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Abstract— This paper proposes a novel change-detection-dtnagsfer learning approach
to update land-cover maps by classifying remotesisgnimages acquired on the same area at
different times (i.e., image time series). The psgapproach requires that a reliable trainingsset
available only for one of the images (i.e., therseudomain) in the time series, whereas it is not
for another image to be classified (i.e., the tadgenain). Unlike other literature transfer leagin
methods, no additional assumptions on either thelasity between class distributions or the
presence of the same set of land-covers classgitwo domains are required. The proposed
method aims at defining a reliable training set tloe target domain, taking advantage of the
already available knowledge on the source domams & done by applying an unsupervised
change detection method to target and source daemand transferring class labels of detected
unchanged training samples from the source todhget domain to initialize the target domain
training set. The training set is then optimizedabgroperly defined novel Active Learning (AL)
procedure. At the early iterations of AL, priority labeling is given to samples detected as being
changed, whereas in the remaining ones the mastmiative samples are selected from changed

and unchanged unlabeled samples. Finally, the ttamggge is classified. Experimental results



show that transferring the class-labels from there® domain to the target domain provides a
reliable initial training set and that the priorityle for AL results in a fast convergence to the

desired accuracy with respect to standard AL.

Index Terms —Transfer learning, active learning, automatic sifesation, remote sensing, time

series

l. INTRODUCTION

Updating of land-cover maps by classification aghote sensing images is an important issue due
to the availability of increased numbers of imagggularly acquired by satellite-borne sensors on
the same areas at different times (i.e., time saferemotely sensed images, temporally shifted
images). Because of the new policies related te &eailability of data (e.g., Landsat archive,
future ESA Sentinel missions) this issue is becgmmrore and more strategic as time series are
accessible to each potential users in a systematyc Land-cover maps can be updated by direct
supervised classification of each image in the tsades. However, such an approach requires
reliable ground reference data for all the avadaleimporal images in order to properly train the
classifier. In operational scenarios, gatheringificgent number of labeled training samples for
each single image to be classified is not realidtie to the high cost and the related time
consuming process of this task. Moreover, althahghimages in the time series refer to the same
area, ground reference samples available on onéhedfimages may not follow the same
distribution in other acquired images due to sdve@sons, such as differences in the atmospheric
conditions at the image acquisition dates, diffeeaguisition system state, different levels of soi
moisture, changes occurred on the ground, etdhdset situations, exploiting the classifier trained

on the image for which training data are availabky result in poor classification performance,



and therefore recollection of labeled samples isesgary. To reduce the need and effort to
recollect labeled samples, it is desirable to retheealready available information on images
acquired on the same area of interest (source anuaclassify new images acquired on the same
area (target domain). To deal with this probleransfer learning (TL) techniques, and more in
detail domain adaptation (DA) methods in transéaring, have been recently introduced in the
remote sensing literature [1]-[8]. DA (also knows @artially supervised/unsupervised learning)
methods define strategies that use the informati@ilable on the source domain to classify the
target domain for which no prior information is dahle, assuming that the two domains may
have different (but related) distributions [9]-[114 [1]-[5], DA problems are addressed by semi-
supervised learning (SSL) that exploits a clagssifi@ined on the source domain for the target
domain after tuning its parameters by using unkdbelata of the target domain. These methods
are defined under two assumptions: i) the set wdi-lkover classes that characterizes the target
domain should be the same as those included isdbhece domain, and ii) the land-cover class
statistical distributions should be sufficientlyregated (but not necessarily identical) between th
domains. However, in some real remote sensingifiadon problems these assumptions could
not be satisfied due to i) the possible appearamckor disappearance of the land-cover classes
during time, and ii) the possible high differencesthe class statistical distributions in the image
time series.

To overcome the limitations of the former assumpti& DA method with SSL is presented
in [6], which automatically identifies the differees between the set of classes in the target and
source domains by exploiting unlabeled samplesheftarget domain together with the labeled
samples of the source domain, and considers thi#eeedces in the map updating process. In [7]-
[8] DA problems are addressed with Active Learn{d.), which iteratively selects the most
informative unlabeled samples of the target dontainbe included in the training set after

manually labeling by a supervisor. Thus, differgritbm [6], a small number of labeled training



samples for the target domain is exploited in aoldito the labeled samples of the source domain.
By these methods, it is possible to include thermfation on new appeared classes in the training
set via manually labeling process. However, acogrdo our knowledge, in the remote sensing
literature, there are not DA methods that can wefficiently also when the second above-
mentioned assumption does not hold, i.e., significkfferences between statistical distribution of
the source and target domains are present.

In order to deal with the above-mentioned problewss propose a novel change-detection-
driven transfer learning (CDTL) approach to thessification of multitemporal images that
overcomes the limitations about the possible diffiees on both i) the land-cover class statistical
distributions and ii) the set of land-cover claspessent in the source and target domains. The
main idea of the proposed approach is to fuse Tth WL for exploiting at the best the available
training data for the source domain together weétv fspecific new labeled data of the target
domain selected for optimizing the classificatiactw@acy. In greater detail, unlike other DA
approaches, the proposed one takes advantage pfdperties of time series for defining TL in
terms of label propagation of source training paterather than in terms of adaptation of the
classification parameters of the source domaiméaarget domain (as it is usually done in the TL
literature). This is accomplished according to ¢hsteps. The first step is the TL step and is
devoted to define an initial training set for therget domain without collecting labels on its
samples. To this end, unsupervised change detdastiapplied to target and source domains, and
class labels of detected unchanged training sangpéepropagated from the source to the target
domain. This novel approach, unlike the DA methaidgposed in remote sensing literature, allows
one to estimate the classification parameters @ftahget domain directly from the target domain
samples. Thus there is no need to adapt the ¢ctadgh parameters of the source domain to the
target domain. Accordingly the proposed system handle possible significant differences

between statistical distributions of the source tardet domains. In the second step, the initial



training set is enriched by a novel AL proceduréiich gives priority to the labeling of the
samples detected as changed at early iterationsrifi’rAL), and selects samples among all
unlabeled samples (i.e., changed and unchanged ant® remaining iterations (Standard AL).
This novel procedure results in a fast increastefclassification accuracy versus the number of
new labeled samples of the target domain. Moreodee to the manual labeling process
associated with AL, unlike other literature methalks proposed approach does not require that
the same set of land-cover classes describes theldmains. At convergence of the AL process,
in the third step the target image is classified @ysupervised classifier. The experiments
conducted on two different multitemporal and mpkistral data sets show the effectiveness of the
proposed technique.

