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Abstract

A novel classi®er for the analysis of remote-sensing images is proposed. Such a classi®er is based on Radial Basis

Function (RBF) neural networks and relies on an incremental-learning technique. This technique allows the periodical

acquisition of new information whenever a new training set becomes available, while preserving the knowledge learnt by

the network on previous training sets. In addition, in each retraining phase, the network architecture is automatically

updated so that new classes may be considered. These characteristics make the proposed neural classi®er a promising

tool for several remote-sensing applications. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important problem encountered in the
classi®cation of remote-sensing data is that clas-
sical classi®ers, once they have been trained on a
data set related to a speci®c image, seldom attain
acceptable classi®cation accuracies on di�erent
images (even if the land-cover classes present in all
the images are the same). Several factors contrib-
ute to this problem: di�erences in the atmospheric
and light conditions at the image-acquisition
dates, sensor non-linearities, di�erences in soil
moisture levels, etc. From an operational point of
view, such a problem represents a serious limita-
tion in several real-world applications (e.g., de-
velopment of automatic monitoring systems able

to categorise extensive territorial areas periodical-
ly; development of classi®cation systems able to
e�ciently recognise a prede®ned set of land-cover
classes in remote-sensing images acquired in dif-
ferent areas). In this context, the design of a ``ro-
bust'' classi®cation system capable to perform
e�ciently on di�erent images, irrespective of the
acquisition dates or even the geographical areas
considered, is a major challenge for the remote-
sensing community.

An important step in the development of such a
system is the de®nition of a classi®er able to ac-
quire new knowledge when new training sets be-
come available, while preserving the current one
(this problem is known in the pattern-recognition
literature as the incremental-learning problem).
On the one hand, such a classi®er would be able to
learn from new training sets, thus increasing its
capabilities to classify new images; on the other,
these properties would allow the classi®er to
preserve the information acquired from di�erent
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data sets and, consequently, to improve its gener-
alisation capabilities on unknown images (i.e., re-
mote-sensing images for which a training set is not
available). Unfortunately, to accomplish such a
task, conventional classi®ers have to be completely
retrained on the new samples along with the old
ones every time a new training set is available. This
is an impractical solution as it requires the storage
of all available training sets, considerable compu-
tation time and, in most cases, a complete rede®-
nition of the architecture of the classi®er
considered.

Only few papers have been published that deal
with the incremental-learning problem, which is still
an open issue in the pattern-recognition literature, in
particular, in the ®eld of remote sensing. It is worth
noting that in most attempts to address the incre-
mental-learning problem for classi®cation purposes
(Fu et al., 1996; Park et al., 1991; Schaal and At-
keson, 1998), the number of information classes (i.e.,
land-cover classes in remote-sensing problems) was
considered as a ®xed parameter of the problem (Fu
et al., 1996). This hinders the capabilities of the
classi®er to be adapted, whenever a new training set
contains some classes di�erent from those consid-
ered in the initial design of the classi®cation system.
In the context of remote sensing, such a constraint
may be a serious drawback.

In this paper, we propose a novel classi®er based
on Radial Basis Function (RBF) neural networks
(Powell, 1987; Broomhead and Lowe, 1988; Moody
and Darken, 1989), which aims at meeting the
primary requirements of a robust classi®er for re-
mote-sensing images. In particular, the proposed
classi®er relies on an incremental-learning tech-
nique that allows the acquisition of new knowledge,
while preserving the existing one. In addition, such
a technique permits an automatic adaptation of the
network architecture so that new information
classes may be learnt in each retraining phase.

2. The proposed neural-network classi®er

2.1. Background

The proposed classi®er is based on a Gaussian
RBF neural network (Bishop, 1995). The choice of

this neural model is justi®ed by some of its par-
ticular properties, i.e., local learning, fast training
phase, ability to recognise when an input pattern
has fallen into a region of the input space without
training data, and capability to provide high
classi®cation accuracies on remote-sensing images
(Bishop, 1995; Bruzzone and Fern�andez Prieto,
1999).

