Fig. 1. Such a diagram is composed of three blocks
devoted to the estimation of the P(w;/z’), to the computation
of the R(w; /'), and to the final decision to be made on the clas-
sification.

1) Estimation of P(w;/«'): Several methods have been pro-
posed in the literature to estimate the posterior probabilities
P(w;/x"), Yw; € £ [10], [23]. In the proposed classification
technique, such estimations are performed by using a neural net-
work [24]-[26]. This choice has been made in order to develop a
nonparametric classifier that can be used to process multisensor
and multisource data [2], [4]. In particular, a multilayer-percep-
tron (MLP) neural network [26], [27] with a fully connected
architecture composed of one input layer (with m neurons as
input features), one hidden layer, and one output layer (with
p neurons as classes) is considered (see Fig. 2). Each unit (or
neuron) of the network is characterized by a sigmoidal activa-
tion function. In order to make the ith network output provide an
approximation of the posterior probability P(w;/z’), the error
backpropagation (EBP) learning algorithm and the mean square
error (MSE), considered as a cost function, are used [24}-[27].
In particular, the MSE to be minimized is defined as [24]-[27]

E——ZZZ

i=1 I=1 k=1
where n and n; are the total number of samples and the number

of samples of the class w;, respectively, in the training set. ¢} is
the target for the kth output of the network for the samples of
the class w;. ok(z}') is the kth output of the network when the
lth sample of the class w; has been presented as input. To obtain
approximations for the posterior probabilities of the classes, the
sum of the outputs of the network trained by using the EBP
algorithm and the MSE cost function should be normalized to 1
[24], [25].

2) Computation of R(w;/«"): On the basis of the considered
cost matrix C' and of the estimates of the posterior probabilities
P(w;/z'), Yw; € Q (provided by the MLP neural network),

(10)

L — Ok .'El
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Fig. 2. Example of multilayer perceptron neural-network architecture for
estimating posterior-class probabilities.

this block computes the conditional costs R(w;/z’), Vw; € Q
according to (3).

3) Decision Block: The objective of this block is to make the
final decision on the basis of the BRMC. In particular, each pixel
to be classified is assigned to the class wy,, for which the condi-
tional cost is the minimum one. It is worth noting that this block
plays a role similar to the one of the block that implements the
“Winner-Takes-All” decision rule [28] in neural-network clas-
sifiers based on the BRME. However, in the present context,
it selects the class corresponding to the lowest conditional cost
instead of the class associated with the highest posterior proba-
bility.

V. EXPERIMENTAL RESULTS

In order to give an example of application to a real case of the
proposed feature-selection criterion function and classification
technique based on the BRMC, the problem of achieving a land-
cover map suited to being used to derive a risk map related to
forest fires was addressed. The fire-risk map was obtained by
assigning a risk value to each vegetation class present in the
land-cover map, in accordance with suggestions of experts [29],
[30].

The use of a classification approach based on the BRMC is par-
ticularly suitable for this application. In fact, different types of er-
rors on the land-cover map (and hence on the risk map) may lead
todifferent wronginterventionsinthe environmentthatmay result
in consequences of different gravity. In particular, the impact of a
misclassification on the risk map depends on the risk values asso-
ciated with the land covers confused by the classifier. On the one
hand, itisnotcritical toconfuse classes associated with similarrisk
levels. Onthe other hand, itis very critical to confuse classes asso-
ciated with strongly different risk levels.

A. Data-Set Description

The considered data set refers to the western part of the Island
of Elba, located in the Northern Tyrrhenian Sea (Italy). A section
(400 x 326 pixels) of a scene acquired by the Thematic Mapper

Fig. 3. Image of the test site: false-color composition of channels 7 (red), 5
(green), and 4 (blue) of the TM sensor.

(TM) of the Landsat 5 satellite [1] was selected. The acquisition
took place on August 25, 1992. Fig. 3 shows a false-color com-
position of channels 7, 5, and 4 of the TM sensor. The ground
truth was used to prepare a thematic map of the considered sec-
tion. Such a map was used as a reference map to assess both the
classification errors and the related costs of errors. The analysis
was carried out on a pixel basis (i.e., each pixel was consid-
ered as a pattern). For the experiments reported in this paper,
the 16 land-cover classes listed in Table I were chosen. In all,
12938 pixels were selected. Land-covers were randomly subdi-
vided into two sets: 6472 training pixels were taken from one set
and 6466 test pixels from the other (see Table I). The training
set was used for feature selection and to train classifiers, and the
test set was used for performance evaluations and comparisons.