The paper is organized into six sections. In Sactlp related works in AL and TL are
surveyed. Section Il defines the considered prolded describes the proposed CDTL approach.
Section 1V illustrates the considered data setsthadlesign of experiments. Section V shows the

experimental results. Finally, Section VI draws tleaclusion of this work.

.  RELATED WORK

In this section, we review some AL and TL techngjpeesented in the literature for classification

of remote sensing images.

A. Active Learning

AL methods defined for the supervised classificatid single images assume that a small initial
training set is available for the image to be afesfand aim at expanding it in the most effective
way to define an optimized training set. This isieldy an iterative procedure. At each iteration,
the most informative samples among a pool of umdagbsamples are selected by a query function
and included in the current training set after nadiyulabeling by a supervisor. The most

informative unlabeled samples are the sampleshhae the lowest probability to be correctly

classified by the current classification model, @hds have maximum uncertainty among all



unlabeled samples [12]. The supervisor is an expleotis able to reliably assign the correct label
to selected samples (note that this is the stanalssdmption behind every AL approach used in
remote sensing). In some cases the labeling praaesbe done by photointerpretation, whereas in
other cases it may require ground data collectidhen the AL process is completed, the training
set consists of a minimum number of most informeatamples for the related classifier. The main
advantages of AL are: i) the reduced labeling ¢asta result of avoiding redundant sampling),
and ii) the reduced computational complexity fairimg the classifier (as a result of the selection
of an optimal small size training set). In the réensensing literature several AL techniques have
been presented to optimize the training set forsihgle-date image classification. In [12], the
unlabeled sample that is closest to the classificatoundary (i.e., classification margin) of each
binary Support Vector Machine (SVM) is consideresl the most informative and therefore
included in the current training set at each iteraf the AL process. An AL technique that
selects the unlabeled sample that maximizes tloenmation gain is presented in [7]. To estimate
the information gain, the Kullback—Leibler (KL) @ixgence is calculated between the posterior
probability distribution of the current trainingtsand the training set obtained by including each
unlabeled sample into the training set. In [13jfedent AL techniques proposed in the machine
learning literature are investigated for the maléiss SVM classification problems, and also a
novel AL method is proposed. The latter firstlyesg$ the most informative unlabeled samples by
the Multiclass-Level Uncertainty strategy. Thearnalyzes their distribution by using tkeneans
clustering in the kernel space. Finally, the masbrmative (i.e., most uncertain) sample of each
cluster is added to the training set at each itevadf AL. In [14], a cluster assumption based AL
method is presented for addressing critical problerhere significantly biased initial training sets
are available. Label acquisition costs sensitivet@thniques are proposed in [15], [16]. In [15],
the cost is measured with respect to the distaraseled during the labeling process, whereas in

[16] it is measured either in units of time (whaépend on the vehicles average speed and the cost



of labeling each sample) or in terms of distanaedled during the labeling process.

B. Transfer Learning

The problem of updating land-cover maps by classjfymage time series when ground reference
samples are available only for one time image dresbed by DA methods in the framework of
TL. In the last years, TL has obtained an increasgiterest in the remote sensing community due
to the increased availability of time series of oéely sensed images. TL methods address the
problem of identifying which knowledge can be trf@nsed and how to transfer it across the
domains [9]. A DA method (named as a partially yesvised classification method) is presented
in [1]. This method is able to update the paransetéran already trained parametric maximum-
likelihood (ML) classifier trained on the sourcengi@in on the basis of the distribution of the target
domain for which training data are not availabteotder to better exploit the temporal correlation
between images, the method has been generalizbé icontext of the Bayesian rule for cascade
classification in [2]. A further improvement of shapproach is proposed in [3] by presenting a
multiple cascade classifier system that is madefudL and radial basis function neural-network
classifiers. Another DA method based on the SVMgifeer is presented in [4] where a novel
circular validation strategy for the accuracy assemnt of the classification results is also
described. In this work, firstly labeled samplegte# source domain are exploited to initialize the
discriminant function for the target domain. Thae tuinlabeled patterns of the target domain that
have a high probability to be correctly classifiate iteratively included in the training set,
whereas the labeled samples of the source domaigradually removed. A DA method for the
binary hierarchical classifier (BHC) is presented5]. This method aims to update the parameters
of a BHC classifier trained on the source domainttom basis of the distribution of the target
domain. The presented algorithm can be used wlieeraio labeled training samples are available
or a small number of training samples exist for tdrget domain. The DA methods presented in

