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Abstract—Most traditional approaches classify hyperspectral
image pixels only relying on the spectral values of the input
channels. However, the spatial context around a pixel is also
very important and can enhance the classification performance.
In order to effectively exploit and fuse both the spatial context
and spectral structure, we propose a novel two-stream deep
architecture for hyperspectral image classification. The proposed
method consists of a two-stream architecture and a novel fusion
scheme. In the two-stream architecture, one stream employs the
stacked denoising auto-encoder (SdAE) to encode the spectral
values of each input pixel, and the other stream takes as input
the corresponding image patch and deep convolutional neural
networks (CNNs) are employed to process the image patch. In the
fusion scheme, the prediction probabilities from two streams are
fused by adaptive class-specific weights, which can be obtained
by a fully-connected layer. Finally, a weight regularizer is added
to the loss function to alleviate the overfitting of the class-specific
fusion weights. Experimental results on real hyperspectral images
demonstrate that the proposed two-stream deep architecture can
achieve competitive performance compared with the state-of-art
methods.

Index Terms—Hyperspectral image classification, Two-stream
architecture, Convolutional neural networks, Stacked denoising
auto-encoder, Class-specific fusion, Deep learning, Remote sens-
ing.

I. INTRODUCTION

OMPARED with natural color images, hyperspectral
images (HSI) contain more channels, and can provide
not only more detailed spectral information but also coarse-
grained spatial context information. When the spatial context
is involved in the classification task, the accuracy can be
improved significantly. Therefore, a growing number of sci-
entists have taken into account the spatial context information
for hyperspectral image classification [1]. The realted works
mainly focus on two directions: 1) extraction of more robust
and invariant features, such as hand-crafted features and deep
features [2], [3]. 2) fusion of the spectral and spatial features
from the complex HSI for classification.
In spatial-spectral classification, the spatial feature extrac-
tion is an important problem to be addressed. The strategies

Manuscript received Nov.19, 2016; revised Dec. 26, 2016. (Corresponding
author: Yuanxin Ye.)

Siyuan Hao and Tingyuan Nie were with the College of Communication and
Electronic Engineering, Qingdao University of Technology, Qingdao 266520,
China. E-mail: lemonbananan@ 163.com, tynie@qut.edu.cn.

Lorenzo Bruzzone and Wei Wang were with the Department of Information
Engineering and Computer Science, University of Trento, Italy. E-mail:
lorenzo.bruzzone @ing.unitn.it, wei.wang @unitn.it

Yuanxin Ye was with the Faculty of Geosciences and Environmental
Engineering, Southwest Jiaotong University, Chengdu 610031, China. E-mail:
yeyuanxin@home.swjtu.edu.cn

for extracting spatial features can be generally divided into the
following groups [4], [5]:

o Neighborhood window: Spatial features of each pixel
can be calculated by averaging all the pixels in the
neighborhood window.

o Segmentation: The parcels from a segmentation map
can be considerd as the homogeneous neighborhood, and
can be employed for the extraction of spatial context
information. For instance, Tarabalka er al. performed
segmentation to define the spatial structures [6].

o Markov random field (MRF): The spatial term in the
energy function of MRF is used for feature extraction,
and MRF can well characterize the relationship between
local and global properties of an image [7].

o Morphological and texture features: Morphological
profiles (MPs) and Gabor filter are the most commonly
used and promising methods to characterize spatial con-
text information. MPs were first introduced for hyper-
spectral images as described in [8]. Then, MPs were fur-
ther improved with the extended morphological profiles
(EMPs) [9]. The attribute profiles (APs) and the extended
multi-attribute profiles (EMAPs) are also efficient to
represent the context information [10]. Shi and Healey
employed a group of Gabor filters to extract spatial
features at different scales and orientations from HSI
obtaining higher classification accuracy [11].

e Others: Apart from the above four groups, other de-
scriptors have also been proposed in the literature. For
example, pairwise hyperspectral angle (PHA) can si-
multaneously explore the context information across the
neighboring bands and neighboring pixels [12].

However, all the methods mentioned above can only derive
hand-crafted features instead of deep features, which can
be extracted using deep learning networks. The deep fea-
tures, if properly extracted, can be more discriminative than
handcrafted features for the problem of hyperspectral image
classification.

During last decade, the representative works in [13], [14]
have brought revolution to deep learning methods and have
also promoted their development in the field of machine
learning and pattern recognition. In addition, deep learning
methods have demonstrated the great potential in the field
of remote sensing for extracting features, which are abstract,
robust and invariant to most local changes of the input val-
ues [15]. For instance, Aptoula et al. extracted the attribute
profiles from the raw data and then gave them as input to
convolutional neural networks. In this way, the handcrafted
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features can be further enhanced by the convolutional neural
networks and better serve the classification task [16]. Chen et
al. employed the stacked autoencoders to extract the high-
level semantic features. They also proved that the seman-
tic features outperformed the hand-crafted features for HSI
classification [2]. After that, more researchers started to add
the spatial information in deep learning architectures. Thus,
a spatial deep auto-encoder, which integrated a similarity
regularization term into the loss function, was proposed to
extract discriminative spatial-spectral features [17]. Han et al.
proposed to efficiently represent the spatial-spectral features
using the unsupervised convolutional sparse auto-encoder [18].
However, the training computational cost for these methods
is high. To address this problem, Romero et al. employed
deep unsupervised convolutional networks to compute sparse
feature representations. They also revealed that the deep
convolutional networks are good at extracting discriminative
high-level semantic features [19]. A two-stream convolutional
network was first presented for action recognition [20]. Yang et
al. applied this two-channel CNN to the hyperspectral image
classification task. However, the input of their spectral CNN
channel is vector-based, which means that all the convolutional
and pooling operators in this channel work on 1-D features.
Besides, they do not train the network from scratch. Their
parameters of the bottom and middle layers are transferred
from an auxiliary domain [21]. In general, if the network can
be trained from scratch, the extracted features can be task-
specific and thus serve better the hyperspectral image task [22].

