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Abstract— This paper proposes a novel change-detection-driven transfer learning approach 

to update land-cover maps by classifying remote sensing images acquired on the same area at 

different times (i.e., image time series). The propose approach requires that a reliable training set is 

available only for one of the images (i.e., the source domain) in the time series, whereas it is not 

for another image to be classified (i.e., the target domain). Unlike other literature transfer learning 

methods, no additional assumptions on either the similarity between class distributions or the 

presence of the same set of land-covers classes in the two domains are required. The proposed 

method aims at defining a reliable training set for the target domain, taking advantage of the 

already available knowledge on the source domain. This is done by applying an unsupervised 

change detection method to target and source domains, and transferring class labels of detected 

unchanged training samples from the source to the target domain to initialize the target domain 

training set. The training set is then optimized by a properly defined novel Active Learning (AL) 

procedure. At the early iterations of AL, priority in labeling is given to samples detected as being 

changed, whereas in the remaining ones the most informative samples are selected from changed 

and unchanged unlabeled samples. Finally, the target image is classified. Experimental results 
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show that transferring the class-labels from the source domain to the target domain provides a 

reliable initial training set and that the priority rule for AL results in a fast convergence to the 

desired accuracy with respect to standard AL.  

 

Index Terms – Transfer learning, active learning, automatic classification, remote sensing, time 

series 

I.  INTRODUCTION  

Updating of land-cover maps by classification of remote sensing images is an important issue due 

to the availability of increased numbers of images regularly acquired by satellite-borne sensors on 

the same areas at different times (i.e., time series of remotely sensed images, temporally shifted 

images). Because of the new policies related to free availability of data (e.g., Landsat archive, 

future ESA Sentinel missions) this issue is becoming more and more strategic as time series are 

accessible to each potential users in a systematic way. Land-cover maps can be updated by direct 

supervised classification of each image in the time series. However, such an approach requires 

reliable ground reference data for all the available temporal images in order to properly train the 

classifier. In operational scenarios, gathering a sufficient number of labeled training samples for 

each single image to be classified is not realistic due to the high cost and the related time 

consuming process of this task. Moreover, although the images in the time series refer to the same 

area, ground reference samples available on one of the images may not follow the same 

distribution in other acquired images due to several reasons, such as differences in the atmospheric 

conditions at the image acquisition dates, different acquisition system state, different levels of soil 

moisture, changes occurred on the ground, etc. In these situations, exploiting the classifier trained 

on the image for which training data are available may result in poor classification performance, 
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and therefore recollection of labeled samples is necessary. To reduce the need and effort to 

recollect labeled samples, it is desirable to reuse the already available information on images 

acquired on the same area of interest (source domain) to classify new images acquired on the same 

area (target domain). To deal with this problem, transfer learning (TL) techniques, and more in 

detail domain adaptation (DA) methods in transfer learning, have been recently introduced in the 

remote sensing literature [1]-[8]. DA (also known as partially supervised/unsupervised learning) 

methods define strategies that use the information available on the source domain to classify the 

target domain for which no prior information is available, assuming that the two domains may 

have different (but related) distributions [9]-[11]. In [1]-[5], DA problems are addressed by semi-

supervised learning (SSL) that exploits a classifier trained on the source domain for the target 

domain after tuning its parameters by using unlabeled data of the target domain. These methods 

are defined under two assumptions: i) the set of land-cover classes that characterizes the target 

domain should be the same as those included in the source domain, and ii) the land-cover class 

statistical distributions should be sufficiently correlated (but not necessarily identical) between the 

domains. However, in some real remote sensing classification problems these assumptions could 

not be satisfied due to i) the possible appearance and/or disappearance of the land-cover classes 

during time, and ii) the possible high differences on the class statistical distributions in the image 

time series. 

To overcome the limitations of the former assumption, a DA method with SSL is presented 

in [6], which automatically identifies the differences between the set of classes in the target and 

source domains by exploiting unlabeled samples of the target domain together with the labeled 

samples of the source domain, and considers these differences in the map updating process. In [7]-

[8] DA problems are addressed with Active Learning (AL), which iteratively selects the most 

informative unlabeled samples of the target domain to be included in the training set after 

manually labeling by a supervisor. Thus, differently from [6], a small number of labeled training 
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samples for the target domain is exploited in addition to the labeled samples of the source domain. 

By these methods, it is possible to include the information on new appeared classes in the training 

set via manually labeling process. However, according to our knowledge, in the remote sensing 

literature, there are not DA methods that can work efficiently also when the second above-

mentioned assumption does not hold, i.e., significant differences between statistical distribution of 

the source and target domains are present. 

In order to deal with the above-mentioned problems, we propose a novel change-detection-

driven transfer learning (CDTL) approach to the classification of multitemporal images that 

overcomes the limitations about the possible differences on both i) the land-cover class statistical 

distributions and ii) the set of land-cover classes present in the source and target domains. The 

main idea of the proposed approach is to fuse TL with AL for exploiting at the best the available 

training data for the source domain together with few specific new labeled data of the target 

domain selected for optimizing the classification accuracy. In greater detail, unlike other DA 

approaches, the proposed one takes advantage of the properties of time series for defining TL in 

terms of label propagation of source training patterns rather than in terms of adaptation of the 

classification parameters of the source domain to the target domain (as it is usually done in the TL 

literature). This is accomplished according to three steps. The first step is the TL step and is 

devoted to define an initial training set for the target domain without collecting labels on its 

samples. To this end, unsupervised change detection is applied to target and source domains, and 

class labels of detected unchanged training samples are propagated from the source to the target 

domain. This novel approach, unlike the DA methods proposed in remote sensing literature, allows 

one to estimate the classification parameters of the target domain directly from the target domain 

samples. Thus there is no need to adapt the classification parameters of the source domain to the 

target domain. Accordingly the proposed system can handle possible significant differences 

between statistical distributions of the source and target domains. In the second step, the initial 
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training set is enriched by a novel AL procedure, which gives priority to the labeling of the 

samples detected as changed at early iterations (Priority AL), and selects samples among all 

unlabeled samples (i.e., changed and unchanged ones) at the remaining iterations (Standard AL). 