[2], [3] are further improved in [6] by addressitigg problems related to the differences on the set



of land-cover classes between the domains. Thaome by the joint use of a change-detection
method and of the Jeffreys-MatusitéM) statistical distance measure. AL methods for DA a
presented in [7] and [8]. In [7], the unlabeled p&emn from target domain that have the maximum
information gain measured by the KL divergence iaduded in the training set of the target
domain after manual labeling, whereas the initlaksification parameters are obtained by the
distributions estimated on the labeled sampleshefsource domain. In [8], the initial statistical
parameters of an ML classifier are calculated bplating the labeled samples from the source
domain. Then, the most informative samples arecsmldrom the target domain by AL for manual
labeling and inclusion in the training set, wherdss source domain samples that do not fit with
the distributions of the classes in the target dorage removed. Because of the manual labeling
process of AL, these methods are able to detectappsared classes but not the disappeared ones.
All the above mentioned methods may achieve lowsii@ation accuracy for the target domain
when the class statistical distributions in theyéardomain differ significantly from those of the
source domain. Moreover, except [6], these methedslt in a poor classification performance
when the two domains do not share exactly the s@nef land-cover classes since classes might
be appeared or disappeared between available emuftdral acquisitions. Therefore, it is
necessary to develop TL methods that are not ceratity affected from both the distribution
differences in land-cover classes and the posajypearance and disappearance of the land-cover

classes between the domains.

. PROPOSEDCHANGE-DETECTION-DRIVEN TRANSFER LEARNING
APPROACH

Let X :[xl,xz,...x P] be a time series made up Bf co-registered remote-sensing images
acquired on the same area at different times, where={x,, X, ,...,X,g} is the p-th
multispectral remote sensing image in the seriggiieed at timet, and made up o€ spectral

channels an® pixels. Without losing in generality, let us catesi two images extracted from the



time series and let us define them for simplicitys aX, ={X;, X;,...,X;s} and
X, ={X,3 X5,5..., X5} . LeL (lej,xzyj) be thg-th pair of temporally correlated pixels made umof
pixel X ; acquired at timel; and a spatially corresponding pix®}; acquired at time,. Let
Q={w,w,...,ax} be the set of land-cover classes at timeand N ={V,,V,,...,v,} be the set of
land-cover classes at timg. Differently from the standard TL methods [1]-[4lere we assume
that the classes i@ may be different from those in N. Let us assumé tha imageX, is the
source domain. Accordingly, we assume that a rielizaining setl, ={x, yli}i“il is available for
it, where x,; 0 X, is thei-th training sampley;; UQ is the associated class label, aid<B is

the number of training samples. In addition, weuass that a training sek, for the imageX,

(target domain) is not available. The goal of tmeppsed method is to produce a classification

map of imageX, by taking advantage of the previously availablewdedge fromX,. Here, this

is achieved by a change-detection-driven trangf@ming (CDTL) approach, which also includes
an active learning strategy. The proposed approsichased on 3 steps: i) a novel change-
detection-driven TL approach; ii) a novel changeedgon-driven AL procedure; and iii) target

domain classification. Fig. 1 shows the block schehthe proposed CDTL approach. Each step

of the proposed method is explained in detail eftllowing.

T ={x, y.;}
y,; 0Q X2 Xz
A 4 T2 :{ijl yzj} l T2 ={X2J" yZi} l
X4 Change CD Based ON™ CD Based |y, ON ;
Detection > Label Yay Active . CIS;spseifri\é:t?(?n
Xo—» (CD) Propagation Learning I

CD Based Transfer Lening

Classification
Map

Fig. 1. Block diagram of the proposed change-detedatriven transfer learning (CDTL) approach.
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Sep 1. Change-Detection-Driven Transfer Learning

The first step aims at defining an initial trainiegt for the imageX, (target domain) by taking
advantage of the available knowledge frém(source domain). To this end, here we adopt a novel

change-detection-based TL procedure. The basic liééend this choice is that the labels of

training samples i, can be considered reliable fof,, and thus transferred, only if the related

pixels did not change. Accordingly, at first thésea need of detecting whether changes occurred

on the ground betweeX, and X,, and if different land-cover transitions occurréd.no training
set is assumed available f&f,, an unsupervised change-detection method shoulcsée. Here

the Change Vector Analysis (CVA) technique [17] aslopted due to its capability in
distinguishing among kinds of change associateddifterent land-cover transitions in an
unsupervised way (which is not a common propertyrmgupervised change detection methods
that usually just discriminate between changed andhanged areas) and its simplicity and
effectiveness. Note that the information about edéht kinds of change is required in the

following step of the proposed approach (i.e.he ¢hange-detection-driven AL procedure). In the
CVA technique, temporally correlated (thus spatiatbrresponding) pixelsX; and X,; are
subtracted to each other in order to build a npéisral difference image&X,. To make CVA

reliable, the basic assumption is that multitempionages should be co-reregistered to each other.
If after co-registration significant residual migigration errors affect multitemporal data, CVA-
based change detection methods robust to this &ingroblem can be adoptd@4]. The
information present in the multispectral differencege is analyzed according to the theoretical
framework for unsupervised change detection basgti@CVA in polar domain proposed in [18].
According to [18], for simplicity two spectral banaut of C are selected such that the most
informative features with respect to the specifingidered problem are isolated excluding noisy

and misleading spectral channels from the analitsis.worth noting that, even if the assumption
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of working with a couple of spectral channels ias@nable in many change-detection problems
[17]-[19], the CVA can be also applied to all spakthannels. From the defined 2-dimensional
feature space, the polar representation of thegehdetection problem is built on the basis of the
magnitude and the direction of spectral changeovectn this feature space, unchanged pixels are
concentrated close to the origin of the polar donaaid fall within theCircle of no-changed (C,)
pixels, whereas changed pixels fall far from thigiarwithin the Annulus of changed (A.) pixels
[18]. The threshold valud that separate€, from A; along the magnitude variabje can be
computed according to any thresholding techniqualae in the literature [19], [20]. Changed
pixels belonging to different land-cover transisone., different kinds of change) show along the
direction variabled in A. different preferred directions and fall therefanedifferent Annular
sectors of change (S, h=1,...,H, whereH is the number of detected kinds of change). Eaclos

is bounded by a pair of angular threshadtjsand &, that can be automatically detected according
to the method described in [21] or interactivelgntfied according to a visual analysis of the

polar domain. Fig. 2 shows the decision regionsmiing to the CVA framework.