B. Data Preprocessing

The considered TM images contain significant textural infor-
mation that can be used to increase the separability of land-cover
classes. In the literature, many techniques have been proposed
to characterize remote-sensing image textures. For the present
study, the texture features computed from the grey-level co-oc-
currence (GLC) matrix [31] were utilized. The GLC matrix con-
stitutes a statistical approach to texture computation that has
been successfully tested on remote-sensing images for land-
cover mapping [13], [14]. In theory, the 12 GLC texture features
proposed in [31] could be computed for each of the TM channels
of the selected scene, thus obtaining a set of 84 texture features.
In practice, in order to reduce the computational cost, the 12 tex-
ture features were computed for only one of the seven TM chan-
nels. In particular, a visual analysis of the images related to the
different spectral channels highlighted that TM channel 5 (i.e.,
an infrared channel) contained the largest amount of textural in-
formation. Therefore, the GLC texture features were computed
by using such a channel. The computation of the GLC texture
features required the choice of a given number of parameter
values for the computation of the GL.C matrix (i.e., interpixel
distance, window size, and orientation). Taking into account the
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CLASSES AND RELATED NUMBERS OF PIXELS IN THE CONSIDERED TRAIN[I\—!ZAE:J‘]ETIEZST SETS. THE FIRE-RISK VALUE ASSOCI.ATED WITH EACH CLASS IS GIVEN
Label Land-cover class Number of pixels in | Number of pixels in Risk
the training set the test set value
w, Chestnut forest 210 210 8
2} Dense pine forest 213 214 5
@3 Thin pine forest 256 256 4
o, Dense low maquis 508 508 3
s Thin low maquis 195 195 2
Wy Thin low maquis with rocks 263 263 2
- Dense coppice 89 88 6
wy Mixed coppice-pine forest 1444 1443 7
(o)) Thin coppice 245 245 5
@y Dense high maquis 229 228 5
N Thin high maquis 176 176 4
@ Reforested land 89 88 6
w3 Pasture-land with rocks 803 802 1
Wy Pasture-land 1291 1290 1
;s _ Pasture-land with trees 327 326 1
@y Urban and agricultural land 134 134 1
Total 6472 6466

fine textures of the considered TM images, the GLC matrix was
computed by using an interpixel distance equal to | pixel and
a window size of 9 x 9 pixels. The texture was assumed to be
isotropic (a visual analysis did not reveal any particular domi-
nant orientation), then it was computed for an angle of 0° only.
The original 256 grey levels were mapped into 64 levels in order
to reduce the time required by the computation of the GLC ma-
trix and to make the estimates of the terms of the GLC matrix
more reliable.

A digital terrain model (DTM) of the selected area was also
considered [29]. In particular, the DTM was composed of three
images containing the elevation, the slope, and the aspect, re-
spectively, with a pixel size of 30 x 30 m. These images were
georeferenced on the TM images.

In all, 21 features were chosen to form a feature vector for
each pixel. In particular, the 6 TM channels in the visible and in
the infrared spectrum (the thermal band was disregarded), and
both the 12 GLC texture features and the three DTM features
described in this section were considered. A smoothing filter
(i.e., the mean filter [1]) was applied to all the TM images in
order to reduce pixel-to-pixel intensity variations (a window size
of 3 x 3 pixels was used for the filtering process). All the 21
features were normalized to a range between 0 and 1.

C. Definitions of Risk Values and of the Cost Matrix

In order to achieve a risk map related to the selected area,
each land-cover class was associated with a specific value of
forest-fire risk. In particular, eight different risk values were de-
fined according to the suggestions of experts [29] (from 1, i.e.
low risk, to 8, i.e. high risk) (see Table I). The cost matrix C' used
for the proposed feature-selection criterion function and classifi-
cation technique was defined, taking into account the risk values

associated with each pair of land-cover classes. In particular, the
following strategy was adopted. If the risk value of one class w;
is close to that of another class w;, then the resulting costs ¢;;
and ¢;; are low. On the contrary, if two land-cover classes w;
and w; have very different risk values, the costs ¢;; and c;; are
high. In particular, the cost is higher if the class associated with
the higher risk value is confused with the one associated with
the lower risk value, whereas it is lower in the opposite case. In
fact, in the first situation, errors do not lead to devising preven-
tion strategies for areas with a high fire probability, whereas, in
the second situation, errors do lead to the definition of preven-
tion strategies for areas with a low fire probability. It is clear that
the first kind of errors may result in more severe consequences.
On the basis of the above strategy, the following procedure was
adopted to define costs:

