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Active and Semi-Supervised Learning for the
Classification of Remote Sensing Images

Claudio Persello, Member, IEEE, Lorenzo Bruzzone, Fellow, IEEE

Abstract—This study aims at analyzing and comparing Active

Learning (AL) and Semi-Supervised Learning (SSL) methods for

the classification of Remote Sensing (RS) images. We present a

literature review of the two learning paradigms and compare

them theoretically and experimentally when addressing classi-

fication problems characterized by few training samples (w.r.t.

the number of features) and affected by samples selection bias.

Commonalities and differences are highlighted in the context

of a conceptual framework used to describe the workflow of

the two approaches. We point out advantages and disadvantages

of the two approaches, delineating the boundary conditions on

the applicability of the two paradigms with respect to both the

amount and the quality of available training samples. Moreover,

we investigate the integration of concepts that are in common

between the two learning paradigms for improving state-of-the-

art techniques and combining AL and SSL in order to jointly

leverage the advantages of both approaches. In this framework,

we propose a novel SSL algorithm that improves the Progressive

Semi-Supervised Support Vector Machine (PS

3
VM) by integrat-

ing concepts that are usually considered in AL methods. We

performed several experiments considering both synthetic and

real multispectral and hyperspectral RS data, defining different

classification problems starting from different initial training

sets. The experiments are carried out considering classification

methods based on Support Vector Machines (SVMs).

Index Terms—Active Learning, Semi-Supervised Learning,

Sample Selection Bias, Support Vector Machine, Image Clas-

sification, Remote Sensing.

I. INTRODUCTION

M

ACHINE learning methods have been widely applied
to the analysis of Remote Sensing (RS) data in the past

decade. Supervised classification methods like Support Vector
Machines (SVMs) [1], [2], and kernel methods in general
[3]–[5], have gained increasing attention in different fields of
data mining, pattern recognition, computer vision, as well as
in RS, where nowadays they are considered state-of-the-art
methods. The development of the above-mentioned supervised
classification techniques has been followed by the definition of
novel learning paradigms that have recently gained relevance
also in the RS community. Among them, an important role is
played by Semi-Supervised Learning (SSL) and Active Learn-
ing (AL) methods. The automatic classification of RS images
is typically performed by using supervised classification tech-
niques, which require the availability of labeled samples for
training the supervised algorithm. However, the collection of
labeled samples to be used in the learning is usually time
consuming and expensive. The amount and the quality of
the available training samples are of central importance for
obtaining accurate classification maps. Nevertheless, in many
real world problems the available training samples are not
sufficient in number and not adequate in quality for properly

training the classifier. Thus, in order to enrich the information
given in input to the supervised learning algorithm and to
improve the classification accuracy, SSL techniques have been
adopted for jointly leveraging the information of both labeled
and unlabeled samples in the training of the classifier. SSL
approaches based on SVMs have been successfully applied
to the classification of multispectral and hyperspectral RS
images, where the ratio between the number of training
samples and the available spectral channels is small [6], [7].
However, the convergence to the correct solution is not always
guaranteed with SSL techniques. An alternative approach for
improving the learning of the classifier is AL, which assumes
that few new samples can be labeled and added to the original
training set. With this paradigm, the original training set is
iteratively expanded according to an interactive process that
involves a supervisor (usually a human expert), who is able to
assign the correct label to any queried sample. This approach
has been effectively applied for optimizing the collection of
training samples in different application domains including the
classification of RS images [8]–[11]. In AL: 1) the learning
process iteratively queries the labels of the samples that are
expected to be the most informative for an effective training of
the classifier, 2) the supervisor annotates the selected samples,
and 3) the classifier is re-trained using the updated training
set. In this way, the unnecessary and redundant labeling of
non-informative samples is avoided, greatly reducing the cost
and the time of the training sample collection. The use of the
two learning paradigms for the classification of RS images has
been quite intensively investigated in the last decade. However,
despite their commonalities, detailed analysis and comparison
of the two approaches has not been done.

In this paper we present a comparative study in order to
analyze AL and SSL in relation to the classification of RS
images. We analyze the two approaches for addressing clas-
sification problems with limited amount of training samples
and under sample selection bias. We present a conceptual
framework in order to describe the workflow of AL and itera-
tive SSL methods and to point out their main differences and
commonalities. On the basis of this analysis, we investigate
different strategies for combining AL and SSL in order to take
advantage of both paradigms in real classification problems.
Moreover, we propose a novel SSL algorithm that improves
the Progressive Semi-Supervised Support Vector Machine
(PS3VM) by integrating concepts that are usually considered
in AL methods. The two approaches are studied here in
the context of SVM-based classification methods considering
different AL and SSL methods. We present a comparison
that aims at identifying advantages and disadvantages of the
two approaches, and also discuss the boundary conditions on
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the applicability of these methods both in terms of available
labeled samples and reliability of classification results. The
experimental analysis is carried out on both toy data sets and
on real RS data. Limits and potentials of both approaches
are critically analyzed in the light of possible applications
to RS scenarios characterized by different kinds of data and
classification problems. The main novel contributions of this
paper are: 1) the description of a unified conceptual framework
for AL and SSL, 2) the investigation of different approaches
for combining AL and SSL for the classification of real RS
data, and 3) the presentation of an improved Progressive Semi-
Supervised SVM (PS3VM), which exploits concepts that are
usually considered for AL.

The paper is organized into seven sections. In the next sec-
tion, classification problems characterized by few and biased
training samples are presented and formalized. Section III
reviews the main categories of SSL classification and gives
a brief description of the PS3VM algorithm used in our study.
In Section IV, AL is presented and analyzed both in the
general machine-learning framework and in the context of
RS applications. Moreover, we give a brief description of the
SVM-based AL methods that are used in our comparison. In
Section V, the two considered AL and SSL paradigms are
analyzed and compared on the basis of a common concep-
tual framework: the main commonalities and differences are
pointed out. A novel algorithm that integrates AL concepts in
SSL is proposed. Different strategies for combining AL and
SSL are investigated. Section VI illustrates the experimental
analysis. Finally, section VII presents a discussion on the two
considered strategies and draws the conclusion of the paper.

II. PROBLEM FORMULATION: CLASSIFICATION WITH
SMALL AND BIASED TRAINING SETS

AL and SSL can be considered two different approaches to
address ill-posed classification problems, where the available
training samples are too few with respect to the number of
features and do not allow one to correctly estimate the true un-
derlying distribution of the classes. Ill-posed problems are very
likely to occur in real RS classification problems, especially in
the classification of the last generation of RS images, e.g., very
high resolution (VHR) and hyperspectral images, where the
ratio between the available training samples and the number of
features is usually small. In the classification of hyperspectral
images, it is clear that the high number of spectral bands
leads to define the classification problem in a high dimensional
feature space. In the classification of VHR images the available
spectral bands provide poor spectral resolution, therefore the
extraction of several textural and geometric features is usually
necessary to characterize the objects present in the scene under
investigation and to obtain good classification accuracies. This
leads again to defining the classification problem in a high
dimensional feature space.

Not only the “quantity”, but also the “quality” of the
available training samples is important for obtaining accurate
classification results. With “quality” of training samples, we
mean their capability to model the real underlying distribution
of the classes. A common assumption in the design of learning

algorithms is that the training data consists of examples drawn
independently from the underlying distribution. In many real-
world classification problems, this assumption is often violated
because training points are manually selected through surveys
and they don’t represent a random set of samples of the general
population.

This problem in known as sample selection bias [12], [13].
Adopting the notations introduced in [13], we can formalize
the problem by considering the selection variable s which
takes binary values: s = 1 denotes that the labeled sample
(x, y) is included in the training set T , where x is the feature
vector and y is the class label, while s = 0 denotes that
(x, y) is not selected. The label of not selected samples is
not available for the training of the classifier, however we
assume here that the set of unlabeled feature vectors (called
pool) is available and can be used by a SSL method. Note
that this assumption is usually satisfied in the classification
of RS images, where several unlabeled samples are generally
available. According to [13], four cases can be considered
regarding the dependance of s on the example (x, y):

1) If s is independent of x and y, the selected training
set is not biased, i.e., the examples constitute a random
sample set of the true underlying distribution.

2) If s is independent of y given x, i.e., P (s = 1|x, y) =
P (s = 1|x), the selected samples are biased, but the
bias depends only on the feature vector x. This problem
is also called covariate shift.

3) If s is independent of x given y, i.e., P (s = 1|x, y) =
P (s = 1|y), the selected samples are biased, but the
bias depends only on the label y. This corresponds to a
change in the prior probabilities of the classes.

4) If no independence assumption holds between x, y
and s, the selected samples are biased and no further
simplification is possible.

