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TABLE 1I
SUMMARY OF THE ARC MEASUREMENT RESULTS TO ESTIMATE THE ANTENNA
GAIN oF PR-BBM BOTH FOR THE TRANSMISSION AND RECEPTION. THE
VALUES OF ANTENNA GAIN OBTAINED FROM THE MEASUREMENT
ARE COMPARED WITH THOSE OBTAINED FROM CALCULATION

PR-BBM
Method  [Measurement results regarding PR-BBM characteristics| antenna gain
(calculated)
Beacon |Total receiver system gain: 40.4 dB
transmitter -Average RF receiver gain -4.7dB
Balance(Receiving antenna gain) 35.7dB 35.7dB
Radar |EJRP.: 75.8 dBm
receiver -Transmitting power -40.0 dBm
Balance(Transmitting antenna gain) 35.8dB 35.9dB
Transponder [Overall radar system gain : 116.6 dB

Then, the receiving antenna gain of the active array is given as
Gr = (4n/X*)nAW. (6)

In the measurement, the total receiver system gain
(47 /X*)nA.]g?W (antenna gain + RF receiver gain in decibels)
is obtained from the measured P, under given S. The average
RF receiver gain W is obtained by averaging the RF receiver
gain of each array element. Then, the antenna gain is derived and
is compared with that calculated from the element gain and the
amplitude distribution. Good coincidence is obtained between the
" two values as shown in the second row in Table II. In the on-orbit
calibration of TRMM-PR, [g|2 will be obtained from the satellite
house-keeping telemetry.

In the ARC measurement of the radar receiver, the received signal
level at the ARC gives the E.LR.P. of the PR-BBM, and the results are
listed in the third row in Table II. Because the transmission power is
measured at the feed point of each element, the transmission antenna
gain of PR-BBM is obtained in this case. Excellent coincidence
is again obtained between the measurement and the calculation. It
should be noted that the reception and transmission antenna gain is
not exactly the same in active arrays. In the transponder measurement,
the overall radar system gain is obtained at once and shows good
consistency between the sum of the results obtained in the previous
two one-way measurements. This round-trip measurement assures the
reliability of the ARC measurements.

IV. ConcLusioN

An ARC was developed for the on-orbit calibration of the Pre-
cipitation Radar (PR) onboard the TRMM satellite. In addition to
the delayed-transponder measurement, one-way measurements of the
beacon transmitter and the radar receiver are useful in diagnosing the
individual performance of the TRMM-PR’s receiver and transmitter.
A ground-based measurement using a prototype ARC and a bread-
board model of the TRMM-PR was conducted to demonstrate the
capability of the TRMM-PR calibration. The time-delay function in
the transponder proved effective for separating the signal from the
clutter echo in the measurement. Excellent coincidence in the antenna
gain of PR-BBM was obtained between the ARC measurement and
the calculation. The results from three types of the ARC measurement
are highly consistent, which suggests the accuracy and reliability
of the measurement. Although the results obtained in the short-
term measurements conducted so far using the prototype ARC and
the current experimental setup are shown in the present paper,
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measurements over a long-term are needed to assess the stability
of the ARC calibration prior to the actual satellite operation.
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An Extension of the Jeffreys—Matusita Distance
to Multiclass Cases for Feature Selection

Lorenzo Bruzzone, Fabio Roli, and Sebastiano B. Serpico

Abstract-——~The problem of extending the Jeffreys—-Matusita distance to
multiclass cases for feature-selection purposes is addressed and a solution
equivalent to the Bhattacharyya bound is presented. This extension
is compared with the widely used weighted average Jeffreys-Matusita
distance both by examining the respective formulae and by experimenting
on an optical remote-sensing data set.

