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A Spectral-Spatial Multi-Criteria Active Learning
Technique for Hyperspectral Image Classification

Swarnajyoti Patra, Member, IEEE, Kaushal Bhardwaj, and Lorenzo Bruzzone, Fellow, IEEE

Abstract—Hyperspectral image classification with limited la-
belled samples is a challenging task and still an open research
issue. In this article a novel technique is presented to address
such an issue by exploiting dimensionality reduction, spectral-
spatial information and classification with active learning. The
proposed technique is based on two phases. Considering the
importance of dimensionality reduction and spatial information
for the analysis of hyperspectral images, Phase I generates the
patterns corresponding to each pixel of the image using both
spectral and spatial information. To this end, first, principal
components analysis is used to reduce the dimensionality of
an hyperspectral image, then extended morphological profiles
are exploited. The spectral-spatial information based patterns
generated by extended morphological profiles are used as input
to the Phase II. Phase II performs the classification task guided
by an active learning technique. This technique is based on a
novel query function that uses uncertainty, diversity and cluster
assumption criteria by exploiting the properties of k-means
clustering, K-nearest neighbors algorithm, support vector ma-
chines and genetic algorithms. Experiments on three benchmark
hyperspectral data sets demonstrate that the proposed method
outperforms five state-of-the-art active learning methods.

Index Terms—Active learning, classification, genetic algo-
rithms, k-means clustering, mathematical morphology, support
vector machines, remote sensing.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are characterized by
hundreds of bands acquired in contiguous spectral

ranges and narrow spectrum intervals. They represent a very
rich information source for a precise characterization and
recognition of objects on the ground. In the past decades
researchers devoted great attention to the classification of
hyperspectral images for numerous applications, like the de-
tailed classification of forest areas, the analysis of inland water
and coastal zones, the analysis of natural risks, etc [1]. Due
to the existence of a large number of bands, classification
of HSI requires a sufficiently large number of training (la-
belled) samples in order to mitigate curse of dimensional-
ity (or Hughes phenomenon) [2]. However, in most of the
hyperspectral applications, the numbers of available labelled
samples is scarce and very costly to collect. To address such a
problem, dimensionality reduction of HSIs is widely used in
the literature [3]–[10]. Dimensionality reduction decreases the
number of the HSI spectral channels with the help of feature
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selection (extraction) techniques that select (extract) only non-
redundant informative features which preserve discriminative
properties of the data.

Although dimensionality reduction mitigates the curse of
dimensionality problem, the classification results still rely on
the quality of the available labelled samples. Due to the usually
complex statistical distributions of the patterns belonging to
different classes, informative labelled samples (i.e., the non-
redundant samples which distinguish among different classes)
are essential to train the classifier. Two recent approaches to
HSI classification using limited labelled samples are semisu-
pervised learning and active learning. Semisupervised learning
incorporates both the labelled and unlabelled data into the
training phase of a classifier to obtain better decision bound-
aries [11]–[15]. In contrast, active learning (AL) is a paradigm
to reduce the labeling effort and optimize the performance of
a classifier by including only most informative patterns (which
have highest training information for supervised learning) into
the training set. AL techniques are usually based on iterative
algorithms. At each iteration, one or multiple most informative
unlabelled patterns are chosen for manual labeling and the
classification model is retrained with the additional labelled
samples. The step of training and the step of assigning labels
are iterated alternately until a stable classification result is ob-
tained, i.e., the classification accuracy does not increase further
by increasing the number of training samples. Accordingly, the
classifier is trained only with the most informative samples,
thus reducing the labeling cost. In the literature many studies
have shown that AL is a promising approach to classification
of HSI with limited labelled samples [16], [17].

The fundamental component of AL is the design of a query
function that should incorporate a set of criteria for selecting
the most informative patterns to label from an unlabelled pool
U . Depending on the number of samples to be selected at
each iteration, two kinds of AL methods exist in the literature:
1) those that select the single most informative sample at
each iteration, and 2) those that select a batch of informative
samples at each iteration. To avoid retraining the classifier for
each new labelled sample added to the training set, batch mode
AL methods are preferred in the remote sensing community.
AL has been widely studied in the pattern recognition literature
[18]–[22]. In the recent years, several AL techniques have been
proposed for classification of multispectral and hyperspectral
remote sensing images [23]–[36]. Mitra et al. [23] presented an
AL technique by adopting a one-against-all (OAA) architec-
ture of binary support vector machine (SVM) classifiers. They
select batch of uncertain samples, one from each binary SVM,
by considering that closest to the discriminating hyperplane. In
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[24], an AL technique is presented that exploits the maximum-
likelihood classifier and the Kullback-Leibler divergence. It
selects the unlabelled sample that maximizes the information
gain between the a posteriori probability distribution estimated
from the current training set and the training set obtained
by including also that sample. In [25], two batch mode
active learning techniques are proposed for classification of
remote sensing images. The first one extends the SVM margin
sampling method by selecting the samples that are closest to
the separating hyperplane and associated with different closest
support vectors. The second method is based on a committee
of classifiers. The samples that have maximum disagreement
among the committee of learners are selected. In [26], Demir et
al. investigated several SVM-based batch mode AL techniques
for the classification of remote sensing images. In [27], a
batch mode AL technique based on multiple uncertainty for
SVM classifiers is presented. Few cluster assumption based
AL techniques are presented in [28]–[30]. A cost-sensitive
AL method for the classification of remote sensing images is
presented in [31] and extended in [32]. This method includes
in the query function also the cost associated with the accessi-
bility of the unlabelled samples. An AL technique based on a
Gaussian process classifier for hyperspectral image analysis is
presented in [33]. All the above-mentioned AL methods only
exploit spectral information. There are few techniques existing
in the literature that exploit spectral and spatial information to
achieve improved classification results [34]–[38].

As mentioned before feature selection (or extraction) plays
an important role for HSI classification with limited labelled
samples. Moreover, in practice, pixels are spatially related due
to the homogeneous spatial distribution of land covers. It is
highly probable that two adjacent pixels belong to the same
class. Thus, information captured in neighboring locations
may provide useful supplementary knowledge for analysis
of a pixel. Therefore, spectral information with the support
of spatial information can effectively reduce the uncertainty
of class assignment and help to find the most informative
samples.