Fig. 2. Representation of the regions of interesttie CVA technique in the Polar coordinate system

Once change detection has been performed, the kdgelrelated toX, which has a high

probability to be reliable also foX, is transferred. Such information is representedhleylabels

12



of pixels that are detected as being unchangedfi@ ones that fall i€,. Let T, ={X;, Y.} &,
be the set of unchanged training pixelsXgt, where X;; 0T, is thei-th training sample ani
(R< M) is the number of unchanged training samples.iifitial training setT, of X, is defined
asT, ={x,;, Vi} .o X5 Y3 1, wherex, OX, is thei-th initial training sample and;; =Y,; is
its label transferred fronT,”. The classes that are representedrjndefine the initial set of
classesN™ for X, after TL. N™ is by definition a subset of land-cover classed, afi.e.,

N™ 0 Q). The labels of all training samples detectedeisgchanged, i.e., the ones that fal§in

(h=1,...,H), are not transferred.

Due to this step, unlike other TL techniques presgin the remote sensing literature [1]-
[8], the proposed approach does not require totatiepclassifier parameters of the source domain
to the target domain. Thus the proposed approalitserobust to the class statistical distribution
differences between the source and target domiiissworth noting that even if in this paper we
use the CVA technique, this step can be implemeni#¢id any unsupervised change detection

technique that can identify the presence of diffefand-cover transitions.
Sep 2: Change- Detection-Based Active Learning

Step 1 completely removes from the representatfothe problem att, the information about

changed pixels, since it does not transfer labélgaining samples that fall i, (h=1,..., H)
assuming that they are unreliable as possibly awnglowever, changed pixels are highly
important for the map-updating process since they marry information about possible new

classes appeared K, and/or about different statistical properties adtsglly shifted classes.¢.,
classes that are already M™ but appear in a different spatial positionsXn with respect to

X, ). Neglecting this information would lead to unadlie classification ofX,. Thus we can state
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that from the AL viewpoint unlabeled changed samoteX , are potentially highly uncertain (and
thus informative) with respect to the classificatmf X,. Accordingly in step 2 the initial training
setT, is expanded by exploiting a novel change-deteafioren AL procedure. Let us focus the
attention on changed pixels. Pixels among themcessal to new classes appearedXin are the
most informative, since they are not representdtiertraining sef,, whereas pixels associated to
spatially shifted classes are highly informativéyahtheir spectral signature is different fromath

of the pixels of the same class already included, ih. On the opposite, changed pixels that are

associated to spatially shifted classes and that haspectral signature similar to each other are
less interesting. The adopted unsupervised chaetpetibn technique is able to identify the
presence of different land-cover transitions. Hogregince it is unsupervised, it does not provide

any information about the new labels assumed bygdd pixels inX,. In other words, it is not

able to distinguish among the above-mentioned tlotesge cases. In order to deal with this

problem and distinguish these cases, we adopt hoohdiased on statistical distance measures
recently proposed in [6]. LeE:{sl,gz,... ,£H} be the set of unknown class labels that changed
pixels assume inX,. Note that the number of transitions can be eséch@an the basis of the
different number of annular sectors of changesatiediein the polar domain. In order to understand
whether &, OE is already present in the initial training Set(i.e., & ON™ n E) or not (.e,

g, ON™) the similarity between the statistical distriloutiof eache, JE and that of each land-

cover classw, ON™ O Q present in the initial training sek, is computed. Class similarity is

measured according to a pairwise Jeffreys-MatuSh9 distance. HerdM distance is selected
due to its asymptotic behavior. Unlike other diseanmeasures that are unbounded, ikhEe
distance reaches saturation to the square root dhi® behavior makes it easy to establish a

threshold value that defines a high distance (ims$eof the Chernoff upper bound to the error
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probability [27]) of classes [6]. However any othgistance measures [25] can be also used.

Thereby, theM distanceJM,  betweens, OE and @, ON™ can be calculated as
M, =,[2(1-e") (1)

where B, is the Bhattacharyya distance between the twoidered classes and can be calculated

as

B =-In{Hp(X2Ifh)p(lewu)dxz} (2)

where p(X,|&,) and p(X,|w,) are the class conditional density functions of thadom

variableX; associated to the image. Under the assumption of Gaussian distributedse®s(2)

can be rewritten as

=Ly - TZh+Zuj_l — 1)+ Lin 1z 3
B, == (4, /Ju)( 5 (14— 14,) 2" 2, 3)

where 4, and 4, are the mean vectors of the classgsind «),, respectively>, andZ, are their

covariance matrices, afidrepresents the transpose operator.

If for a given &, JE all computed pairwisdM distances are higher than a user defined
threshold valuérh, we detect the presence of a new class ¢, ON™) or of a spatially shifted
class {.e,, &, ON™) with a significantly different spectral signaturempared to the same class
already present if,’“. These are the two situations in which changeedlpiare highly uncertain
and thus particularly informative for the AL stdp.&, LE exhibits a smallM distance with one
of the ¢, 0 N* 0 Q classes, a spatially shifted class with spectoalaures similar to those of

the same class already presenTtf is detectedThis procedure is applied until all classesEn

have been analyzed. Once this information has beteeved, the proposed approach applies AL

