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The paper presents a hybrid fuzzy classifier for effective land use land cover map-
ping. It discusses a Bayesian way of incorporating spatial contextual information into
the Fuzzy Noise Classifier (FNC). The FNC was chosen, as it detects noise using spec-
tral information more efficiently than its fuzzy counterparts. The spatial information
at the level of second order pixel neighbourhood was modelled using Markov Random
Fields (MRFs). Spatial contextual information was added to the MRF using differ-
ent adaptive interaction functions. These help to avoid over-smoothening at the class
boundaries. The hybrid classifier was applied to Advanced Wide Field Sensor (AWiFS)
and Linear Imaging Self Scanning Sensor-III (LISS-III) images from a rural area in
India. Validation was done with a Linear Imaging Self Scanning Sensor-IV (LISS-IV)
image from the same area. The highest increase in accuracy among the adaptive func-
tions was equal to 4.1% and 2.1% for AWiFS and LISS-III images, respectively. The
paper concludes that incorporation of spatial contextual information into the fuzzy
noise classifier helps in achieving a more realistic and accurate classification of satellite
images.

Keywords: Noise; Classification; Markov Random Field; Simulated Annealing,
Fuzzy Error Matrix

1. Introduction

Image classification is widely applied in image analysis to extract land use and land
cover information from remote sensing images. Conventional classification used the
spectral information from a single pixel, i.e. its DN value. It was based upon the
rather unrealistic assumption that pixels are pure, i.e. a pixel is the reflected value
of a single class (Zhang and Foody, 1998). In the nineteen eighties, fuzzy classifiers
were developed for addressing heterogeneity within a pixel, as a mixed pixel, thus
improving the accuracy and making classification more realistic (Bezdek et al.,
1984). Fuzzy classifiers generate fractional images, i.e. one image for every class,
representing the associated membership values at the pixel level. Fuzzy c-Means
(FCM) classification is a popular fuzzy classification technique based on fuzzy set
theory (Zadeh, 1965). It is, however, sensitive to noise and outliers due to the prob-
abilistic constraint involved (Krishnapuram and Keller, 1993). Possibilistic c-means
(PCM) classification addresses this sensitivity problem by redefining the concept
of membership values. Membership values generated by a PCM classification rep-
resent the degree of belongingness of a pixel to a class, rather than the degree of
sharing of classes within a pixel, as was the case with FCM. For this reason, PCM
performs better in the presence of noise and outliers (Krishnapuram and Keller,
1996).
Noise in remote sensing images arises due to sensor deficiencies, data processing

errors, atmospheric noise and presence of classes other than the class of interest.
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The presence of such noise in a remote sensing image degrades the classification
accuracy. Noise clustering (NC) is robust against noisy data and has been used
successfully in various fields (Dave, 1991). It groups all noisy pixels in a separate
class called the noise class based on their spectral properties. Image noise is often
found as unrealistic pixel values at unexpected locations and is commonly referred
to as the Isolated Pixel Problem (IPP). Spectral classifiers do not entirely address
the IPP as they refer only the digital number of image pixels for achieving image
classification (Krishnapuram and Keller, 1993). The suitable use of context allows
the elimination of possible ambiguities, the recovery of missing information, and the
correction of errors, thus improving the robustness of a spectral classifier against
noise (Li, 1995; Magnussen et al., 2004). By providing NC with additional infor-
mation, e.g. information about the neighbourhood classes for a pixel, the classifier
would be more accurately predicting the class to which a noisy point belong.
In remote sensing, the energy reaching the sensor does not entirely correspond

with the pixel area on the ground, as it also includes energy from neighbouring
pixels areas. This is mostly caused by diffuse scattering of the incoming radiation
due to atmospheric distortion. Moreover, classes on the ground usually span several
pixels and it is rare to find a class in isolation. Hence, there exists a relation
between a pixel and its neighbouring pixels. Markov random fields (MRFs) are
used in effective modelling of such contextual relationships, in the case of context-
dependent entities such as image pixels (Geman and Geman, 1984; Li, 2009). It has
been widely used in image segmentation and image restoration (Derin and Elliott,
1987; Dubes and Jain, 1989; Tso and Olsen, 2005). MRFs based upon simulated
annealing optimization (Mather, P. and Tso, B., 2010) have been widely accepted
for modelling contextual information in images, since the classical paper by Geman
and Geman (1984). It considerably improved the accuracy of PCM (Chawla, 2010)
and FCM (Singha et al., 2015) classifiers. In those studies, modelling of spatial
contextual information was done using both the smoothness prior MRF model
(S-MRF) and four different discontinuity adaptive MRF models (DA-MRF)(Li,
2009). Among these models, the use of DA-MRF models helped to produce a higher
classification accuracy as compared with S-MRF models (Chawla, 2010; Singha et
al., 2013).
Accuracy assessment of a fuzzy classification is not straightforward, because mul-