Clearly, a training set obtained under sample selection bias
(or biased training set for brevity) leads to skewed estimations
of the true underlying distributions of the classes. Let us
denote P (x, y) = P (y)P (x|y) the joint probability of the
feature vector x and the class label y, which represents
the true underlying generative model that defines the clas-
sification problem. Let P tr

(x, y) = P tr

(y)P tr

(x|y) be the
joint distribution estimated from the available training samples
(using a supervised approach). In problems affected by sample
selection bias, we have that P tr

(x, y) 6= P (x, y).
In the collection of training samples for the classification of

RS images, a sample selection bias is very likely to happen.
Actually, we would argue that an unbiased sampling is almost
impossible in practice. The selection variable s can depend on
both the feature vector x and the class label y; nevertheless, its
dependency may not be so clear. In practice, s may depend on
latent variables, which are not included neither in the feature
vector x nor in the class label y, but are correlated with both
of them. For instance, it is very likely that s depends on
the geographical location associated with the sample (e.g.,
the pixel). This type of bias is particularly common when
labeled samples are collected by ground surveys. In that
case, different sampling schemes are typically adopted for
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field surveys: a) random sampling, b) stratified sampling,
c) systematic sampling or d) cluster sampling [14]. A pure
random sampling, where the sample locations are selected in
a completely random fashion, allows one to obtain an unbiased
statistical sampling of the true underlying distribution of the
classes. However, it can be very expensive or impracticable
in real applications. Moreover, it tends to undersample rarely
occurring classes. In stratified sampling, a minimum number
of samples are collected for each class, ensuring that every
class is represented in the training set by a number of samples
that reflects the prior probability of the class. However, this
approach can also be impractical, because the location of the
different classes is usually available only after a land-cover
map has been generated. Systematic sampling is a method
in which the samples are selected on the basis of specified
locations (e.g., a regular grid) over the study area. In cluster
sampling, the ground surveys are conducted on the basis of
predefined geographical clusters, where multiple samples are
collected in close proximity to one another. Clear practical
advantages are offered by the last two sampling schemes,
which are often preferred in real applications. However, in
such cases, the geographical location of the samples clearly
influences the estimated probability of the classes P tr

(y) and
the conditional probability P tr

(x|y). Thus, a selection bias
that depends on the geographical location of the samples
determines a bias in both x and y, giving rise to the general
case of sample selection bias described in 4.

Another type of sample selection bias can occur when the
samples are selected on the basis of natural classes, which are
not taken into account in the classification problem. Consider
as an example a classification problem where the goal is to
classify a RS image according to the information classes: “veg-
etation” versus “rest”. The two information classes contain
several natural classes, e.g., the class “vegetation” contains
the classes “grass”, “forest”, “agriculture fields”, etc., which
are not considered in the problem. The class “rest” can contain
a high variety of different classes like “urban area”, “water”,
“shadow”, etc. However, the ground data collection may result
in biased training samples for the class “vegetation” for in-
stance, because only “grass” or “forest” pixels are considered,
without including examples of “agriculture fields”. This, will
produce a biased training set that does not correctly model
the real distribution of the classes. This type of selection bias
directly affects the estimation of the conditional probabilities,
i.e., P tr

(x|y) 6= P (x|y).
In this work we investigate and compare the use of AL and

SSL for addressing classification problems characterized by
small and biased training set. In our experimental analysis we
will compare the two learning paradigms considering different
data sets and biased training sets.

III. SEMI-SUPERVISED LEARNING METHODS

Two main families of learning can be used for training a
classifier: supervised learning methods (when labeled training
samples are given) and unsupervised learning methods (when
only unlabeled samples are available). Semi-supervised learn-
ing is between supervised and unsupervised learning, i.e., both

labeled and unlabeled samples are available and are jointly
leveraged by the classification algorithm [15]. The main idea
of SSL is to exploit the structural information of unlabeled
samples in the feature space to better model the distribution
of the classes and to find a more accurate classification
rule than using only labeled samples. Many semi-supervised
classification techniques have been proposed in the literature
so far. The main SSL methods are briefly summarized in the
next subsections.

A. State of the Art of Semi-Supervised Learning

The SSL methods presented in the literature can be grouped
into the following main categories: 1) self-training, 2) co-
training, 3) generative probabilistic models, 4) semi-supervised
SVM, and 5) Graph-based SSL. More information about semi-
supervised classification can be found in [15], [16].

1) Self-training: one of the earliest ideas about using unla-
beled data in the classification is self-training [15], [17]–[19].
This approach consists in an algorithm that repeatedly uses a
supervised learning method. It starts by training on the labeled
samples only. Then, at each iteration a part of the unlabeled
samples is labeled according to the current decision function
and added to the training set. Typically the most confident
unlabeled samples, together with their predicted labels, are
added to the training set. Then the classifier is re-trained using
the additional labeled samples and the procedure is repeated.
Self training is a wrapper algorithm and can be used with any
supervised classifier. In [20], a self-training technique for the
classification of hyperspectral images is proposed. The method
operates in two steps: in the first step, confident candidate
unlabeled samples are selected on the basis of spatial and
spectral information; in the second step, an AL method is
adopted for selecting the most informative samples among the
candidate ones to be included in the training set.

2) Co-training: is based on the following assumptions: a)
the features can be split into two sets, b) each sub-feature
set is sufficient to train a good classifier, and c) the two
sets of features are conditionally independent given the class
[21]. Initially, two separate classifiers are trained with the
labeled data, on the two sub-feature sets, respectively. Each
classifier then classifies the unlabeled data, and provides to
the other classifier the most confident unlabeled samples with
their predicted labels. Each classifier is retrained with the
additional training examples given by the other classifier, and
the process is iterated. A variant of co-training is multi-view
learning [22]. In such a setting, the original set of features
is split into multiple subsets of features (called views) that
are used for training different classifiers. Iterative algorithms
similar to co-training can be used for SSL.

3) Generative probabilistic models: they are based on
the estimation of the joint probability P (x, y|✓) assuming a
particular model for the data (e.g., Gaussian mixture model),
where ✓ is the parameter vector of the model that should
be estimated from the observations. The estimation of the
parameter vector ✓ can benefit from the joint exploitation of
labeled and unlabeled samples. The final classification is then
performed on the basis of the Bayes rule. A popular method
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for the estimation of ✓ is the expectation-maximization (EM)
algorithm, which has been largely adopted also in RS [23]–
[25]. In [25], by assuming a Gaussian mixture model, Tadjudin
and Landgrebe used the iterative EM algorithm to estimate
model parameters from both labeled and unlabeled samples.
In terms of Fisher information, Shahshahani and Landgrebe
have proved that the additional unlabeled samples are helpful
for semi-supervised classification in the context of a Gaussian
maximum-likelihood classifier, under a zero-bias assumption
[24].

4) Semi-supervised SVM: are SSL techniques specifically
developed for SVM. In [26], the author proposes the trans-
ductive SVM (TSVM) for text classification. While traditional
SVM classifiers try to induce a general decision function for
a learning task given a set of training points, TSVM takes
into account a particular test set and try to minimize the
classification errors of just those particular examples (trans-
ductive inference). This is done by using both labeled training
samples and unlabeled test samples. The main idea is that
the decision boundary has to pass in low density regions and
this is obtained by adding to the standard SVM optimization
problem an additional regularization term on unlabeled data. In
[6], [27], the authors present the Progressive Semi-Supervised
SVM (PS3VM) classification method for addressing ill-posed
problems with SVM. Such a method adopts an iterative
algorithm for searching a reliable separating hyperplane in the
kernel space by exploiting unlabeled samples together with
their predicted labels. Given its iterative nature, the method is
closely related to the self-training approach. The details of this
method are presented in the next subsection. In [28], a semi-
supervised SVM classification technique is proposed, where
the learning phase is performed by optimizing the objective
function directly in the primal formulation, without exploiting
the dual representation that can be obtained with Lagrange
multipliers.

5) Graph-based SSL: define a graph where the nodes
are labeled and unlabeled samples, and edges reflect their
similarity. These methods usually assume label smoothness
over the graph to include cluster/manifold regularization. In
[29], a family of semi-supervised learning algorithms based on
manifold regularization is proposed. The proposed family of
learners can exploit the geometry of the marginal distributions
by taking advantage of the unlabeled samples. Within this
general framework, two specific families of algorithms are
proposed: the Laplacian Regularized Least Squares (LapRLS)
and the Laplacian SVM (LapSVM). In [7], the LapSVM
algorithm is applied to the classification of RS images.

B. Progressive Semi-Supervised SVM
The PS3VM method is considered for our theoretical and

experimental comparison with AL methods, because of its
conceptual simplicity, effectiveness and the possibility to relate
it easily with AL. For this reason, a more detailed description
of such a method is given here. For simplicity, we refer here to
binary classification problems. Generalization to the multiclass
case can be obtained via the standard OAA strategy [2].

PS3VM is based on an iterative algorithm, which is made of
three main phases: 1) Initialization (only the original training

samples are used); 2) semi-supervised learning (both the
original training sample plus originally unlabeled sample with
their predicted labels are considered); and 3) convergence.

1) Initialization: A standard SVM is trained using the
original training samples, by solving the following constrained
optimization problem:

min

w,⇠,b

1

2

kwk2 + C

nX

i=1

⇠
i

subject to: y
i

[w · �(x
i

) + b] � 1� ⇠
i

i = 1, ..., n

⇠
i

� 0

(1)

where w is a vector orthogonal to the separating hyperplane,
b is a bias term such that b/ kwk represents the distance of the
hyperplane from the origin, C is the regularization parameter,
� is function mapping the data into the feature space, ⇠

i

are slack variables and n is the number of training samples.
According to the sign of the resulting decision function (6),
pseudo labels are given to the unlabeled samples.