In this work we propose a novel technique for the classifica-
tion of HSI with limited labelled samples. The proposed tech-
nique is divided into two phases. Considering the importance
of dimensionality reduction and spatial information for the
analysis of HSIs, Phase I extracts the features corresponding to
each pixel of HSI using both spectral and spatial information.
To this end, first principal components analysis (PCA) is
used to reduce the dimensionality of HSI; then, extended
morphological profiles (EMP) are exploited. The spectral-
spatial features based patterns (samples) generated by the EMP
are used as input to the Phase II. Phase II performs the
classification task with a small number of labelled samples.
To this end, a multi-criteria batch mode AL technique is
proposed by defining a novel query function that exploits the
properties of the k-means clustering, the K-nearest neighbors
algorithm, the SVM classifier, and genetic algorithms (GAs).
The method first partitions the unlabelled pool U generated
by Phase I into a large number of clusters using the k-means
clustering algorithms. Then by exploiting the properties of the
k-means clustering and the K-nearest neighbors algorithms,

for each x ∈ U the density of the region in which the pattern
x belongs is computed. This density is used to incorporate
the cluster assumption1 criterion in the query function. The
proposed technique also incorporates uncertainty and diversity
criteria to select the informative samples at each iteration of
AL. The uncertainty criterion is defined by exploiting an SVM
classifier and the diversity criterion is defined by maximizing
the nearest neighbor distances of the selected samples. In the
proposed AL technique, at each iteration the SVM classifier
is trained with the available labelled samples. After training,
m most uncertain samples are selected. Then, a batch of
h(h < m) informative samples from the selected m samples
are chosen for manual labeling by optimizing the uncertainty,
diversity and cluster assumption criteria with GAs. To assess
the effectiveness of the proposed method we compared it with
five other batch mode AL techniques existing in the literature
using three hyperspectral remote sensing data sets.

The rest of this paper is organized as follows. The proposed
active learning technique is presented in Section II. Section
III provides the description of the three hyperspectral remote
sensing data sets used for experiments. Section IV presents
the experimental results obtained on the considered data sets.
Finally, Section V draws the conclusion of this work.

II. PROPOSED TECHNIQUE

In this paper we propose a technique for classification of
HSIs with limited labelled samples. The proposed technique
is divided into two phases. Phase I generates the patterns
corresponding to each pixel of the HSIs by extracting spectral-
spatial features. Phase II performs the classification task by
exploiting a novel AL technique. Fig. 1 shows the block
diagram of the proposed framework. The details steps of the
proposed technique are given in next subsequent subsections.

A. Phase I: spectral-spatial feature extraction

The classification of an HSI when a limited number of
labelled samples is available is a challenging task due to
the curse of dimensionality problem. Moreover, due to the
existence of large number of redundant and irrelevant bands,
the distributions of different classes in the original feature
space are complex and do not follow the cluster assumption
property, i.e. the interclass differences between classes are not
significant. Thus, cluster assumption criterion may fail to play
a significant role for identifying informative samples. Both
problems can be solved by reducing the dimensionality of
the HSI data by selecting (or extracting) only discriminative
features. When a small number of discriminative features is
considered, the class distributions might be much simpler and
result in more significant interclass differences. Thus, finding
the unlabelled informative samples in the reduced feature
space is much easier than the original feature space. Moreover,

1The cluster assumption is equivalent to the low-density separation assump-
tion which states that the decision boundary among classes should lie on a
low-density region of the feature space. According to this assumption, one
can say that two points in the feature space are likely to have the same class
label if there is a path connecting them passing through high-density regions
only [39].
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Fig. 1. Block diagram of the proposed framework.

a small number of informative labelled samples may be good
enough to train a classifier. In the proposed technique we
reduce the dimensionality of HSIs by extracting informative
features with the help of principal component analysis.

1) Principal component analysis: PCA is an orthogonal
transformation technique widely used in feature extraction and
data compression [40]. It transforms a set of patterns in a d-
dimensional original feature space into a new feature space
having the same dimension where the transformed features
are called principal components (PCs). The transformation is
defined in such a way that the first PC has the largest possible
variance of the patterns, and each succeeding component in
turn has the highest variance possible under the constraint to
be orthogonal to the preceding components. Thus, PCA orders
the PCs according to the variance of the patterns. It is used to
reduce dimensionality of the data by keeping first few PCs. In
our work, the dimensionality of HSIs is reduced by keeping
only the first l PCs that retain more than 99% of information
and discard the rest.

The spectral features extracted by PCA are not enough to
distinguish classes in HSIs. In many HSIs pixels are spatially
correlated due to the homogeneous spatial distribution of
land covers. Information captured in neighboring pixels may
provide useful supplementary knowledge for the analysis of
a pixel. Therefore, spectral information with the support of
spatial information can effectively reduce the uncertainty of
class assignment and help the AL process to select more
informative samples for labelling. In this work, EMP are used
to incorporate spatial information into the extracted spectral
features.

2) Extended morphological profiles: Mathematical mor-
phology has been successfully applied to images [41]–[46].
Two fundamental morphological operators are dilation and
erosion. Dilation δE(I) in a grey scale image I replaces the
pixel intensity with the maximum intensity value present in its
neighborhood, which is defined by the structuring element E.
The structuring element (SE) is a small structure which sets
boundary of neighborhood for a pixel to be investigated. By
duality erosion εE(I) replaces the pixel by minimum intensity.

Two important morphological filters are opening and clos-
ing. Opening γE(I) of an image I by a structuring element
E is defined as the erosion of I followed by the dilation with
the symmetrical structuring element E.

γE(I) = δE [εE(I)]

Closing φE(I) of an image I by a structuring element E
is defined as the dilation of I by E followed by the erosion
with symmetric SE.

φE(I) = εE [δE(I)]

When opening or closing is applied to an image, structures
smaller than SE disappears. These filters may introduce false
structures or modify existing structures which can be avoided
by geodesic reconstruction. The composition of erosion and
reconstruction by dilation is called opening by reconstruc-
tion or geodesic opening. The composition of dilation and
reconstruction by erosion is called closing by reconstruction
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or geodesic closing. On applying geodesic opening or closing
we get a similar image with some preserved objects. Using
varying size of SE we get multiple similar images (called
granulometry) preserving shapes and size of all objects present
in the image. A granulometry generated by geodesic opening
using a SE of an increasing size is called opening profile (OP).
Similarly, a granulometry generated by geodesic closing using
a SE of an increasing size is called closing profile (CP). OP
of image I can be define as:

OP (I) = {γE1

R (I), γE2

R (I), ..., γEt

R (I)}
where t is the number of opening by reconstructions. γEi

R (I) is
opening by reconstruction considering the size of structuring
element Ei. It is defined as:

γEi

R (I) = REi

δ [εEi(I)]

where REi

δ is reconstruction by dilation. Similarly, CP of
image I can be defined as:

CP (I) = {φE1

R (I), φE2

R (I), ..., φEt

R (I)}
where

φEi

R (I) = REi
ε [δEi(I)]

.
The morphological profiles (MP) of an image I is the

concatenation of image I with its opening profile and its
closing profile i.e., MP (I) = {I,OP (I), CP (I)}. Thus, MP
of image I is a collection of 2t+1 similar images with different
spatial information. For hyperspectral image one can integrate
spectral and spatial information by generating MP for all bands
and use them together but this would increase the dimension
exponentially. To mitigate this problem, one option is to reduce
the dimension of the original HSI and then integrate the
generated MP for each image in the reduced dimension. In
the literature this is called extended morphological profiles.