tiple classes might be assigned to a single pixel and so the standard error matrix
cannot be realized (Silván-Cárdenas and Wang, 2008). Efforts to assess the ac-
curacy of a fuzzy classification result after making it crisp, resulted in loss of
information (Foody, 1997; Silván-Cárdenas and Wang, 2008). Various suggestions
have been provided to carry out a fuzzy image accuracy assessment (Binaghi et al.,
1999; Congalton, 1991; Green and Congalton, 2004; Pontius Jr. and Cheuk, 2006),
but a standard accuracy assessment technique is still missing. Among the various
methods proposed, the fuzzy error matrix (FERM) has been widely accepted and
hence was used in this study for accuracy assessment (Binaghi et al., 1999).
The aim of this paper is to present a novel hybrid fuzzy noise classifier, and

then study its effects on the classification accuracy. Here, the spatial contextual
information was modelled using MRFs and thus incorporated into the fuzzy noise
classifier, hence creating a novel hybrid classifier. This classifier was applied on
Advanced Wide Field Sensor (AWiFS) and Linear Imaging Self Scanning Sensor-
III (LISS-III) images from the Resourcesat-1 satellite on the Uttarakhand state
in India. Results were evaluated with a Linear Imaging Self Scanning Sensor-IV
(LISS-IV) image.
The outline of the paper is as follows. An algorithmic overview of the noise
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clustering is explained in section 2. Section 3 describes the methodology used in
this paper and section 4 describes the study area and image used for the study.
The results from the study is included in section 5, followed by a discussion of the
results in section 6.

2. Noise clustering

The presence of noise is often perceived as a problem for effective clustering, as it
biases clustering algorithms and results in formation of unrealistic clusters. Noise
clustering is a fuzzy clustering technique which was developed to address this prob-
lem. It overcomes the possible problem of unrealistic cluster formation due to pres-
ence of noise in the input image (Dave, 1993; Krishnapuram and Keller, 1993) It
achieves this immunity to noise, by allocating noisy data into a separate class called
as the noise class. The noise class cluster center is selected such that it is equidis-
tant from all the points in the image, thus each data point in the noise cluster has
an equal prior probability of belonging to any other cluster. In noise clustering,
data points beyond the noise distance (δ) from the cluster centers are considered
as noise, but the pre-specification of (δ) is not practical due to lack of enough infor-
mation about the data (Dave, 1991). In this study, the (δ) was estimated using the
method mentioned in section 3.2. The figure 1(a) shows sample data set taken from
(Dave, 1993) and the figure 1(b) shows the result of noise clustering on the image.
Three valid clusters formed by noise clustering are represented in Figure 1(b) using
unique symbols whereas the ’+’ symbol represents the noisy data assigned to the
noise class.

(a) Noisy data (b) Clusters Identified using noise clustering

Figure 1.: An example of cluster formation using noise clustering for C = 3 classes
and two spectral bands. In b) the ’+’ indicates the noise class.

Mathematically, noise clustering is modelled as an optimization problem with
(1) as its objective function that needs to be minimized, and (2) as its constraint.

JNC(U ;V ) =

N∑
i=1

C∑
j=1

(uij)
md(x⃗i, v⃗j) +

N∑
i=1

(ui,c+1)
mδ (1)
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C+1∑
j=1

uij ≤ 1 1 ≤ i ≤ N (2)

In (1), C is the number of classes, N is the total number of image pixels , m
is the fuzzification factor, uij is the membership value of the ith pixel to the jth

class and ui,c+1 corresponds to the membership values of the noise class. Further,
v⃗j denotes the vector pointing to the cluster center of the jth class and x⃗i is the
membership value vector for the ith pixel. The Euclidian distance between x⃗i and
v⃗j is represented by d(x⃗i, v⃗j). Both x⃗i and v⃗j are vectors in a D dimensional fea-
ture space, where D is the number of bands in the input image. The constraint
C+1∑
j=1

uij ≤ 1 allows the noisy data to achieve as small a membership values as pos-

sible (Davé and Krishnapuram, 1997). The cluster centers are jointly represented
by the set V = {V1, V2, . . . , VC}, where V1, V2, . . . , VC represent the cluster centers
for the 1st, 2nd, . . . , Cth class. The set U = {U1, U2, . . . , UC , UC+1} contains the
membership values for individual classes, where U1, U2, . . . , UC represent the set of
membership values for each pixel in the image and for each class, and UC+1 repre-
sents the set of membership values for the noise class. The value of the membership
values uij , membership values for noise class ui,c+1 and class mean vectors v⃗j , can
be obtained from the equations (3), (4) and (5) respectively.

uij =

[
C∑

k=1

(
d(x⃗i, v⃗j)

d(x⃗i, v⃗k)

) 1

m−1

+

(
d(x⃗i, v⃗j)