2) Semi-supervised Learning: After the initialization, for
any iteration until convergence, a set of samples from a pool
U of unlabeled samples are iteratively selected and added to
the training set together with their pseudo labels and removed
from the pool. Let us define the following sets of samples that
lie in the upper and lower side of the margin:

H
up

= {x|x 2 U , 0  f(x)  1)} (2)

H
down

= {x|x 2 U ,�1  f(x)  0)} (3)

At each iteration, ⇢ samples are selected from each side of
the margin. In particular, the ⇢ samples with f(x) closer to
1 are selected from H

up

and the ⇢ samples with f(x) closer
to -1 are taken from H

down

. This results in the selection of a
total of 2⇢ samples, which are named semi-labeled. The SVM
is then re-trained using both the n original training samples
and the m semi-labeled ones (accumulated until the current
iteration), according to the following problem:

min

w,⇠,⇠

⇤
,b

1

2

kwk2 + C

nX

i=1

⇠
i

+

mX

j=1

C⇤
j

⇠⇤
j

subject to: y
i

[w · �(x
i

) + b] � 1� ⇠
i

i = 1, ..., n

y⇤
j

[w · �(x⇤
j

) + b] � 1� ⇠⇤
j

j = 1, ...,m

⇠
i

, ⇠⇤
j

� 0.

(4)

The regularization parameter C⇤
j

for the semi-labeled patterns
increases in a quadratic way, depending on the number of
iterations that the associated semi-labeled sample x⇤

j

have been
assigned to the same label (see [27] for details). If the label
of a semi-labeled pattern x⇤

j

at iteration i is different from the
one at iteration i� 1, such a label is erased, and x⇤

j

is moved
back to the pool U .

3) Convergence: the iterative procedure is stopped when
both the number of mislabeled training samples and the
number of pseudo-labeled patterns which lie into the margin
band are lower or equal than � ·m, where � is a user-defined
parameter. When convergence is reached, the SVM is trained
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for the last time, according to the following minimization
problem:

min

w,⇠,⇠

⇤
,b

1

2

kwk2 + C

nX

i=1

⇠
i

+ C⇤
max

mX

j=1

⇠⇤
j

subject to: y
i

[w · �(x
i

) + b] � 1� ⇠
i

i = 1, ..., n

y⇤
j

[w · �(x⇤
j

) + b] � 1� ⇠⇤
j

j = 1, ...,m

⇠
i

, ⇠⇤
j

� 0

(5)

where the entire set of semi-labeled samples is associated with
the same regularization parameter C⇤

max

.

IV. ACTIVE LEARNING METHODS

AL is an approach to iteratively select the most informative
samples for defining a training set by exploiting the classifi-
cation rule [8]–[11], [30]. Using the formalism introduced in
the section II, AL consists in actively controlling the selection
variable s in order to select informative samples making use
of the learner’s feedback. In this way, the selection focuses on
the most uncertain and diverse samples, therefore avoiding the
labeling of redundant and non-informative samples. It is worth
noting that AL does not lead to unbiased training sets, as we
would obtain from a completely random selection strategy. AL
aims instead at minimizing the number of training samples
to be labeled in order to obtain a satisfactory classification
accuracy. To this end, different AL methods aim at annotating
the samples that can lead to the highest gain in classification
accuracy. The focus is therefore usually on obtaining a better
estimate of the posterior probability P (y|x) rather than a good
estimate of the generative model P (x, y).

In order to precisely describe the workflow of a general
AL process, let us model it as a quintuple (G, Q, S, T ,
U ) [31]. G is a supervised classifier, which is trained with
the training set T . Q is the query function used to select
the most informative unlabeled samples from a pool U of
unlabeled samples on the basis of the current classification
results. S is a supervisor who can assign the (true) class label
to any unlabeled sample of U (e.g., a human expert). The AL
process is an iterative process, where the supervisor S interacts
with the classification system by labeling the most informative
samples selected by the query function Q at each iteration. At
the first stage, an initial training set T made up of few labeled
samples is required for the training of the classifier G. After
initialization, the query function Q selects a set of samples
from the pool U and the supervisor S assigns them the true
class labels. Then, these new-labeled samples are included into
T and the classifier G is retrained using the updated training
set. The closed loop of querying and retraining continues until
a stopping criterion is satisfied. Algorithm 1 gives a description
of a general AL process.

A. State of the Art of Active Learning
The query function Q constitutes the core of each AL

technique. Several query functions have been proposed so
far in the machine learning literature. Most of these works
have focused on the selection of one sample to be labeled
in each iteration. To this end, different criteria have been

Algorithm 1 Active Learning Procedure
1: Train the classifier G with the initial training set
2: Classify the unlabeled samples of the pool U
3: repeat

4: Query a set of samples (with the query function Q)
from the pool U

5: The user S manually label the selected samples
6: the new labeled samples are added to the training set T
7: Re-train the classifier G
8: until a stopping criterion is satisfied

adopted for selecting the (expected) most informative sample.
One of the first strategies introduced in the literature is based
on uncertainty sampling [32], which aims at selecting the
closest sample to the decision boundary. In the probabilistic
approach presented in [32], the posterior probability of the
classes is estimated for both obtaining the classification rule
and to estimate the uncertainty of unlabeled samples. In the
two-class case, the query of the most uncertain samples is
obtained by choosing the samples associated to a posterior
probability that is closest to 0.5, since this value corresponds
to the classifier being most uncertain of the correct class label.
The same principle has also been used in the context of SVM
classification [33]–[35]. The SVM classifier is particularly
suited to AL due to its intrinsic high generalization capabilities
and because its classification rule can be characterized by a
small set of support vectors that can be easily updated over
successive learning iterations. The query strategy proposed in
[35] is based on the splitting of the version space: the points
which split the current version space into two halves having
equal volumes are selected at each step, as they are likely to be
the actual support vectors. Three heuristics for approximating
the above criterion are described; the simplest among them
selects the point closest to the hyperplane as in [34].

Another strategy is query by committe (QBC) [36], [37].
A committee of classifiers using different hypothesis about
parameters is trained to label a set of unknown examples. The
algorithm selects the samples where the disagreement between
the classifiers is maximal. In [38], two query methods that
combine the idea of query by committee and that of boosting
and bagging are proposed. In [31], an approach is proposed
that estimates the uncertainty level of each sample according to
the output score of a classifier and selects only those samples
whose outputs are within the uncertainty range. In [39], the
authors present possible generalizations of the active SVM
approach to multiclass problems. A survey of several existing
methods is available in [40].

Other studies have focused on the selection of batches
of samples at each iteration, which allow one to speed up
the learning process. In this latter setting, the overlap of
information among the selected samples has to be considered
in order to evaluate their expected information content. Brinker
introduced an SVM-based batch approach, which selects a
batch of samples that minimizes the margin while maximizing
their diversity [41]. The diversity is assessed considering
the kernel cosine-angular distance between points. Another
approach to consider the diversity in the query function is
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the use of clustering [42], [43]. In [42], an AL heuristic is
presented, which explores the clustering structure of samples
and identifies uncertain samples avoiding redundancy. In [44],
the authors select the batch of instances that maximizes the
Fisher information of a classification model, which leads to
a trade-off between uncertainty and diversity. In [45], batch
active learning is formulated as an optimization problem that
maximizes the discriminative classification performance while
taking into consideration the unlabeled examples. Azimi et. al
[46] used Monte-Carlo simulation to estimate the distribution
of unlabeled examples selected by a sequential policy and
query the samples that best matched such a distribution.

Active learning has been applied to a variety of real-world
problem domains, including text classification, information ex-
traction, video classification and retrieval, speech recognition
[40]. In recent years, AL has attracted the interest of the
remote sensing community, and it has mainly been applied to
the classification of multispectral and hyperspectral images.
In RS problems, the supervisor S is a human expert that can
derive the land-cover type of the area on the ground associated
to the selected patterns. No particular restrictions are usually
considered for the initial training set T and its size, since we
expect that the AL process can be started up with few samples
for each class without affecting the convergence capability.
This is a very important observation, because this property
does not apply to the use of SSL classification techniques
and thus one should be more careful on the original training
set before deciding to adopt a SSL technique. Analyzing this
issue is actually one of the main goals of this work and will be
further discussed in this paper. The pool of unlabeled samples
U can be associated to the whole considered image or to a
portion of it (for reducing the computational time associated
to the query function and/or for considering only the areas of
the scene accessible for labeling). The use of AL for RS data
classification has been investigated in [8]–[11], [30].