15



with a mechanism of priority. If classeg UE that show a highIM distance to all land-cover
classes inN™ have been detected, at the first iterations offtheprocess the pool of unlabeled
samples forX, is made up only of pixels associated to thesesekagi.e., changed samples).
These pixels are candidate to be either a new olaaspatially shifted class which is not properly
modeled by the samples in the training §etThis sub-step is called Priority AL Step. If thas

only one unknown class with a higiv distance (i.e.H =1), the most uncertaib samples are
selected from this class only and labeled manuallye included in the current training set. In the
case there are more unknown classes with Aihdistances (i.e.H >1), the most uncertain
b/H samples are selected from each class, which sebulthe selection ob most uncertain

samples in total. The manual labeling of the adddl b samples solves the ambiguity between

spatially shifted classes (i.es, IN™) that have different spectral signatures and nkagses
(&,0N™). Accordingly, in case of, ON™ the setN of land-cover classes at tinig is defined
as N=N™0{g} , whereas ifs, IN™, the setN of land-cover classes is equal to the initial $et o

classesN™, i.e., N=N™. In the second part of this step, priority is rerm and standard AL is

applied including all unlabeled samples in the pael, both unchanged and changed samples. It

is worth nothing that if there are no changed @ixéhe algorithm avoids the Priority AL Step.
This is the case in which no new classes are aetentdN = N™. Moreover it may happen that
the labels propagated fron, are sufficient for a reliable classification &f,. In this case no
additional labeled data will be collected fir,and the step 2 can be avoided. Fig. 3 shows the
block diagram of the change-detection-based atgé@ming step, whereas Fig. 4 demonstrates the

relationship betweerN and N™in the different cases. It is worth nothing thaististep is
independent from the adopted AL technique, and s be used with any AL technique

presented in the literature [12]-[16].
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Initial Training
SetT,

Compute p(X, |&,),
p(X,|w,), 0w, ON™
v

Compute Pairwise
JM,, Distances

Yes Priority Active

Learning

No

Standard Active
Learning

Final Training
SetT,

Fig. 3. Block diagram of the change-detection-bassive learning step (second step).

As a final remark, it is worth pointing out thattdeted kinds of change may interest all the
pixels associated to a given clasdiati.e., classes if2 may disappear. This may happen in the

case of detecting both a new class or a spatitilafhtlasses. However this situation is not catic
since it is implicitly managed by the proposed medthy not transferring labels associated to

changed training samples in Step 1. Thus, if argolass inQ is no longer present i, all the
related pixels will be changed and their labeld adtt be represented iN™ .
Sep 3: Target Domain Classification

In the last step, when the AL process is completieel,imageX, is classified. This is done by
training the classifier with the training s€t obtained at the convergence of the step 2. It idlwo

nothing that the proposed approach is independent the classification method, and therefore

can be used with any classification technique prteskin the literature [25],[26].
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Initial Training
SetT,

Compute p(X, |&,),
p(X, |,), 0w, ON™
v

Compute PairwiséMy,
Distances

y

A

s a &, is a spatially &, is a spatially
" shifted class shifted class
new class N=N™ N=N™

N=N™ O{g}

Fig. 4. The relationship between the set of claddextained at the convergence of the step 2 andethefslasses
N™ obtained at the end of step 1.

V. DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS

A. Data Set Description

In our experiments, we used two multitemporal dsts. The first one is made up of two co-
registered multispectral images acquired by thedsati5 satellite on the Island of Sardinia, Italy,
in September 1995 and July 1996 (see Fig. 5.a and ). The two images share five land-cover
classesi(e., pasture, forest, urban area, water, vineyardg iftage acquired in September 1995

also includes one additional clags,, bare soil. In order to properly demonstrate tifieciveness

of the proposed method in our experiments we censdlthe July 1996 image a§ and the
September 1995 image a§,. This choice allows us to test the proposed methdtie case in
which a new class appeared in the time intervavben X, and X,. In order to simulate more

complex situations with multiple new appeared @assn additional class of burned area related
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to a forest fire was included in the September 1i@®&ge (see Fig. 5.b). To this end, a data set
made up of two multispectral images acquired byltaedsat-5 TM multispectral sensor on the
Island of Elba (Italy) in August 1994 and Septemb@®4 [17] was utilized. Using the available
ground truth for Elba image, the spectral signatwkburned areas taken from the Elba image
were inserted in the forest areas of the Septed@@5 image. Thus, the modified September 1995
image includes two additional classes, i.e., baileasid burned area, with respect to the July 1996
image. Accordingly, for the Sardinia data set weehtavo scenarios. In the first scenario (Scenario
1) the original September 1995 image (which inctuttee appearance of only one new class, i.e.,
bare soil) is considered as,, whereas in the second one (Scenario 2) the neddBeptember
1995 image (in which two new classes appeared,bage soil and burned area) is considered as
X, fixing the July 1996 image aX, (see Table I).

The second data set is made up of two co-registemedpansharpened multispectral Very

High geometrical Resolution images acquired by GheckBird satellite on the city of Trento,

Italy, in October 2005 and July 2006, respectiage Fig. 6). Here we considered the October
2005 image asX; and the July 2006 image a&,. The images share five land-cover classes (

water, red roof, asphalt, fields, and bare soilje@dditional class is present in the July 2006
image, thus between the two acquisitions an adddfoone new class.€., plastic-mulched fields)

is registered.
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(©)
Fig. 5. Spectral band 4 of the Sardinia data sgtinjage acquired in September 1995, ( Scenario 1); (b) modified

image acquired in September 19956, ( Scenario 2); and (c) image acquired in July 1896).

TABLE |. SCENARIOSCONSIDERED IN THEEXPERIMENTS FOR THESARDINIA DATA SET

Scenario X X,
1 July 1996 September 1995
2 July 1996 | Modified September 1995
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Fig. 6. Spectral band 1 of the Trento data setinfage acquired in October 200X ,(); and (b) image acquired in July
2006 (X,).