δ

) 1

m−1

]−1

(3)

ui,c+1 =

[
C∑
i=1

(
δ

d(x⃗i, v⃗j)

) 2

m−1

+ 1

]−1

(4)

v⃗j =

N∑
i=1

((uij)
m (x⃗i))

N∑
i=1

(uij)
m

(5)

In this paper a supervised version of the noise clustering, referred to as the fuzzy
noise classifier (FNC), was used. The cluster centers V were initialized with the class
mean vectors obtained from the supervised approach. i.e. for each class, random
pixels were selected and pixel vectors were averaged to produce a mean vector.
This also gives a computational advantage for the FNC as it reduces the number
of iterations required to reach the optimal cluster centers, whereas it also ensures
reproducibility of the results. More intuition on the need of cluster initialization
can be obtained on understanding the NC objective function (1), which aims to
minimize U and V simultaneously.
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3. Methodology

The objective of this study was to develop an efficient hybrid classifier by integrat-
ing spatial contextual information onto the fuzzy noise classifier which uses only
the spectral information to perform classification. To achieve this, an integral part
of the methodology was to formulate the objective functions for the FNCS and four
FNCDA classifiers. Estimation of the parameters of the FNC and the parameters of
the hybrid classifier were carried out to ensure optimal performance. The accuracy
assessment of the hybrid classifier, which is also a fuzzy classifier was done using
the FERM. The figure 2 shows the methodology used in this paper.

Figure 2.: Methodology followed in this manuscript. On the left side are the AWiFS
and LISS-III images used to study the hybrid classifier performance, on the right
side is the LISS-IV image used for validation. All terms are defined in the text.

Over-smoothening at the boundaries in an image, on using smoothness (S) MRF
priors, was addressed in this study by replacing it with discontinuity adaptive
(DA) MRF priors. These use an Adaptive Interaction Function (AIF) h(η), as a
function of η, that is placed within the regularizer to model the nature of the
interaction of a pixel site with its neighbours. The η represents the difference in
membership values between the center pixel and its neighbour within a clique. A
clique is a subset of site from the neighbourhood system, where the members of the
site are mutual neighbours (Mather and Tso, 2010). The h(η) returns a small value
when the membership variation in the pixel neighborhood is large, and returns
a large value when the membership variation in the pixel neighborhood is small,
resulting in selective smoothening. The equation (6) shows the relation between, the
AIF, h(η) and the Adaptive Potential Function (APF), g

′
(η). The APF encodes

the neighbourhood information for a pixel, and it is further incorporated in the
objective function of the FNC to form the hybrid classifier.

g
′
(η) = 2ηh(η) (6)

Four AIFs from the literature are used in this work (equation (7) - (10)), resulting
in four different APF’s and hence four different DA models (Li, 2009). Each AIF
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has a unique response graph, and in this way models the interaction between a pixel
site and its neighbours in a different way. In equations ((7) - (10)), the parameter
γ, controls the intensity of the interaction between a pixel and its neighbours.
Incorporation of each of these APF’s onto the objective function of FNC created
a new hybrid classifier, and are referred to in this paper as DA1, DA2, DA3 and
DA4 MRF models, respectively.

h1(η) = exp
−η2

γ
(7)

h2(η) =
1[
1

1+ η2

γ

]2 (8)

h3(η) =
1

1 + η2

γ

(9)

h4(η) =
1

1 + |η|
γ

(10)

3.1. Mathematical formulation of hybrid classifiers

The FNC achieves classification by solving an optimization problem, as stated
by equations (1) and (2). The hybrid classifiers was created by adding a spatial
term to the objective function of the FNC, while keeping its optimization problem
constraint unchanged. Spatial contextual information was modelled using all four
different DA-MRF models mentioned in section 3, separately. Modelling was also
done using the S-MRF model for showing the performance improvement of the
classifier against the four DA-MRF models. Using Bayes theorem we were able to
incorporate the spatial information modelled using MRFs into equations (1), hence
formulating the objective function for the hybrid classifier.
The formulated objective function of FNCS classifier is shown in equation (11):

E (uij) = (1−λ)

 N∑
i=1

C∑
j=1

(uij)
md(x⃗i, v⃗j) +

N∑
i=1

(ui,C+1)
mδ

+λ

 N∑
i=1

C∑
j=1

∑
j∈Nj

β(uij − uij′ )
2


(11)

.
The term E in (11) refers to the energy of the pixel for the membership value

uij . The rest of the terms in (11) are already defined in section 2. The optimization
of (11) is done using the simulated annealing (Mather, P. and Tso, B., 2010). Ob-
jective functions of the FNCDi classifiers for i = 1, . . . , 4 are formed by replacing
the APF, i.e. the term β(uij −uij′)

2 in equation (11) with the corresponding APFs

being equal to −γ exp −η2

γ , −γ[
1

1+
η2

γ

]2 , γ ln
(
1 + η2

γ

)
and γ|η|−γ2 ln

(
1 + |η|

γ

)
, respec-
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tively (Li, 2009). In this way, FNCS and the FNCDi represent the hybrid classifiers
obtained by using the S and DAi MRF models for i = 1, . . . , 4, respectively.
The term λ is used in the objective function of the hybrid classifier to balance

the contribution of information from the spectral and spatial domains. This further
controls the impact of spatial and spectral information on the classification. The
weights β control the amount of influence that a site has with its neighbours.