This novel procedure results in a fast increase of the classification accuracy versus the number of 

new labeled samples of the target domain. Moreover, due to the manual labeling process 

associated with AL, unlike other literature methods the proposed approach does not require that 

the same set of land-cover classes describes the two domains. At convergence of the AL process, 

in the third step the target image is classified by a supervised classifier. The experiments 

conducted on two different multitemporal and multispectral data sets show the effectiveness of the 

proposed technique. 

The paper is organized into six sections. In Section II, related works in AL and TL are 

surveyed. Section III defines the considered problem and describes the proposed CDTL approach. 

Section IV illustrates the considered data sets and the design of experiments. Section V shows the 

experimental results. Finally, Section VI draws the conclusion of this work. 

II.  RELATED  WORK 

In this section, we review some AL and TL techniques presented in the literature for classification 

of remote sensing images. 

A. Active Learning  

AL methods defined for the supervised classification of single images assume that a small initial 

training set is available for the image to be classified and aim at expanding it in the most effective 

way to define an optimized training set. This is done by an iterative procedure. At each iteration, 

the most informative samples among a pool of unlabeled samples are selected by a query function 

and included in the current training set after manually labeling by a supervisor. The most 

informative unlabeled samples are the samples that have the lowest probability to be correctly 

classified by the current classification model, and thus have maximum uncertainty among all 
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unlabeled samples [12]. The supervisor is an expert who is able to reliably assign the correct label 

to selected samples (note that this is the standard assumption behind every AL approach used in 

remote sensing). In some cases the labeling process can be done by photointerpretation, whereas in 

other cases it may require ground data collection. When the AL process is completed, the training 

set consists of a minimum number of most informative samples for the related classifier. The main 

advantages of AL are: i) the reduced labeling cost (as a result of avoiding redundant sampling), 

and ii) the reduced computational complexity for training the classifier (as a result of the selection 

of an optimal small size training set). In the remote sensing literature several AL techniques have 

been presented to optimize the training set for the single-date image classification. In [12], the 

unlabeled sample that is closest to the classification boundary (i.e., classification margin) of each 

binary Support Vector Machine (SVM) is considered as the most informative and therefore 

included in the current training set at each iteration of the AL process. An AL technique that 

selects the unlabeled sample that maximizes the information gain is presented in [7]. To estimate 

the information gain, the Kullback–Leibler (KL) divergence is calculated between the posterior 

probability distribution of the current training set and the training set obtained by including each 

unlabeled sample into the training set. In [13], different AL techniques proposed in the machine 

learning literature are investigated for the multi-class SVM classification problems, and also a 

novel AL method is proposed. The latter firstly selects the most informative unlabeled samples by 

the Multiclass-Level Uncertainty strategy. Then it analyzes their distribution by using the k-means 

clustering in the kernel space. Finally, the most informative (i.e., most uncertain) sample of each 

cluster is added to the training set at each iteration of AL. In [14], a cluster assumption based AL 

method is presented for addressing critical problems where significantly biased initial training sets 

are available. Label acquisition costs sensitive AL techniques are proposed in [15], [16]. In [15], 

the cost is measured with respect to the distance traveled during the labeling process, whereas in 

[16] it is measured either in units of time (which depend on the vehicles average speed and the cost 
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of labeling each sample) or in terms of distance traveled during the labeling process. 

B. Transfer Learning 

The problem of updating land-cover maps by classifying image time series when ground reference 

samples are available only for one time image is addressed by DA methods in the framework of 

TL. In the last years, TL has obtained an increasing interest in the remote sensing community due 

to the increased availability of time series of remotely sensed images. TL methods address the 

problem of identifying which knowledge can be transferred and how to transfer it across the 

domains [9]. A DA method (named as a partially unsupervised classification method) is presented 

in [1]. This method is able to update the parameters of an already trained parametric maximum-

likelihood (ML) classifier trained on the source domain on the basis of the distribution of the target 

domain for which training data are not available. In order to better exploit the temporal correlation 

between images, the method has been generalized in the context of the Bayesian rule for cascade 

classification in [2]. A further improvement of this approach is proposed in [3] by presenting a 

multiple cascade classifier system that is made up of ML and radial basis function neural-network 

classifiers. Another DA method based on the SVM classifier is presented in [4] where a novel 

circular validation strategy for the accuracy assessment of the classification results is also 

described. In this work, firstly labeled samples of the source domain are exploited to initialize the 

discriminant function for the target domain. Then the unlabeled patterns of the target domain that 

have a high probability to be correctly classified are iteratively included in the training set, 

whereas the labeled samples of the source domain are gradually removed. A DA method for the 

binary hierarchical classifier (BHC) is presented in [5]. This method aims to update the parameters 

of a BHC classifier trained on the source domain on the basis of the distribution of the target 

domain. The presented algorithm can be used when either no labeled training samples are available 

or a small number of training samples exist for the target domain. The DA methods presented in 

[2], [3] are further improved in [6] by addressing the problems related to the differences on the set 
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of land-cover classes between the domains. This is done by the joint use of a change-detection 

method and of the Jeffreys-Matusita (JM) statistical distance measure. AL methods for DA are 

presented in [7] and [8]. In [7], the unlabeled samples from target domain that have the maximum 

information gain measured by the KL divergence are included in the training set of the target 

domain after manual labeling, whereas the initial classification parameters are obtained by the 

distributions estimated on the labeled samples of the source domain. In [8], the initial statistical 

parameters of an ML classifier are calculated by exploiting the labeled samples from the source 

domain. Then, the most informative samples are selected from the target domain by AL for manual 

labeling and inclusion in the training set, whereas the source domain samples that do not fit with 

the distributions of the classes in the target domain are removed. Because of the manual labeling 

process of AL, these methods are able to detect new appeared classes but not the disappeared ones. 