Generally, a Gaussian RBF neural network is
composed of three layers (see Fig. 1). Input neu-
rons (as many as input features) just propagate
input features to the next layer. Each neuron in the
hidden layer is associated with a Gaussian kernel
function, uj���, characterised by a centre lj and a
width rj. The output layer is composed of as many
neurons as there are classes to be recognised. Each
output neuron oi computes a simple weighed
summation over the responses of the hidden neu-
rons to a given input pattern described by the
feature vector xn:

oi�xn� �
XM

j�1

wijuj�xn� � wbias;i; �1�

where M is the number of hidden neurons, wij

represents the weight associated with the connec-
tion between the kernel function uj��� and the
output neuron oi, and wbias;i is the bias of the
output neuron oi.

The proposed classi®er is based on the super-
vised learning strategy proposed in (Bruzzone and
Fern�andez Prieto, 1999). In particular, this strat-
egy selects the kernel-function parameters of a
network in such a way that each kernel function

Fig. 1. Typical architecture of a classi®er based on Radial Basis

Function (RBF) neural networks.
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can be associated with a given information class.
Consequently, each information class can be rep-
resented by a di�erent set of kernel functions dis-
tributed in the corresponding region of the input
space. In this context, given the kernel function
uj��� associated with the information class xi, the
corresponding parameters provide a local de-
scription of the training samples belonging to xi.
This suggests the idea of describing the long-term
memory of the network through a set of proto-
types, P � fp1; p2; . . . ; pMg, where each prototype
pj is characterised by the triple flj; rj; ajg; aj being
the mass coe�cient that denotes the number of
training samples associated with the kernel func-
tion uj���. The ®rst two parameters are related to
the local distribution of the corresponding class
(and characterise the kernel functions of the net-
work); the mass parameter concerns the prior
probability of a class. Consequently, the status of
the network (i.e., the knowledge captured in the
training phase) can be completely described by
the tuple Net � fP;Wg, where W represents the
weight matrix and P is the above-de®ned set of
prototypes (i.e., the long-term memory of the
network).

2.2. Problem formulation and general description of
the method

Let us consider a classi®cation problem in
which a training set Tk is available at each time
tk �k � 1; 2; . . . ;m�. Each Tk contains Nk samples
related to a set Kk � fkk

1; k
k
2; . . . ; kk

qk
g of qk di�erent

land-cover classes. We assume that the land-cover

classes considered may change from one training
set to another; therefore, a class present in Tk may
be a ``new'' class for the classi®er. Let
Xk � fxk

1;x
k
2; . . . ;xk

Ck
g be the set of Ck classes al-

ready ``known'' to the network at tk. Let us also
denote by Net�tk� � fPk;W kg the network status
at the time tk, where Pk and W k represent the set of
Mk prototypes (i.e., Pk � fpk

1; p
k
2; . . . ; pk

Mk
g� and

the set of Ck � �Mk � 1� weights, respectively, that
characterise the network at tk.

In this context, we propose a retraining tech-
nique that allows the network Net�tk� to be up-
dated (whenever a new training set Tk�1 becomes
available) so that the resulting network Net�tk�1�
incorporates both the ``new'' information con-
tained in the training set Tk�1 and the ``existing''
knowledge of the network (provided that the in-
formation about the classes contained in Tk�1 is
not in con¯ict with the current knowledge of the
network).

A schematic representation of the proposed
incremental learning technique is shown in Fig 2.
As one can see, the retraining phase of the net-
work is carried out in two sequential steps. The
®rst aims at updating the long-term memory of
the network Pk, the latter aims at recalculating
the weight matrix on the basis of both the new
knowledge (i.e., the training samples in Tk�1) and
the existing one (i.e., the set of prototypes Pk at
the time tk).

In the following, a detailed description of the
training procedure for the classi®er is provided.
Such a procedure consists of two di�erent
phases: the initial training of the network (at the

Fig. 2. Schematic representation of the proposed retraining technique.
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time t1) and retraining of the network (at the
time tk).