B. Design of Experiments

For both data sets, all the reported experimerdallts are referred to the average accuracy

obtained on ten trials according to ten initialdamly selected training sets fdy that correspond
to ten different initial training sets foF,. For each trial, the Sardinia data set includésiaing

set T, of 378 samples for th&, image selected randomly among 2565 available ldsdenples,
whereas the Trento data set consists of a trasend, of 470 samples for th&,; image selected
randomly among 3885 available labeled samplesbétir data sets, a training sktfor the image

X, is assumed initially not available.

We carried out the experiments with batch size eshx4 andb=10 which show the total

number of samples being added to the current irgisetT, at each iteration of the AL step. For

the classification step an SVM classifier [22], [2@th Radial Basis Function (RBF) kernel is
used. The choice of the SVM is done as it is onghefmost widely used classifiers in remote
sensing due to both its theoretical properties amdproven empirical effectiveness on many
different kinds of data and applications. Howewr also mentioned before, the proposed method

is general and can be used with any classifier. Vidiees of the regularization parameter of the
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SVM classifier and thgs parameter of the RBF kernel are obtained by affie cross validation.

The regularization parameter is tested betweerl[liB] with a step size increment of 20, and the

y parameter of the RBF kernel function is testeavien [0.1-2] with a step size increment of 0.1.

The value of thresholdih is set to 0.99 due to the fact that if a pair lakses have 3M distance

smaller than 0.99 they are assumed to be similar [6

In this paper, we have exploited the Multiclass-le¥ncertainty with Enhanced Clustering
Based Diversity (MCLU-ECBD) technique, which is effiective AL method defined on the basis
of uncertainty and diversity criteria [13]. The @ninty criterion aims at selecting the unlabeled
samples that have maximum uncertainty about theirect label among all samples in the
unlabeled sample pool (and thus are the most ugsehe included in the training set), whereas the
diversity criterion aims at selecting a set of teled uncertain samples that are as more diverse as
possible to reduce the redundancy among the sarselested by the uncertainty criterion. In the
MCLU-ECBD technique, the most uncertain samplesratilly selected by the Multiclass-Level
Uncertainty (MCLU) strategy that assesses the waicgy of unlabeled samples on the basis of
their functional distances to the decision bouretadf the binary SVM classifiers [13]. After the
MCLU step, the most uncertain samples are analpyatiek-means clustering method applied in
the kernel space. Since the samples within the sdoster are correlated and provide similar
information, one sample (the most uncertain onenfeach cluster is selected and added to the

training set at each iteration of AL.

We carried out two kinds of experiments in ordeassess the effectiveness of the proposed
CDTL approach. In the first set of trials the useéss of the change-detection-driven TL step,
which automatically defines an initial training Sgtfor X, without any need for manual labeling

of samples, was assessed. To this end the resili;med by the proposed CDTL approach are

compared with those obtained with an AL techniduet heglects the TL step. Since in this case
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no labels are propagated fro¥, the initial training sefl, for X, is empty. However, MCLU-

ECBD technique needs an initial training set ingigdlabeled samples to train the classifier
before starting with AL iterations. To this endpndam sampling (RS) is applied to the samples of

the imageX, and two samples related to each land-cover cl@ssadomly selected and labeled
to define an initial training s€k, . It is worth nothing that the RS step requiredtfa initialization
of the training sefl, implies an additional cost of sample labeling velaar the proposed system
does not.

In the second set of trials, we tested the effeaiss of the change-detection-based AL step
by analyzing the improvements introduced by theofyi AL mechanism. This is done by

assessing the CDTL approach with the priority rakel without it. For both data sets, in the

experiments the Priority AL step is only performadhe first iteration of the AL process.

V. EXPERIMENTAL RESULTS

A. Resultson the Sardinia Data Set (Scenario 1)

In order to apply the proposed procedure, first Chas been applied to Sardinia imagés and
X, (see Table I, Scenario 1). In this case, the obdmgea is associated to a reduction of the lake

surface, and thus to a transition from water teetsmil. Note that the class transition is not known
a priori, but automatically identified by the prgeal approach according to the AL step. After
performing change detection, the class labels ohanged pixels are propagatedXg, providing
128 initial training samples fof,. Once label propagation is completed the stasistoalysis of

the changed area is performed. This is done by umiegsall the pairwise]M distances between

the changed pixels X, and all the classes already presentTjn Since all the pairwiséM

distances are found higher than the thresAtkd 0.99, a new class (or a spatially shifted class

with a different spectral signature compared togame class already presentTy) is detected.
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Accordingly, the Priority AL step is performed &gtfirst iteration and the human expert assigned
“bare soil” label to the selected unlabeled samplésis the high values of tli/ distances were
associated to the presence of a new class. Stdmtingthe second iteration, the Standard AL step
is performed including both changed and unchangedptes in the pool. Table Il shows the
number of initial training samples (which are obtad on the basis of the CVA driven TL), and of
changed and unchanged unlabeled samples in thespbalvailable for each land-cover class in

X,. In addition also the number of test samples, Wiaie used for accuracy assessment, is given

in the table.

TABLE Il. INITIAL TRAINING, POOL AND TESTSETS FORX, IMAGE (SARDINIA DATA SET, SCENARIO 1).