All the above mentioned methods may achieve low classification accuracy for the target domain 

when the class statistical distributions in the target domain differ significantly from those of the 

source domain. Moreover, except [6], these methods result in a poor classification performance 

when the two domains do not share exactly the same set of land-cover classes since classes might 

be appeared or disappeared between available multitemporal acquisitions. Therefore, it is 

necessary to develop TL methods that are not considerably affected from both the distribution 

differences in land-cover classes and the possible appearance and disappearance of the land-cover 

classes between the domains. 

III.  PROPOSED CHANGE-DETECTION-DRIVEN  TRANSFER LEARNING  

APPROACH 

Let [ ]1 2, ,..., P=X X X X  be a time series made up of P co-registered remote-sensing images 

acquired on the same area at different times, where ,1 ,2 ,{ , ,..., }p p p p Bx x x=X  is the p-th 

multispectral remote sensing image in the series acquired at time pt  and made up of C spectral 

channels and B pixels. Without losing in generality, let us consider two images extracted from the 
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time series and let us define them for simplicity as 1 1,1 1,2 1,{ , ,..., }Bx x x=X  and 

2 2,1 2,2 2,{ , ,..., }Bx x x=X . Let ( )1, 2,,j jx x  be the j-th pair of temporally correlated pixels made up of a 

pixel 1, jx  acquired at time 1t  and a spatially corresponding pixel 2, jx  acquired at time 2t . Let 

{ }1 2, , , Rω ω ωΩ = …
 be the set of land-cover classes at time 1t , and { }1 2N , , , Nv v v= …  be the set of 

land-cover classes at time 2t . Differently from the standard TL methods [1]-[4], here we assume 

that the classes in Ω  may be different from those in N. Let us assume that the image 1X  is the 

source domain. Accordingly, we assume that a reliable training set 1 1, 1, 1{ , } M
i i iT x y ==  is available for 

it, where 1, 1ix ∈ X  is the i-th training sample, 1,iy ∈Ω  is the associated class label, and M B<  is 

the number of training samples. In addition, we assume that a training set 2T  for the image 2X  

(target domain) is not available. The goal of the proposed method is to produce a classification 

map of image 2X  by taking advantage of the previously available knowledge from 1X . Here, this 

is achieved by a change-detection-driven transfer learning (CDTL) approach, which also includes 

an active learning strategy. The proposed approach is based on 3 steps: i) a novel change-

detection-driven TL approach; ii) a novel change-detection-driven AL procedure; and iii) target 

domain classification. Fig. 1 shows the block scheme of the proposed CDTL approach. Each step 

of the proposed method is explained in detail in the following.  

 

Fig. 1. Block diagram of the proposed change-detection-driven transfer learning (CDTL) approach. 
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Step 1: Change-Detection-Driven Transfer Learning 

The first step aims at defining an initial training set for the image 2X  (target domain) by taking 

advantage of the available knowledge from 1X (source domain). To this end, here we adopt a novel 

change-detection-based TL procedure. The basic idea behind this choice is that the labels of 

training samples in 1T  can be considered reliable for 2X , and thus transferred, only if the related 

pixels did not change. Accordingly, at first there is a need of detecting whether changes occurred 

on the ground between 1X  and 2X , and if different land-cover transitions occurred. As no training 

set is assumed available for 2X , an unsupervised change-detection method should be used. Here 

the Change Vector Analysis (CVA) technique [17] is adopted due to its capability in 

distinguishing among kinds of change associated to different land-cover transitions in an 

unsupervised way (which is not a common property of unsupervised change detection methods 

that usually just discriminate between changed and unchanged areas) and its simplicity and 

effectiveness. Note that the information about different kinds of change is required in the 

following step of the proposed approach (i.e., in the change-detection-driven AL procedure). In the 

CVA technique, temporally correlated (thus spatially corresponding) pixels 1, jx
 and 2, jx

 are 

subtracted to each other in order to build a multispectral difference image DX . To make CVA 

reliable, the basic assumption is that multitemporal images should be co-reregistered to each other. 

If after co-registration significant residual misregistration errors affect multitemporal data, CVA-

based change detection methods robust to this kind of problem can be adopted [24]. The 

information present in the multispectral difference image is analyzed according to the theoretical 

framework for unsupervised change detection based on the CVA in polar domain proposed in [18]. 

According to [18], for simplicity two spectral bands out of C are selected such that the most 

informative features with respect to the specific considered problem are isolated excluding noisy 

and misleading spectral channels from the analysis. It is worth noting that, even if the assumption 
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of working with a couple of spectral channels is reasonable in many change-detection problems 

[17]-[19], the CVA can be also applied to all spectral channels. From the defined 2-dimensional 

feature space, the polar representation of the change-detection problem is built on the basis of the 

magnitude and the direction of spectral change vectors. In this feature space, unchanged pixels are 

concentrated close to the origin of the polar domain and fall within the Circle of no-changed (Cn) 

pixels, whereas changed pixels fall far from the origin within the Annulus of changed (Ac) pixels 

[18]. The threshold value T that separates Cn from Ac along the magnitude variable ρ can be 

computed according to any thresholding technique available in the literature [19], [20]. Changed 

pixels belonging to different land-cover transitions (i.e., different kinds of change) show along the 

direction variable ϑ  in Ac different preferred directions and fall therefore in different Annular 

sectors of change (Sh, h=1,…, H, where H is the number of detected kinds of change). Each sector 

is bounded by a pair of angular thresholds 
1hϑ  and 

2hϑ  that can be automatically detected according 

to the method described in [21] or interactively identified according to a visual analysis of the 

polar domain. Fig. 2 shows the decision regions according to the CVA framework. 