2.3. Initial training of the network

Let us consider the network at the time t0, at
which W 0 � P0 � é, as no training set has yet
been learnt by the classi®er. When the training set
T1 becomes available at the time t1, the initial
training of the network is carried out in accor-
dance with the learning procedure proposed by
Bruzzone and Fern�andez Prieto, 1999. Such a
procedure is divided into two steps.

In the ®rst step, the set of prototypes P1 (and
hence the parameters of the kernel functions) is
obtained by applying a clustering procedure sep-
arately to the training samples of each class pres-
ent in T1. At the end of this process, a prototype p1

j
(and the corresponding kernel function u1

j ���) is
derived from each cluster S1

j . This is done by as-
sociating the prototype centre l1

j with the bary-
centre of the cluster S1

j , and the corresponding
width r1

j with the standard deviation computed on
the training patterns included in S1

j . In addition,
the mass coe�cient a1

j is made equal to the cardi-
nality of S1

j .
In the second step, the set of weights W1 cor-

responding to the connections between the hidden
nodes and the output units is selected. This is done
by minimizing the following sum-of-squares error
function (Bishop 1995; Bruzzone and Fern�andez
Prieto, 1999):

E1 � 1

2

Xq1

i�1

XN1

n�1

oi�xn�� ÿ Ti�xn��2; �2�

where Ti�xn� is the target for the output oi�xn�. As
the sum-of-squares error function is a quadratic
function of the weights, its minimum can be found
by solving a set of linear equations in terms of a
pseudo-inverse matrix (Bishop, 1995).

2.4. Retraining phase of the network

Let us now consider the network status Net(tk)
at the generic time tk. Let us also assume that a
new training set Tk�1 is available at the time tk�1.
Analogously to the initial training phase, the

retraining phase of the network is composed of
two main steps: updating of prototypes and
weights computation.

2.4.1. Updating of prototypes
In this phase, the long-term memory of the

network (i.e., the set of prototypes Pk) is updated
by following a rather simple and fast incremental
clustering procedure. The proposed procedure al-
lows not only the updating of the existing proto-
types (and hence the updating of the parameters of
the existing kernel functions) but also, if necessary,
the generation of new prototypes (and hence the
allocation of new hidden neurons).

Let xi
n be the nth training sample belonging to

the class kk�1
i of the training set Tk�1. Let pnearest be

the prototype nearest to xi
n (i.e., the prototype of

class kk�1
i whose centre lnearest is the closest to xi

n).
Let us also denote by rk

min the minimum width
associated with an existing prototype at the time
tk. Let us ®nally de®ne the condition of similarity
S�xi

n; pnearest� of the training sample xi
n to the cor-

responding nearest prototype pnearest as:

S�xi
n; pnearest� � 1 if kxi

n ÿ lnearestk < crnearest;
0 otherwise;

�
�3�

where c is a prede®ned distance parameter (which
is the only input required by the algorithm).

In this context, the proposed algorithm is
based on a sequential comparison of all the
training samples xi

n with the corresponding
nearest prototype pnearest. Such a comparison is
made in terms of the above-described similarity
function S�xi

n; pnearest�, which can be considered
as a measure of the capability of pnearest to rep-
resent the training sample xi

n. Therefore, if xi
n is

found to be ``similar'' to pnearest (i.e.,
S�xi

n; pnearest� � 1�, such a prototype is updated in
accordance with xi

n in order to re®ne the corre-
sponding parameters. Otherwise, if xi

n is found to
be ``di�erent'' from the corresponding prototype
pnearest (i.e., S�xi

n; pnearest� � 0�, the training sam-
ple considered cannot be e�ciently represented
by the current long-term memory of the net-
work, and hence a new prototype is generated in
order to represent the new information. It is
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worth noting that the generation of a new pro-
totype involves the allocation of a new hidden
neuron of the network (and consequently the
de®nition of a new kernel function). The pro-
posed algorithm is described in greater detail in
the following.