3.2. Fuzzy noise classifier parameter estimation

The outputs of FNC are fractional images, where each pixel depicts the membership
values i.e. the possibilistic percentage cover of a particular class within that pixel.
The classifier generates a fractional image for each individual class.
Estimation of the FNC parameter, which includes the noise distance (δ) and the

fuzzification factor (m), is essential for ensuring the best performance of the FNC.
The parameter combination which gives the maximum classification accuracy for
the FNC were considered. Accuracy of the fuzzy classification was assessed by
minimizing the entropy associated with the fractional images (Dehghan and Ghas-
semian, 2006). Entropy minimization is a widely accepted method to quantify the
uncertainty associated with an image. To calculate the entropy of a class, random
pixels were selected from the high membership regions of the fractional image for
each class. Vectors of membership values were formed for each pixel by combining
membership values from all the fractional images. For each such membership vec-
tor, the entropy was calculated using equation (12) and was averaged to obtain the
entropy for a pixel.

Havg =

C∑
i=1

(uij)log2(uij)

C∑
i=1

(uij)

(12)

Entropy as the sole criterion for optimal parameter estimation, was found to be
insufficient, as the minimum entropy fractional images could possibly be generated
from a parameter combination, that resulted in an inaccurate classification. To
address this problem, accuracy estimation was done using inter-class membership
change calculation (IMC) which exploits the fact that, in the optimal classifica-
tion, membership value of the class pixels will be highest in the fractional image
associated with that class only, but corresponding pixel membership values will be
lowest in the other fractional images (Townsend and Philip, 2000). In this method,
emphasis is given on finding parameters that maximize this difference in member-
ship values for all class pixels. To do so, the difference is calculated for a fractional
image between the mean membership values at known class locations, and the
mean of membership values at known non-class locations. A large difference corre-
sponds with a high is the classification accuracy. The FNC estimates were found
by minimizing the entropy of the fractional image at the same time, maximizing
the IMC.

3.3. Hybrid classifier parameter estimation

The hybrid classifier was developed, by adding a spatial term to the FNC formu-
lation. For the hybrid classifier, two parameters need to be estimated. The first is
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the weight factor with 0 ≤ λ ≤ 1, which controls the impact of spatial and spectral
component. The second is β in case of S-MRF or γ in case of a DA-MRF. Both pa-
rameters have an impact on the classification accuracy, and hence their estimation
is critical.
The main objective behind the used of DA models was to preserve the class

boundaries during classification. Hence the preservation of class boundaries, was
considered as the main criteria for hybrid parameter estimation. To find the optimal
parameter values, the classification was repeated with different combination of λ
and β in case of S-MRF and λ and γ in case of DA-MRF. The range of β was set
to [1, 10] and that of γ to [0,1], as values outside this range were found to reduce
the overall classification accuracy drastically.
Edge preservation in the fractional images was quantified in this study using

the mean-variance method (Chawla, 2010; Singha et al., 2015). This method con-
siders the mean difference in membership values across boundaries as well as the
membership variance on either side of boundaries as a means to quantify the edge
preservation in the fractional images. Fractional images with the highest mean dif-
ference in membership values across boundaries and minimum membership value
variance on either side of the boundaries provided the best results in terms of edge
preservation. Ultimately the parameter combination which provided the highest
edge preservation in the classification result, was considered as the hybrid classifier
parameter estimates.
Once the FNC and hybrid classifier parameters were estimated, the optimal

membership values, and hence the fractional images, were found by minimizing
equation (11) using simulated annealing (SA) optimization (Mather, P. and Tso,
B., 2010; Geman and Geman, 1984). When using SA, the initial temperature (T0)
was set to 3 and the temperature update rate (k) was set to 0.90 for efficient
optimization. These values were considered because the variance in the estimates
were minimal on repeating the estimation (Tolpekin and Stein, 2009).

3.4. Accuracy assessment

To quantify the accuracy of fuzzy classifiers the error matrix that is commonly
applied for hard classification cannot be used. In this study we used the Fuzzy
error matrix (FERM) (Zhang and Foody, 1998). It is similar to the error matrix,
but it takes fractional images as its input. Hence the cell values are between 0 and 1.
This is based on MIN operator (Intersection operator) which shows the maximum
possible overlap between reference and classified image and is calculated as shown
in equation (13) (Silván-Cárdenas and Wang, 2008). In equation (13), uij and vij
represent membership value of the ith pixel in fractional image for class j, in the
assessed image and reference image, respectively.