Land-cover Initial Pool Set Test
. Changed| Unchanged
classes Training Set Set
Samples| Samples

Pasture () 28 - 526 589

Forest () 15 - 289 274

Urban area () 20 - 388 418

Water body(wy,) 56 - 748 551

Vineyard (o) 9 - 170 117

Bare soil (@) - 316 - 316
Total 128 316 2121 2265

In the first set of experiments, we assess thectfEness of change-detection-driven TL

step by comparing the results of proposed appreaththose obtained whefh, is empty and

populated according to only an AL procedure negigctL. Fig. 7 shows the average (on 10

trials) classification accuracies of, versus the number of new labeled samples obtaipéxdtie

proposed CDTL approach, and ii) the RS method.dth [zases the MCLU-ECBD technique is
used in the AL step. Note that the new labeled $asnpre the patterns labeled by the human
expert during the considered iteration of the Abgass. From the figure, one can see that without
labeling any new sample, the accuracy is zero énctise of using RS, whereas that is 77.64% in
the case of using the proposed CDTL approach. iBhtd course due to the fact that the initial

training set without labeling any new sample is eotpty if the CDTL approach is used.
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Moreover, by analyzing the figure one can obselmag the CDTL provides higher accuracies than
the RS and reaches convergence with a smaller nuoilreew labeled samples. As an example,
the accuracy of CDTL is 88.57% with only 12 newdbkdal samples, whereas that of RS is only
73.35% (see Fig. 7.a that refersited). These results demonstrate that the proposprbagh

significantly reduces the labeling cost, thanksthe label-propagation step of the proposed

algorithm defined on the basis of change-detedtiliven TL.
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Fig. 7. Average (on 10 trials) overall classificatiaccuracy versus the number of new labeled sangplg obtained
by the CDTL and the RS approaches wherb&) and (b)=10 (Sardinia data set, Scenario 1).
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Scenario 1).

In the second set of experiments, we assess thetigéness of the Priority AL procedure in

the step 2 of the proposed method. Fig. 8 showsavkeage (on 10 trials) classification accuracies
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of X, versus the number of new labeled samples obtdigeate proposed CDTL approach with

and without the Priority AL step. From the resutse can observe that the use of the Priority AL
step provides higher accuracies at the early itarat whereas it leads to similar accuracies at the
remaining iterations. This is due to the abilitytioé MCLU-ECBD technique in selecting the most
informative samples from the new class. Howevethatearly iterations, the Priority AL provides

a faster improvement in the accuracy.

B. Resultson the Sardinia Data Set (Scenario 2)

In order to better assess the effectiveness optbposed approach, a more complex situation in

which two new classes are present in ¥ue (Scenario 2) is considered. Similarly as before, th
CVA has been applied to image§ and X,, and resulted in detecting two kinds of changes Th

first kind of change is related to the transitia@ivieen bare soil and water on the lake area (as in
Scenario 1), whereas the second one is relatdtetpresence of the burned area on a forest area.
Note that this information is assumed to be unknoifter performing CVA, the class labels of

unchanged pixels itX, are propagated tX,, providing 103 initial training samples fdr,. Then,
the JM distances between the detected changed pixeXs iand all the classes already present in
T, are calculated and found higher than the threshiotd0.99. The process has been carried out

independently for each detected kind of changee®ams these results, the presence of two new
classes (or of spatially shifted classes) is idieati Accordingly, initial training set is expandbg
applying the Priority AL step at the first iterati@and applying Standard AL at the remaining ones.
Since there are two kinds of change, in the Pyickit step (i.e., at the first iteration of AL})/2
mostuncertain unlabeled samples are chosen from oneowrk class and/2 mostuncertain
unlabeled samples are selected from the otherawienlg at the two annular sectors in the CVA
polar domain. In the labeling process of AL, themiam expert assigned “bare soil” and “burned

area” labels to the selected unlabeled sampless Tl high values of théM distances were
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associated to the presence of new classes. TaldhdWws the number of initial training samples

obtained on the basis of the CVA driven TL, changed unchanged unlabeled samples in the

pool set, and test samples available for each ¢tawveyr class inX, .

TABLE Ill. INITIAL TRAINING, POOL AND TESTSETS FOR X, IMAGE (SARDINIA DATA SET, SCENARIO 2).

. Pool Set
Land-cover Initial Changed| Unchanged Test
classes Training Set Set
Samples| Samples
Pasture () 28 - 526 589
Forest () 6 - 122 159
Urban area () 20 - 388 418
Water body(uy) 40 - 764 551
Vineyard (o) 9 - 170 117
Bare soil (@) - 316 - 316
Burned area () - 176 - 115
Total 103 492 1970 2265
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Fig. 9. Average (on 10 trials) overall classificatiaccuracy versus the number of new labeled sangple obtained
by the CDTL and the AL approaches whenlfa$ and (b)=10 (Sardinia data set, Scenario 2).

Fig. 9 shows the behavior of the average (on Xisjrioverall accuracies obtained by the
CDTL and the RS (which ignores the TL step anddfuge assume that an initial training set is
not available) in the cases bf4 (see Fig. 9.a) ano=10 (see Fig. 9.b). By analyzing the figure,
one can observe that the CDTL results in higheurawies for both values df. Moreover, it
reaches convergence with a smaller number of ndeldd samples, thanks to the change-

detection-driven TL step. As an example, from tige B.a one can observe that the CDTL yields
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an accuracy of 79.13% with only 4 new labeled saspitt,, whereas the RS reaches a similar

accuracy with 22 new labeled samples. It is wothimg that the effectiveness of the proposed

approach compared to RS is significant due tolittyin defining the initial training seT,.