In our work, as explained in subsection II-A, the dimen-
sionality of HSI is reduced by PCA selecting first l PCs.
Then the EMP for a hyperspectral image H are generated
by concatenating the MP of l different images generated by l
PCs.

EMP (H) = {MP (PC1),MP (PC2), ...,MP (PCl)}
This results in l(2t + 1) images containing spectral-spatial

information to represent the pixels of HSIs. Thus, using EMP
patterns corresponding to the pixels of HSI are modeled with
l(2t+ 1) spectral-spatial features.

B. Phase II: proposed active learning technique for classifi-
cation of HSIs

To incorporate spectral-spatial information in the classi-
fication process, the feature vectors generated in Phase I
are used as input to Phase II. In this phase, a novel batch
mode AL technique is proposed for classification of HSI
with limited labelled samples. In order to select the most

informative samples to be labelled, the query function of our
AL technique is designed based on uncertainty, diversity and
cluster assumption criteria. The uncertainty criterion is defined
by exploiting SVM classifier. The diversity criterion is defined
by maximizing the nearest neighbor distances of the selected
samples. The cluster assumption criterion is defined by using
the properties of k-means clustering and nearest neighbor
algorithms. Finally GAs are exploited to select batch of most
informative samples by optimizing these criteria. The details
of the proposed technique are given below.

1) Uncertainty criterion: In this work a one-against-all
(OAA) SVM architecture, which involves n binary SVMs (one
for each information class), is adopted to define uncertainty
criterion as well as to perform the classification task [47].
The uncertainty criterion aims at selecting the samples that
have the lowest classification confidence among the unlabelled
samples. To this end, at each iteration of AL, n binary SVM
classifiers are trained with the available labelled samples.
After training, n functional distances fi(x), i = 1, 2, ..., n
are obtained, that correspond to the n decision hyperplanes.
Then, the classification confidence of each unlabelled sample
x ∈ U is associate with its uncertainty measure. The samples
which have lower classification confidence are considered
more uncertain. In the literature two alternative strategies are
used for computing the classification confidence. The first
strategy is based on the widely used marginal sampling (MS)
technique, where the smallest distance among the n decision
hyperplanes is considered to compute the classification con-
fidence of each unlabelled sample [23]. The second strategy,
which is also used in our work, is based on the multiclass label
uncertainty (MCLU) [26]. In MCLU, the difference between
the first and second largest distance values to the hyperplanes
is considered to compute the classification confidence cc(x)
of each unlabelled sample x ∈ U as follows:

rmax1 = arg max
i=1,...,n

{fi(x)}
rmax2 = arg max

j=1,...,n
j 6=rmax1

{fj(x)}

cc(x) = frmax1
− frmax2

(1)

Thus, in the MCLU strategy, the classification confidence
is assessed based on the two most likely classes to which the
test pattern belongs. If the value of cc(x) is high, the sample
x is assigned to the rmax1 class with high confidence. On
the contrary, if cc(x) is small, the sample x is very close
to the boundary between classes rmax1 and rmax2. Thus, its
classification confidence for the rmax1 class will be low.

2) Diversity criterion: The samples selected using the
uncertainty criterion may have high redundancy. The diversity
criterion plays an important role to reduce this redundancy.
It selects the samples from the already selected uncertain
samples which are diverse from each other. The diversity
criteria based on angle, closest support vector, clustering
etc. are widely used in the AL literature [25], [26], [48].
In this work a simple criterion that maximizes the distance
between sample and its nearest sample is used to select diverse
samples. Let x1, x2, ..., xm be the m most uncertain samples
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selected from U using the MCLU criterion defined above. Now
the optimization of the following criterion is used to select
h(h < m) diverse samples from the selected m samples:

max





h∑

i=1

min
i 6=j

j=1,...,m

{d(xi, xj)}



 (2)

where d(xi, xj) is the euclidian distance between the sample
xi and xj . The h samples selected using (2) are diverse from
each other since the criterion maximize the distance between
each sample with its nearest sample.

3) Cluster assumption criterion: Cluster assumption prop-
erty states that the decision boundary among classes should lie
on a low-density region of the feature space. Thus, the patterns
that belong to low density regions of the feature space are the
most informative for a classifier. The density of a region to
which a specific pattern belongs can be computed by taking
the average distance from its K-nearest neighbor patterns. Such
a way to compute the density for each unlabelled pattern
is impractical and cumbersome. In this work we exploit the
properties of k-means clustering to solve this problem.

Clustering is based on unsupervised learning for grouping
a set of patterns in such a way that samples in the same
group (called a cluster) are more similar to each other than
to those in other groups. k-means clustering aims to partition
the patterns into k clusters in which each samples belongs to
the cluster with the nearest mean, serving as a representative
(prototype) of the cluster [49]. In our method, before iterative
AL process is started, unlabelled patterns are partitioned into
a large number of clusters and the prototype of each cluster
is derived by using the k-means algorithm. Let C1, C2, ..., Ck
and µ1, µ2, ..., µk be the k clusters and their corresponding
representatives obtained by the k-means algorithm. Now the
density of the region in which a cluster Ci belongs can be
computed as follows:

den(Ci) =
1

K

∑

xi∈K−NN(µi)

d(µi, xi) (3)

where K −NN(µi) represents the K neighbor patterns that
are nearest to the cluster representative µi. After finding the
density of all clusters, the density of a region where a pattern
xj belongs, denoted as den(xj), is computed as:

den(xj) = den(Ci),where xj ∈ Ci (4)

According to the cluster assumption, the patterns having
higher density values have higher probability to be in a low-
density region in the feature space as compared to the patterns
having lower density values. Thus, the density computed by
(4) can be used to evaluate the cluster assumption property in
the AL query.

4) Selecting informative samples using GAs: In this section
a query strategy for AL based on the above-defined criteria is
presented by exploiting GAs [50]. At each iteration of AL,
first the m samples from U that have the lowest classification
confidence computed using (1) are selected. After that, the
h(h < m) most informative samples from the selected
m uncertain samples are chosen by optimizing uncertainty,

diversity and cluster assumption criteria using GAs. The basic
steps of GAs to select h informative samples are described
below.