Pnij
= MIN(uij , vij) (13)

The efficiency of the novel hybrid classifier was obtained by evaluating its per-
formance on coarse resolution (56 m) AWiFS and medium resolution (23.5 m)
LISS-III images. Fractional images generated from high resolution (5.6 m) LISS-
IV image values were used as the reference image. For the accuracy assessment, the
cell resolutions of AWiFS, LISS-III and LISS-IV images were resampled to make
their resolutions in the ratio 1:4:12. Hence 16 pixels (4 × 4) of LISS-III and 144
pixels (12 × 12) of AWiFS were combined (pixel values averaged) to reach the
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pixel dimension of LISS-IV image. In this way, an effective comparison could be
made between the images with different resolutions. Resampling of the images and
aggregation of pixels values were potential sources of error, but were ignored in
this study since they were likely to be very small. We applied nearest neighbour
resampling resulting in geometric discontinuities in the order of plus or minus half
the pixel size, which is considered to be acceptable (Schowengerdt, 2006).

4. Study Area & Data

The study area is the Sitarganj Tehsil, Udham Singh Nagar District, Uttarakhand
State, India, located at 280 52′ 29′′ N to 280 54′ 20′′ N and 790 34′ 25′′ E to
790 36′ 34′′ E. Uttarakhand is a state in the northern part of India and Sitarganj
Tehsil is located in the southern part of the state. Sitarganj Tehsil is near Pand
Nagar Agricultural University, famous for its participation in the Green Revolu-
tion of India. The study area was selected for its diversity in classes. The current
research aims at testing the capability of a novel classifier; and Sitarganjs Tehsil
has a large diversity of distinguishable classes. Six classes were identified from the
study area and are labeled in Figure 3. The study area mostly has sugarcane and
paddy agricultural farms. It also has two big reservoirs named Dhora and Bhagul
on the north western and south eastern parts respectively. Images from AWiFS
and LISS-III sensors onboard Resourcesat-1 were used for studying the efficiency
of the novel hybrid classifier considered in this work. The AWiFS (56 m), LISS-
III (23.5 m) and LISS-IV (5.8 m) images were acquired on the same date i.e.,
15 October 2007, and hence are well comparable. The validation of classification
was done against the LISS-IV image of the same area. In this study, the LISS-IV
image was rectified using Survey of India (SOI) toposheet numbered, 53P/9. The
geo-registration of the AWiFS and LISS-III images were conducted using the geo-
metrically corrected LISS-IV image. Figure 3 shows the high resolution, LISS-IV,
image of the study area. The AWiFS images and LISS-III image provides the low
resolution and medium resolution images of the same area.
Ground data validation was not preferred in this study, as it is difficult to identify

a pixel area on the ground. Also it is not effective idea to manually quantify the
percentage cover of a particular class within the area on ground, as the certainty
to which the classes could be identified is a subjective issue (Foody, 2000).

5. Results

5.1. Fuzzy noise classifier parameter estimates

Parameters for both the FNC and the hybrid classifier were estimated separately
for each image considered in this study. On analyzing the FNC results for different
parameter values, the δ was found to have minimal or no impact on the value of
total entropy or IMC beyond the threshold δ = 10000. For δ < 100, unrealistic
classification emerged, and so these values were avoided. Figure 4 shows the effect
of δ > 100 on m for the ’Agricultural Field With Crop’ class in AWiFS image.
As can be observed, estimated m values are least affected by changes in δ beyond
δ = 10000. Som was estimated, keeping δ = 10000. Estimation was done separately
for each fractional image (or class) generated by FNC.
The FNC parameters were estimated with the help of the normalized entropy

graph and the IMC graph, as shown in figure 5. In particular, the entropy versus
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Figure 3.: LISS-4 imagery (from Resourcesat-1) of Sitarganjs Tehsil, Udham Singh
Nagar District, Uttarakhand State, India, aquired on 15 October 2007. The image
is the FCC image with 0.77 - 0.86 µm spectral band mapped to the Red band, The
image is the FCC image with 0.62 - 0.68 µm spectral band mapped to the Green,
and the 0.52 - 0.59 µm spectral band mapped to Blue band.

IMC graph of the AWiFS image is shown in Figure 5. Mean m estimates, obtained
for AWiFS and LISS-III images, are shown in Table 1. Optimal m values estimation
for the reference image i.e. LISS-IV, was also essential to obtain the best possible
soft reference data. For LISS-IV image, the optimal m value was found to be 3.0.
Visual inspection of the optimal fractional images generated using the estimated
parameter values showed them to be very accurate, and this added to the confidence
in the estimates.