Fig. 10 shows the comparison of the average oveaturacy obtained by the CDTL
approach with and without the Priority AL step fwoth values ob. From these graphs, one can
see that the CDTL with priority rule, provides agd#ine selection of more informative samples
compared to the CDTL without priority rule, and estes higher accuracies for the same number
of labeled samples (thus the same accuracy withdamples). As an example, the CDTL with
priority rule provides the highest accuracies athederation and also converges with a small
number of labeled samples whiexd (see Fig. 10.b). In the caselsfl0, the CDTL with priority
rule results in better accuracies at the earlyaiiens resulting in a faster improvement of the
accuracy, whereas the results are similar to thafsthe CDTL without priority rule at the
remaining iterations. This is due to the fact tM&LU-ECBD is a very effective AL technique for
the selection of the most informative samples, #ns after some iterations the new appeared

classes are sufficiently represented in the trgiset.
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Fig. 10. Average (on 10 trials) overall classifioataccuracy versus the number of new labeled seswgit, obtained

by the proposed CDTL with and without the Priotly step when using RS in the AL step in the cadgg)b=4 and
(b) b=10 (Sardinia data set, Scenario 2).
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C. Resultson the Trento Data Set

Also for the Trento data set the CVA technique besn applied to imageX, and X,, and the
class labels of training pixels iX, detected as unchanged are transferreX tgproviding 170
initial training samples foil,. Once label propagation is completed, the statishnalysis of the
changed areas is performed. On the basis of tlalysis, it is observed that the detected changed
pixels in X, have highJM distances to all the classes presenL,inThis shows the presence of a
new class (or of a spatially shifted class withgmi§icantly different spectral signature from that
modeled in the initiall, ). Accordingly, the Priority AL step is applied amdthe labeling process

of AL the human expert assigned “plastic-mulchedid” label to the selected unlabeled samples.
Thus the high values of thiM distances are associated to the presence of alasa From the
second iteration, Standard AL is performed invaljvboth changed and unchanged samples. Table
IV lists the number of initial training samples aioted by the CVA driven TL, the changed and

unchanged unlabeled samples in the pool set, antkedt samples available for each land-cover

class inX,.

TABLE IV. INITIAL TRAINING, POOL AND TESTSETS FORX, IMAGE (TRENTODATA SET).

Initial Pool Set Test
Land-Cover Classes Training | Changed | Unchanged Set
Set Samples | Samples

Water (wn) 52 - 986 1104
Red Roof @) 22 - 427 469
Asphalt () 34 - 438 474
Fields () 32 - 615 534
Bare soil in field (&) 30 - 570 483
Plastic-mulched field(s) - 471 - 290
Total 170 417 3236 3354

Fig. 11 shows the comparison of the average ovacallracy obtained by the CDTL and the
RS for both values adb. Also for the Trento data set the CDTL resultechigher accuracies at

most of the iterations, and also converged witmalker number of labeled samples. For example,
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the CDTL yields an accuracy of 93.55% by adding/di#l labeled samples B, whereas the RS

provides an accuracy of 87.% with the same numblabeled samples.
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Fig. 11. Average (on 10 trials) overall classifioataccuracy versus the number of new labeled sssrail, obtained
by the CDTL and the RS approaches wherb&) and (b)=10 (Trento data set).

The comparison of the average overall accuracyigeovby the CDTL with and without the
Priority AL step when the MCLU-ECBD technique isedsn the AL step is not reported here as it

is very similar to what already presented on thevijous data sets.

VI. DiscussioN AND CONCLUSION
In this paper, we have presented a novel changstilmt-driven transfer learning approach
(CDTL) for updating land-cover maps by classifyimgage time series. The proposed approach
classifies an image for which no ground truth infation is available (target domain) by using the
knowledge available for an image acquired on theesarea of interest at a different time (source
domain). The CDTL approach overcomes the two maavidacks of other techniques presented
in the remote sensing literature: i) it is not aféml from the possible significant differences
between the land-cover class distributions of theree and the target domains, and ii) it is able to
handle situations in which different sets of lamd«r classes may characterize the two domains.
Moreover, the proposed approach allows one to fsggnitly reduce the complexity and the cost of

the collection of labeled samples for the targehdm.
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The CDTL approach is defined on the basis of tisteps. The first step is devoted to define
an initial training set for the target domain. Thesdone by firstly applying unsupervised change
detection to source and target domains, and tla@sferring the class-labels of unchanged training
samples from source domain to target domain. Tthesjnitial training set for target domain is
inherited from the source domain. Because of thellpropagation of source training patterns, the
classifier is directly trained on the original sdegpof the target domain, and thus there is no need
to adapt the classification parameters of the soutomain to target domain. Therefore, the
dissimilarity between the land-cover class distiidns of source and target domains does not
affect the proposed method. Moreover this stepifsegntly reduces the number of new labeled
samples to be collected at target donfamoptimizing the classification results. In adkaiit, this
step intrinsically rejects possible disappearedsda in the target domain as it does not transfer
labels associated to changed training samples. s€eend step aims at optimizing the initial
training set by Active Learning (AL) giving a prity to samples detected as being changed at the
first iterations. This is because they have a lpigébability to be most informative among all the
other unlabeled samples. Therefore this choicenallone to increase rapidly the classification
accuracy by labeling few specific unlabeled sampfe$e target domain, and thus to optimize the
classification accuracy. In the remaining iterasiquriority is removed, and AL is applied in a
standard way. Thanks to the AL step, the propoggdoach does not have limitations on the sets
of land-cover classes that characterize the twoadiasn When the AL process is completed, in the

third step the target image is classified to obtaenclassification map.

Experimental results obtained on two multitempatata sets show that: i) the change-
detection-driven TL stegenerates reliable initial training set for thegtrdomain reducing the
cost of labeled sample collection to the minimumgl &) the change-detection-driven AL with
Priority AL rule provides a faster convergence hie tlesired accuracy, with respect to standard

AL. In greater details, in most of the cases weieadd high accuracy on the target image by
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adding few (10-20) labeled samples for the targwhain. From a different perspective, if no
changes occurred between the two considered im#dgegroposed method can provide accurate

classification results also without labeling newngées for the target domain.

It is worth nothing that the proposed approachesyvpromising for possible operational
applications due to both its general propertiesigdimplicity in the implementation. As a final
remark, we point out that the proposed method caredsily applied to long time series by
extracting different pairs of source and targetgesmfrom the series and applying an iterative

pairwise analysis.
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