 

 
Fig. 2. Representation of the regions of interest for the CVA technique in the Polar coordinate system. 

 

Once change detection has been performed, the knowledge related to 1X  which has a high 

probability to be reliable also for 2X  is transferred. Such information is represented by the labels 
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of pixels that are detected as being unchanged, i.e., the ones that fall in Cn. Let 1 1, 1, 1{ , }UC R
i i iT x y ==

 

be the set of unchanged training pixels at 1X , where 1, 1
UC

ix T∈
 is the i-th training sample and R 

( R M< ) is the number of unchanged training samples. The initial training set 2T  of 2X  is defined 

as 2 2, 1, 1 2, 2, 1{ , } { , }R R
i i i i i iT x y x y= == =  where 2, 2ix ∈ X  is the i-th initial training sample and 1, 2,i iy y≡  is 

its label transferred from 1
UCT . The classes that are represented in 2T  define the initial set of 

classes NTL  for 2X  after TL. NTL  is by definition a subset of land-cover classes at 1t  (i.e., 

NTL ⊆ Ω ). The labels of all training samples detected as being changed, i.e., the ones that fall in Sh 

(h=1,…, H), are not transferred.  

Due to this step, unlike other TL techniques presented in the remote sensing literature [1]-

[8], the proposed approach does not require to adapt the classifier parameters of the source domain 

to the target domain. Thus the proposed approach results robust to the class statistical distribution 

differences between the source and target domains. It is worth noting that even if in this paper we 

use the CVA technique, this step can be implemented with any unsupervised change detection 

technique that can identify the presence of different land-cover transitions. 

Step 2: Change- Detection-Based Active Learning 

Step 1 completely removes from the representation of the problem at 2t  the information about 

changed pixels, since it does not transfer labels of training samples that fall in Sh (h=1,…, H) 

assuming that they are unreliable as possibly changed. However, changed pixels are highly 

important for the map-updating process since they may carry information about possible new 

classes appeared in 2X  and/or about different statistical properties of spatially shifted classes (i.e., 

classes that are already in NTL  but appear in a different spatial positions in 2X  with respect to 

1X ). Neglecting this information would lead to unreliable classification of 2X . Thus we can state 
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that from the AL viewpoint unlabeled changed samples in 2X  are potentially highly uncertain (and 

thus informative) with respect to the classification of 2X . Accordingly in step 2 the initial training 

set 2T  is expanded by exploiting a novel change-detection-driven AL procedure. Let us focus the 

attention on changed pixels. Pixels among them associated to new classes appeared in 2X  are the 

most informative, since they are not represented in the training set 2T , whereas pixels associated to 

spatially shifted classes are highly informative only if their spectral signature is different from that 

of the pixels of the same class already included in 1
UCT . On the opposite, changed pixels that are 

associated to spatially shifted classes and that have a spectral signature similar to each other are 

less interesting. The adopted unsupervised change-detection technique is able to identify the 

presence of different land-cover transitions. However, since it is unsupervised, it does not provide 

any information about the new labels assumed by changed pixels in 2X . In other words, it is not 

able to distinguish among the above-mentioned three change cases. In order to deal with this 

problem and distinguish these cases, we adopt a method based on statistical distance measures 

recently proposed in [6]. Let { }1 2, , , Hε ε εΕ = …  be the set of unknown class labels that changed 

pixels assume in 2X . Note that the number of transitions can be estimated on the basis of the 

different number of annular sectors of changes detected in the polar domain. In order to understand 

whether hε ∈Ε  is already present in the initial training set T2 (i.e., NTL
hε ∈ ∩ Ε ) or not (i.e., 

NTL
hε ∉ ) the similarity between the statistical distribution of each hε ∈ Ε  and that of each land-

cover class NTL
uω ∈ ⊆ Ω  present in the initial training set 2T  is computed. Class similarity is 

measured according to a pairwise Jeffreys-Matusita (JM) distance. Here JM distance is selected 

due to its asymptotic behavior. Unlike other distance measures that are unbounded, the JM 

distance reaches saturation to the square root of 2. This behavior makes it easy to establish a 

threshold value that defines a high distance (in terms of the Chernoff upper bound to the error 
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probability [27]) of classes [6]. However any other distance measures [25] can be also used. 

Thereby, the JM distance huJM between hε ∈ Ε  and NTL
uω ∈  can be calculated as 

( )2 1 huB
huJM e−= −                                                                                                                        (1) 

where huB  is the Bhattacharyya distance between the two considered classes and can be calculated 

as 

2

2 2 2ln ( ) ( )hu h u

X

B p X p X dXε ω
  = − | | 
  
∫                                                                                        (2) 

where 2( )hp X ε|  and 2( )up X ω|  are the class conditional density functions of the random 

variable X2 associated to the image X2. Under the assumption of Gaussian distributed classes, (2) 

can be rewritten as 

( ) ( )
1

1 1 1
ln

8 2 2 2
T h uh u

hu h u h u

h u

B µ µ µ µ
−  Σ + ΣΣ + Σ   = − − +     Σ Σ 

                                                        (3) 

where hµ  and uµ  are the mean vectors of the classes hε  and uω , respectively, hΣ  and uΣ  are their 

covariance matrices, and T represents the transpose operator.  

If for a given hε ∈Ε  all computed pairwise JM distances are higher than a user defined 

threshold value Th, we detect the presence of a new class (i.e., NTL
hε ∉ ) or of a spatially shifted 

class (i.e., NTL
hε ∈ ) with a significantly different spectral signature compared to the same class 

already present in 1
UCT . These are the two situations in which changed pixels are highly uncertain 

and thus particularly informative for the AL step. If hε ∈ Ε  exhibits a small JM distance with one 

of the NTL
uω ∈ ⊆ Ω  classes, a spatially shifted class with spectral signatures similar to those of 

the same class already present in 1
UCT  is detected. This procedure is applied until all classes in Ε  

have been analyzed. Once this information has been retrieved, the proposed approach applies AL 
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with a mechanism of priority. If classes hε ∈ Ε  that show a high JM distance to all land-cover 

classes in NTL  have been detected, at the first iterations of the AL process the pool of unlabeled 

samples for 2X  is made up only of pixels associated to these classes (i.e., changed samples). 