1. INTRODUCTION

In remote-sensing image classification, many features (e.g., veg-
etation indices, texture features) can be computed from commonly
available multispectral images in order to characterize data classes of
interest to the user. Unfortunately, in practical situations involving
a limited number of training samples, addition of features. may
even degrade classification accuracy (this effect is- referred to as
the Hughes phenomenon) [1], [2]. Moreover, the computational cost
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of classification increases with the number of features used [3].
Therefore, various “feature selection” techniques have been proposed
in the pattern recognition literature to reduce the number of features.
Among the most widely used, there are the techniques based on
“statistical separability indices,” which allow one to select a suitable
subset of features by assessing the degree of interclass separability
associated with each subset considered [3]. In particular, the index
based on the Jeffreys—Matusita (J-M) distance has been reported by
many authors to be an appropriate measure for feature selection (see,
for instance, [3] and [4]).

The J-M index is a pairwise distance measure that can be naturally
applied to two-class cases. Various extensions have been proposed in
the literature to use such distance when dealing with more than two
classes [3].

In this paper, we present an extension of the J-M distance to
multiclass cases that, from the viewpoint of feature selection, is
equivalent to the Bhattacharyya bound [2], [6] (Section II). This
extension is compared with the widely used weighted average J-M
distance both by examining the respective formulae (Section II) and
by experimenting on an optical remote-sensing data set (Section IIT).

II. EXTENDING THE JEFFREYS—MATUSITA
DISTANCE TO MULTICLASS CASES

In the literature, the J-M distance has been defined as follows {3],
[71:

Jij = {/x {\/P(X/wi) - \/ZT(X/%‘)]ZJX}W I

where p(x/w;) and p(x/w;) are the conditional probability density
functions for the feature vector x, given the data classes w; and w;,
respectively. Equation (1) can be also rewritten as [3], [8]

Jij = 4/ 2(1 - e‘bij) 2

where b;; is the Bhattacharyya distance, defined as [2]
bij = —1n {/ \/p(x/wi)p(x/w,-)d‘x}. 3)

As has been pointed out in Section I, the J-M index is a measure
of statistical separability for two-class cases. Various strategies have
been devised to extend it to multiclass cases. The most common lies
in using the average J-M distance, computed over all pairs of classes
as [3]

c C
Tave =3 > plwi)p(wi)Jis @

=1 j=1

where “C” is the number of data classes considered, p(w;) and p(w;)
are the a priori class probabilities, and J;; is defined according to
m.!

Another strategy is to select the feature subset that allows the best
separation between the least separable pair of classes [3].

In the following, we show a different extension of the J-M distance
that, from the viewpoint of feature selection, is equivalent to the
Bhattacharyya bound for multiclass cases.

When more than two classes are present, an upper bound to
the Bayes error P. is provided by a combination of the pairwise

1t is worth noting that (4) can be rewritten as
c C
Tave =23 > p(wi)p(wj)Ji;
i=1 §>1

as Ji; = Jj; and J;; = 0if i = .
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Bhattacharyya bounds, computed over all pairs of classes as [2], [6],
91

c C
P. < Z Z Vp(wi)p(w; e i, 5)

i=1 j>1

By using (2), we can rewrite the above upper bound as a function
of the pairwise J-M distances

¢ c© c c
———— ]
Pe <Y 0N Valwip(wi) = 5 3 Y Vewip(wi) TG ©)
i=1 §>% i=1 j>i
Such an upper bound can be minimized by maximizing the term
containing the J-M distances. Therefore, a possible extension of the
J-M distance to multiclass cases is given by

c C
Ten =) Y Vp(wip(w)) T )

i=1 j>i

where the subscript Bh is used to recall that the extension is equivalent
to the Bhattacharyya bound.”