In remote sensing applications, several studies adopt an
uncertainty criterion in combination with SVM classifiers
for the definition of AL methods. This approach revealed
very effective in real RS problems and computationally very
efficient. The AL methods introduced in the machine learning
community for binary SVM classification [33]–[35] have been
extended to deal with multi-class problems. The technique
proposed in [8] selects the most uncertain sample for each
binary SVM (i.e., the one closest to the separating hyperplane)
in a One-Against-All (OAA) multi-class architecture. In [10],
different batch-mode AL techniques for the classification of
RS images with SVM are investigated. The investigated batch-
mode methods make use of different query functions, which
are based on both the uncertainty and diversity criteria. The
Multiclass-Level Uncertainty (MCLU) method is introduced,
which is an effective extension of the uncertainty criterion
to address multi-class problems using a OAA multi-class
architecture of binary SVMs. The method proposed in [10]
is based on clustering in the kernel space to select diverse
samples. The most uncertain sample from each cluster is
selected to be included in the batch of samples to be queried.
Such a technique is named Multiclass-Level Uncertainty with
Enhanced Clustering Based Diversity (MCLU-ECBD). A brief

description of this method is given in the next subsection.
In [30], two AL techniques for multi-class RS classification
problems are proposed. The first technique is margin sampling
by closest support vector, which selects the most uncertain
unlabeled samples that do not share the closest support vector.
The second technique follows the idea of QBC with bagging
presented in [38]. Such method is extended to deal with
multi-class problems by using the entropy as a measure
of disagreement. The samples are selected according to the
maximum disagreement between a committee of classifiers,
which is obtained by bagging: different training sets are drawn
with replacement from the original training data and used
for training different supervised classifiers. In [9], an AL
technique is presented, which selects the unlabeled sample
that maximizes the information gain between the a posteriori
probability distribution estimated from the current training
set and the training set obtained by including that sample
into it. The information gain is measured by the Kullback-
Leibler (KL) divergence. This KL-Maximization technique
can be implemented with any classifier that can estimate
the posterior class probabilities. In [11], a cluster-assumption
based AL method is proposed. Basically, it exploits the fact
that if patterns are in the same cluster, they are likely to be of
the same class [15]. The query function of this method aims
therefore at selecting the most uncertain samples that lie in
low-density regions of the feature space. It is worth noting that
the cluster assumption, which is usually considered in semi-
supervised classification, is seldom used in the definition of
query functions in AL. Di et al. [47] investigate AL methods
based on multiview disagreement, which exploits the idea of
QBC. In this case, the committee of classifiers is derived
by using multiple views, i.e., different disjoint subsets of
features. The paper investigates different approaches to view
generation from hyperspectral images, including clustering,
random selection and uniform slicing methods. It is worth
noting that most of the multiview methods are applied to
SSL methods. However, the same concept can be used to
develop AL methods. In [48], the multiview-based AL method
is combined with a regularizer based on the manifold space
that penalizes rapid changes in the classification function close
to sample points (both in the spectral and spatial domain).

B. SVM-based Active Learning

We report here a more detailed presentation of SVM-based
AL methods, and in particular of the MCLU and MCLU-
ECBD methods [10], since they are considered in the remain-
der of the paper for the comparison with SSL techniques.

SVM is a binary classifier, which aims at dividing the
feature space into two subspaces (one for each class) using
a separating hyperplane. Given a training set T , the SVM is
trained by solving a quadratic programming problem [1]. The
decision rule used to classify unknown samples is based on the
sign of the obtained discrimination function f(x) = w ·x+ b,
associated to the hyperplane. An important property of SVMs
is related to the possibility to project the original data into a
higher dimensional feature space via a positive semidefinite
kernel function [3]. The training phase of the classifier can be
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formulated in a dual form as a minimization problem, which
lead to the calculation of the values of Lagrange multipliers
↵
i

associated with the original training patterns. After the
training, the discrimination function is given by

f(x) =
X

i2SV

↵
i

y
i

k(x,x
i

) + b, (6)

where SV is the set of support vectors, i.e., the subset of the
training samples associated to ↵

i

> 0. As mentioned before,
one of the first and most effective criteria in AL is based on
the evaluation of the uncertainty of the samples. The most
uncertain samples have the lowest probability to be correctly
classified by the current classification model and are therefore
the most useful to be included in the training set. The imple-
mentation of such a criterion with a binary SVM, results in the
selection of the sample x⇤ 2 U that lie closest to the separating
hyperplane, i.e., x⇤

= argmin

x2U |f(x)|. In order to extend
the approach to deal with multiclass problems, we consider the
OAA architecture [2], which involves a parallel architecture
of SVMs, one for each information class. Each SVM solves
a two-class problem defined by one information class against
all the others. The MCLU technique selects the expected most
informative sample according to a multiclass confidence value,
which is defined on the basis of the discrimination function of
the binary SVMs. An effective confidence measure is defined
as

c(x) = f1(x)� f2(x), (7)

where f1(x) and f2(x) are the first and second highest output
score of the binary SVMs in the OAA architecture. Similarly
to the binary case, querying the sample that minimizes c(x)
results in the selection of the sample that is closest to the
boundary between the two most probable classes. In the
selection of more than one sample per iteration (batch-mode
AL), a diversity criterion should be considered in order to
avoid redundancy among the samples in the batch. MCLU-
ECBD is an effective technique that combines MCLU with
a diversity criterion based on kernel k-means clustering [10].
The method operates in two steps: 1) in the first step the m
most uncertain samples are selected according to MCLU, 2)
in the second step, h < m diverse samples are selected by
applying kernel k-means clustering to the uncertain samples
for defining h different clusters, and finally taking the most
uncertain sample from each cluster.

V. ACTIVE VERSUS SEMI-SUPERVISED LEARNING

In this Section, we present an analysis of AL and SSL,
where we highlight commonalities and differences between
the two learning paradigms in the context of a conceptual
framework adopted for describing the workflow of the two
approaches. As a result of our analysis, we also propose
a novel SSL algorithm that improves the Progressive Semi-
Supervised Support Vector Machine (PS3VM) by integrating
concepts that are usually considered in AL methods. Finally,
we investigate different strategies for combining AL and SSL.

A. Analysis of Commonalities and Differences between AL and
SSL

We already noted that both active and semi-supervised clas-
sification methods aim at solving ill-posed problems. However,
the two approaches share commonalities not only in their
ultimate goal, but often they implement similar concepts in
their algorithms as well. The more relevant similarity is related
to the iterative procedure, which is implicit in AL methods,
and is adopted by most SSL methods as well (e.g., self-
training, co-training, multiview-based methods, EM algorithm
for semi-supervised generative models, and semi-supervised
SVMs like PS3VM). Several methods share common prin-
ciples to assess the uncertainty of the samples, e.g., the
distance to the classification hyperplane in the context of
SVM classification, or the classifier agreement in co-training,
multiview or committee of classifiers. In general, we can
describe both AL and iterative SSL classification methods
using a unified conceptual framework based on the quintuple
(G, Q, S, T , U ) as done in Section IV. The framework is
graphically represented as a block diagram in Figure 1. This
will help us to analyze the two approaches synthesizing their
main properties. To simplify our analysis, we will focus here
on iterative SSL methods like self-training and PS3VM.

Ti classification
+

Ti+1
train predict

U

G

QS(AL)/
G(SSL)

Fig. 1. Block diagram describing the conceptual framework for AL and SSL.

In such a framework, the main difference between AL and
SSL approaches is in the supervisor S. In AL, the labeling of
the queried samples is carried out by a human expert S, which
is supposed to be able to associate the correct label to any
selected pattern. The selection of the least confident samples
is typically adopted, completely relying on the capability of
the human expert to provide their correct labels. This is based
on the observation that from the information theory, the most
uncertain samples are those more informative. In SSL the
labels of selected patterns are predicted on the basis of the
current classification rule, i.e., the supervisor S coincides
with the classifier G. However, the classifier G cannot be
considered completely reliable in assigning the correct label
to any sample. In general, the label reliability depends on the
particular selected sample. For this reason, the query function
Q used in AL and SSL are usually based on very different
or even opposite criteria. In the case of self-training, the
criterion used by Q usually selects samples with the most
confident label given by the classifier. This means that a
conservative selection is operated in order to avoid introducing
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possibly wrong semi-labeled samples in the training set and
thus decreasing the accuracy of the classification system. Very
similar observations can be done about co-training or multi-
view methods, which use a committee of classifiers trained on
the different views to evaluate the confidence of the samples
by considering the committee agreement. In SSL methods, the
samples associated with the highest agreement among classi-
fiers (most confident samples) are selected. On the contrary,
multiview-based AL methods select the samples associated
with the highest disagreement (most uncertain samples). The
case of PS3VM is more peculiar with respect to standard self-
training or multiview methods, because the sample selection
is based on a trade-off between label prediction confidence
and expected information content. Very confident samples
(very distant from the hyperplane) are associated to very low
probability of becoming support vectors at the next iterations
and their expected information content is therefore very low.
On the basis of this observation, in PS3VM, Q selects the
samples that lie furthest from the discriminating hyperplane,
but fall inside the margin (most certain among informative
samples). A graphical representation of the above-mentioned
query strategies is reported in Figure 2. For the aforementioned
reasons, a semi-supervised approach usually requires several
more iterations (and samples) than AL in order to reach the
convergence.

self-training selection

AL selection

PS3VM selection

Fig. 2. Sample selection by the query function with different SSL and AL
strategies.