These pixels are candidate to be either a new class or a spatially shifted class which is not properly 

modeled by the samples in the training set 2T . This sub-step is called Priority AL Step. If there is 

only one unknown class with a high JM distance (i.e., H =1), the most uncertain b samples are 

selected from this class only and labeled manually to be included in the current training set. In the 

case there are more unknown classes with high JM distances (i.e., 1H > ), the most uncertain 

/b H  samples are selected from each class, which results in the selection of b most uncertain 

samples in total. The manual labeling of the additional b samples solves the ambiguity between 

spatially shifted classes (i.e., NTL
hε ∈ ) that have different spectral signatures and new classes 

( NTL
hε ∉ ). Accordingly, in case of NTL

hε ∉  the set N  of land-cover classes at time 2t  is defined 

as N=N { }TL
hε∪ , whereas if NTL

hε ∈ , the set N  of land-cover classes is equal to the initial set of 

classes NTL , i.e., N=NTL . In the second part of this step, priority is removed and standard AL is 

applied including all unlabeled samples in the pool, i.e., both unchanged and changed samples. It 

is worth nothing that if there are no changed pixels, the algorithm avoids the Priority AL Step. 

This is the case in which no new classes are detected and N NTL≡ . Moreover it may happen that 

the labels propagated from 1X  are sufficient for a reliable classification of 2X . In this case no 

additional labeled data will be collected for 2X and the step 2 can be avoided. Fig. 3 shows the 

block diagram of the change-detection-based active learning step, whereas Fig. 4 demonstrates the 

relationship between N  and NTL in the different cases. It is worth nothing that this step is 

independent from the adopted AL technique, and thus can be used with any AL technique 

presented in the literature [12]-[16]. 
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Fig. 3. Block diagram of the change-detection-based active learning step (second step). 

 
 
 
 

As a final remark, it is worth pointing out that detected kinds of change may interest all the 

pixels associated to a given class at 1t , i.e., classes in Ω  may disappear. This may happen in the 

case of detecting both a new class or a spatial shift of classes. However this situation is not critical 

since it is implicitly managed by the proposed method by not transferring labels associated to 

changed training samples in Step 1. Thus, if a given class in Ω  is no longer present in N , all the 

related pixels will be changed and their labels will not be represented in NTL . 

Step 3: Target Domain Classification 

In the last step, when the AL process is completed, the image 2X  is classified. This is done by 

training the classifier with the training set 2T  obtained at the convergence of the step 2. It is worth 

nothing that the proposed approach is independent from the classification method, and therefore 

can be used with any classification technique presented in the literature [25],[26]. 
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Fig. 4. The relationship between the set of classes N obtained at the convergence of the step 2 and the set of classes 

NTL  obtained at the end of step 1. 

 

IV.  DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS  

A. Data Set Description  

In our experiments, we used two multitemporal data sets. The first one is made up of two co-

registered multispectral images acquired by the Landsat-5 satellite on the Island of Sardinia, Italy, 

in September 1995 and July 1996 (see Fig. 5.a and Fig. 5.c). The two images share five land-cover 

classes (i.e., pasture, forest, urban area, water, vineyard). The image acquired in September 1995 

also includes one additional class, i.e., bare soil. In order to properly demonstrate the effectiveness 

of the proposed method in our experiments we considered the July 1996 image as 1X  and the 

September 1995 image as 2X . This choice allows us to test the proposed method in the case in 

which a new class appeared in the time interval between 1X  and 2X . In order to simulate more 

complex situations with multiple new appeared classes, an additional class of burned area related 

Compute Pairwise JMhu 
Distances 

N=N { }TL
hε∪  

hε  is a spatially 

shifted class 
N=NTL

 

hε  is a spatially 

shifted class 
N=NTL

 

NTL
uω∀ ∈  

min(JMju) ≥ Th 
 

hε is a 

new class? 

Yes 

No 

Compute 2( )hp X ε| , 

2( )up X | ω , NTL
uω∀ ∈  

Initial Training 
Set T2 

Yes No 



19 

to a forest fire was included in the September 1995 image (see Fig. 5.b). To this end, a data set 

made up of two multispectral images acquired by the Landsat-5 TM multispectral sensor on the 

Island of Elba (Italy) in August 1994 and September 1994 [17] was utilized. Using the available 

ground truth for Elba image, the spectral signatures of burned areas taken from the Elba image 

were inserted in the forest areas of the September 1995 image. Thus, the modified September 1995 

image includes two additional classes, i.e., bare soil and burned area, with respect to the July 1996 

image. Accordingly, for the Sardinia data set we have two scenarios. In the first scenario (Scenario 

1) the original September 1995 image (which includes the appearance of only one new class, i.e., 

bare soil) is considered as 2X , whereas in the second one (Scenario 2) the modified September 

1995 image (in which two new classes appeared, i.e., bare soil and burned area) is considered as 

2X  fixing the July 1996 image as 1X  (see Table I). 

The second data set is made up of two co-registered and pansharpened multispectral Very 

High geometrical Resolution images acquired by the QuickBird satellite on the city of Trento, 

Italy, in October 2005 and July 2006, respectively (see Fig. 6). Here we considered the October 

2005 image as 1X  and the July 2006 image as 2X . The images share five land-cover classes (i.e., 

water, red roof, asphalt, fields, and bare soil). One additional class is present in the July 2006 

image, thus between the two acquisitions an addition of one new class (i.e., plastic-mulched fields) 

is registered.  
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(a) (b) 

 
(c) 

Fig. 5. Spectral band 4 of the Sardinia data set: (a) image acquired in September 1995 (2X , Scenario 1); (b) modified 

image acquired in September 1995 (2X , Scenario 2); and (c) image acquired in July 1996 ( 1X ). 