For two-class cases, it is easy to verify that the maximization of
the J-M distance (see (1)) is equivalent to the minimization of the
Bhattacharyya bound. The extension maintains such equivalence also
for multiclass cases (while this does not hold true for the average J-M
distance). Although it cannot be proved that Jg), always performs
better than Jave in selecting features, a comparison between (4) and
(7) can point out an interesting aspect of the proposed extension.
The two extensions “weight” in different ways the terms containing
the J-M distances. In particular, Jgn weights the term containing
the J-M distances between couple of classes with the square root of
the product of the related a priori probabilities while Jave utilizes
the product of the a priori probabilities. It is easy to conclude
that the relative importance of data classes with low probabilities
of occurrence increases in the presented extension. This can be an
advantage in applications with very different a priori probabilities
when high classification errors are not acceptable neither for low
probability classes.

III. EXPERIMENTAL RESULTS

A. Data Set Description

The considered data set refers to an agricultural area near the
village of Feltwell (UK). We selected a section of a scene acquired
with a Daedalus 1268 Airborne Thematic Mapper (ATM) scanner.
The flight took place in July 1989. The ground truth was used to
prepare a thematic map of the selected section; such a map was
utilized as a reference map to evaluate the classification accuracy. For
our experiments, we considered five agricultural classes (i.e., wheat,
sugar beets, potatoes, carrots, and stubble). The data-set pixels were
obtained by subsampling the related fields.

To form a “feature vector” for each pixel, we selected the six
ATM channels corresponding to Thematic Mapper (TM) channels
in the visible and in the infrared spectrum (the thermal band was
disregarded). This choice was made to simulate commonly used TM
data [10].

B. Results

The Bayesian classifier with multivariate normal distributions was
used as a decision rule to assess the classification accuracy provided
by each selected feature set. In particular, the proposed extension

21t is worth noting that the term JZ is a distance measure that occurs in
the work of Jeffreys {10].
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TABLE I
COMPARISON BETWEEN THE EXTENSION EQUIVALENT TO THE BHATTACHARYYA BOUND (JBh) AND THE
AVERAGE J-M DISTANCE (Jaye) FOR THE SELECTION OF THE BEST FOUR-CHANNEL COMBINATION

Jave JBh
Data Class Number of Pixels {A Priori Probability Classification Classification
Accuracy (%) Accuracy (%)
‘Wheat 353 0.20 95.18 99.15
Sugar Beets 728 0.41 94,23 95.05
Potatoes 195 0.11 78.46 85.64
Carrots 319 0.18 93.42 94.67
Stubble 191 0.10 96.33 96.86
Overall Accuracy 92.78 94.96
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Fig. 1. Comparison between the extension equivalent to the Bhattacharyya
bound (Jgy) and the average J-M distance (Jave). The classes considered
and the related numbers of pixels are given in Table IL

(see (7)) was compared with the average J-M distance (see (4)). For
the described data set, Jgn performed better in selecting the best
four-channel combination (Table I). As expected, it yielded the best
result for a class with a low a priori probability (i.e., potatoes). The
two considered extensions of the J-M distance provided the same
classification accuracy for the other channel combinations.

In order to better assess the advantages of the presented extension
for classes with low a priori probabilities, we simulated a new
data set, reducing the probabilities of occurrence for the wheat
and potatoes classes (Table II). This was accomplished by further
subsampling such classes. In this experiment, Jgn provided the
overall classification accuracy given in Fig. 1. It performed better
than Jove in selecting various channel combinations. In particular, a
sharp increase in classification accuracy was obtained for the potatoes
class, which had a low probability of occurrence (Fig. 2).

IV. CoNCLUSION

In this paper, we have addressed the problem of extending the
J-M distance to multiclass cases for feature selection purposes. We
have presented an extension which, differently from the commonly
used average J-M distance, maintains a property of the pairwise J-M
distance, that is, its maximization is equivalent to the minimization
of the Bhattacharyya bound of the error probability. In addition, as
compared with the average J-M distance, it gives greater importance
to data classes with low a priori probabilities in the selection process.
This behavior can be particularly useful for classification tasks,
when classes with very different a priori probabilities are present.
This advantage was confirmed by the reported experiments, as the
presented extension performed better than the average J-M distance,
in particular, for data classes with low a priori probabilities.