Let us now point out the main general differences between
the two learning paradigms. Differences mainly reside in their
implicit assumptions, which is very important to be aware of
before applying these approaches to real data. The main as-
sumption of AL is that the supervisor is infallible, i.e., it is able
to correctly label any selected sample. In real applications, it is
important to correctly design the classification system in order
to minimize possible ambiguities for the human annotator and
give him the possibility to reject the samples that he is not
able to annotate. However, adopting the standard assumption
on the supervisor, AL methods can reach the convergence,

without particular requirements on the initial training set and
the underlying data distribution. This is generally not true in
the case of SSL. The different SSL methods we described in
Section III share common prerequisite in order to be effective,
i.e., to obtain more accurate predictions by incorporating the
unlabeled samples in the learning process with respect to stan-
dard supervised algorithms. Basically, the unlabeled data has
to carry information that is useful in the inference of the right
information class of unknown samples, i.e., P (x) has to carry
information about P (y|x). In general, the basic assumption
for using SSL is the so-called cluster assumption, which states
that if patterns are in the same cluster, they are likely to be
of the same class [15]. Note that the cluster assumption does
not imply that each class forms a single, compact cluster: it
only means that, usually, we do not observe objects of two (or
more) distinct classes in the same cluster. This assumption can
be equivalently formulated in the following way (also called
low-density separation assumption): the decision boundaries
among classes should lie in low-density regions of the feature
space. The equivalence is easy to see: a decision boundary
in a high-density region would cut a cluster into two different
classes. Although the two formulations of the same assumption
are conceptually equivalent, they inspired different algorithms
(e.g., generative probabilistic models are inspired by the
cluster assumption, whereas the TSVM implments the low-
density separation assumption) [15]. If the cluster assumption
does not hold, semi-supervised learning will not yield an
improvement over supervised learning. It might even happen
that using unlabeled samples, the SSL algorithm degrades the
classification accuracy by misguiding the inference.

B. Incorporating AL concepts in SSL

On the basis of our analysis, we propose a novel SSL
algorithm by incorporating in the PS3VM concepts that are
commonly adopted in batch-mode AL. In particular, we pro-
pose to integrate the diversity criterion and a multiclass-
based confidence measure in the semi-labeled sample selection
process of the PS3VM algorithm.

The PS3VM algorithm may require the inclusion of several
semi-labeled samples in the training set before reaching the
convergence. If many unlabeled samples are available, as it
is usually the case in RS classification problems, this can
result in a high number of iterations and therefore a slow
training phase. In order to reduce the number of iterations
to reach convergence, we introduce the use of a diversity
criterion in the second phase of the algorithm for minimizing
the redundancy among the selected semi-labeled samples.
Moreover, we note that in original PS3VM algorithm, multi-
class problems are addressed by running the iterative learning
process independently for each binary classifier of an OAA
architecture and combining the results only at the end, when
all binary PS3VMs have reached the convergence. We propose
a variant of the original algorithm that considers a multiclass
confidence measure for semi-labeled sample selection, which
is based on the MCLU AL algorithm. In this way, we run a
single iterative learning process where an OAA architecture
of binary SVMs is trained at every iteration considering both
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labeled and semi-labeled samples. Semi-labeled samples are
selected considering the multiclass confidence measure defined
in equation (7) in combination with a diversity criterion. Let
us define the set of samples H as follows:

H = {x|x 2 U , 0  c(x)  2)}. (8)

H is defined in this way such that in the binary case when
using an OAA ensemble of two SVMs, we have that H =

H
up

[ H
down

, i.e., H contains all the samples inside the
margin. We define the set of candidate semi-labeled samples
J by taking � samples from H with c(x) closer to 2 (i.e.,
the ones closer to the margin). Then, we select ⇢ < �
diverse samples among the � candidates with an incremental
procedure. In the first step, we initialize the set of selected
samples X with the sample x

up

= argmax

x2J

c(x). Then we
incrementally include in X the sample of J that minimizes the
similarity with the closest sample already included in that set.
The similarity between two samples is computed considering
the kernel cosine-angular similarity [41]:

k⇤(x,x
i

) =

k(x,x
i

)p
k(x,x)k(x

i

,x
i

)

, (9)

where k(·, ·) is a positive semidefinite kernel function. The
process is stopped when ⇢ samples are included in X . The
sample selection process is described in Algorithm 2. After the
selection of the semi-labeled samples, the SVM is re-trained
as in the original algorithm. In the reminder of the paper we
refer to this SSL algorithm with diversity as PS3VM-D.

Algorithm 2 Semi-Labeled Sample Selection in PS3VM-D
1: x

up

= argmax

x2J

c(x)
2: X = {x

up

}
3: repeat

4: x

up

= argmin

x2J\X {max

xi2X k⇤(x,x
i

)}
5: X = X [ {x

up

}
6: until |X | = ⇢

C. Combining AL and SSL

AL and SSL methods can be combined in order to define a
learning framework that exploits both labeled and semi-labeled
samples for the training of the classifier and for selecting new
samples to be labeled by the user. Few studies in this direction
have been reported in the following articles [49]–[52]. In
[49], the QBC AL algorithm is combined with EM SSL for
assigning class labels to the samples that remain unlabeled.
The method is applied to text classification problems. Muslea
et al. extended this idea by using multiple views for both active
and semi-supervised learning [50]. In [51], AL and SSL are
combined on the basis of a confidence score obtained by a
boosting algorithm. The method is applied to spoken language
classification problem. In [52], at each iteration of the AL
process new labeled samples are added to the training set
together with pseudo-labeled samples. Many different ways
for combining AL and SSL are actually possible. Here, we
point out some strategies that can be effective in RS problems.

• Sequential application of AL and SSL. A simple strategy
to combine the two approaches is to execute them se-
quentially. AL is applied first for a number of iterations
in order to include t additional labeled samples in the
training set. Afterwards, a SSL method is executed. In
this way, AL is used to build a sufficiently represen-
tative training set and then SSL is adopted for further
increasing the classification accuracy by leveraging the
information of unlabeled samples. Given that SSL has
critical requirements on the initial training set in order
to reach convergence, this approach has the advantage
to adopt AL in order to set SSL in the right condition to
effectively use the unlabeled samples in the second phase.

• Interleaved approach. This strategy generalizes the pre-
vious one by interleaving the application of AL and SSL.
AL is first used for a given number of iterations in order
to include t1 labeled samples in the training set. Then
SSL is adopted for selecting t2 semi-labeled samples.
The two phases of AL and SSL can be alternated multiple
times. Given the characteristics of SSL, we expect that
in general t2 >> t1.

• SSL encapsulated in the AL process. One can easily com-
bine the two approaches by considering a SSL algorithm
for the classifier G in the AL framework. This strategy is
similar to the previous one by setting t1 = 1 (or the batch
size for batch-mode AL) and starting the process from the
second phase (SSL phase). The method presented in [50]
is a special case of this general strategy.

• Collaborative AL and SSL. At every iteration, new sam-
ples labeled by the user are considered together with
semi-labeled samples for the training of the classifier.
Different selection criteria for labeled and semi-labeled
samples can be combined giving rise to different tech-
niques. The techniques presented in [51], [52] are special
cases of this general combination strategy.

VI. EXPERIMENTAL ANALYSIS

The aim of our experimental analysis is to analyze and
compare SSL and AL in different classification problems and
to derive some insight about which approach is more appro-
priate according to the specific classification problem and the
available initial training set. We considered both synthetic data
and real multispectral and hyperspectral RS images associated
with different classification problems. We used different initial
training sets with different sizes and characterized by different
types of sample selection bias. The experiments are carried out
in order to emphasize the conditions where SSL can improve
standard supervised methods and where this is not possible. In
this latter case, in order to improve the classification accuracy,
the manual labeling of new samples becomes necessary and
AL can be adopted for selecting the most informative ones
and guiding the user in the sample collection. We consid-
ered both binary and multiclass classification problems. As
a baseline for our comparison we considered a standard
supervised SVM classifier. As AL methods we considered
MCLU and MCLU-ECBD methods. As SSL technique we
adopted PS3VM and the proposed PS3VM-D algorithm. A
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deeper analysis is performed on the considered hyperspectral
data set by comparing different AL methods, considering
also multiview-based methods, and providing results on the
combination of AL with SSL using two different strategies. In
all our experiments we run the AL and SSL techniques using
ten different initial training sets and from them we derived
averaged results. An RBF kernel function was adopted for
all the experiments. In the experiments with AL methods, the
model selection was performed at the first iteration using a
grid-search for tuning the width of the RBF kernel and the
regularization parameter. For the SSL techniques, the model
selection was performed in two steps: the first step was used
for tuning the parameters of the supervised SVM classifier,
the second for tuning the parameters of the semi-supervised
process. In all cases, we tuned the parameters of the classifiers
for the optimization of the overall classification accuracy on
the validation set.