Chromosome representation: Each chromosome is a se-
quence of binary numbers representing the h samples. If s bits
are used to represent a sample, the length of a chromosome
that represent h samples will be h × s bits. The first s bits
of the chromosome represent the first sample, the next s bits
represent the second sample, and so on.

Population initialization: A collection of chromosomes is
called population. The number of chromosomes belonging to
a population defines the size of the population. A population
is formed by generating a set of chromosomes. Each chromo-
some in the population is initialized randomly to represent h
samples.

Fitness computation: Design of an appropriate fitness func-
tion is the most important and challenging task of GAs, since
the chromosomes of the population contain useful solutions by
optimizing their fitness value. The fitness function F (.) is also
known as objective function. In this work the fitness function
of the GA that compute the fitness values of the chromosomes
is defined as follows:
F (x1, x2, ..., xh) =

1

h

h∑

i=1

cc(xi)−
1

h





h∑

i=1

min
i 6=j

j=1,...,m

{d(xi, xj)}



−

1

h

h∑

i=1

den(xi)+P (5)

Here h(h < m) informative samples are chosen from the m
uncertain samples (obtained by using the uncertainty criterion
defined in (1)) by minimizing the objective function. The
first, second and third terms of the above objective func-
tion compute the average classification confidence (using the
uncertainty criterion defined in (1)), the average minimum
neighbor distance (using the diversity criterion defined in
(2)) and the average density (using the cluster assumption
criterion defined in (4)) of the h samples represented by a
chromosome, respectively. If a sample appear multiple times in
a chromosome, the parameter P has a positive constant value
as a penalty, otherwise it is zero. The smaller value of the first
term and the larger values of second and third terms provide
smaller values of the objective function. Thus minimizing the
objective function defined in (5) a GA results in the selection
of the most informative samples to be labelled for AL.

Selection: The selection process selects chromosomes from
the mating pool directed by the survival of the fittest concept
of natural genetic systems. The ’stochastic uniform’ selection
strategy has been adopted here.

Crossover: Crossover exchanges information between two
parent chromosomes for generating two child chromosomes.
Given a chromosome of length h × s, a crossover point is
randomly generated in the range [1, s× h− 1].

Mutation: Each chromosome undergoes mutation with a
fixed probability. Given a chromosome in the population, a
bit position (or gene) is mutated by simply flipping its value.

Termination criterion: The processes of fitness value com-
putation for each chromosome in the population, selection,
crossover, and mutation are executed for a maximum number
of iterations or the number of iteration until the average fitness
value of the population becomes stable.
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After termination criterion is satisfied, the chromosome in
the population that has the best fitness value is considered and
the h samples that belong to that chromosome are selected
as informative samples for the AL. Algorithm 1 provides the
details of the proposed AL technique.

Algorithm 1 Proposed active learning technique
Phase I

1: Apply PCA to HSI and select first l PCs.
2: Obtain MP of l images generated by the l PCs.
3: Generate EMP of the HSI by concatenating all the MPs

obtained in the previous step.
4: Obtain the patterns (samples) associated with the pixels

of HSI by using its EMP attributes.
Phase II

1: Apply k-means clustering algorithm to the samples gen-
erated by Phase I to obtain k clusters and their represen-
tatives.

2: Compute the density of each cluster using (3) and then
for each x ∈ U compute the local density of the region of
the feature space in the neighborhood of x by using (4).

3: repeat
4: Train binary SVMs in the OAA architecture with the

available training samples and compute the classification
confidence of each unlabelled sample x ∈ U by using (1).

5: Select the m(m < k) samples from U that have the
lowest classification confidence.

6: Exploit GAs to select a batch of h(h < m) informative
samples from m by minimizing the objective function
defined in (5).

7: Assign labels to the h selected samples and include
them into the training sat.

8: until the stop criterion is satisfied.

III. DESCRIPTION OF DATA SETS

In order to assess the effectiveness of the proposed tech-
nique, three hyperspectral data sets were used in the experi-
ment. The first data set2 shown in Fig. 2 is a hyperspectral
image acquired on the Kennedy Space Center (KSC), Merritt
Island, Florida, USA, on March 23, 1996. This image consists
of 512 x 614 pixels and 224 bands with a spatial resolution
of 18 m. The number of bands is initially reduced to 176 by
removing water absorption and low signal-to-noise bands. The
labelled data were collected using land-cover maps derived
from color infrared photography provided by KSC and Landsat
thematic mapper imagery. The class name and corresponding
numbers of ground truth observations used in the experiments
are listed in Table I.

The second data set2 is a hyperspectral image acquired by
the ROSIS-03 (Reflective Optics System Imaging Spectrom-
eter) optical sensor over the urban area of the University of
Pavia, Italy. The flight was operated by the Deutsches Zentrum
für Luft-und Raumfahrt (DLR, the German Aerospace Center)

2Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspec-
tral Remote Sensing Scenes

Fig. 2. Hyperspectral KSC image and its reference map.

TABLE I
KSC DATA SET: CLASS NUMBERS, CLASS NAMES AND CORRESPONDING

NUMBERS OF GROUND TRUTH OBSERVATIONS

Class no. Class name No of labelled
samples

1 Scrub 761
2 Willow swamp 243
3 Cabbage palm hammock 256
4 Cabbage palm/Oak hammock 252
5 Slash pine 161
6 Oak/Broadleaaf hammock 229
7 Hardwood swamp 105
8 Graminoid marsh 431
9 Spartina marsh 520

10 Cattaial marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927

Total 5211

in the framework of the HySens project, managed and funded
by the European Union [51]. The size of the image in pixels is
610 x 340, with very high spatial resolution of 1.3 m/pixel. The
number of bands of the ROSIS-03 sensor is 115 with a spectral
coverage ranging from 430 to 860 nm. Some channels (twelve)
have been removed due to noise. The remaining 103 spectral
bands are processed. Fig. 3 shows a false color composite
of the image. The class name and corresponding numbers of
ground truth observations used in the experiments are listed
in Table II.

TABLE II
PAVIA UNIVERSITY DATA SET: CLASS NUMBERS, CLASS NAMES AND

CORRESPONDING NUMBERS OF GROUND TRUTH OBSERVATIONS

Class no. Class name No of labelled
samples

1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Metal Sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42776

The third data set3 is an hyperspectral image acquired by
the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
sensor over the agricultural land of Indian Pines, Indiana, in

3Available online: http://engineering.purdue.edu/ biehl/MultiSpec
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Fig. 3. Hyperspectral Pavia University image and its reference map.

the early growing season of 1992. These data were acquired
in the spectral range 400-2500 nm with spectral resolution
of about 10 nm. The image consists of 145 x 145 pixels
and 220 spectral bands with a spatial resolution of 20 m.
Twenty water absorption and fifteen noisy bands were removed
and the remaining 185 bands were included as candidate
features. This image is used as it is a well known benchmark
in the hyperspectral community. Fig. 4 shows a false color
composition of the AVIRIS Indian Pines scene. The class name
and corresponding numbers of ground truth observations used
in the experiments are listed in Table III.