Table 1.: Fuzzification factor m estimates obtained against the low, medium and
high spatial resolution (reference) images for the FNC

Image Fuzzification factor (m)
AWiFS 2.7
LISS-III 2.9

From Table 1, one may notice thatm shows a slight increasing trend with increase
in the spatial resolution of the images, which in turn is caused by the increase in
entropy of an image with an increase in its resolution. This is just an observation
which has been made and has no impact on the results of this study.

5.2. Hybrid classifier parameter estimates

Parameter estimates for the hybrid classifier were obtained against the fractional
images set quantified to have the maximum edge preservation. Quantification of
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(a) δ = 100 (b) δ = 1000

(c) δ = 10000 (d) δ = 50000

Figure 4.: Effect of δ on estimation of m for the Agricultural Field With Crop
class in AWiFS image, for different values of δ

edge preservation in the fractional images was conducted using mean-variance
method as explained in the sub-section 3.3. Estimates for the hybrid classifier
obtained for the low spatial resolution - AWiFS, and medium spatial resolution -
LISS-III images, for different MRF models are shown in Table 2.

Table 2.: The hybrid classifier estimates obtained against the low and medium
spatial resolution images

Hybrid MRF AWiFS LISS-III
Classifier Model λ β/γ λ β/γ
FNCS S 0.6 5.0 0.9 5.0
FNCD1 DA1 0.9 0.4 0.9 0.5
FNCD2 DA2 0.7 0.8 0.8 0.4
FNCD3 DA3 0.7 0.9 0.8 0.5
FNCD4 DA4 0.8 0.8 0.9 0.7

As was the case with FNC parameter estimation, the hybrid parameters were
estimated for the high spatial resolution reference image i.e. LISS-IV also, to gen-
erate the optimal soft reference data. The hybrid parameter estimates for LISS-IV
image is shown in Table 3.
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(a) Agricultural field with crop (b) Sal forest

(c) Eucalyptus plantation (d) Dry agricultural field without crop

(e) Moist agricultural field without crop (f ) Water

Figure 5.: Entropy/IMC Vs Fuzzification Factor plots for different LULC classes
considered in the AWiFS image

Among the different DA-MRF prior models used in this study, combination of
the DA4 model with the FNC, i.e. the FNCD4 classifier, showed the maximum
edge preservation capability. This was observed for all the three images considered
in this study. Figures 6 and 8 show the fractional images generated by FNC for
AWiFS and LISS-III images respectively, whereas fractional images generated by
the FNCD4 classifier for AWiFS and LISS-III images are shown in figure 7 and figure
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Table 3.: The hybrid classifier estimates obtained against the high spatial
resolution reference images

Hybrid MRF LISS-IV
Classifier Model λ β/γ
FNCS S 0.6 6.0
FNCD1 DA1 0.9 0.4
FNCD2 DA2 0.7 0.5
FNCD3 DA3 0.7 0.7
FNCD4 DA4 0.8 0.5

9 respectively. In the case of FNCD4 classifier, the membership values of unrealistic
isolated pixels have been reduced, thus achieving a more realistic classification.
The FNCD4 classifier achieves this by selective smoothening of pixels as explained
in section 3. Also a reduction in the accuracy is observed for fractional images
produced for the AWiFS image when compared to that of LISS-III image, caused
by the lower resolution of AWiFS as compared to LISS-III.

(a) (b) (c) (d) (e) (f )

Figure 6.: Fractional Images obtained against AWiFS image for the FNC, (a) for
Agriculture fields with crop, (b) Sal Forest, (c) Eucalyptus plantation, (d) Dry
agricultural field without crop, (e) Moist agricultural field without crop, and (f )
Water.

(a) (b) (c) (d) (e) (f )

Figure 7.: Fractional Images obtained against AWiFS image for the FNCD4 classi-
fier, (a) for Agriculture fields with crop, (b) Sal Forest, (c) Eucalyptus plantation,
(d) Dry agricultural field without crop, (e) Moist agricultural field without crop,
and (f ) Water.

5.3. Accuracy assessment results

Table 4 shows the FERM overall fuzzy accuracy of classification results for AWiFS
against LISS-IV reference images and LISS-III against LISS-IV reference images
for FNC, FNCS, FNCD1, FNCD2, FNCD3 and FNCD4 classifiers.
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(a) (b) (c) (d) (e) (f )

Figure 8.: Fractional Images obtained against LISS-III image for the FNC, (a)
for Agriculture fields with crop, (b) Sal Forest, (c) Eucalyptus plantation, (d) Dry
agricultural field without crop, (e) Moist agricultural field without crop, and (f )
Water.

(a) (b) (c) (d) (e) (f )

Figure 9.: Fractional Images obtained against LISS-III image for the FNCD4 classi-
fier, (a) for Agriculture fields with crop, (b) Sal Forest, (c) Eucalyptus plantation,
(d) Dry agricultural field without crop, (e) Moist agricultural field without crop,
and (f ) Water.