A. Two-moon toy data set
We generated five different synthetic data sets in a bi-

dimensional feature space varying the distance between the
distributions of two intertwining moons (see Figure 3) and
then carried out five different experiments accordingly. In this
way, we analyze the capability of AL and SSL methods to
cope with classification problems where the cluster assumption
is becoming less and less acceptable. For each of these five
experiments we generated 6000 samples (3000 for each class).
1000 samples were used in the test set. From the remaining
5000 samples, we derived ten different training sets of 20
samples and a validation set of 20 samples by randomly
selecting samples in the box 0.3 < x < 0.3,�0.4 < y < 0.4,
i.e., in the region where the two moons are closer. In this way
we generated training samples affected by sample selection
bias. The remaining 4960 samples were used as pool without
considering their labels in the experiments. We evaluated the
distance between the samples of the two classes in the five
experiments computing the Jensen-Shannon divergence [53]
(see the second column of Table I). The obtained distances
confirm the fact that the distributions of the two classes are
becoming closer and closer in the various experiments (making
the cluster assumption less and less true). Figures 4 and 5
report the curves of the overall accuracies (OAs) (averaged
over ten trials) versus the number of semi-labeled samples
in the five experiments obtained with PS3VM and PS3VM-D
methods, respectively. Figure 6 reports the learning curves
obtained with AL (MCLU-ECBD). From the obtained results
we can easily observe that the AL method converged to very
high classification accuracy (more than 99% of OA) in all five
experiments after labeling about 120 samples. The complexity
of the classification problem, i.e., the lower distance between
the two classes in the five different experiments, affected only
the number of samples needed by the algorithm to reach
the convergence, but not the convergence capability. On the
contrary, SSL methods are are much more sensitive to the
distance between the distribution of the two classes. In particu-
lar, we observe that in experiment 1 the PS3VM process could
converge to high classification accuracy, significantly improv-
ing the performance of the supervised SVM. In experiments

2 and 3 the PS3VM technique improved the classification
accuracy of SVM by approximately 20%. In experiment 4
the convergence accuracy is reduced to about 64%, while in
experiment 5 the PS3VM decreased the classification accuracy
obtained by the supervised SVM. The PS3VM-D led to
similar accuracies as the original PS3VM algorithm. However,
it significantly reduced the number of semi-labeled samples
necessary to reach convergence. As expected, the standard
supervised technique led to poor accuracy in these ill-posed
classification problems. All averaged results are summarized in
Table I. Figures 7 and 8 show the distribution of unlabeled and
semi-labeled samples at different iterations of experiment 1
using the SSL algorithms PS3VM and PS3VM-D, respectively.
From these figures, it is clear that the diversity-based SSL
method better explores the real distribution of the classes and
converges with a lower number of iterations. Figure 9 shows
the distribution of unlabeled and labeled points at different
iterations of experiment 1 using AL. In this case, very few
iterations are sufficient for exploring the distributions of the
two classes and reaching the convergence.
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Fig. 4. Average (over ten trials) overall accuracy on the test set versus the
number of semi-labeled training samples used by the classifier in the five
experiments using PS3VM (Two-moon toy data set).

B. Multiclass toy data set
We generated six different data sets in a two-dimensional

feature space with four Gaussian-distributed classes. A pool
and a test set are randomly generated by drawing 200 data
points for each class from four Gaussian distributions with
mean (0, 0), (0, 1), (1, 0), (1, 1), and standard deviation �
varying from 0.01 to 0.15. Increasing values of � determine
increasing overlap between the distributions of the classes,
making the cluster assumption less and less valid. Sets of
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Fig. 3. Distribution of the synthetically generated samples. Dark points refer to the pool, while bright colored (red and blue) ones refer to the training set
(Two-moon toy data set).
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Fig. 7. Distribution of unlabeled and semi-labeled data at different iterations using the PS3VM method for experiment 1: a) original training set, b) 600
semi-labeled points, c) 1200 semi-labeled points, and d) 1800 semi-labeled points.
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Fig. 8. Distribution of unlabeled and semi-labeled data at different iterations using the PS3VM-D method for experiment 1: a) original training set, b) 300
semi-labeled points, c) 500 semi-labeled points, and d) 1000 semi-labeled points.

TABLE I
OVERALL ACCURACIES AVERAGED OVER TEN TRIALS OBTAINED BY THE

CONSIDERED SUPERVISED, AL AND SSL TECHNIQUES IN THE FIVE
EXPERIMENTS. THE SECOND COLUMN REPORTS THE JENSEN-SHANNON

DIVERGENCE BETWEEN TRAINING SAMPLES OF THE TWO CLASSES. (TWO
MOON TOY DATA SET).

Exp. JS-Divergence SVM PS3VM PS3VM-D AL
1 0.371 59.25% 94.02% 96.24% 99.95%
2 0.361 51.37% 76.80% 78.55% 99.95%
3 0.341 55.87% 76.29% 66.67% 99.87%
4 0.314 47.85% 64.24% 56.82% 98.57%
5 0.305 55.97% 43.77% 30.76% 98.57%

samples of different sizes are selected with bias from the pool
to define different training and validation sets. The selection
bias in the definition of the training sets affects the estimation
of the probability P tr

(x|y). For each of the six experiments,
we obtained different training sets made up of 1, 2, 4, 8,
16 samples per class. Figure 10 shows the distribution of
the pool and training samples in the case of 8 samples per

class. We compared the standard supervised SVM with the
MCLU and PS3VM methods in the different classification
problems defined by the values of � and the number of training
examples. Given the small number of samples and the limited
complexity of the data set, diversity in not considered in these
experiments.

The obtained results are reported in Table II. The clas-
sification accuracies obtained by supervised SVM strongly
depend on both the complexity of the classification problem
(here represented by the value of �) and the number of
available training samples. Very high accuracies are obtained
with small values of �, because the classification problem is
not very complex. The accuracies decrease significantly by
increasing the values of �. The SSL method was effective in
problems characterized by low/moderate overlap among the
classes and sufficient number of training samples, leading to
gain in accuracy up to 4.4% w.r.t. SVM. For complex problems
with highly overlapping classes and few training samples, the
SSL can also decrease the performance of supervised learning
reducing the OA up to 3.3%. As expected, the AL method
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Fig. 9. Distribution of labeled data at different iterations of the AL method (MCLU-ECBD) for experiment 1: a) original training set, b) 40 labeled points,
c) 60 labeled points, and d) 70 labeled points.
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Fig. 5. Average (over ten trials) overall accuracy on the test set versus the
number of semi-labeled training samples used by the classifier in the five
experiments using PS3VM-D (Two-moon toy data set).

reached classification accuracies (computed after labeling 100
samples) that are almost independent from the initial training
set. They only depend on the overlap of the distribution of the
classes.

C. Multispectral remote sensing data set
We considered a Quickbird image acquired in 2006 over a

portion of the urban area of the city of Trento, Italy (see Figure
11). The four multispectral bands have been transformed to
the same spatial resolution of 0.7 m as the panchromatic band
using a GramSchmidt pan-sharpening procedure [54]. The size
of the image is 2000 ⇥ 2000 pixel. From the original spectral
bands three textural features have been extracted and stacked
to the feature vector with the four multispectral bands and
the panchromatic band. We defined a binary classification
problem aimed to distinguish the two classes “urban area”
and “rest” (mainly vegetation). The available labeled samples
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Fig. 6. Average (over ten trials) overall accuracy on the test set versus the
number of training samples used by the classifier in the five experiments using
AL (Two-moon toy data set).

consist of ten initial training sets containing 40 samples for
each experiment, a validation set with 64 samples, a pool
with 5986 samples, and a test set with 14435 samples. We
performed four different experiments varying the distribution
of the initial training samples, thus simulating four different
levels of sampling bias. In the first experiment, the initial
training samples were randomly selected with uniform dis-
tribution from all the available samples in order to model
the real distribution of the classes (no sampling bias). In the
other experiments we selected training samples that are less
and less representative of the real distribution of the classes,
creating the conditions of a sample selection bias problem.
This is obtained by selecting samples that belong only to
one specific type of building, i.e., red roof buildings, for
representing the class “urban area”, and one specific type of
agriculture field to represent the class “rest”. Figure 12 reports
the distribution of the training set and the pool (considering
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Fig. 10. Distribution of the synthetically generated samples. Dark points refer to the pool, while bright colored ones refer to the training set (Multiclass toy
data set).

TABLE II
OVERALL ACCURACIES OBTAINED BY SUPERVISED SVM IN THE DIFFERENT CLASSIFICATION PROBLEMS (MULTICLASS TOY DATA SET).

SVM Number of training samples per class
� 1 2 4 8 16

0.01 99.1% ±2.4 99.1% ±1.8 99.9% ±0.1 100.0% ±0.0 100.0% ±0.0

0.02 96.3% ±4.6 97.6% ±2.5 99.2% ±0.7 99.8% ±0.2 99.8% ±0.2

0.03 90.3% ±7.1 88.5% ±7.3 95.0% ±2.6 96.4% ±0.9 97.6% ±0.8

0.05 81.9% ±7.1 83.6% ±4.7 87.1% ±4.6 90.2% ±2.0 88.9% ±1.5

0.09 73.0% ±6.8 72.1% ±4.7 76.2% ±4.2 77.9% ±2.6 79.0% ±3.2

0.15 64.0% ±6.1 63.4% ±4.0 66.6% ±3.7 68.0% ±2.7 66.7% ±2.1

TABLE III
OVERALL ACCURACIES OBTAINED BY THE SSL METHOD IN THE DIFFERENT CLASSIFICATION PROBLEMS (MULTICLASS TOY DATA SET).