Fig. 4. Hyperspectral Indian Pines image and its reference map.

IV. EXPERIMENTAL RESULTS

A. Design of experiments

In order to show the potential of the proposed technique
the three hyperspectral data sets described in Section III are
used for experiments. Moreover, to assess the effectiveness
of the proposed method, it is compared with four batch mode
state-of-the-art AL methods existing in the literature: i) the en-
tropy query-by-bagging (EQB) [25]; ii) the marginal sampling
with angle based diversity (MS-ABD) [48]; iii) the cluster
assumption with histogram thresholding (CAHT) [27]; and iv)
the multiclass label uncertainty with enhanced cluster based
diversity (MCLU-ECBD) [26]. The MS-ABD, the CAHT, and

TABLE III
INDIAN PINES DATA SET: CLASS NUMBERS, CLASS NAMES AND
CORRESPONDING NUMBERS OF GROUND TRUTH OBSERVATIONS

Class no. Class name No of labelled
samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-min 830
4 Corn 237
5 Grass/Pasture 483
6 Grass/Trees 730
7 Grass/Pasture-mowed 28
8 Way-windrowed 478
9 Oats 20
10 Soybeans-notill 972
11 Soybeans-min 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Bldg-Grass-Tree-Drives 386
16 Stone-steel towers 93

Total 10249

the MCLU-ECBD first select m(m > h) most uncertain
samples from U by exploiting MS, CA and MCLU criteria,
respectively. Then, by adopting different diversity criteria (the
MS-ABD uses angle based diversity criterion, while the CAHT
and the MCLU-ECBD use the kernel k-means clustering based
diversity criterion) batches of h(h >= 1) informative samples
from the selected m samples are chosen for labeling at each
iteration of AL. In our experiments the value of m is fixed to
3h for a fair comparison among the different techniques. The
EQB technique directly selects the h most uncertain samples
according to the maximum disagreement between a committee
of classifiers. The committee is obtained by bagging. Note that
all the above-mentioned AL methods consider only spectral
features as input. The proposed technique generated spectral-
spatial features which are used as input to the AL process. In
order to show the potential of the features generated by the
proposed technique, the spectral-spatial features generated by
our technique are also used as input to the above mentioned
AL methods, referring to them as: i) SP-EQB; ii) SP-MS-
ABD; iii) SP-CAHT; and iv) SP-MCLU-ECBD. Furthermore,
to validate the effectiveness of the proposed technique, it also
compared with an existing spectral-spatial information based
state-of-the-art AL technique referred as MPM-LBP-BT tech-
nique [35]. The MPM-LBP-BT AL technique exploits spectral
and spatial information by exploiting maximum a posteriori
marginal (MPM) solution and loopy belief propagation. Then
a breaking ties (BT) uncertainty criterion is used for query
selection.

As explained in Section II the proposed technique reduces
the dimensionality of the hyperspectral data by using PCA. In
this experiment, the dimensionality of all the considered data
sets are reduced by fixing the value of l to 10 (i.e., only the first
10 PCs are considered and the remaining ones are discarded).
To incorporate spatial information in the reduced dimension,
an EMP with two opening and two closing leading to a stack
of 50 features (5 for each PC) is computed to generate the
patterns associated to the pixels of the HSI by considering
disk-shape SE of radius 5 and 10. Thus, each pixel of the



8

hyperspectral image that is used as an input to our active
learning is represented with 50 features containing spectral
as well as spatial information.

To compute the density of the patterns in a specific region
of the feature space, the proposed technique first partitions
the feature space into a large number of clusters by using k-
means clustering. Then the density of each cluster is computed
by the K-nearest neighbors algorithm. In the experiments
for all the data sets, the values of k for k-means and K
for K-nearest neighbors algorithms are set to 500 and 10,
respectively. The proposed technique also exploits GAs to
select most informative samples. In our experiments for all the
data sets the population size of GAs is taken as 20. Stochastic
selection strategy is used to select fittest chromosomes from
the mating pool. The crossover and mutation probabilities are
set to 0.8 and 0.01 respectively.

All the active learning algorithms presented in this paper
have been implemented in Matlab (R2015a). OAA SVM with
radial basis function (RBF) kernels has been implemented
by using the LIBSVM library [52]. The SVM parameters
{σ,C} (the spread of the RBF kernel and the regularization
parameter) for all the data sets were derived by applying a
grid search according to a five-fold cross-validation technique.
The cross-validation procedure aimed at selecting the initial
parameter values for the SVM. For simplicity, these values
were not changed during the active learning iterations.

B. Results: KSC data set

The first experiment is carried out to compare the perfor-
mance of the proposed technique with the literature methods
using the KSC data set. For this experiment, a total of
T = 5211 labelled samples (see Table I) were considered as
a test set TS. First, only 39 samples (three samples from each
class) were randomly selected from T as initial training set
L, and the remaining 5172 were stored in the unlabelled pool
U . At each iteration of AL 20 samples were selected from U
for labeling and the process was iterated 19 times resulting in
419 samples in the training set L. To reduce the random effect
on the results, the active learning process was repeated for 10
trials with different initial labelled samples.

Fig.5 shows the average overall classification accuracies
provided by the different methods versus the number of
labelled samples included into the training set for the KSC
data set. From this figure one can see that the EQB, the MS-
ABD, the CAHT, and the MCLU-ECBD methods produced
significantly higher classification accuracy when they use the
spectral-spatial information based patterns included in the
proposed technique as input instead of the patterns generated
by considering only spectral bands. If the input patterns
are generated by EMPs, these AL methods increase their
accuracy of about 5%. This shows the importance of the spatial
information for achieving better classification results. It is
worth noting that as at the initial stage of AL the SVM decision
hyperplane is far from the optimal hyperplane, the cluster
assumption criterion of the proposed technique does not play
significant role to select informative samples. As a result, at the
initial iterations the proposed technique did not provide better

Fig. 5. Average classification accuracy over ten runs versus the number of
training samples provided by the different methods (KSC data set).

results than the SP-MS-ABD technique. Nonetheless, after few
iterations, the proposed technique outperformed all the existing
AL techniques. Moreover, from the figure one can also see that
the proposed technique always produced better results than
the existing spectral-spatial information based state-of-the-art
MPM-LBP-BT technique.