Initialise Pk�1 � Pk.
For all the classes kk�1

i 2 Tk�1 do:
For all the training patterns xi

n 2 kk�1
i do:

Search in Pk�1 for the prototype pnearest

nearest to xi
n;

If [ pnearest exists] and �S�xi
n� � 1�:

then update the pnearest parameters;
else: initialise a new prototype pnew

characterised by
lnew � xi

n; rnew � rmin; anew � 1;
add pnew to Pk�1.

The ®nal set of prototypes Pk�1 represents the
new long-term memory of the network and de-
®nes the set of kernel functions (and hence the
number of hidden units) of the network at the
time tk�1. It is worth noting that the above-de-
scribed algorithm supports the case in which new
classes are present in Tk�1 (generating a new
prototype whenever pnearest is not found for a
given training sample).

2.4.2. Weights computation
The set of weights W k�1 is obtained by using a

new error function that consists of the sum of two
terms:

Ek�1 � Enew
k�1 � Eprot

k�1 : �4�

The ®rst term Enew
k�1 is the sum-of-squares error

function computed on the new training set Tk�1

according to (2). The second term Eprot
k�1 is a

weighed summation over the classi®cation errors
computed on the set of the old prototypes Pk. It is
given by:

Eprot
k�1 �

1

2

XCk�1

i�1

XMk

j�1

ak
j oi�lk

j �
h�

ÿ Ti�lk
j �
i2
�
; �5�

where Ck�1 is the number of classes considered by
the network Net�tk�1�, and Mk is the number of
prototypes at time tk. The contribution of the jth

prototype to the error function is weighed by the
corresponding coe�cient ak

j . It is worth noting
that Eprot

k�1 approximates the sum-of-squares error
function computed on the previously considered
training sets, and makes it possible to preserve the
existing knowledge approximately without re-ex-
amining the old training samples.

3. Experimental results

In order to assess the e�ectiveness of the
proposed incremental learning classi®er, di�erent
experiments were carried out on a multitemporal
data set composed of two remote-sensing imag-
es acquired in the same geographical area at
two di�erent times. In particular, the data
set consists of two multispectral images acquired by
the Landsat TM sensor in April and May 1994
in an agricultural area in the basin of the Po
river (northern Italy). The available ground
truth was used to derive both a training and a test
set for each image (see Table 1). The cereals class,
which has too small prior probability, was not
considered in the experiments. As one can see,
some land-cover changes occurred in the study
area between the above two dates. This fact
allowed the classi®er to be tested in rather a
complex situation.

Table 1

The classes considered and the related numbers of training and

test pixels: (a) April data set; (b) May data set

Number of pixels

Land-cover class Training set Test set

(a) April data set

Wood 683 735

Wet rice ®eld 499 322

Bare soil 1034 858

Total 2216 1915

(b) May data set

Wood 683 735

Wet rice ®eld 1037 900

Dry rice ®eld 341 172

Bare soil 155 108

Total 2216 1915
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The main objective of the experiments was to
analyse the incremental learning capabilities of the
proposed classi®er. In particular, two major
aspects were investigated: the capabilities of the
classi®er to acquire new knowledge from a new
training set; the ability of the classi®er to preserve
the existing knowledge during incremental learn-
ing. To this end, the proposed classi®er was ini-
tially trained on the April image (time t1) and
subsequently tested on both the April and May
test sets. Afterwards, it was retrained on the May
training set (time t2) and subsequently tested again
on both test sets. This allows the performance of
the network to be assessed before and after the
retraining phase.

In order to provide reference information about
the performances attained on the considered data
set by other non-parametric classi®ers typically
used in the context of remote sensing. Table 2
shows the classi®cation accuracies exhibited by a
classical RBF classi®er (Moody and Darken, 1989)
and a k-nearest neighbour classi®er (Serpico et al.,
1996). It is worth noting that such classi®ers do
not support incremental learning; therefore, the
results given in Table 2 were obtained by training
and testing the classi®ers on the same image (i.e.,
training and test in April, and training and test in
May).