PS3VM Number of training samples per class
� 1 2 4 8 16

0.01 99.5% ±0.8 100.0% ±0.1 99.6% ±0.6 100.0% ±0.0 100.0% ±0.0

0.02 98.2% ±1.4 98.7 % ±1.3 99.3% ±1.4 100.0% ±0.0 100.0% ±0.1

0.03 91.9% ±6.5 91.2 % ±7.1 97.8% ±0.7 98.0% ±0.7 98.8% ±0.3

0.05 84.8% ±5.1 81.3 % ±6.1 91.5% ±2.5 92.5% ±1.8 92.4% ±1.2

0.09 72.9% ±7.7 68.8 % ±6.9 79.8% ±2.2 80.0% ±2.5 81.1% ±3.2

0.15 63.8% ±6.1 61.6 % ±4.2 68.3% ±2.5 68.6% ±2.9 67.4% ±2.0

TABLE IV
OVERALL ACCURACIES OBTAINED BY THE AL METHOD IN THE DIFFERENT CLASSIFICATION PROBLEMS AFTER LABELING 100 SAMPLES (MULTICLASS

TOY DATA SET).

MCLU Number of training samples per class
� 1 2 4 8 16

0.01 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0

0.02 100.0% ±0.1 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0 100.0% ±0.1

0.03 99.7 % ±0.1 99.6 % ±0.3 99.7 % ±0.2 99.5 % ±0.3 99.7% ±0.2

0.05 96.5 % ±1.1 96.6 % ±0.7 97.1 % ±0.8 97.0 % ±0.7 96.7% ±0.5

0.09 88.5 % ±1.7 88.9 % ±1.8 88.7 % ±1.6 89.0 % ±1.1 89.7% ±1.0

0.15 77.2 % ±5.2 78.8 % ±1.4 78.1 % ±1.9 79.7 % ±1.3 78.7% ±1.3

bands 3 and 4 of the multispectral image). Column two of
Table V shows the Jensen-Shannon Divergence in order to
evaluate the distance between the distribution of the pool and
training samples (averaged over both the ten trials and the
two information classes). There distances give us information
about the capability of the training set to model the real
distribution of the classes P (x|y). Note that in this case we
evaluated the distances between the distributions of the same
class considering the samples of the pool and the training set
(not the distance between the two classes as done for the two-
moon data set). The computed distance values confirm that
the training set samples become less and less representative
of the real distribution of the classes increasing the reference

number of the experiment.

Figures 13 and 14 show the behavior of the averaged
OA versus the number of semi-labeled samples added to
the training set obtained in the different experiments using
the PS3VM and PS3VM-D methods, respectively. From these
graphs we can observe that in the first experiment, where
the original training set can well represent the distribution
of the classes, the SSL algorithms could slightly increase the
accuracy of the supervised SVM classifier. In experiments 2
and 3, where the original training set does not properly model
the real distribution of the data, the SSL techniques performed
very well by increasing the accuracy of the standard SVM
by about 20%. In experiment 4, where the distribution of the
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Fig. 12. Distribution of training and pool samples considering bands 3 and 4 of the multispectral image for: a) experiment 1, b) experiment 2, c) experiment 3,
and d) experiment 4. (Multispectral RS data set).

training set is too far from the real one, PS3VM is not able to
effectively exploit the information of unlabeled samples and
does not improve the accuracy of the SVM. Conversely, the
PS3VM-D could still improve the accuracy of standard SVM.
We observe also on this data set that the diversity criterion can
generally speed-up the convergence of the iterative algorithm,
reducing the required training effort. In all experiments, the AL
technique was able to significantly increase the classification
accuracy of the standard SVM leading to an OA accuracy
higher than 98% (see Figure 15). This is possible at the
expense of additionally (manually) labeling about 80 samples
from the pool. Table V reports the OAs obtained by the
considered classifiers in the four experiments. As expected,
also with this data set we can observe that AL was able to
cope with different ill-posed classification problems. On the
contrary, the performances of SSL techniques can decrease
when the Jensen-Shannon Divergence is too high, i.e., the
training set is less representative of the real distributions of
the classes.

Figures 16 and 17 report the distribution of unlabeled and
semi-labeled samples at different iterations of the PS3VM
learning process for experiment 2 and 4, respectively. In

experiment 2, the SSL method can slowly explore the real
distribution of the classes (including few mislabeled samples
in the training set), converging to a good classification accu-
racy. In experiment 4, the PS3VM starts considering several
mislabeled samples after that 2000 samples are included in the
training set, causing therefore a decrease in the OA. Figures 18
and 19 show the distribution of unlabeled and labeled samples
at different iterations of the AL process for experiment 2 and
4, respectively. In such cases, the labeling of few samples close
to the decision boundary is sufficient to converge to a reliable
classification rule.

TABLE V
OVERALL ACCURACY (AVERAGED OVER TEN TRIALS) OBTAINED BY THE

DIFFERENT CONSIDERED AL AND SSL TECHNIQUES IN THE FOUR
EXPERIMENTS. (MULTISPECTRAL RS DATA SET).

Exp. JS-Divergence Supervised PS3VM PS3VM-D AL
1 0.062 95.29% 95.82% 96.59% 98.26%
2 0.179 70.81% 91.18% 93.58% 98.07%
3 0.264 60.02% 82.85% 79.12% 98.62%
4 0.315 58.60% 52.46% 73.24% 98.57%
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Fig. 18. Distribution of unlabeled and labeled data at different iterations of the AL process (MCLU-ECBD) for experiment 2 considering band 3 and 4. a)
original training set, b) 5 added labeled points, c) 25 added labeled points, and d) 100 added labeled points (Multispectral RS data set).

D. Hyperspectral remote sensing data set

The last data set is made up of a hyperspectral image
acquired by the Hyperion sensor of the EO-1 satellite in an
area of the Okavango Delta, Botswana. The considered image
has a spatial resolution of 30 m over a 7.7 km strip in 145
bands. For greater details on this data set, we refer the reader
to [9]. Reference labeled samples for 14 land-cover classes are
available for two spatially disjoint areas, which are referred in
the following as Area 1 and Area 2, representing two different
geographical areas with the same set of land-cover classes
characterized by slightly different distributions. The labeled
samples taken from Area 1 were randomly partitioned into two
sets T1 and V AL1 and the samples of Area 2 were similarly
partitioned into a training set T2 and a test set TS2, as in
[55] (see Table VI for detailed information). Starting from
T1, we derived ten initial training sets by subsampling it at

different rates from 5% to 50%. For each subsampling rate,
ten different initial training sets are obtained. We used T2 as
pool of unlabeled samples and TS2 as test set. In this way, we
have derived biased training sets, where the bias is caused by a
non-homogeneous sampling of the image in the spatial domain
between the training and test sets, as we have described in
Section II.

The mean OAs (averaged over ten trials for every ex-
periment) obtained with the different learning paradigms are
reported in Table VII. Both SSL methods improved the clas-
sification accuracies obtained by the supervised SVM in all
experiments except the first two. This confirms, once again,
the capability of SSL to improve the classification accuracies
of standard supervised methods, when the training samples
are few and biased. The experiments on this data set show the
effectiveness of SSL, when the sampling bias is due to the
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Fig. 11. True color composition of the considered Quickbird image.

dependence of the selection variable s from the geographical
location, which is a typical problem in the classification of RS
images. We observe that PS3VM-D performed slightly worse
than PS3VM in the first two experiments, but it reached higher
accuracies in all other cases. The average OA obtained by the
PS3VM-D versus the number of semi-labeled samples added
to the training set is shown in Figure 20 (for a significant sub-
set of experiments). The MCLU-ECBD AL method converged
to an accuracy above 96% after adding about 500 labeled
samples to the training set in all considered experiments.

We performed additional experiments in order to compare
different AL methods starting from the training sets of exper-
iment 10. We compared the OAs obtained by the following
methods: 1) random sampling (RAND), 2) MCLU, 3) MCLU-
ECBD (with batch-size five), 4) Multiview-based AL using
five views generated by correlation-partition-based clustering
as reported in [47] (Multiview C), and 5) Multiview-based
AL using five views randomly generated (Multiview R). All
methods except MCLU-ECBD are applied to the selection of
one sample per iteration. The obtained results (see Figure 21),
show that the MCLU-ECBD technique led to the highest OAs
compared to the other considered methods. The results confirm
the effectiveness of multiclass confidence used in the MCLU.
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Fig. 13. Average (over ten trials) overall accuracy on the test set versus the
number of semi-labeled samples considered by PS3VM classifier in the four
experiments. (Multispectral RS data set).