TABLE IV
AVERAGE OVERALL CLASSIFICATION ACCURACY (OA), ITS STANDARD
DEVIATION (s) AND KAPPA ACCURACY OBTAINED ON TEN RUNS FOR

DIFFERENT TRAINING DATA SIZES (KSC DATA SET)

Methods |L| = 239 |L| = 339 |L| = 419
OA s kappa OA s kappa OA s kappa

SP-EQB 94.93 1.15 .943 97.59 0.63 .973 98.59 0.45 .985
SP-MS-ABD 97.70 0.42 .974 98.59 0.45 .984 98.98 0.42 .989

SP-CAHT 97.16 0.39 .968 98.59 0.27 .984 99.20 0.13 .991
SP-MCLU-ECBD 98.29 0.40 .981 99.39 0.20 .993 99.63 0.12 .996

MPM-LBP-BT 97.55 1.18 .973 98.41 1.25 .982 99.58 0.26 .995
Proposed 98.30 0.19 .981 99.53 0.10 .995 99.71 0.03 .997

To assess the effectiveness of the proposed AL method,
Table IV shows the average overall classification accuracy
(%), its standard deviation and the average kappa accuracies
obtained by different AL techniques on ten runs with different
numbers of training samples. From this table one can see
that the proposed AL technique results in better classification
accuracy than the other existing AL techniques. In particular,
it is observed that the standard deviation of the proposed
approach is always smaller than those of the other techniques.
For example, considering 419 labelled samples, the proposed
technique resulted in an overall accuracy of 99.71% with
a standard deviation of 0.03. Whereas, among the literature
methods, the highest overall accuracy produced by the SP-
MCLU-ECBD technique was 99.63% with standard deviation
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of 0.12. This confirms the better stability of the proposed
method versus the choice of the initial training samples. It is
worth noting that, the better results provided by the proposed
technique are due to its capability to select the informative
samples not only considering uncertainty and diversity criteria
but also using the cluster assumption criterion. Table V shows
the average class-wise accuracies (%) obtained by different AL
techniques after completing 19 iterations (i.e., 419 samples
in the training set L). From the table, one can see that for
most of the classes the classification accuracies obtained by the
proposed technique is either better or very closed to the best
accuracy obtained by the literature methods. This shows that
the integration of dimensionality reduction, spectral-spatial
feature generation and the new query function of the AL
method makes the proposed technique more robust not only to
achieve higher classification accuracy but also to the quality
of the initial training samples. For qualitative analysis Fig. 6
shows the classification maps obtained by the different AL
techniques.

C. Results: Pavia University data set

In order to assess the effectiveness of the proposed tech-
nique, the second experiment is carried out considering the
Pavia University data set. For this experiment, T = 42776
labelled samples (see Table II) were considered as a test set
TS. First only 27 samples (three samples from each class) were
randomly selected from T as training set L, and the remaining
42749 were stored in the unlabelled pool U . At each iteration
of AL 20 samples were selected from U for labeling and the
process was iterated 19 times resulting in 407 samples in the
final training set L. To reduce the random effect on the results,
also in this one the active learning process was repeated for
10 runs with different initial labelled samples.

Fig.7 shows the average overall classification accuracies
provided by the different methods versus the number of
samples included into the training set. Similarly to the KSC
data set, from this figure one can see that the classification
results of the EQB, the MS-ABD, the CAHT, and the MCLU-
ECBD significantly improved when considering as input the
spectral-spatial information based patterns generated by the
EMP included in the proposed technique. The increase in
classification accuracy is of at least 7%. This again shows
the importance of the spatial information for achieving better
classification results. Furthermore, from the figure one can see
that for the Pavia University data set, among the six spectral-
spatial AL techniques, the MPM-LBP-BT technique provides
worst classification results.

Table VI shows the average overall classification accuracy
(%), its standard deviation and the average kappa accuracies
obtained by different AL techniques on ten runs with different
number of training samples. From this table one can see
that the proposed AL technique produces better classification
accuracy than the other existing AL techniques. For example,
considering 407 labelled samples, the proposed technique
resulted in an overall accuracy of 99.66% with standard
deviation 0.04. Whereas, among the literature methods, the
highest overall accuracy produced by the SP-MCLU-ECBD

Fig. 7. Average classification accuracy over ten runs versus the number of
training samples provided by the different methods (Pavia University data set).

TABLE VI
AVERAGE OVERALL CLASSIFICATION ACCURACY (OA), ITS STANDARD
DEVIATION (s) AND KAPPA ACCURACY OBTAINED ON TEN RUNS FOR

DIFFERENT TRAINING DATA SIZES (PAVIA UNIVERSITY DATA SET)

Methods |L| = 227 |L| = 327 |L| = 407
OA s kappa OA s kappa OA s kappa

SP-EQB 83.07 4.64 .785 88.25 4.95 .849 89.92 3.65 .870
SP-MS-ABD 97.97 0.39 .973 99.04 0.25 .987 99.40 0.10 .992

SP-CAHT 96.05 0.99 .948 97.82 0.43 .971 98.79 0.32 .984
SP-MCLU-ECBD 97.91 0.51 .972 99.17 0.38 .989 99.53 0.19 .994

MPM-LBP-BT 94.94 2.15 0.931 97.77 0.51 0.970 98.36 0.74 0.978
Proposed 98.24 0.46 .977 99.32 0.14 .991 99.66 0.04 .995

technique is 99.53% with standard deviation 0.19. The smaller
standard deviation confirms the better stability of the proposed
method versus the choice of the initial training samples. Table
VII shows the average class-wise accuracies (%) obtained by
different AL techniques after completing 19 iterations (i.e.,
407 samples in the training set L). From the table, one can see
that the class-wise average classification accuracies obtained
by the proposed method are either better or comparable to the
best results obtained by the literature methods. This shows
the effectiveness of the proposed technique. Fig. 8 shows the
classification maps obtained by the different AL techniques
for visual analysis.

D. Results: Indian Pines data set

In order to assess the effectiveness of the proposed tech-
nique, the third experiment is carried out considering the
Indian Pines data set. A total of T = 10249 labelled samples
(see Table III) are considered as a test set TS. For this
experiment, first only 48 samples (three samples from each
class) are randomly selected from T as training set L, and the
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Fig. 6. Classification maps provided by different approaches with 419 labelled samples on the KSC data set.