After feature extraction, fusion is another important step
for the classification task [23], [24]. The conventional fusion
is implemented either on feature-level (early fusion) or on
decision score-level (late fusion) [25]. The fusion in [26]
was based on the feature level, where the deep features were
fused by stacking them directly. 3D convolutional neural net-
works (3D-CNNs) also implemented the fusion at the feature-
level by processing the spectral and spatial features at the
same time [27], [28]. For the late fusion, the most common
strategy is the uniform weight fusion, which assigns uniform
weight values to each probability matrix. For example, Li et
al. performed the uniform weight fusion on the probability
outputs of each classifier. However, they extracted the hand-
crafted spatial features by LBP or Gabor filters [29]. Yang et
al. obtained the probability matrices using two channels and
considered them as the corresponding spectral and spatial deep
features. Then they fed the stacked feature into the fully-
connected layer [21]. However, in term of each classifier, this
fusion strategy assumes that the class features make equivalent
contributions and the fusion weights share a fixed uniform
value. Hence, it fails to take into account the difference of the
discrimination capabilities of the features, and the correlation
among the features is also ignored.

In order to solve the problems mentioned above, we propose
a two-stream deep architecture, which contains a class-specific
adaptive fusion scheme. In the two-stream architecture, the
first stream (spectral stream) is a stacked denoising auto-
encoder that is used to encode the spectral features, while the
other stream (spatial stream) consists of a deep convolutional
neural network that is employed to extract deep spatial fea-

tures. In the fusion scheme, the prediction probabilities from
two streams are aggregated by the class-specific fusion.
Compared with the original two-stream architecture in [20],
the main of the proposed method: (1) It is based on a
different optimized architecture: the architecture in [20] only
contains ConvNets. Our two-stream architecture contains not
only CNNs, but also SAAE to extract the spatial and spectral
features. Furthermore, in our work, we employ a softmax layer
for classification which is integrated together with the two-
stream architecture and the classification layer and the two-
stream architecture can be trained jointly in an end-to-end
manner. (2) It is optimized to address the HSI classification
task: our method is proposed for the HIS classification task,
while the architecture is designed for the task of action
recognition in videos in [20]. In the latter, the inputs are
the RGB video frames and the stacked optical flow images,
whereas we take as input the spatial image patches and pixel-
wise spectral values. As there are plenty of training samples
in action recognition task, in [20] authors employed very deep
architectures, such as VGG. However, the training samples are
very limited in HIS classification task. Therefore, we designed
an appropriate light CNNs for the HIS classification task.
The proposed architecture has the following advantages:

(1) Deep spectral and spatial features can be extracted by
each stream, which can be trained from scratch. There-
fore, the deep features can be learned specifically for the
classification task.

(2) A class-specific fusion scheme is presented to learn the
class fusion weights adaptively taking into account the
correlation among different classes.

(3) To alleviate the overfitting of the fusion weight values, the
loss function is improved by adding a weight regularizer.

The rest of the paper is organized as follows. Section II
briefly reviews the background on deep learning architectures.

Section III introduces the proposed method. Section IV eval-

uates the effectiveness of the proposed method using two

hyperspectral datasets. Section V analyzes the experimental
results and draws the conclusion of the paper.

II. BACKGROUND ON DEEP LEARNING ARCHITECTURES
A. Denoising Auto-encoder (DAE)

An auto-encoder (AE) is a multi-layer neural network with
one input layer, one output layer and one hidden layer. AE
first takes as input a signal and maps it into the hidden layer
through a deterministic mapping function. Then the output
layer reconstructs the signal by minimizing the reconstruction
error. Thus, more complex and abstract nonlinear representa-
tions can be hierarchically learned from the hidden layer. The
mapping function could either be a nonlinear function (e.g.,
sigmoid, ReLU) or a linear function. When a linear mapping
function is applied, the auto-encoder will behave like a PCA.

A denoising auto-encoder (DAE) [30] is an extension of
the standard AE with a similar structure as shown in Fig.1.
There are two steps in DAE, i.e., encoding and decoding, both
of which are implemented by nonlinear mappings. However,
differently from AE, the input of DAE is corrupted by adding
noise, while the output is the original signal without noise.
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Fig. 1. Structure of denoising auto-encoder.

In this way, the learnd DAE is capable of recovering signal
from the noisy input. The learnt representation via DAE is
more robust than that of AE. Therefore, DAE has received
significant amount of attention in the research community,
especially for speech recognition. For example, Ueda et al.
proposed a DAE variant for robust distant-talking speech
recognition [31]. Lu et al. presented a model by ensembling
DAE:s, which effectively focuses on local transformations [32].
S. Araki et al. introduced a multi-channel DAE-based speech
enhancement approach [33]. DAE model can be also applied
to human pose-based action recognition [34].

Recently, deep learning has also been successively applied
to the field of remote sensing. The remote sensing scientists
use AE/DAE to extract features for subsequent classification
and unmixing [2], [35]-[37]. In [2], AE was used to extract
features for classification, whilst Chen et al. employed multi-
ple DAEs to extract deep features [36]. The autoencoder cas-
cade was presented in [37], which concatenated a marginalized
denoising autoencoder and a non-negative sparse autoencoder
for unmixing.

B. Stacked Denoising Auto-encoder (SAAE)

Several DAEs can be stacked into a deep network by feeding
the output from the hidden layer of the previous DAE as
the input to the next DAE. This deep network is named
as the stacked denoising auto-encoder (SdAE). The SJdAE
is usually used to extract high-level representation of input
in the noisy scenarios, and then SAAE is fine-tuned for the
subsequent classification task. The training process can be
divided into two stages: unsupervised pre-training of each
DAE and supervised fine-tuning for the whole SAAE. In the
stage of pre-training, the greedy layer-wise training is used for
each DAE. In the stage of fine-tuning, the bottom layers of the
SdAE are first initialized by the pre-trained parameters. Next,
a logistic regression layer is added on the top of the network.
Then, the network is further tuned by the logistic regression
layer. By minimizing the classification error from the logistic
regression layer, the deep semantic features can be learned.