Moreover, the diversity approach adopted in MCLU-ECBD
results in being very effective in both reducing the training
effort and improving classification accuracies.

Finally, we performed other experiments in order to com-
bine AL with SSL with two different strategies: 1) sequential
strategy, and 2) SSL encapsulation in the AL process. In
the sequential approach AL is first used for a number of
iterations in order to include t additional labeled samples
in the training set. Afterward a SSL method is executed. In
our experiments, we first run the MCLU-ECBD and then the
PS3VM-D algorithm. In the second strategy, we encapsulated
the PS3VM-D algorithm (running 30 iterations) in the AL
process using MCLU-ECBD. Figure 22 shows the learning
curves obtained by the sequential strategy for different values
of t and by the SSL-encapsulation strategy. We notice that
the combination of the two approaches was effective in most
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Fig. 15. Average (over ten trials) overall accuracy on the test set versus the
number of training samples used by the classifier in the four experiments
using AL (MCLU-ECBD). (Multispectral RS data set).

of our trials. For small values of t (i.e., t = 10, 20, 30), the
application of SSL after AL could further increase the OA
by approximately 2-3%, without any additional labeling cost
for the user. For higher values of t (i.e, t = 90, 140), the
accuracy obtained with AL was already high and SSL could
scarcely improve it further. In those cases, only the selection of

TABLE VI
NUMBER OF AVAILABLE LABELED SAMPLES FOR THE HYPERSPECTRAL

REMOTE SENSING DATA SET.

Class
Number of Samples

Area 1 Area 2
T1 V AL1 T2 TS2

Water 69 57 213 57
Hippo Grass 81 81 83 18

Floodplain Grasses 1 83 75 199 52
Floodplain Grasses 2 74 91 169 46

Reeds 80 88 219 50
Riparian 102 109 221 48
Firescar 93 83 215 44

Island Interior 77 77 166 37
Acacia Woodlands 84 67 253 61
Acacia Shrublands 101 89 202 46
Acacia Grasslands 184 174 243 62

Short Mopane 68 85 154 27
Mixed Mopane 105 128 203 65
Exposed Soil 41 48 81 14

Total 1242 1252 2621 627

TABLE VII
MEAN AND STANDARD DEVIATION OF THE OVERALL ACCURACY

OBTAINED BY THE DIFFERENT CONSIDERED LEARNING PARADIGMS IN
THE TEN EXPERIMENTS USING INITIAL TRAINING SETS OF DIFFERENT

SIZES |T |. (HYPERSPECTRAL RS DATA SET).

Exp. |T | SVM PS3VM PS3VM-D MCLU-ECBD
1 58 70.3% ±4.3 73.2% ±3.6 69.1% ±7.2 96.6% ±0.5

2 116 74.1% ±2.4 76.1% ±2.2 74.7% ±6.6 96.4% ±0.6

3 174 74.7% ±2.7 76.3% ±3.0 78.0% ±4.5 96.5% ±0.8

4 232 74.2% ±2.8 75.7% ±2.2 76.0% ±5.4 96.4% ±0.6

5 290 74.7% ±1.3 76.3% ±2.0 78.4% ±2.6 96.0% ±0.6

6 348 74.9% ±2.2 75.9% ±2.2 78.7% ±3.6 96.5% ±0.7

7 406 75.8% ±1.9 77.0% ±1.8 78.9% ±2.4 96.1% ±0.6

8 464 75.7% ±1.4 77.6% ±2.0 80.9% ±1.4 96.6% ±0.4

9 522 75.7% ±1.0 77.5% ±0.9 81.0% ±1.0 96.6% ±0.4

10 580 76.3% ±0.1 78.1% ±0.1 81.1% ±0.2 96.6% ±0.3

very uncertain samples could further increase the classification
accuracy. The second strategy led to a small improvement with
respect to the standard MCLU-ECBD AL method, without any
additional labeling cost for the user.

VII. DISCUSSION

In this paper we have presented a comparative study in order
to analyze AL and SSL in relation to the classification of
RS images. We reviewed the main categories and methods
of both learning paradigms. The two approaches have been
theoretically compared in light of a conceptual framework to
describe the workflow of AL and iterative SSL methods. We
also investigated the combination of AL and SSL in order
to jointly leverage the advantages of both approaches and
proposed a novel SSL iterative method that is inspired by
concepts that are usually considered in AL methods.

The two learning paradigms have been experimentally com-
pared in the classification of different simulated and real RS
data sets, addressing different problems characterized by small
and biased training sets. On the basis of our analysis we
derived the following general conclusions about these two
approaches:
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Fig. 20. Average (over ten trials) OA obtained by the PS3VM-D with
respect to the number of semi-labeled samples added to the training set for
experiments 1, 2, 3, 5, 7, 9 (Hyperspectral RS data set).

0 100 200 300 400 500

76

78

80

82

84

86

88

90

92

94

96

98

Number of labeled samples

A
ve

ra
g
e
 O

ve
ra

ll 
A

cc
u
ra

cy
 (

%
)

 

 

RAND
MCLU
MCLU−ECBD
Multiview C
Multiview R

Fig. 21. Average (over ten trials) OA obtained versus the number of labeled
samples using the following methods: 1) random sampling (RAND), 2)
MCLU, 3) MCLU-ECBD, 4) Multiview-based AL using five views generated
by correlation-partition-based clustering as reported in [47] (Multiview C),
and 5) Multiview-based AL using five views randomly generated (Multiview
R). (Hyperspectral RS data set)

1) SSL techniques can improve the classification accuracies
obtained by supervised classifiers depending on the
initial conditions and assuming that the cluster assump-
tion holds. When the training samples fairly represent
the real distribution of the classes, the SSL technique
can improve the accuracy of the supervised classifier.
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Fig. 22. Average (over ten trials) OA obtained versus the number of
labeled/semi-labeled samples added to the training using different combination
strategies for AL and SSL: 1) sequential strategy (AL+SSL), and 2) SSL
encapsulation in the AL process (encSSL-AL). For the sequential strategy,
solid and dashed lines correspond to AL and SSL phase, respectively
(Hyperspectral RS data set).

Under these conditions it represents an effective method
for addressing ill-posed problem characterized by few
and/or biased initial training samples without requiring
an additional effort of the user for labeling samples.
On the contrary, the performances of the SSL technique
significantly decrease when the training samples are too
less representative of the true underlying distribution and
when the cluster assumption does not hold. However,
it is worth noting that on real data sets it might be
difficult to asses the validity of the cluster assumption
and therefore it is not easy to understand in practice
whether SSL may improve the accuracy of standard
supervised methods or not. This makes the use of SSL
techniques difficult for non-experts of machine learning,
when a proper validation of the classification results is
not possible.

2) AL techniques can converge to good classification accu-
racies starting from any initial training set without any
assumption on the distribution of the classes (i.e., the
cluster assumption is not necessary) at the expense of
additional labeling effort. For this reason, AL represents
a good alternative approach to address ill-posed prob-
lems when the SSL assumption does not hold. In such
cases, AL results in a very useful tool for guiding the
user in the collection of the most informative labeled
samples. It is important to observe that the labeling
costs substantially depends on the type of labeling pro-
cedure, i.e., 1) by photo-interpretation, or 2) by ground
survey. Applications where the annotation by photo-
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interpretation is possible, may benefit more from the
adoption of AL. In such cases, the labeling time is
reasonably short compared to the computational time
required by SSL methods.

3) The model selection is more critical with SSL techniques
due to the importance of the parameter values on the
final results and the lack of labeled data for validation.
This is critical because makes it difficult to assess the
quality of the obtained solution at convergence.

4) AL techniques typically require much less iterations to
reach convergence with respect to iterative SSL tech-
niques (e.g., PS3VM). However, the additional iterations
of SSL techniques are automatic and do not involve
the user, but just the time taken by the considered
computation machine.

5) The proposed PS3VM-D technique, which adopts a
diversity criterion and a multiclass-based confidence
measure, allows the iterative SSL approach to better
explore the distribution of the classes and to reach
converge in less iterations with respect to the standard
algorithm.

6) From our analysis, we can conclude that AL techniques
are effective and ready to be used in operational appli-
cations. SSL techniques still require additional work to
be adopted in operational applications in order to relate
their convergence properties to the considered problem
and to the available training samples, as well as to
further investigate validation procedures.

7) AL and SSL paradigms can be effectively combined
in order to define learning algorithms that exploit both
labeled and semi-labeled samples in the training phase
and for the selection of new samples to be labeled by
the user.

Possible future developments of this work are: 1) further
investigating the integration of AL and SSL for the devel-
opment of hybrid solutions, 2) the deeper investigation of
validation methods for SSL techniques using strategies like
the ones proposed in [56], [57]. Regarding this latter point,
novel validation strategies should be able to asses model
consistency after the inclusion of semi-labeled samples in
the training set. These strategies should detect if the learning
algorithm is converging to a good solution or moving toward
an inconsistent solution (which will decrease the accuracy
of the classifier) also in the critical conditions with few and
biased labeled data in which cross-validation cannot be used
in a reliable way.
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