Fig. 8. Classification maps provided by different approaches with 419 labelled samples on the Pavia University data set.
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TABLE V
CLASS WISE AVERAGE CLASSIFICATION ACCURACIES (%) OBTAINED ON TEN RUNS (KSC DATA SET).

Methods SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

|L| 419
Scrub 99.98 99.96 99.92 100 100 100

Willow swamp 93.42 99.30 97.12 99.75 100 99.88
Cabbage palm hammock 98.83 99.53 99.22 99.96 100 99.92

Cabbage palm/Oak hammock 95.52 98.77 97.78 99.16 95.51 99.09
Slash pine 96.40 95.22 94.41 94.84 99.00 95.16

Oak/Broadleaaf hammock 99.61 99.96 99.13 100 100 100
Hardwood swamp 96.38 98.19 95.33 98.29 100 99.15
Graminoid marsh 99.84 99.95 99.68 100 100 100
Spartina marsh 99.94 99.90 99.85 99.98 99.70 99.96
Cattaial marsh 98.07 95.84 98.76 98.94 99.47 99.36

Salt marsh 99.64 99.52 99.88 99.93 100 99.88
Mud flats 98.21 96.98 99.62 99.64 98.51 99.92

Water 99.18 99.75 99.87 100 100 100
OA 99.59 98.98 99.20 99.63 99.58 99.71

TABLE VII
CLASS ACCURACIES (%), AVERAGE OVERALL CLASSIFICATION

ACCURACY (OA) AND ITS STANDARD DEVIATION (std), AND AVERAGE
KAPPA (kappa) ACCURACY OBTAINED ON TEN RUNS (PAVIA

UNIVERSITY DATA SET).

Methods SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

|L| 407
Asphalt 99.21 99.19 99.07 99.56 99.30 99.51

Meadows 83.69 99.81 99.12 99.82 99.66 99.86
Gravel 84.87 98.17 96.66 98.17 89.87 98.82
Trees 99.04 99.32 98.61 99.38 98.67 99.56

Metal Sheets 96.73 99.85 99.93 99.96 92.43 99.94
Soil 86.70 98.78 97.92 99.32 99.53 99.68

Bitumen 96.59 99.26 97.89 99.01 94.95 99.17
Bricks 97.16 99.11 98.76 99.19 96.05 99.24

Shadows 99.07 99.88 99.90 99.90 99.68 99.90
OA 89.92 99.40 98.79 99.53 98.36 99.66

remaining 10201 are stored in the unlabelled pool U . At each
iteration of AL, 20 samples are selected from U for labeling
and the process is iterated 45 times resulting in 948 samples
in the training set L. Also in this case, the active learning
process is repeated for 10 runs with different initial labelled
samples.

Fig.9 shows the average overall classification accuracies
provided by the different methods versus the number of
samples included into the training set for Indian Pines data set.
Also on this data set the classification accuracies of the EQB,
the MS-ABD, the CAHT, and the MCLU-ECBD significantly
improved (at least of 8%) when considering as input the
spectral-spatial information based patterns generated by EMP.
This again shows the effectiveness of spectral-spatial features
generated by Phase I of the proposed technique. From the
figure one can also see that at the initial iterations of the AL
process the proposed technique provided better results than the
existing MPM-LBP-BT technique.

Table VIII shows the average overall classification accuracy
(%), its standard deviation and the average kappa accuracies
obtained by different AL techniques with different number of
labelled samples. From this table one can see that the proposed
AL method produces second highest classification accuracy
with lower standard deviations among the considered AL

Fig. 9. Average classification accuracy over ten runs versus the number of
training samples provided by the different methods (Indian Pines data set).

TABLE VIII
AVERAGE OVERALL CLASSIFICATION ACCURACY (OA), ITS STANDARD
DEVIATION (s) AND KAPPA ACCURACY OBTAINED ON TEN RUNS FOR

DIFFERENT TRAINING DATA SIZES (INDIAN PINES DATA SET)

Methods |L| = 768 |L| = 868 |L| = 948
OA s kappa OA s kappa OA s kappa

SP-EQB 96.89 0.51 .965 97.75 0.26 .974 98.12 0.32 .978
SP-MS-ABD 98.32 0.16 .981 98.70 0.12 .985 98.94 0.14 .988

SP-CAHT 97.62 0.35 .973 98.07 0.31 .978 98.41 0.21 .982
SP-MCLU-ECBD 98.99 0.17 .989 99.21 0.20 .991 99.32 0.19 .992

MPM-LBP-BT 99.64 0.17 .995 99.75 0.09 .997 99.82 0.03 .998
Proposed 99.13 0.11 .989 99.34 0.05 .992 99.44 0.02 .993

techniques. Although, for Indian Pines data set the MPM-LBP-
BT technique resulted in the highest accuracy, it produced
worst results for the KSC and the Pavia University data sets.
Table IX shows the average class-wise accuracies (%) obtained
by different AL techniques after completing 45 iterations (i.e.,
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948 samples in the training set L). From this table one can see
that the class-wise average classification accuracies obtained
by the proposed method are very close to the best results
obtained by the literature methods. This again confirms the
effectiveness of the proposed AL technique.

TABLE IX
CLASS ACCURACIES (%), AVERAGE OVERALL CLASSIFICATION

ACCURACY (OA) AND ITS STANDARD DEVIATION (std), AND AVERAGE
KAPPA (kappa) ACCURACY OBTAINED ON TEN RUNS (INDIAN PINES

DATA SET).

Methods SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

|L| 948
Alfalfa 100 98.48 98.91 99.35 100 100

Corn-notill 92.87 97.58 95.87 98.84 100 98.87
Corn-min 99.04 99.34 99.02 99.72 100 99.61

Corn 96.67 99.32 97.76 99.96 100 99.96
Grass/Pasture 99.05 99.77 99.48 99.96 100 100
Grass/Trees 99.93 99.93 99.96 100 100 99.99

Grass/Pasture-mowed 97.86 97.14 97.14 97.14 100 97.14
Way-windrowed 99.56 100 99.98 100 100 100

Oats 100 100 100 100 100 100
Soybeans-notill 94.89 96.62 96.04 97.41 98.58 97.90
Soybeans-min 99.58 99.10 98.74 99.24 99.96 99.27
Soybean-clean 99.17 99.07 97.98 99.38 100 99.56

Wheat 99.85 99.95 99.80 100 100 100
Woods 99.87 99.91 99.89 99.91 99.92 99.93

Bldg-Grass-Tree-Drives 99.90 99.84 99.66 99.97 100 99.97
Stone-steel towers 99.68 98.28 98.39 99.68 97.40 99.14

OA 98.12 98.94 98.41 99.32 99.82 99.44

E. Results: statistical significance test
In the fourth experiment, for a further comparison between

different algorithms, a statistical significance test called z-test
is utilized [53]. It describes the significance of the difference
between two classification results obtained by two different
algorithms, which can be calculated as follows:

z =
µ1 − µ2

| σ2
1 − σ2

2 |
(6)

Where, µ1 and µ2 are the mean values of the kappa coefficient
obtained by algorithms 1 and 2, respectively and σ2

1 and σ2
2

are the corresponding variances. If |z| > 1.96, the results of
two algorithm are assumed to be statistically significant at the
5% significance level.