Table 4.: FERM Overall fuzzy accuracy obtained on comparing the low and
medium spatial resolution fractional images with the high resolution reference

fractional image, for the trained case

Accuracy (%)
Classifier AWiFS Vs LISS-III Vs

LISS-IV LISS-IV
FNC 83.2 87.3
FNCS 82.7 88.2
FNCD1 84.6 87.6
FNCD2 81.8 77.0
FNCD3 81.4 75.6
FNCD4 87.3 89.4

Among the different classifiers formed, FNCD4 gave the highest overall fuzzy ac-
curacy of 87.3% for AWiFS and 89.4% LISS-III images respectively. The APF func-
tions are usually convex, and there exist a region of η within which the smoothing
strength therefore increases monotonically with increase in |η|. A perfectly convex
APF function will cause no smoothening at the boundaries, and the smoothening
strength gradually increases on moving away from the boundaries. This way of
smoothening blends well with the concept of gradual class variation at the bound-
aries in natural objects. The APF of DA4 is a more smooth convex function than
the APF’s of its counterparts (Li, 2009) and therefore performs better. It can be
observed that the use of S, DA2 and DA3 MRF models for spatial contextual
modelling resulted in a slight reduction in the accuracy of the FNC for the all
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the images considered in this study. Also, while acquiring higher spatial resolution
data by a sensor, intra pixel neighbour-reflectance effect is caused due to a single
class, whereas in coarser spatial images the intra pixel neighbour-reflectance effect
is caused due to an increased number of classes. This neighbour effect is added
as noise to a pixel. Hence the coarser pixels have a stronger neibhour pixel ef-
fect than the high resolution pixels. For the same reason, the DA4 produces more
improvement in accuracy for the AWiFS image than for the LISS-III image.

5.4. Performance with untrained classes

The FNC considers any class other than the classes of interest as image noise. To
quantify the robustness of FNC to noise, a class was deliberately avoided while
training the classifier and the performance of the classifier was then evaluated i.e.,
the classifier was deprived of the signature information about one known class and
classification was done. The results obtained for one such experiment are shown in
Table 5.

Table 5.: Fuzzy users accuracy obtained for the trained and untrained cases, for
low and medium spatial resolution images

Accuracy (%)
Classifier AWiFS Vs LISS-IV LISS-III Vs LISS-IV

Untrained Trained Untrained Trained
FNC 74.8 84.0 77.2 88.2
FNCS 75.6 85.7 76.3 88.5
FNCD4 55.0 64.9 69.4 75.4

Here the class ’Agricultural field with Crop’ was left untrained for both AWiFS
and LISS-III images. Table 5 compares the user accuracy of FNC, FNCS and
FNCD4 classification results for AWiFS and LISS-III images for both the trained
and the untrained case, using the FNCD4 classifier. The other hybrid classifiers
were not considered for this analysis, as they were having relatively low accuracy
when compared with the FNCD4 classifier. It can be seen from Table 5 that the user
accuracy obtained in the presence of an untrained class was lower, when compared
to the user accuracy if all classes were trained. For the AWiFS data, the decrease
in user accuracy in the untrained case were equal to 9.2%, 10.1% and 9.9% for
FNC, FNCS and FNCD4, respectively. For the LISS-III data, the decrease in user
accuracy for untrained case were 11.0%, 12.2% and 6.0% for FNC, FNCS and
FNCD4 respectively. The decrease in user accuracy for untrained case is caused
due to the increased number of untrained classes, which gets added to the pixel
as noise. Even though the FNC clearly has the ability to restrict the information
flow from untrained classes in an image, the results from Table 5 shows that the
performance of FNC classifiers decreases when there is an increase in noise. The
relatively small drop in user accuracy for AWiFS as compared to LISS-III can
be explained by the intra-pixel neighbourhood reflectance effect, as explained in
section 5.3.

5.5. Comparison with results of previous studies

In various studies, the information from the spectral, spatial and temporal domains
has been used, in all possible permutations, to achieve better image classification.
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Among these, the studies conducted for evaluating the impact of incorporating
spatial contextual information, modelled using MRF in combination with fuzzy
c-Means classification (FCM) (Singha et al., 2015), and that with possibilistic c-
means classification (Chawla, 2010) are studies which are closely related to that of
ours. Also, they both have used the same datasets that were used for this study.
The results of these studies were compared with those of the FNC-MRF classi-

fier. In case of FCM, the DA3 − MRF prior gave the best result and the overall
fuzzy accuracy for AWiFS and LISS-III images were 85.5% and 89.5% respectively
(Singha et al., 2015). In the case of PCM, DA2 − MRF prior proved to be the
best and its overall fuzzy accuracy for AWiFS and LISS-III images were 82.0% and
87.3% respectively (Chawla, 2010). Upon comparing the overall fuzzy accuracy of
FNCD4 with FCMD3, one can see that there is an improvement in accuracy of 1.8%
for AWiFS image for FNCD4 but almost the same for LISS-III image. When com-
paring the overall fuzzy accuracy of FNCD4 with PCMD2, one can see that there
is an improvement in accuracy of 5.3% and 2.1% for FNCD4 against AWiFS and
LISS-III images respectively. This proves the ability of the FNC to produce better
classification results, when supported with spatial contextual information.