SdAE has been widely used in many applications [38]-[42].
For example, SAAE was exploited to improve the accuracy
of transfer learning in [39]. Glorot et al. applied SdAE for
the sentiment analysis task and demonstrated that these deep
features, when combined with a simple linear SVM classifier,
yielded the state-of-the-art performance outperforming the

hand-crafted features [43]. Subsequently, some variants of
SdAE were also proposed. For instance, the marginalized
denoising autoencoder was presented, which marginalized the
random corruption to yield the optimal reconstruction weights,
and these weights were computed in a closed-form [42].
This method does not use back-propagation for the parameter
tuning, and it results in a relatively low training cost. The
marginalized SdAE was further combined with probabilistic
matrix factorization to learn the sparse representation for the
collaborative filtering [40]. For addressing the hyperspectral
image classification task, the methods in [41], [44] used
the spectral representation extracted by SAAE instead of the
raw data, which can well reflect the nonlinearity in a high
dimensional data space.

C. Convolutional Neural Networks (CNNs)

The Convolutional Neural Networks (CNNs) are biologi-
cally inspired variants of Multi-layer Perceptions. The most
widely used layers in CNNs are vision layers, activation layers
and loss layers. A representive structure of CNNs is shown
in Fig.2. In the vision layers, the image patches with spatial
context information are taken as the input. They are first
convolved with a set of kernels with the same size, and then
the pooling operation is carried out. The activation function is
implemented to learn the nonlinear representations [19]. The
activation operators are usually element-wise, such as sigmoid,
ReLU and hyperbolic functions. In the loss layer, the most
widely used loss is the softmax cross-entropy loss.
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Fig. 2. Structure of convolutional neural networks.

The latest researches show that features extracted by a
deeper network are more abstract and thus have better per-
formances in the classification task. Therefore, many deeper
convolutional networks have been constructed in recent years,
such as AlexNet (8 layers) [45], VGG-Net (16-19 layers) [46],
GoogleNet (22 layers) [47] and residual net (152 layers) [48].
These deep networks require lots of training data to learn the
parameters. However, the collection for the labeled training
data of hyperspectral images is very laborious and expen-
sive, and the limited training data will cause the over-fitting
problem. Therefore, even if these deeper networks have a
significant advantage in extracting features, shallow and small
networks are more appropiate for hyperspectral images. This
problem will be further discussed in Section IV.
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Fig. 3. Overview of the proposed two-stream deep architecture. The stream on the top is the spectral stream which is a stacked denoising auto-
encoder. The input for this stream are the spectral pixels. The bottom stream is the spatial stream which is a deep convolutional neural network.

The input for the spatial stream are the image patches.

CNNs have shown an explosive popularity in image clas-
sification [45], [49]. For instance, Ciresan et al. presented
a fast, fully parameterizable GPU implementation of CNNs
variants for image classification. It has very good generaliza-
tion capability and high speed. However, it is computationally
prohibitive on CPUs [50]. In order to carry out CNNs on CPUs
with great efficiency, an end-to-end CNNs architecture and a
3-dimension CNN-based feature extraction model were pre-
sented in [51] and [52], respectively. These models can boost
the discriminative capability and robustness of the extraced
features. In addition, a mixed deep learning model composed
by both deep auto-encoder and CNNs was proposed [22]. It
first employed a pre-trained CNNs from an auxiliary domain
(RGB images) for feature extraction. Then a deep auto-encoder
was used to process the deep features. These two steps were
implemented independently. Thus, pre-trained CNNs have a
poor adaptive capability for HSI datasets since they are neither
trained or fine-tuned using HSIs.

III. PROPOSED ARCHITECTURE

A major challenge in hyperspectral image classification
is how to fully and efficiently extract and fuse the spectral
information of a single pixel and its spatial correlations with
the neighbouring pixels in the same local context. In order to
address this issue, we propose a two-stream deep architecture
which incorporates and fuses spectral and spatial information.
As shown in Fig.3, the proposed two-stream deep architecture
consisits of two streams (i.e. the spectral stream and the spatial
stream) and a class-specific fusion architecture. The spectral
stream is a SAAE that handles the spectral pixels, while the
spatial stream is composed of CNNs which are in charge of
processing the spatial image patches. The class-specific fusion
scheme can learn the fusion weight values of different classes
adaptively, and these weights can be further optimized in the
training process.

A. Spectral stream

DAE is the basic component for SAAE. Given a hyperspec-
tral image pixel x € RY represented in d-dimension, it should
be first corrupted into X by setting some elements of x to
zeros or adding a Gaussian noise before feeding it into DAE.
The hidden representation of x is computed by:

h = s(Wg + b), (1)

where h € R%, and d; is the number of units in the hidden
layer. W and b are the encoding weight and the corresponding
bias vector, respectively. s is the activation function (e.g., the
sigmoid, ReLLU). We use the ReLU in this stream. The hidden
representation is then mapped back to reconstruct z without
noise using the following function:

— s(W'h + b) )

where W’ and b’ are the decoding weight and bias vector. The
reconstruction error can be measured in many ways, depending
on the distribution assumptions on the input dataset. In this
paper, we choose cross-entropy to compute the reconstruction
error, and minimize it to learn the optimal parameter ©* =
{W, W', b, b’} by:
d
O = min — Xi logzy + (1 — xp) log(l — z 3
u ;[kgk( k) log( DI E)
DAEs can be stacked to form SdAE by feeding the hidden
representations of the previous DAE layer as the input to the
current DAE layer. The spectral stream (on the top row in Fig.
3) analyzes the spectral similarity encoding by SdAE, which
contains one input layer, three DAE layers and one output
layer. For parameter optimization, we train the first DAE layer
(encoding and decoding) and obtain the parameters O;, and
then feed the hidden representation of the first DAE layer to
the second DAE layer. The remaining two DAE layers can be
trained in the same manner and the parameters ©,, ©3 can be
learned.
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Different from other works in which the feature extraction
(e.g., HOG) and classifier (e.g., SVM) training processes are
implemented separately, the proposed spectral stream can be
fine-tuned in an end-to-end manner using the semantic labels
as supervision. The labels of test set can be immediately
predicted by the softmax layer. Therefore, the efficiency is
higher than those of other one-versus-all classifiers.