 
 

TABLE I. SCENARIOS CONSIDERED IN THE EXPERIMENTS FOR THE SARDINIA DATA SET  

Scenario 1X  2X  

1 July 1996  September 1995  
2 July 1996  Modified September 1995 
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(a) (b) 

Fig. 6. Spectral band 1 of the Trento data set: (a) image acquired in October 2005 (1X ); and (b) image acquired in July 

2006 ( 2X ). 

 
 

B. Design of Experiments  

For both data sets, all the reported experimental results are referred to the average accuracy 

obtained on ten trials according to ten initial randomly selected training sets for 1T  that correspond 

to ten different initial training sets for 2T . For each trial, the Sardinia data set includes a training 

set 1T  of 378 samples for the 1X  image selected randomly among 2565 available labeled samples, 

whereas the Trento data set consists of a training set 1T  of 470 samples for the 1X  image selected 

randomly among 3885 available labeled samples. For both data sets, a training set 2T  for the image 

2X  is assumed initially not available. 

We carried out the experiments with batch size values b=4 and b=10 which show the total 

number of samples being added to the current training set 2T  at each iteration of the AL step. For 

the classification step an SVM classifier [22], [23] with Radial Basis Function (RBF) kernel is 

used. The choice of the SVM is done as it is one of the most widely used classifiers in remote 

sensing due to both its theoretical properties and its proven empirical effectiveness on many 

different kinds of data and applications. However, as also mentioned before, the proposed method 

is general and can be used with any classifier. The values of the regularization parameter of the 
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SVM classifier and the γ  parameter of the RBF kernel are obtained by a five-fold cross validation. 

The regularization parameter is tested between [10-1000] with a step size increment of 20, and the 

γ  parameter of the RBF kernel function is tested between [0.1-2] with a step size increment of 0.1. 

The value of threshold Th is set to 0.99 due to the fact that if a pair of classes have a JM distance 

smaller than 0.99 they are assumed to be similar [6]. 

In this paper, we have exploited the Multiclass-Level Uncertainty with Enhanced Clustering 

Based Diversity (MCLU-ECBD) technique, which is an effective AL method defined on the basis 

of uncertainty and diversity criteria [13]. The uncertainty criterion aims at selecting the unlabeled 

samples that have maximum uncertainty about their correct label among all samples in the 

unlabeled sample pool (and thus are the most useful to be included in the training set), whereas the 

diversity criterion aims at selecting a set of unlabeled uncertain samples that are as more diverse as 

possible to reduce the redundancy among the samples selected by the uncertainty criterion. In the 

MCLU-ECBD technique, the most uncertain samples are initially selected by the Multiclass-Level 

Uncertainty (MCLU) strategy that assesses the uncertainty of unlabeled samples on the basis of 

their functional distances to the decision boundaries of the binary SVM classifiers [13]. After the 

MCLU step, the most uncertain samples are analyzed by the k-means clustering method applied in 

the kernel space. Since the samples within the same cluster are correlated and provide similar 

information, one sample (the most uncertain one) from each cluster is selected and added to the 

training set at each iteration of AL.  

We carried out two kinds of experiments in order to assess the effectiveness of the proposed 

CDTL approach. In the first set of trials the usefulness of the change-detection-driven TL step, 

which automatically defines an initial training set 2T  for 2X  without any need for manual labeling 

of samples, was assessed. To this end the results obtained by the proposed CDTL approach are 

compared with those obtained with an AL technique that neglects the TL step. Since in this case 
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no labels are propagated from 1X , the initial training set 2T  for 2X  is empty. However, MCLU-

ECBD technique needs an initial training set including labeled samples to train the classifier 

before starting with AL iterations. To this end, random sampling (RS) is applied to the samples of 

the image 2X  and two samples related to each land-cover class are randomly selected and labeled 

to define an initial training set 2T . It is worth nothing that the RS step required for the initialization 

of the training set 2T  implies an additional cost of sample labeling whereas the proposed system 

does not.  

 In the second set of trials, we tested the effectiveness of the change-detection-based AL step 

by analyzing the improvements introduced by the Priority AL mechanism. This is done by 

assessing the CDTL approach with the priority rule and without it. For both data sets, in the 

experiments the Priority AL step is only performed at the first iteration of the AL process. 

V. EXPERIMENTAL RESULTS 

A. Results on the Sardinia Data Set (Scenario 1) 

In order to apply the proposed procedure, first CVA has been applied to Sardinia images 1X  and 

2X  (see Table I, Scenario 1). In this case, the changed area is associated to a reduction of the lake 

surface, and thus to a transition from water to bare soil. Note that the class transition is not known 

a priori, but automatically identified by the proposed approach according to the AL step. After 

performing change detection, the class labels of unchanged pixels are propagated to 2X , providing 

128 initial training samples for 2T . Once label propagation is completed the statistical analysis of 

the changed area is performed. This is done by measuring all the pairwise JM distances between 

the changed pixels in 2X  and all the classes already present in 2T . Since all the pairwise JM 

distances are found higher than the threshold Th=0.99, a new class (or a spatially shifted class 

with a different spectral signature compared to the same class already present in 2T ) is detected. 
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Accordingly, the Priority AL step is performed at the first iteration and the human expert assigned 

“bare soil” label to the selected unlabeled samples. Thus the high values of the JM distances were 

associated to the presence of a new class. Starting from the second iteration, the Standard AL step 

is performed including both changed and unchanged samples in the pool. Table II shows the 

number of initial training samples (which are obtained on the basis of the CVA driven TL), and of 

changed and unchanged unlabeled samples in the pool set available for each land-cover class in 

2X . In addition also the number of test samples, which are used for accuracy assessment, is given 

in the table.  