6. Discussion

The hybrid classifiers developed in this study combines the DN value of a pixel
from the spectral domain with the context of the pixel in the spatial domain.
The spatial contextual information for a pixel was modelled using four different
discontinuity adaptive MRF models, and the impact of adding information onto
the FNC was studied. Mathematically, the FNC is expressed as an optimization
function, and hybrid classifiers were created by adding the APF’s of the MRF
models as additional terms in the objective function. The weight factor, λ allowed to
control the contribution from the spatial and spectral terms of the hybrid classifier.
For λ = 0, the spatial context of a pixel does not affect the classification, whereas
for λ = 1, classification will be performed based on the spatial context of a pixel.
The optimal value of λ was found to be dependent on the resolution of the image
and was estimated using methods in section 3.3.
The MRF helps in achieving better classification by smoothening the unrealistic

pixel locations in an image, thus addressing the isolated pixel problem. The DA-
MRF model ensures that the smoothening happens only within a class and not
at the class boundaries. As a result, the final fractional images produced by the
hybrid classifier looks more like a smoothened version of the original FNC outputs,
resulting in a small decrease in the classification accuracy. But the increase in
accuracy obtained by reducing the isolated pixel problem and the mixed pixel
problem outnumbers this decrease due to increased smoothness. Each MRF has
a unique AIF, and as a result their effectiveness in spatial contextual modelling,
was different even for the same image. Since there exists no method to predict
the prospectiveness of using an MRF model for an image, spatial modelling was
done using all five MRF models to compare their performance and thus identify
the best model. The parameters associated with these models such as β and γ
were also found to be data dependent and to have an impact on the classification
accuracy. The hybrid classifier parameter estimates were the values that produced
the highest edge preservation in the classification result.
FNC has clearly the ability to restrict the information flow from untrained classes

(non-interested classes) in an image. For each hybrid classifier considered in this
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study, the presence of untrained classes in the input image caused a decrease in the
classification accuracy.This is because the untrained classes gets added to the pixel
as noise. Whatsoever, there is an 14.1% improvement in the classification accuracy
of FNCD4 as compared to the classification done by the FCMD3 classifier, for the
LISS-III image (Singha et al., 2015). This clearly shows robustness of the FNCD4

classifier, to the presence of untrained classes in the image as compared to the PCM
or FCM based hybrid classifier. Hence the FNCD4 classifier should be preferred in
case there are untrained classes or unrealistic isolated pixels in the input image.
The current study was conducted on low resolution (AWiFS) and medium reso-

lution (LISS-III) images only. Within the scope of the images used in this study,
it was found that the FNCD4 classifier, which uses the DA4 MRF model, is the
best. This is because the APF of DA4 is a more smooth convex function with no
smoothening at the boundaries and the smoothening strength gradual decreases
on moving away from the boundaries. The kind of smoothening blends well with
the concept of gradual class variation at the boundaries in the nature. The fuzzy
nature of the FNC enabled the hybrid classifier to address the mixed pixel problem,
whereas the use of spatial contextual information helped in addressing the isolated
pixel problem, thus making the FNCD4 more efficient than the FNC. But still to
confirm the general usability of this classifier in remote sensing studies, its classifi-
cation accuracy has to be evaluated for other resolution images with different set
of classes as well, but investigating on this is left to future studies.

7. Conclusion

The paper studied the effect of adding spatial contextual information to a spectral
classifier. A supervised version of noise clustering was used in this study, as the
spectral classifier. Modelling of the spatial contextual information at the pixel level
was achieved using MRF technique. Both coarse (AWiFS) and medium resolution
(LISS-III) images from Resourcesat-1 were used for evaluating the performance
of the novel hybrid FNCDA classifier. Among the different discontinuity adaptive
MRF models used, the FNCD4 classifier was found to provide the highest classifica-
tion accuracy for both the images. The overall FERM accuracy for FNCD4 classifier
were found to be 87.3% and 89.4% respectively, for the AWiFS and LISS-III im-
ages. Classification was also conducted by keeping a class untrained, to study the
effects of undesirable classes which are present in an image, on the FNCDA accu-
racy. In that case, a decreases in user accuracy of 9.9% and 6.0% were observed for
AWiFS and LISS-III respectively, as compared to the fully trained case. The study
concludes that the use of spatial contextual information improved the classifica-
tion accuracy of the fuzzy noise classifier (FNC), when compared to the accuracy
obtained on using FCM or PCM in its place.
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