Accuracy (%) for the Potatoes Class

40 o Jave
// - Jpn
20
0
1 2 3 4 5 6

Number of Features

Fig. 2. Comparison between the extension equivalent to the Bhattacharyya
bound (Jpy,) and the average J-M distance (Jave ) for the potatoes class. The
classes considered and the related numbers of pixels are given in Table IL

TABLE II
THE CLASSES CONSIDERED AND THE RELATED NUMBERS OF PIXELS OBTAINED BY
REDUCING THE A PRIORI PROBABILITIES FOR THE WHEAT AND POTATOES CLASSES

Data Class Number of Pixels A Priori_Probability
Wheat 90 0.06
Sugar Beets 728 0.51
Potatoes 90 0.06
Carrots 319 0.23
Stubble 191 0.14

From a feature selection viewpoint, the presehted extension per- .
forms as well as the Bhattacharyya bound. However, we think that
the fact that the presented extension is explicitly formulated in terms
of pairwise J-M distances makes clearer for the remote-sensing
community the difference between the Bhattacharyya bound and the
commonly used average J-M distance. Finally, it is worth noting that
the presented extension, the average J-M distance, and the criterion
based on the least separable pairs of classes can be implemented by a
single computer program, as all of them are computed from a priori
class probabilities and pairwise J-M distances.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for . their
constructive criticisms.

REFERENCES

[11 B. Kim and D. A. Landgrebe, “Hierarchical classifier design in high-
dimensional, numerous class cases,” IEEE Trans. Geosci. Remote Sens-
ing, vol. 29, no. 4, pp. 518-528, July 1991.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 33, NO. 6, NOVEMBER 1995

[2] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed.
New York: Academic, 1990.

[3] P. H. Swain and S. M. Davis, Remote Sensing: The Quantitative
Approach. New York: McGraw-Hill, 1978.

[4] I. L. Thomas, N. P. Ching, V. M. Benning, and J. A. D’Aguanno, “A
review of multi-channel] indices of class separability,” Int. J. Remote
Sensing, vol. 8, no. 3, pp. 331-350, 1987.

[5]1 D. G. Lainiotis, “A class of upper bounds on probability of error for
multihypotheses pattern recognition,” IEEE Trans. Inform. Theory, vol.
IT-15, pp. 730-731, Nov. 1963.

[6] A. G. Wacker, “Minimum distance approach to classification,” Ph.D.
dissertation, Lab. Applicat. Remote Sensing, School Elect. Eng., Purdue
Univ., West Lafayette, IN, 1971.

[71 G.T. Toussaint, “Some inequalities between distance measure for feature
evaluation,” IEEE Trans. Comput., vol. C-21, no. 4, pp. 409410, Apr.
1972.

[8] S. J. Whitsitt and D. A. Landgrebe, “Error estimation and separability
measure in feature selection for multiclass pattern recognition,” School
Elect. Eng., Purdue Univ., West Lafayette, IN, Tech. Rep. 77-34, 1977.

[9] H. Jeffreys, Theory of Probability. New York: Oxford Univ. Press,
1948.
[10] I. R. G. Townshend, “Agricultural land-cover discrimination using

thematic mapper spectral bands,” Int. J. Remote Sensing, vol. 5, pp.
681-698, 1984.

Infrared Extinction of the Powder of Brass 70Cw/30Zn
Calculated by the FDTD and Turning Bands Methods

Hsing-Yi Chen, I.-Young Tamn, and Yeou-Jou Hwang

Abstract— The finite-difference time-domain (FDTD) method is used
to calculate the specific extinction cross section of the powder of brass
770Cu/30Zn with 103 to 2.16 x 10° cubical particles for cell sizes in the
range of 0.025 to 0.5 ym at infrared frequency. The digitized models
with a random process using the turning bands method are simulated for
the powder of brass 70Cu/30Zn. From theoretical calculations, the value
of specific extinction cross section of the powder of brass 70Cu/30Zn is
between 0.1 to 4.6 m?/g. While from the experimental measurement, the
value of specific extinction cross section is between 0.58 to 3.78 m?/g. Most
of the theoretical results make a good agreement with those obtained from
the experimental measurements for the cell sizes of particles in the range
of 0.025 to 0.5 xm. From the numerical calculations, it is also found that
there is a resonant extinction value occurred at the resonant particle size
do which is approximately 2.54 x n, %2 um determined by a least
square curve fitting method, where n,, is the number of particles. The
resonant value calculated by the numerical solution is larger than the
maximum value obtained from the experimental measurement.