O7 if Wi = Wy
Arisk;; + 1, if w; # wj and
Cij = risk(w;) >risk(w;) (11)

k(Arisk;; +1)%, ifw; #w; and

risk(w;) < risk(w;)
where risk(w; ) is the risk value associated with the class w; (see
Table I), and Arisk;; is defined as

Arisk;; = |risk(w;) — risk(w;)] . (12)

Here, k is a constant parameter that tunes the degree of differ-
ence between the cost of confusing one class associated with a
high risk value, with another class associated with a low risk
value and the cost of the opposite situation. In the experiments
reported in this paper, k& = 1 was chosen. The cost matrix ob-
tained by using (11) is shown in Table II.

It is worth noting that the strategy adopted to choose costs
represents only an example used to analyze the performances
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) TABLE 11
CosT MATRIX USED IN THE EXPERIMENTS. THE TRUE LAND-COVER CLASSES ARE GIVEN IN THE COLUMNS, AND THE DECISIONS OF THE
CLASSIFIER ARE GIVEN IN THE ROWS

Decision True class
@, @; @3 | @ Wy w; Wy @y W | Oy | O | O | O | O | O
W, 0 4 5 6 7 7 3 4 4 5 3 8 8 8 8
@, 16 2 3 4 4 4 2 4 5 5 5 5
w3 25 0 2 3 3 9 16 1 9 4 4 4 4
, 36 9 4 0 2 2 16 25 9 9 4 16 3 3 3 3
W 49 16 9 4 0 1 25 36 16 16 9 25 2 2 2 2
W 49 16 9 4 1 0 25 36 16 16 9 25 2 2 2 2
@, 2 3 4 S 5 0 4 2 2 3 1 6 6 6 6
W 3 4 5 6 6 2 0 3 3 4. 2 7 7 7 7
@y 16 1 2 3 4 4 4 9 0 1 2 4 5 5 5 5
@y 16 1 2 3 4 4 4 9 1 0 2 4 5 5 5 5
@y 25 4 1 2 3 3 9 16 4 4 0 9 4 4 4 4
@y 9 2 3 4 5 5 1 4 2 2 3 0 6 6 6 6
w3 64 | 25 16 9 4 4 36 49 25 25 16 36 0 1 1 1
@y 64 25 16 9 4 4 36 49 25 25 16 36 1 0 1 1
@5 64 25 16 9 4 4 36 49 25 25 16 36 1 1 0 1
g 64 25 16 _ 9 4 4 36 49 25 25 16 36 1 1 1 0

of the proposed approach. Generally, the choice of costs and the
relations among them should be carefully evaluated on the basis
of a specific application and of end-user requirements.

D. Results and Discussion

Experiments were carried out to compare the effectiveness
of the proposed feature-selection criterion function and classifi-
cation technique based on the BRMC with that of the classical
methods based on the BRME. To this end, the total classification
cost and the overall classification error obtained by giving the
features selected by using d.,s; as input to the proposed neural
classifier based on the BRMC were compared with the total cost
and the overall error obtained by giving the features selected by
using d,.e as input to a neural classifier based on the BRME.
The total cost was computed as the sum of each cost ¢;; multi-
plied by the number of related classification errors.

In the experiments carried out, the Jeffreys—Matusita distance
[17], [20]. was considered as the distance d;; to perform feature
selection by using the criterion functions given in (6) and (9).
Such a distance is defined as [17]

dij = { / [\/1’—(5_5/7 —\/p(z/wj)rdx}m. (13)

The general definition of the Jeffreys—Matusita distance does
not require any particular assumption on the distributions of the
conditional density functions of classes. For simplicity, this dis-
tance is computed here under the hypothesis of Gaussian dis-
tributions. It is worth noting that this is an approximation, be-
cause textural and DTM features may have distributions that do
not accurately fit the Gaussian model. However, as such an ap-
proximation is used for both d¢,s: and dgye, it does not affect

the comparative evaluation of the two feature-selection criterion
functions. The Branch and Bound search algorithm [10], [16]
was chosen to identify the subsets of features that maximize the
considered criterion functions.