B. Spatial stream

As shown in the bottom row of Fig.3, the spatial stream
is CNNs which are used to extract spatial features. The
convolutional layer generates the feature maps by convolving
the output (i.e., feature maps) of its previous layer with a set
of kernels. Then, the pooling layer is applied to obtain more
abstract and transition invariant features. Pooling operator
can greatly reduce the computational cost and increase the
generalization ability of the model [53].

In order to take advantage of the spatial context information,
image patches centered at the corresponding pixels from the
spectral stream are cropped and fed into CNNs. Since the
number of these labelled image patches is usually quite small
compared with that of the available natural images databases,
we build a shallow CNN architecture with two convolutional
layers to process these image patches. A more detailed study
of the optimal number of convolutional layers is available in
Section IV-D.

Let x € R represent the hyperspectral image pixel with d-
dimension, and S € R¥*™*™ denote the image patch centered
at x, where the spatial size of the image patch at each channel
is m x m. The kernel size for the two convolutional layers
is set to [k1, ko] and their kernel numbers are set to n; and
ng, respectively. The kernel size for two pooling layers is set
to [s1, s2]. Formally, the first layer can be expressed as an
operation Fi:

Fi(S) = max(0, W1 * S + By) “)

where W and B; denote the kernels and biases, and ‘%’
denotes the convolutional operation. Here, W corresponds
to n; kernels with size d X k1 X ks. The output of the first
layer is composed of n; feature maps.

The convolutional layer reduces the image size to [ —k; +
1, m—ko+1], and the pooling layer further reduces the feature

maps to the size of [%ﬁ“, %j“] The operation of the
second convolutional layer is:
FQ(S) = max((), W2 * Fl(S) + BQ) (5)

where W contains ns kernels having size ny x k1 X ko, and
B, has a dimension equal to ns.

Then the image size is reduced to [f1, f2], and f; =
(%;H — k1 + 1)/81, fQ = (%;H — ko + 1)/82. For
the fully-connected layer, the feature maps obtained from the
previous layer should be reshaped to a 2-dimension matrix,
because the fully-connected layer can only operate on 2-
dimension matrices. The used expression is as follows:

F5(S) = s(W3Fy(S) + Bj) (6)

where W3 is a matrix with the size [ny x f1 X f2,n3]. B
is a nz-dimensional vector, where ng is the number of hidden
units of the fully-connected layer.

Similar to the spectral stream, the spatial stream can also
adjust the parameters depending on the distribution of the input
data, and works in an end-to-end manner. It is worth noting
that the two streams can be fine-tuned jointly, and the features
from the two streams can be efficiently taking into account
their different informative content and correlation. This can
benefit the overall classification task.

C. Class-specific Fusion

Late fusion is one of the most effective schemes to en-
hance classification performance through combining predic-
tion scores of multiple classifiers, each of which can be trained
by a specific type of features. The proposed two streams are
implemented using the spectral SAAE and spatial CNNs, and
each stream can directly obtain the predicted probability score
with respect to the input. Therefore, a robust prediction and
better performance can be achieved by fusing the different
classification results.

Differently from the traditional uniform weight fusion, we
attempt to learn the fusion weight values of different classes
adaptively when training the whole network. Let p; and
p2 € RN ' represent the probability vectors obtained from
the spectral and spatial streams, and N’ be the number of
classes. The correspongding fusion weight is represented by
wi = {whw?, . w! . wN (i € 1,2) where w! is the j-
th class fusion weight of the i-th stream. We can express the
fused vector as follows:

P-w=p1Ow; +Pp2Ows

Wl 0 0
0 w? 0
, o o .. W
=[p1, -, PY Py P ] w0 - 0
0 w3 0
[0 0 - W)

where p is the stacked probability vector formed by p; and po,
weR2N'*N" i 4 matrix composed of the class fusion weights,
and © represents the element-wise product.

By analyzing (7), we can observe that the target of fusion
is to learn the optimal class fusion weight values, which
is equivalent to the formula of learning the weights of a
fully-connected layer. To this end, we use a fully-connected
layer to construct the class-specific fusion architecture. A
softmax layer is added on the top of the class-specific fusion
architecture. In this way, the class fusion weights can be learnt
and adjusted adaptively via minimizing the loss function of
this softmax layer. Instead of assigning random values to
the weights of the fully-connected layer, we only initialize
the elements on the diagonal while the other elements are
simultaneously set to 0. This initial constraint will be lossen
during the training process, which means that the correlation
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among different classes can also be taken into account in the
fusion process.

To alleviate the risk of overfitting of the fusion weights, a
regularizer is integrated into the loss function of the softmax
layer. The overall loss function is given as follows:

w = ngnloss(p,y;w) + [lwll, ®)

where loss(+) is the original loss function of softmax layer, y
represents the ground-truth labels, and ||-||, is the l5 norm.

The conventional fusion is always independent from the
feature learning process, and the fusion weights are set man-
ually. Differently, in our work, the feature fusion is integrated
together with the feature learning pipeline. Therefore, the
fusion weights can be learned adaptively by referring to the
features that are learned and the features can also be tuned by
referring to the fusion weights. In this way, the joint training
of the overall architecture can boost the HIS classification
performance.

1V. EXPERIMENTS
A. Datasets description and parameter setting

The experiments to evaluate the effectiveness of the pro-
posed two-stream deep architecture have been conducted on
two hyperspectral images.

The first hyperspectral image is the Indian Pines. It contains
220 spectral bands and has a size of 145x 145 pixels, with each
pixel measuring approximately 20m by 20m on the ground.
20 spectral bands are removed due to the noise and water
absorption phenomena. Sixteen mutually exclusive classes are
included. Some classes in this dataset have very few samples,
thus we split the dataset into training and testing sets with the
ratio of 3:2. The three-channel false-color composition and the
reference land-cover map of Indian Pines are shown in Fig. 4.