Table 3 presents the class-by-class and overall
classi®cation accuracies provided by the proposed
classi®er at the time t1 on both the April and May
test sets. As expected (since the proposed classi®er
at the time t1 behaves as a classical RBF classi®er
trained on the April image), the overall classi®ca-
tion accuracy obtained on the April test set (i.e.,
96.13%) is comparable to those provided by the
classical classi®ers mentioned above (see Table 2).
On the other hand, as most of the land-cover
classes in the April image are di�erent from those
present in the May image, at the time t1 the
network is not able to classify the latter image
e�ciently. In greater detail, also for the wet-rice-
®eld class, which is one of the two classes present
in both the April and May images, the classi®er
exhibits an unacceptable classi®cation accuracy
(61.0%). This is a direct result of the di�erent
statistical distributions of such a class in the two
images considered (due to the di�erent
atmospheric conditions at the acquisition dates,
etc.).

At this point, the network was retrained on the
May training set. The distance parameter c that
tunes the condition of similarity described in
Eq. (3) was ®xed at 3.0. Table 4 gives the classi®-
cation accuracies provided by the proposed
classi®er after the retraining phase (i.e., at the time
t2) on both the April and May test sets. The overall
classi®cation accuracy provided by the proposed
classi®er on the May image (95.98%) was found to
be comparable to those obtained by the classical

Table 2

Classi®cation accuracies provided by the classical RBF and the

k-nearest neighbour (k-nn) classi®ers: (a) training and test on

the April data set; (b) training and test on the May data set

Land-cover class RBF k-nn

(a) Classi®cation accuracy (%) (training on April, test on

April)

Wood 99.86 100.00

Wet rice ®eld 98.45 99.06

Bare soil 89.86 92.65

Total 95.14 96.55

(b) Classi®cation accuracy (%) (training on May, test on

May)

Wood 100.00 100.00

Wet rice ®eld 98.88 96.22

Dry rice ®eld 88.95 85.46

Corn 48.14 48.15

Total 95.56 93.99

Table 3

Classi®cation accuracies obtained on the April and May test

sets by the proposed classi®er trained on the April image

(time t1)

Classi®cation accuracy (%) at time t1

(training on April)

Land-cover

class

April test set May test

set

Wood 100.00 100.00

Wet rice ®eld 98.14 61.00

Bare soil 92.08 ±

Dry rice ®eld ± 0.0

Corn ± 0.0

Total 96.13 67.07
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classi®ers considered. This con®rms the
e�ectiveness of the presented classi®er in acquiring
new knowledge from a new training set. In
particular, it is worth noting that the classi®cation
accuracy provided by the proposed classi®er on
the wet-rice-®eld class in May signi®cantly
improved from 61.0% at the time t1 to 99.22% after
the retraining phase. In addition, the presented
classi®er exhibited at t2 an overall classi®cation
accuracy on the April image equal to 94.83%,
which represents only a slight reduction (1.3%) in
the classi®cation accuracy provided at the time t1

on the same image. This points out the capabilities
of the newly developed classi®er to preserve the
existing knowledge, even if some of the informa-
tion classes in the new training set di�er from those
already known to the network.

4. Conclusions

In this paper, an incremental learning classi®er
for the analysis of remote-sensing images has been
proposed. Such a classi®er is based on RBF neural
networks and exhibits the following characteris-
tics:
1. Capability of performing incremental learning

(i.e., the system is able to acquire new know-
ledge as it becomes available).

2. Capability of approximately preserving
the ``old'' knowledge in each retraining phase
(i.e., the acquisition of new knowledge does

not result in a signi®cant loss of the existing
one).

3. Self-organising architecture (i.e., when new
training sets become available, the architecture
of the network may be modi®ed to meet the
characteristics of the new data).

4. Adaptive structure (i.e., the number and typol-
ogy of information classes are not subject to
any particular limitation and, if necessary,
may vary in each retraining phase).
Experimental results reported in the paper have

con®rmed the e�ectiveness of the proposed classi-
®er.

Finally, it is worth noting that further research
is needed to develop more e�cient procedures for
the selection and updating of the set of prototypes
in each retraining phase.

For further reading, see (Bruzzone and Serpico,
1997; Bruzzone et al., 1999).
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