Preliminary feature-selection trials were performed to find
the number m of features to be given as input to the classifiers
in ail the carried out experiments. In particular, deos: and dgye
were used to select the best subsets of k features (with k =
1, ---n — 1) from among the n = 21 available ones. Figs. 4
and 5 show the behaviors of d.,s¢ and dg.e, respectively, versus
the numbers of selected features. By analyzing the behaviors in
these diagrams, one can see that, for more than nine features, the
values of both criterion functions become flat (i.e., the addition
of further features does not significantly increase the values of
such functions). Consequently, nine features were selected to
carry out the experiments described in this paper.

The nine best features selected by using d,s; are channels 1,
3, and 4 of the TM, five texture features (correlation, difference
variance, information measure of correlation and sum average,
and variance), and the elevation feature of the DTM. These nine
features were given as input to a fully connected MLP with nine
input neurons, 24 neurons in the hidden layer, and 16 output neu-
rons, in order to estimate the P(w;/z’). The EBP learning pro-
cedure was used to train the network, which was initialized with
random weights. As a convergence criterion, an MSE smaller
than 0.015 was required. Classification was performed on the
test set. A total cost equal to 6335 was obtained, with an overall
classification error equal to 18.8%.

To assess the validity of the proposed classification approach,
the total classification cost and the overall classification error re-
lated to the aforementioned experiment were compared with the
total cost and the overall error resulting from giving the nine best
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Fig. 5. Behavior of the classical feature-selection criterion function d, ..

versus the number of selected features.

features selected by dg.,. (channels 1, 3, 4, and 7 of the TM and
four texture features: information measure of correlation, dif-
ference variance, sum average and variance, and the elevation
feature of the DTM) as input to a classifier based on the BRME.
To this end, an MLP with the same architecture as the one used
in the previous experiment was employed. In addition, the same
learning procedure, the same initial weights, and the same con-
vergence criterion were adopted. The posterior probabilities es-
timated by this MLP were utilized to perform classification fol-
lowing (1). A global cost equal to 8539 was obtained for the test
set, with an overall classification error equal to 15.0%.

A comparison of the total costs obtained in the aforemen-
tioned experiments points out that the proposed approach made
it possible to sharply decrease the cost involved by classification
errors (i.e., about 25.8% lower than the cost value obtained by the
approach based on the BRME). On the other hand, it provided a
slightly higher overall classification error (i.e., 3.8% higher) than
the one provided by the approach based onthe BRME.

To better analyze the obtained results, the error matrices
achieved by the approaches based on the BRMC and the BRME
are shown in Tables IIT and 1V, respectively. These matrices
were computed by comparing, for each pixel in the test set,
the classification maps provided by the two classification
approaches with the ground truth. The terms on the diagonals
of the matrices give correctly recognized classes, while the
other terms give the errors incurred on the pairs of classes.
The class-by-class errors are given in the last column of the
matrices. By comparing the errors given in the two matrices,
one can deduce that, although the approach based on the BRMC

slightly increased the overall classification error, it allowed a
sharp reduction in the errors on the classes, which, if confused,
would have involved high costs. In greater detail, for example,
the confusion between the class of a mixed coppice-pine forest,
which is a critical class (7 being its risk value), and the classes
of a pasture-land, a pasture-land with trees, and an urban and
agricultural land (which are all associated with a risk level
equal to 1) was significantly reduced. This is a consequence of
the high costs associated with such kinds of errors. On the other
hand, the confusion between the class of a mixed coppice-pine
forest and the class of a chestnut forest (which is not a critical
confusion, since the chestnut forest class is associated with a
risk value, i.e., (8), that is very close to the risk level of a mixed
coppice-pine forest) slightly increased.

Another interesting example to understand the peculiarities of
the proposed approach concerns the class of a dense high maquis.
By using the approach based on the BRMC, the errors incurred on
thisclassincreased, as compared to the ones made by the approach
basedonthe BRME. Thisisduetoasharpincrease inthe confusion
between the class of a dense high maquis and the class of a mixed
coppice-pine forest. However, these kinds of errors are not critical
inthe considered application, becauseamixed coppice-pine forest
isassociated with arisk level slightly higherthanthe one of adense
highmaquis (i.e., 7 versus 5).