The second hyperspectral image is the University of Pavia.
Water absorption bands are removed, and the original 115
bands are reduced to 103 bands. Fig.5 shows the three-channel
false-color composition and the reference land-cover map of
University of Pavia, which mainly includes 9 classes (i.e.,
asphalt, meadows, trees, metal sheets, bare soil, bitumen,
bricks, shadows and gravel). For this dataset, we set the ratio
of the training set and testing set to 1:9.

(a) (b)

s Soybeans-min till == Bldg-Grass-Tree-Drives mmmmm Corn-min till === Qats

= Wheat
m Alfalfa
——— Woods

=1 Soybeans-clean till —— Grass/pasture-mowed = Corn-no till
e Soybeans-no till == Grass/pasture mmsm Corn
mmem Hay-windrowed === Stone-steel towers —= Grass/trees

Fig. 4. Indian Pines dataset: (a) three-channel false-color composition
(bands 17, 27, and 50 for RGB) (b) reference land-cover.

—_— : o . )
Asphalt Bricks Gravel Meadows Shadows Bitumen Bare soil Trees Metalsheet

Fig. 5. Pavia University dataset: (a) three-channel false-color composition
(bands 16, 27, and 45 for RGB) (b) reference land-cover.

For the spectral stream, the network weights are learnt
using the mini-batch Stochastic Gradient Descent (SGD) with
respect to the loss defined in (3). SAAE was composed of three
DAE layers, in which the number of hidden units for each
DAE layer was set to 102. On the top of the spectral stream, a
softmax layer was added to predict the scores of samples. The
corruption level was selected from the set of [0.1,0.2,0.3],
because larger values may lead to the overfitting problem.
Following [2], the number of epochs for pre-training and fine-
tuning were both set to 103. In the process of SGD, the initial
learning rates in the pre-training and fine-tuning phases were
both set to 10~1, and the weight decay was 0.5. The learning
rates are decreased every 102 iterations, and become almost
one thousandth of the initial value when pre-training and fine-
tuning are terminated. For the spatial stream, two convolutional
layers, one fully-connected layer and one softmax layer were
stacked to construct the CNNs model, in which the number of
hidden units in fully-connected layer was 102, and the softmax
layer was used to predict the scores of samples by the deep
sptial features. For the class-specific fusion architecture, the
initialization of the weights in the fully-connected layer is
described in Section III-C.

The performance evaluation metrics are the overall accuracy
(OA), the average accuracy (AA), the Fl-score and the Pre-
cision. To avoid biased estimation, ten independent tests were
carried out using Theano and Keras on a computer equipped
with an Intel Core i5 Processor at 2.70-GHz.

B. Analysis of Class-specific fusion

Fig.6 shows the evolution of the class fusion weight values
on the dataset of the University of Pavia. The fusion weight
matrix is composed of wy for the spectral stream (on the top)
and wy for the spatial stream (at the bottom). The size of the
fusion weight matrix for the considered dataset is 18 x 9. As
stated in Section III-C, we only assigned the initial values of
0.5 to the diagonal of the weight matrix of the fully-connected
layer (see Fig.6 (a)). In the testing phase, we selected 10%
samples from each class as the training set. We can observe
that as the number of training epochs increases the values in
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the fusion weight matrix also evolve accordingly. Comparing
the values in the first column (which corresponds to the fusion
weights of the first class) of the two weight matrices, one can
see that at the beginning wi = wi = 0.5 (Fig.6 (a)), while after
1000 training epochs wi and wi decrease to 0.4082 and 0.429
(Fig.6 (b)), respectively. At the same time, the value located
at (row 4, column 1) increases to 0.2919, which means that
the features of the fourth class in the spectral stream greatly
contribute to the classification of the samples from the first
class. Similar behaviours also take place in other columns.
The observation of the fusion weight demonstrates that in the
training phase the class-specific fusion scheme can adaptively
tune the weights of each class by taking into account the

correlations between them.
03 0.8
04 0.6
03 04
E 02
0.2
0
0.1
-0.2
d | |
2 4 6 8 2 4 6 8

Fig. 6. Evolution of the class fusion weights for Pavia University dataset:
(a) initial weights, (b) weights obtained after 1000 training epochs.

C. Analysis of the performance of DAE

In order to prove that the spectral features extracted by DAE
are more robust, we implemented the following test using the
Indian Pines dataset. We randomly selected 60% and 20% of
the total samples as the training and validation sets to learn
the parameters ©* = {W, W' b, b’}, and the remaining ones
were used as the test set. W’ was constrained such that W/ =
W7, and W was initialized by uniformly sampling from the
range [—0.5, 0.5]. The reconstructed signals by AE (the middle
column in blue) and DAE (the last column in red) after 500
and 1000 training epochs are shown in Fig.7.

The first row in Fig. 7 shows the ground truth curve, and
the reconstructed spectral curves of AE and DAE after 500
epochs. We can observe that the reconstructed signals cannot
completely match with the original one with a limited number
of training epochs. The curves obtained by AE and DAE
are similar, and DAE has the capability to reconstruct signal
under noisy conditions. Then, we compare the results in each
column. We can observe that the performance of DAE is
improved when the number of the training epochs increases
from 500 to 1000. By analyzing the second row we can
observe that the performance of DAE (last column) is better
than that of AE (middle column), which can be noted in the
spectral bands between [0, 25] and [100, 200]. The spectral
signals located in these spectral bands increase significantly
and move closer to the original signal. Therefore, we can
conclude that DAE can be a good alternative to AE to extract
spectral features that are more robust. This is the main reason
for which we choose the DAE to stack the multi-layer network.
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Fig. 7. Reconstruction of a sample in Indian Pines with different training
epochs: (a) a randomly selected test sample, (b) AE, (¢c) DAE.

D. Effect of the network depth

The depth of a network plays a very important role. Usually,
deeper architecture can extract more abstract features, which
is crucial for the classification performance. In this part, we
conducted the following two experiments to find out the
optimal network depths for the spectral stream and the spatial
stream on different datasets.