TABLE X
OBTAINED Z-SCORES BETWEEN THE PROPOSED AND THE

STATE-OF-THE-ART METHODS FOR ALL THE CONSIDERED DATA SETS.

Data Sets SP SP-MS SP SP-MCLU MPM
EQB ABD CAHT ECBD LBP-BT

KSC 457.65 368.18 2685.20 562.50 269.86
Pavia University 60.15 2361.10 667.05 283.33 506.36

Indian Pines 1550.80 4857.10 5162.80 875.00 -1449.30

Table X reports the z-scores obtained between the proposed
technique and the other state-of-the-art methods used for
comparison. From the table one can see that except for Indian
Pines data set with the MPM-LBP-BT technique, in all the
remaining 14 cases the z-score obtained between the proposed
technique and the state-of-the-art techniques is greater than
1.96. This indicates that the results provided by the proposed
technique are statistically significant.

F. Results: computation time

The fifth experiment shows the effectiveness of the different
techniques in terms of computational load. All the experiments
were carried out on a personal computer (INTEL(R) Core(TM)
i5 6500 CPU @3.20 GHz with 4 GB RAM) with the exper-
imental setting (i.e., number of initial training samples, batch
size, iteration number, etc.) described in the experiments 1, 2,
and 3. Table XI shows the computational time (in minutes)
taken by the different techniques for the three considered
data sets. From these results one can see that the proposed
technique requires significantly less amount of time than the
existing spectral-spatial MPM-LBP-BT AL technique. For all
the three considered data sets, the MPM-LBP-BT technique
takes several hours to complete the AL process. Whereas,
the proposed technique needs only few minutes to complete
the process. Thus, the MPM-LBP-BT AL technique may not
be a reasonable choice for many AL applications. The time
taken by the EQB technique is similar to that of the proposed
technique. The results reported in Table XI also show that
the SP-MS-ABD, the SP-CAHT, and the SP-MCLU-ECBD
techniques are faster than the proposed technique. This is
because the proposed technique takes some additional time to
exploit GAs for selecting informative samples at each iteration
of the AL process.

TABLE XI
COMPUTATIONAL TIME (IN MINUTES) TAKEN BY THE DIFFERENT AL

METHODS ON THE CONSIDERED DATA SETS.

Data Sets SP SP-MS SP SP-MCLU MPM Proposed
EQB ABD CAHT ECBD LBP-BT

KSC 3 1.43 1.78 1.70 371.41 6.95
Pavia University 18.46 5.81 4.83 7.16 245.91 17.15

Indian Pines 14.88 3.85 5.31 4.66 60.18 15.5

G. Results: sensitivity analysis

The final experiment was devoted to analyze the effect of the
different parameters used in the proposed technique. The first
parameter that may effect the performance of proposed method
is the k value associated to the k-means clustering. We varied
the value of k in the range 400, 500, and 600. Fig. 11 shows
the average classification accuracies obtained by the proposed
technique for the KSC data set. From this figure one can see
that the classification accuracies provided by the proposed
technique are not significantly varied within the considered
k values. Similar results which are not reported for space
constraints are also observed for the other two hyperspectral
data sets.

The second parameter that may effect the performance of
proposed technique is the K value associated with the K-
nearest neighbors algorithm used to compute the local density
of a region in the feature space. We varied the value of K
in the range 5, 10, 15, and 20. Fig. 12 shows the average
classification accuracies obtained by the proposed technique
on the KSC data set. From the figure one can see that the
different values provide very similar results. Similar behavior
is also observed for the Pavia University and Indian Pines data
sets.
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Fig. 10. Classification maps provided by different approaches with 948 labelled samples on the Indian Pines data set.

Finally, we carried out different experiments for assessing
the stability of the proposed technique by varying the main
parameters of GAs within a wide range. In this regard the
population size, the crossover probability and the mutation
probability of GAs are varied within the ranges [10 - 40], [0.7
- 0.8] and [0.05 - 0.001], respectively. The results of all these
experiments pointed out the low sensitivity of the proposed
algorithm to these parameters value within the above defined
ranges.

V. DISCUSSION AND CONCLUSIONS

In this article a novel technique is presented for classifica-
tion of HSIs with limited labelled samples. The proposed tech-
nique is divided into two phases. Considering the importance
of dimensionality reduction and spatial information for the
analysis of HSIs, Phase I generates the pattern corresponding
to each pixel of HSI by extracting spectral-spatial features.
To this end, first, PCA is used to reduce the dimensionality
of HSI, then EMPs are exploited. The spectral-spatial features
based patterns generated by EMPs are used as input to the
Phase II, which performs the classification task with a small
number of labelled samples. To this end, a multi-criteria batch

mode AL technique is proposed by defining a novel query
function that incorporate uncertainty, diversity and cluster
assumption criteria. The uncertainty criterion of the proposed
query function is defined by exploiting an SVM classifier.
The diversity criterion is defined by maximizing the nearest
neighbor distances of the selected samples and the cluster
assumption criterion is defined by using the properties of k-
means clustering and K-nearest neighbors algorithms. Finally
GAs are exploited to select batch of most informative samples
by optimizing these three criteria.

To empirically assess the effectiveness of the proposed
method, we compared it with five batch mode AL approaches
existing in the literature by using three real hyperspectral
data sets. By this comparison, we observed that for all the
considered data sets, the proposed technique consistently pro-
vided better stability with high accuracy. This is due to the
integration of the dimensionality reduction, the spectral-spatial
feature extraction and the new query function of the AL,
which make the proposed technique more robust to the quality
of initial labelled samples available. Moreover, the proposed
technique is computationally very much less demanding than
the one of the existing spectral-spatial information based AL
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Fig. 11. Average classification accuracy provided by the proposed technique
varying the values of k for the k-means algorithm (KSC data set).

Fig. 12. Average classification accuracy provided by the proposed technique
by varying the values of K for the K-nearest neighbors algorithm (KSC data
set).

technique.
As future developments of this work, we plan to incorporate

a multi-objective optimization technique and the use of ad-
vanced attribute profile based features in the current AL frame-
work for further improving the classification performance.
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