Both the proposed approach and the approach based on the
BRME were then applied to the whole images to derive classifica-
tionmaps andhence, the related risk maps. The obtained risk maps
areshowninFigs. 6and7.Comparisons betweenthe tworisk maps
highlight that the proposed approach involves a larger number of
pixelsbelonging to areas associated with highrisk values, as com-
pared to the pixels obtained by the approach based on the BRME.
This behavior is a consequence of the high cost assigned to the
confusion of classes characterized by highrisk values withclasses
characterized by low risk values. In fact, this “favors” classes
associated withhighrisk values in the classification process.

Finally, in order to evaluate separately the effectiveness of the
proposed feature-selection criterion function and that of the pro-
posed classification technique, experiments were carried out by
giving features selected by d.,s: as input to the classifier based
on the BRME and by giving features selected by d,,. as input to
the classifier based on the BRMC. The total classification costs
and the overall classification errors obtained are summarized in
Tables V and VI, respectively. An analysis of these tables points
out that, once the classification technique had been chosen, the
features selected by d.,s+ made it possible to obtain a lower clas-
sification cost than the features selected by dg... On the other
hand, the features selected by d,,,. resulted in a lower classifica-
tion error. Once the feature-selection criterion had been fixed, it
was possible to observe that the classifier based on the BRMC
involved a lower cost than the classifier based on the BRME.
On the other hand, the classifier based on the BRME made a
lower classification error. These results confirm that, although
the proposed feature-selection criterion function and classifica-
tion technique slightly increased the overall classification error,
they allowed a sharp reduction in the total classification cost
as compared to the techniques based on the BRME. A further
observation derived from these last experiments concerns the
interpretation of the feature-selection results. As the only dif-
ference between the features selected by the two considered cri-
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TABLE III
ERROR MATRIX FOR THE PIXELS OF THE TEST SET FOR THE PROPOSED APPROACH BASED ON THE BRMC

Classified as True class Error (%)

(BRMC) @y @, w3 @y @s (2] @; Wy @y Do (7] @y, @3 @Dy W5 | WO
», © 8979 0 1 0 0 1 8 18 | 21 5 0 0 0 0 57.6
@, 0 0 2 4 6 2 10 8 2 34 2 20 22.0
o, 5 0 4 3 3 1 1 12 5 2 1 28.5
», 0 0 17 4254 1 18 0 1 1 0 2 41 1 0 1 16.3
s 0 0 0 0 0 0 0 0 0 2 2 13 4 6 9.2
w4 oo | 1 | 7 | 8 [:229:0 0 0 [0 0| 4 0] 6|0 12.9
o, L4 (9 (0 0 |0 [z7294 1 |1 [19[17[0o]o0o]2]o0]1 18.2
Wy 111 | 13 1 0 0 0 0 126 0 2.4
Wy 3 0 0 4 2 1 2 1 9 6 20
@y 0 0 1 0 0 0 4 1 2 |36 0 84.2
o 1| 2] 4 (12|10 2] o0/ 1w0]7 5 528
P 0| 479|150 ]| 4]0]1 0] o 0. 54.5
w3 0 0 0 26 0 4 0 0 2 0 15.7
@D 0 7 0 0 0 0 0 6 0 0 9.0
s 0 4 0 0 5 1 0 1 0 0 21.2
D 0 21]0]o 1 0] 0] s 00 -l 739

Overall ’ 18.8

TABLE 1V
ERROR MATRIX FOR THE PIXELS OF THE TEST SET FOR THE CLASSICAL APPROACH BASED ON THE BRME
Classified as True class Error (%)

(BRME) @, ()] @3 ay Qs (2] @; (2] @y Dy | Oy @y, @3 (2] @ys | D
w; 8 2 0 0 0 61.9
@, 0 3 4 0 4 29.0
@ 6 193 2 8 0 0 24.6
, 0 0 28 5( 0 4 0 0 11.4
s 0 0 0 0 0 1 2 2 7.7
R 0 0 3 9 8 1 6 2 0 9.9
@, 0 1 6 0 0 0 I 1 0 0 0 34.1
wy 106 | 2 0 0 0 0 0 0 0 6 24 4.5
@, 8 0 0 0 0 0 1 12 5 1 0 27.3
W 4 2 0 0 0 0 4 7 0 0 0 57.5
Wy 6 1 4 5 0 0 5 3 25 4 0 0 15.9
w1 oo |1 [3]o4]0o 0] o0 o0 o] o 68.2
@3 0 0 0 35 0 6 0 17 0 0 0 0 6.0
0y 0 22 0 0 1 0 0 16 0 0 0 24 22 5.0
@5 0 4 0 0 5 1 0 5 1 0 17.2
W6 0 8 0 1 0 0 27 0 0 48.5