1) Effect on the spectral stream: The network depth in
SdAE corresponds to the number of DAE layers. Considering
the high computational cost of training for fully-connected
networks, we only evaluated the depth from 1 to 5 layers.
The spatial size of the input patches is fixed to 7 x 7. All the
other settings remained the same as in Section IV-A. Then we
predicted the labels of the test set, and listed the corresponding
classification accuracy for the dataset of Indian Pines and the
University of Pavia in Tab. I and Tab. II, respectively.

As shown in Tab. I, we can see that the performance
generally shows an upward trend with a deeper network. It
reaches the peak values (98.65% OA, 99.22% AA, 98.65%
Fl-score and 98.68% Precision) with a depth of 3. We can
also observe that the accuracy fluctuates when the depth is
greater than 3. When the depth is set to 5, the accuracy rises
again, but is still inferior compared with the depth of 3. From
these observations, we can conclude that a deeper SAAE helps
to improve the performance. However, after a given value,
increasing the depth decreases the performance because of the
problem of overfitting. A 3-layer SAAE is good enough for the
Indian Pines dataset. From Tab. II, we can observe that a 4-
layer SAAE is better suited to the University of Pavia dataset,
and the OA, AA, Fl-score and Precision can reach 97.33%,
95.01%, 97.32% and 97.39%, respectively. Therefore, we use
a 3-layer SAAE for the Indian Pines and a 4-layer one for the
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University of Pavia in the final two-stream deep architecture.

TABLE I
EFFECT OF THE DEPTH ON THE SPECTRAL STREAM (INDIAN PINES).

Depth (layers) OA AA F1-score Precision
1 86.96 90.22 86.57 87.36
2 94.88 96.09 94.85 94.91
3 98.65 99.22 98.65 98.68
4 98.50 99.15 98.50 98.53
5 98.65 99.21 98.65 98.68
TABLE II

EFFECT OF THE DEPTH ON THE SPECTRAL STREAM (PAVIA UNIVERSITY).

Depth (layers) OA AA F1-score Precision
1 94.95 90.73 94.77 94.99
2 95.74 92.68 95.74 95.80
3 96.20 93.15 96.17 96.24
4 97.33 95.01 97.32 97.39
5 96.52 94.69 96.52 96.69

2) Effect on the spatial stream: Similar to the spectral
stream, we also used the same dataset to train and test the
spatial stream using the different depths. The network depth
varied in the range from 1 to 5. We fixed the size of spatial
patch to 7 x 7. Considering the relatively small spatial size of
the Indian Pines image (i.e., 145 x 145 pixels), we removed
the pooling operator behind the convolutional layer. For a fair
comparison, the kernal size of all the convolutional layers
was set to 2 x 2, and its kernel number was set to 50. The
classification results for the two datasets are summarized in
Tab. III and Tab. IV.

From Tab. III, we can derive the following observations:
1) The OA generally increases until depth = 3, reaching the
peak of 98.65%. Then, OA fluctuates slightly as the number of
layers increases further. 2) CNNs with three layers can produce
the largest AA, which suggests that a deeper CNNs model can
well learn the distribution of classes. 3) The optimal F1-socre
and Precision can be achieved at depth = 3. Therefore, we
select CNNs with three layers for the Indian Pines dataset
in the following tests. In addition, we can also observe from
Tab. IV that the highest OA, AA and recall can be obtained
when depth = 2 for the University of Pavia dataset.

Obviously, each stream is heavily influenced by the network
depth and the selection of network depth for each stream plays
an important role in the performance obtained.

TABLE III
EFFECT OF THE DEPTH ON THE SPATIAL STREAM (INDIAN PINES).

Depth (layers) OA AA F1-score Precision
1 97.92 98.56 97.92 97.94
2 97.54 98.81 97.54 97.61
3 98.65 99.22 98.65 98.68
4 98.31 98.95 98.31 98.33
5 97.78 97.43 97.79 97.85

E. Effect of the spatial size

The spatial size s of the input image patches is another
important parameter for the proposed two-stream deep ar-

TABLE IV
EFFECT OF THE DEPTH ON THE SPATIAL STREAM (PAVIA UNIVERSITY).

Depth (layers) OA AA F1-score Precision
1 93.16 85.46 92.46 93.23
2 97.33 95.01 97.39 97.39
3 96.24 93.99 96.21 96.30
4 95.32 93.36 95.37 95.37
5 95.92 93.91 95.92 95.94

chitecture. In this section, we compare the classification ac-
curacy (OA) of different spatial sizes with different amount
of training data. For the Indian Pines dataset, we randomly
selected training data from the whole dataset with a ratio
r, which was set to 10%, 20%, 30%, 40%, 50%, 60%. The
ratio r of the Pavia University dataset varied in the set
{1%, 3%, 5%, 10%, 15%, 20%}. The spatial size varied in the
set {3x3, 5x5, 7x 7}, and the kernel size of two convolutional
layers was 2 x 2. For the small spatial size (i.e., 3 X 3), we
removed the pooling layer because of the rapid downsampling
of image size. The OA curves are shown in Fig.8.
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Fig. 8. Accuracy curves for different spatial sizes versus different training
sample ratios: (a) Indian Pines dataset (b) Pavia University dataset.

From Fig. 8 (a), one can observe that the curves of s =
7x 7 and s = 5 x 5 have a similar performance improvement
as the training set ratio increases. More specifically, the OA
curve of s = 7 x 7 increases monotonically from 89.02%
(r = 10%) to 98.65% (r = 60%). When r increases from
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TABLE V
COMPARISON OF CLASSIFICATION ACCURACIES PROVIDED BY DIFFERENT METHODS (INDIAN PINES DATASET).