TABLE II.  INITIAL TRAINING, POOL AND TEST SETS FOR 2X  IMAGE (SARDINIA DATA SET, SCENARIO 1). 

Land-cover 
classes 

Initial 
Training Set 

Pool Set 
Test 
Set Changed 

Samples 
Unchanged 

Samples 
Pasture (ωωωω1) 28 - 526 589 
Forest (ωωωω2) 15 - 289 274 

Urban area (ωωωω3) 20 - 388 418 
Water body(ωωωω4) 56 - 748 551 
Vineyard (ωωωω5) 9 - 170 117 
Bare soil (ωωωω6) - 316 - 316 

Total 128 316 2121 2265 
 

In the first set of experiments, we assess the effectiveness of change-detection-driven TL 

step by comparing the results of proposed approach with those obtained when 2T  is empty and 

populated according to only an AL procedure neglecting TL. Fig. 7 shows the average (on 10 

trials) classification accuracies on 2X  versus the number of new labeled samples obtained by i) the 

proposed CDTL approach, and ii) the RS method. In both cases the MCLU-ECBD technique is 

used in the AL step. Note that the new labeled samples are the patterns labeled by the human 

expert during the considered iteration of the AL process. From the figure, one can see that without 

labeling any new sample, the accuracy is zero in the case of using RS, whereas that is 77.64% in 

the case of using the proposed CDTL approach. This is of course due to the fact that the initial 

training set without labeling any new sample is not empty if the CDTL approach is used. 
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Moreover, by analyzing the figure one can observe that the CDTL provides higher accuracies than 

the RS and reaches convergence with a smaller number of new labeled samples. As an example, 

the accuracy of CDTL is 88.57% with only 12 new labeled samples, whereas that of RS is only 

73.35% (see Fig. 7.a that refers to b=4). These results demonstrate that the proposed approach 

significantly reduces the labeling cost, thanks to the label-propagation step of the proposed 

algorithm defined on the basis of change-detection-driven TL.  

 

  

(a) (b) 

Fig. 7. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained 

by the CDTL and the RS approaches when (a) b=4 and (b) b=10 (Sardinia data set, Scenario 1). 

 

  

(a) (b) 

Fig. 8. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t  obtained 

by the proposed CDTL with and without the Priority AL step in the cases of (a) b=4 and (b) b=10 (Sardinia data set, 
Scenario 1). 

 

In the second set of experiments, we assess the effectiveness of the Priority AL procedure in 

the step 2 of the proposed method. Fig. 8 shows the average (on 10 trials) classification accuracies 
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of 2X  versus the number of new labeled samples obtained by the proposed CDTL approach with 

and without the Priority AL step. From the results one can observe that the use of the Priority AL 

step provides higher accuracies at the early iterations, whereas it leads to similar accuracies at the 

remaining iterations. This is due to the ability of the MCLU-ECBD technique in selecting the most 

informative samples from the new class. However, at the early iterations, the Priority AL provides 

a faster improvement in the accuracy.  

B. Results on the Sardinia Data Set (Scenario 2) 

In order to better assess the effectiveness of the proposed approach, a more complex situation in 

which two new classes are present in the 2X  (Scenario 2) is considered. Similarly as before, the 

CVA has been applied to images 1X  and 2X , and resulted in detecting two kinds of change. The 

first kind of change is related to the transition between bare soil and water on the lake area (as in 

Scenario 1), whereas the second one is related to the presence of the burned area on a forest area. 

Note that this information is assumed to be unknown. After performing CVA, the class labels of 

unchanged pixels in 1X  are propagated to 2X , providing 103 initial training samples for 2T . Then, 

the JM distances between the detected changed pixels in 2X  and all the classes already present in 

2T  are calculated and found higher than the threshold Th=0.99. The process has been carried out 

independently for each detected kind of change. Based on these results, the presence of two new 

classes (or of spatially shifted classes) is identified. Accordingly, initial training set is expanded by 

applying the Priority AL step at the first iteration and applying Standard AL at the remaining ones. 

Since there are two kinds of change, in the Priority AL step (i.e., at the first iteration of AL) / 2b  

most
 
uncertain unlabeled samples are chosen from one unknown class and / 2b  most

 
uncertain 

unlabeled samples are selected from the other one looking at the two annular sectors in the CVA 

polar domain. In the labeling process of AL, the human expert assigned “bare soil” and “burned 

area” labels to the selected unlabeled samples. Thus the high values of the JM distances were 
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associated to the presence of new classes. Table III shows the number of initial training samples 

obtained on the basis of the CVA driven TL, changed and unchanged unlabeled samples in the 

pool set, and test samples available for each land-cover class in 2X . 

TABLE III.  INITIAL TRAINING, POOL AND TEST SETS FOR 2X  IMAGE (SARDINIA DATA SET, SCENARIO 2). 

Land-cover 
classes 

Initial 
Training Set 

Pool Set 
Test 
Set Changed 

Samples 
Unchanged 

Samples 
Pasture (ωωωω1) 28 - 526 589 
Forest (ωωωω2) 6 - 122 159 

Urban area (ωωωω3) 20 - 388 418 
Water body(ωωωω4) 40 - 764 551 
Vineyard (ωωωω5) 9 - 170 117 
Bare soil (ωωωω6) - 316 - 316 

Burned area (ωωωω7) - 176 - 115 
Total 103 492 1970 2265 

 
 

  

(a) (b) 

Fig. 9. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained 

by the CDTL and the AL approaches when (a) b=4 and (b) b=10 (Sardinia data set, Scenario 2). 