Overall 15.0

teria lies in the fact that d..,; selected the correlation-texture
feature, whereas d,.,. selected band 7 of the TM, one can con-
clude that, for the considered data set, the correlation-texture
feature allows, on average, a better discrimination of the most
critical classes than band 7 of the TM. By contrast, band 7 of
TM is more effective than the correlation-texture feature if the
objective is to minimize the overall error made by the classifier.

VI. CONCLUSIONS

In this paper, an approach to feature selection and classifica-
tion of remote-sensing images based on the BRMC has been
presented. In particular, a feature-selection criterion function
and a classification technique have been proposed that take into
account the different cost associated with each kind of error.
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Fig. 6. Risk map obtained in the reported experiments by using the proposed
feature-selection criterion function (d.,s;) and classification technique based
on the BRMC. The value 8 is associated with the highest fire probability and
the value | with the lowest fire probability.

These methods can be advantageously utilized to obtain land-
cover maps suited to being used in the cases in which different
kinds of errors involve consequences of different gravity for the
application considered.

The proposed approach was tested to solve the problem of
producing a land-cover map suited to being used to derive a
risk map related to forest fires. The obtained results confirm
that the proposed feature-selection criterion function and clas-
sification technique, as compared with methods based on the
BRME, provided classification maps in which the overall clas-
sification error slightly increased, but the total classification cost
was sharply reduced.

In the experiments described in this paper, the proposed
feature-selection  criterion function was applied by using
the Jeffreys—Matusita distance between each pair of classes.
However, it can be employed by adopting different pairwise
separability indexes (e.g., divergence, transformed divergence,
Bhattacharyya distance [17]-[19]). Concerning the proposed
classification technique, in this paper, the use of an MLP
neural network to estimate posterior class probabilities has
been suggested. By using such a network, one can perform a
nonparametric estimation of posterior probabilities so that it is
possible to process multisensor and multisource remote-sensing
data. However, one can also utilize other parametric or non-
parametric techniques to estimate these probabilities (e.g., the
k-nearest neighbor technique [23]).

Besides describing the proposed feature-selection criterion
function and classification technique, one of the purposes of this
paper has been to point out to the remote-sensing community

Risk Level

Fig. 7. Risk map obtained in the reported experiments by using the classical
feature-selection criterion function (d, ,. ) and classification technique based on
the BRME. The value 8 is associated with the highest fire probability and the
value 1 with the lowest fire probability.

TABLE V
TOTAL COSTS ASSOCIATED WITH CLASSIFICATION ERRORS MADE ON THE TEST
SET IN ALL THE DESCRIBED EXPERIMENTS

Classification rule
Feature-selection criterion
BRMC BRME
Proposed c(r‘iitcij;)n function 6335 8118
Classical criterion function 7069 8539
(dave )
TABLE VI

OVERALL CLASSIFICATION ERRORS MADE ON THE TEST SET IN ALL THE
DESCRIBED EXPERIMENTS

Classification rule
Feature-selection criterio
ure-selection criterion BRMC BRME
Proposed c(rtiitczi;m function 18.8% 15.4%
Classical criterion function 18.7% 15.0%
(dave )

that, in some applications, it may be more advantageous to use
an approach based on the BRMC than an approach based on the
widely used BRME. In comparison with the BRME, the BRMC
yields less accurate land-cover maps, but it allows decisions that
minimize the total cost of errors. Therefore, the choice of one of
the two rules should be carefully made on the basis of the spe-
cific problem faced and of end-user requirements.
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In order to gain a deeper understanding of the differences
between the two considered approaches, it should be stressed
that the use of the BRMC is equivalent to modifying the a priori
probabilities of classes in the BRME approach. In particular, the
BRMC weights the conditional-density functions of classes by
using differential costs in addition to a priori probabilities [see
(7) and (8)].

As a final remark, is worth noting that the choice of costs in
the C matrix is the most critical step in using the approach based
on the BRMC, because no general procedures for an efficient
selection of costs can be devised. In fact, the values of costs and
the proportions among them depend on the specific application
considered.
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