Class No. of train ~ SS-LPSVM  SC3SVM SdAE CNNs 3D-CNNs  ppMLR  MLRpr ppMLRpr  Proposed
Alfalfa 33 98.89 91.98 100.00  100.00 96.67 98.15 96.30 98.15 100.00
Corn-no till 861 75.45 52.67 7391 92.61 94.62 98.47 80.33 95.12 95.35
Corn-min till 501 75.08 68.15 72.97 90.81 98.68 98.44 68.11 97.48 98.75
Corn 141 95.30 78.63 88.46 94.23 97.75 97.86 100.00 99.15 100.00
Grass/pasture 299 93.40 90.48 91.53 96.61 98.54 95.17 93.16 95.98 100.00
Grass/trees 449 95.72 91.48 93.75 95.83 97.40 99.73 99.87 99.60 99.32
Grass/pasture-mowed 9 95.38 89.74 100.00  100.00 100.00 100.00 42.31 57.69 100.00
Hay-windowed 294 97.22 87.46 100.00  100.00 99.45 100.00 100.00 100.00 100.00
Oats 12 100.00 95.00 100.00  100.00 87.50 95.00 0.00 0.00 100.00
Soybeans-no till 580 82.77 71.01 87.96 95.81 97.86 96.49 75.83 90.60 100.00
Soybeans-min till 1480 65.37 56.39 88.25 96.91 98.43 98.46 96.27 99.47 98.03
Soybeans-clean till 369 87.30 73.40 62.42 85.23 95.65 98.53 94.79 99.19 100.00
Wheat 127 99.62 99.21 97.44 100.00 100.00 99.53 100.00 99.06 97.87
Woods 771 97.74 92.30 98.25 99.30 99.63 99.77 99.77 99.85 99.62
Bldg-Grass-Tree-Drives 228 88.89 62.81 80.00 96.67 96.64 99.21 75.26 99.74 98.53
Stone-steel towers 57 96.84 95.09 100.00  100.00 100.00 100.00 97.89 93.68 100.00
AA - 90.31 80.99 89.68 96.50 97.43 98.43 82.49 89.05 99.22
OA - 84.11 72.42 86.04 95.36 97.71 98.50 89.61 97.41 98.65

(®
[ Bldg-Grass-Tree-Drives [ Grass/pasture

I Soybeans-min till
[ Soybeans-clean till

[ Soybeans-no till

N Hay-windrowed [ Grass/pasture-mowed
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Fig. 9. Visual classification results for the Indian Pines dataset: (a) reference land-cover (b) SC3SVM (c) SS-LPSVM (d) SAAE (e) CNNs (f) 3D-CNNs

(g) ppMLR (h) MLRpr (i) ppMLRpr (j) proposed method.

10% to 60%, the OA curve of s = 5 x 5 raises 10.39% and a
slight performance drop takes place at r = 40%. As expected,
the curve of s = 3 x 3 first increases until 7 = 50%, and then
decreases linearly. If we fix the training ratio r = 40%, we
can observe that the OA curve increases rapidly by increasing
spatial size. It reaches the peak of 97.80% at r = 40%, and
the improvement is more relevant from s = 3x3 to s = 5 x 5.
The behavior of the OA curve for the Pavia University dataset
(Fig. 8(b)) is similar to that of the OA curve in Fig. 8(a),
that is, the OA curves generally raise when the training set
ratio increases. The curves of s =7 x 7 and s = 5 x 5 have
a significant advantage over the curve of s = 3 x 3. With
respect to the curve of s = 7 x 7, the OA first increases from
87.14% (r = 1%) to 97.50% (r = 10%). If the ratio continues
to increase, similar OAs are obtained (96.86% at r = 15%).
Then a slight fluctuation is observed at r = 20%. Differently

from the Indian Pines dataset, when only a small amount of
training samples is available, the proposed method can still
achieve an accurate performance, e.g., OA at r = 10% can
reach 97.50% for the curve of s = 7 x 7. The suitable spatial
size is s = 7 X 7 or s = 5 x 5. We also add the pooling
operation behind the convolutional layer since it can bring
more nonlinearity to the network model. Thus, s = 7 x 7 will
be adopted in the proposed architecture.

F. Comparsion with other methods

Tab. V reports the classification accuracy for different
methods when applied to the Indian Pines dataset. The
spatial-spectral classification methods (SC3SVM, SS-LPSVM,
ppMLR, MLRpr and ppMLRpr) in [54]-[57] focus on the
integration of spatial context information in classification for
the improvement of accuracy. Therefore, they were selected as
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TABLE VI
COMPARISON OF CLASSIFICATION ACCURACIES PROVIDED BY DIFFERENT METHODS (PAVIA UNIVERSITY DATASET).

Class No. of train ~ SS-LPSVM  SC3SVM  SJAE CNNs 3D-CNNs  ppMLR  MLRpr  ppMLRpr  Proposed
Asphalt 664 94.18 55.04 87.32 92.00 94.05 91.71 83.36 91.51 97.47
Meadows 1865 76.14 68.50 91.48 97.69 98.44 97.48 94.96 95.04 99.92
Gravel 210 76.04 47.93 0.00 74.33 79.42 66.33 52.08 53.15 83.80
Trees 307 95.17 61.46 83.87 93.84 97.47 95.52 97.00 95.89 98.98
Metal sheets 135 99.55 88.03 97.99  100.00 100.00 99.82 99.36 98.82 100.00
Bare soil 503 68.64 38.34 24.33 83.09 89.36 82.80 81.20 85.61 97.75
Bitumen 133 88.05 93.46 1.99 78.45 86.67 76.65 72.79 72.88 77.44
Bricks 369 74.31 77.19 81.48 76.17 86.65 82.89 85.38 82.62 96.65
Shadows 95 99.68 98.84 98.66 95.99 97.76 98.82 98.95 98.82 99.65
AA - 85.75 69.86 63.01 87.95 92.20 88.00 85.01 86.04 94.63
OA - 80.88 64.16 74.70 91.26 94.35 91.42 88.31 89.85 97.50

(h)

Asphalt Bricks Gravel Meadows

Shadows

Bitumen Bare soil Trees Metal sheets

Fig. 10. Visual classification results for the Pavia University dataset: (a) reference land-cover (b) SC3SVM (c) SS-LPSVM (d) SdAE (e) CNNs (f)