I. INTRODUCTION

One of the military applications of electromagnetic absorption and
scattering of the powder of brass 70Cu/30Zn (70% of Cu and 30%
of Zn) [1] is the tank detection avoidance technique. Tanks must
be provided with the best means of protection. Visual and Infrared
screening smoke (VIRSS) grenades have been developed for the tank
survivability by the Royal Ordnance in the UK [2].

There are several analytical methods suitable for calculating the
electromagnetic scattering and absorption by particle objects [3]-[8].
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Among them, a better approach is the Iskander—Chen—Penner solution
(I-C-P) [8], which uses a volume integral equation formulation
(VIEF) together with the method of moments (MOM). However, the
I-C-P solution proposed in the previous works for particles over one
thousand has been hindered by computer resources.

Recently, the Finite-Difference Time-Domain (FDTD) method has
become increasingly popular for computations of electromagnetic
wave propagation and scattering problems [9]-[11]. In this paper, the
FDTD method is used to solve the Maxwell’s equations for electric
and magnetic fields induced in the powder of brass 70Cu/30Zn. On
the other hand, the turning bands method [12] is used to generate the
digitized models through a random process. The number of particles
used in the calculations is in the range of 10° to 2.16 x 10°. The
refractive index of the powder of brass 70Cu/30Zn is taken to be
n* = 16.87 + j 51.59 at wavelength XA = 10 pm [1]. The cell sizes
of these cubical particles are varied from 0.025 to 0.5 ym to examine
the extinction characteristic. Results of the extinction cross section
are presented and compared with the experimental data at infrared
frequency (wavelength A = 10 pm).

II. THE FDTD METHOD

The FDTD method, first presented by Yee [13] in 1966 and later
developed by many researchers [14]-[17], is based on direct solution
of Maxwell’s time-dependent curl equations

_ om
VX E =~ —at— ) [€))
wﬂ:@w%. %)

The components of EM fields £ and H are positioned at half-
step interval around a unit cell. o, p, and ¢ are the conductivity,
permeability, and permittivity of the objects, respectively. In the
FDTD method, the coupled Maxwell’s equations in the differential
form are solved for various points of the scatters as well as its
surroundings in a time-stepped manner until converged solutions are
obtained.

It should be noted that the FDTD method divides the computation
space into total-field zone and scattered-field zone as shown in Fig. 1.
The total-field zone encloses the scattering particles and the scattered-
field zone is chosen to numerically mimic the unbounded region
outside the total-field region by absorbing the outgoing scattered
waves. Another important problem encountered in solving the time-
domain electromagnetic-field equation, using the FDTD method, is
the absorbing boundary conditions. In our formulation, the second-
order approximation of absorbing boundary conditions [16] is used
to- limit the computational domain by simulating unbounded space.
In the simulations, the cell sizes are taken to be a fraction (<1/20)
of the wavelength in order to accurately obtain the numerical results.
To ensure stability, the time increment §; is given by §/2C, [17],
where Cj is the speed of light in free space and § is the cell size.

ITII. THE TURNING BANDS METHOD

It is possible to use the turning bands method [12], [18] to
generate discrete samples of the random process for a stationary
and isotropic random medium. Let the random process function 7
and the correlation function /N are used in the study for random
particles located in the 3-D space. According to the turning bands
method, any 3-D simulation can be reduced to several independent
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