3D-CNNs (g) ppMLR (h) MLRpr (i) ppMLRpr (j) proposed method.

the benchmark methods, and the procedure for their parameter
setting can be found in the corresponding references. Besides,
we also provide comparisons with other deep learning methods
(including SAAE, CNNs and 3D-CNNs [27]). The spatial size
of the input image patches for CNNs and 3D-CNNs was set
to 7 x 7. For the spectral SAAE stream, we used the 3-layer or
4-layer network according to the different datasets, and each
hidden layer had 100 units. For the spatial CNNs stream, the
kernel size of convolutional layer was 2 x 2. Because larger
kernel size in pooling layer will result in a dramatic image size
shrinkage, we set the kernel size of pooling layers to 2 x 2.
From Tab. V, we can observe that the proposed method

achieves significantly higher OA, with gains of 3.29%, 9.04%,
12.61%, 14.54% and 26.23% over CNNs, MLRpr, SAdAE, SS-
LPSVM, SC3SVM, respectively. The OA of the proposed
method is slightly better compared with ppMLRpr, ppMLR
and 3D-CNNs. The AA of the proposed method can reach
the maximum value of 99.22%, suggesting that the proposed
deep architecture can effectively reflect the distribution infor-
mation of the data. CNNs, 3D-CNNs and ppMLR obtain good
AA results, i.e., 96.50%, 97.43% and 98.43%, respectively.
Nevertheless, their AA results are lower than those of the
proposed method. We can also observe in Tab. V that only
9 and 12 samples were selected as the training sets for the
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Grass/pasture-mowed and Oats, respectively. The accuracies
of SC3SVM, MLRpr and ppMLRpr for these two classes
are greatly influenced by the number of training samples.
However, the accuracies of these classes obtained by the
proposed method can both achieve 100%. For illustrative pur-
poses, the classification maps are shown in Fig.9. Compared
with Fig.9(j), the noise in Fig.9(b)-Fig.9(d) is quite evident.
The samples of Soybeans-no till in the upper left corner are
misclassified into Soybeans-clean till in Fig.9(g)-Fig.9(i). The
class of Oats can best demonstrate the advantages of the
proposed method.

The OA, AA and individual class accuracy using the
University of Pavia dataset are shown in Tab. VI. The OA
and AA of the proposed method are 97.50% and 94.63%,
which are significantly higher than those of other classification
methods. The accuarcy for each individual stream (i.e., SAAE
and CNNs) both have an improvement after the integration
by the proposed two-stream architecture. The classification
accuracy of 3D-CNNs (94.35% OA) is 3.15% lower than that
of the proposed method. The visualization of the classification
results are shown in Fig. 10. By analyzing the figure, one can
observe that other methods often incur in errors on the Bare
soil areas, whereas the proposed two-stream architecture can
classify the regions accurately.

TABLE VII
P-VALUES (IN PERCENT) AND WIN/TIE/LOSS COUNTS OF THE PROPOSED
METHOD VERSUS OTHER COMPETITIVE METHODS BASED ON OA.

Dataset 3D-CNNs ppMLR W/T/L
Indian Pines 0.72/0.36/99.64 (W) 38.25/19.13/80.87 (T)  1/1/0
Pavia University  0.65/0.33/99.67 (W)  0.68/0.34/99.66 (W)  2/0/0

W/T/L 2/0/0 1/1/0 -

We have further implemented the Paired r-test at 95%
significance level to illustrate that the proposed method is
statistically better than the baselines (i.e., 3D-CNNs and
ppPMLR). The results are shown in Tab. VII. The original
hypothesis is that the OA of baseline is compared with the
proposed method, where p = p;/p2/ps is composed of p;
(the OA of the baseline equal to that of the proposed method),
p2 (the OA of the baseline higher than or equal to that of
the proposed method) and p3 (the OA of the baseline lower
than or equal to that of the proposed method), respectively.
We can see that the proposed method achieves 2 wins, O
tie and O loss when compared to 3D-CNNs, and 1 win, 1
tie and O loss when compared to ppMLR. Therefore, from
the perspective of statistics, our method has a better overall
performance compared with the baselines.

G. Anlysis of the computational efficiency

The analysis of the computational time was carried out on
the Pavia University dataset, and the experimental platform
was a computer equipped with an Intel Core i5 Processor at
2.70-GHz CPU. We took the test set as the validation set, and
the batch size was set to 128. For each epoch, the proposed
method takes 12s to train the model, in which pre-training
and fine-tuning consume 9s and 3s, respectively. To achieve

the best parameters, we need to increase the number of training
epochs, which is set to 1000 for the considered dataset. The
computational efficiency is higher than the traditional methods
as the code is better suited to run on GPU. The GPU-based
SVM [58] takes about 127.80s, which is 6 times faster than
that on a standard CPU-based SVM. Howeyver, it is still much
slower than the softmax classifier. Therefore, the proposed
architecture is computationally efficient in the testing phase,
and consumes less time than either the GPU-based SVM or the
CPU-based SVM. However, if training can be implemented
through the GPU-cuda accelerated Caffe library, the whole
training time can be further cut down as shown in [16].

V. CONCLUSION

In this paper, we propose a novel two-stream deep archi-
tecture with a class-specific fusion scheme. In the two-stream
architecture, the stacked denoising auto-encoder is adopted to
encode the spectral features, and deep convolutional neural
networks are employed to extract deep spatial features. In
the fusion architecture, the prediction probabilities from two
streams are aggregated by a class-specific fusion strategy,
which learns the class fusion weights adaptively, and takes
into account the correlation among different classes. Experi-
mental results demonstrate that the proposed architecture can
achieve competitive performance compared with the state-of-
art methods.

To sum up, this paper introduces a novel deep learning
architecture for the problem of hyperspectral image classifi-
cation. However, the training of the proposed method which
includes the SAAE and CNNs is time-consuming. Therefore,
further research can be conducted to explore more efficient
computational schemes for the proposed two-stream deep
architecture, and explore possible semi-supervised learning
techniques.
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