 

Fig. 9 shows the behavior of the average (on 10 trials) overall accuracies obtained by the 

CDTL and the RS (which ignores the TL step and therefore assume that an initial training set is 

not available) in the cases of b=4 (see Fig. 9.a) and b=10 (see Fig. 9.b). By analyzing the figure, 

one can observe that the CDTL results in higher accuracies for both values of b. Moreover, it 

reaches convergence with a smaller number of new labeled samples, thanks to the change-

detection-driven TL step. As an example, from the Fig. 9.a one can observe that the CDTL yields 
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an accuracy of 79.13% with only 4 new labeled samples at 2t , whereas the RS reaches a similar 

accuracy with 22 new labeled samples. It is worth nothing that the effectiveness of the proposed 

approach compared to RS is significant due to its ability in defining the initial training set 2T . 

Fig. 10 shows the comparison of the average overall accuracy obtained by the CDTL 

approach with and without the Priority AL step for both values of b. From these graphs, one can 

see that the CDTL with priority rule, provides again the selection of more informative samples 

compared to the CDTL without priority rule, and achieves higher accuracies for the same number 

of labeled samples (thus the same accuracy with less samples). As an example, the CDTL with 

priority rule provides the highest accuracies at each iteration and also converges with a small 

number of labeled samples when b=4 (see Fig. 10.b). In the case of b=10, the CDTL with priority 

rule results in better accuracies at the early iterations resulting in a faster improvement of the 

accuracy, whereas the results are similar to those of the CDTL without priority rule at the 

remaining iterations. This is due to the fact that MCLU-ECBD is a very effective AL technique for 

the selection of the most informative samples, and thus after some iterations the new appeared 

classes are sufficiently represented in the training set. 

  

(a) (b) 

Fig. 10. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t  obtained 

by the proposed CDTL with and without the Priority AL step when using RS in the AL step in the cases of (a) b=4 and 
(b) b=10 (Sardinia data set, Scenario 2). 
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C. Results on the Trento Data Set 

Also for the Trento data set the CVA technique has been applied to images 1X  and 2X , and the 

class labels of training pixels in 1X  detected as unchanged are transferred to 2X  providing 170 

initial training samples for 2T . Once label propagation is completed, the statistical analysis of the 

changed areas is performed. On the basis of this analysis, it is observed that the detected changed 

pixels in 2X  have high JM distances to all the classes present in 2T . This shows the presence of a 

new class (or of a spatially shifted class with a significantly different spectral signature from that 

modeled in the initial 2T ). Accordingly, the Priority AL step is applied and in the labeling process 

of AL the human expert assigned “plastic-mulched fields” label to the selected unlabeled samples. 

Thus the high values of the JM distances are associated to the presence of a new class. From the 

second iteration, Standard AL is performed involving both changed and unchanged samples. Table 

IV lists the number of initial training samples obtained by the CVA driven TL, the changed and 

unchanged unlabeled samples in the pool set, and the test samples available for each land-cover 

class in 2X . 

TABLE IV.  INITIAL TRAINING, POOL AND TEST SETS FOR 2X  IMAGE (TRENTO DATA SET). 

Land-Cover Classes 
Initial 

Training 
Set 

Pool Set 
Test 
Set Changed 

Samples 
Unchanged 

Samples 
Water (ωωωω1) 52 - 986 1104 
Red Roof (ωωωω2) 22 - 427 469 
Asphalt (ωωωω3) 34 - 438 474 
Fields (ωωωω4) 32 - 615 534 
Bare soil in field (ωωωω5) 30 - 570 483 
Plastic-mulched field(ωωωω6) - 471 - 290 
Total 170 417 3236 3354 

 

Fig. 11 shows the comparison of the average overall accuracy obtained by the CDTL and the 

RS for both values of b. Also for the Trento data set the CDTL resulted in higher accuracies at 

most of the iterations, and also converged with a smaller number of labeled samples. For example, 
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the CDTL yields an accuracy of 93.55% by adding only 12 labeled samples to 2T , whereas the RS 

provides an accuracy of 87.% with the same number of labeled samples.  

  

(a) (b) 

Fig. 11. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained 

by the CDTL and the RS approaches when (a) b=4 and (b) b=10 (Trento data set). 

 

The comparison of the average overall accuracy provided by the CDTL with and without the 

Priority AL step when the MCLU-ECBD technique is used in the AL step is not reported here as it 

is very similar to what already presented on the previous data sets. 

VI.  DISCUSSION AND CONCLUSION  

In this paper, we have presented a novel change-detection-driven transfer learning approach 

(CDTL) for updating land-cover maps by classifying image time series. The proposed approach 

classifies an image for which no ground truth information is available (target domain) by using the 

knowledge available for an image acquired on the same area of interest at a different time (source 

domain). The CDTL approach overcomes the two main drawbacks of other techniques presented 

in the remote sensing literature: i) it is not affected from the possible significant differences 

between the land-cover class distributions of the source and the target domains, and ii) it is able to 

handle situations in which different sets of land-cover classes may characterize the two domains. 

Moreover, the proposed approach allows one to significantly reduce the complexity and the cost of 

the collection of labeled samples for the target domain. 
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The CDTL approach is defined on the basis of three steps. The first step is devoted to define 

an initial training set for the target domain. This is done by firstly applying unsupervised change 

detection to source and target domains, and then transferring the class-labels of unchanged training 

samples from source domain to target domain. Thus, the initial training set for target domain is 

inherited from the source domain. Because of the label propagation of source training patterns, the 

classifier is directly trained on the original samples of the target domain, and thus there is no need 

to adapt the classification parameters of the source domain to target domain. Therefore, the 

dissimilarity between the land-cover class distributions of source and target domains does not 

affect the proposed method. Moreover this step significantly reduces the number of new labeled 

samples to be collected at target domain for optimizing the classification results. In addition, this 

step intrinsically rejects possible disappeared classes in the target domain as it does not transfer 

labels associated to changed training samples. The second step aims at optimizing the initial 

training set by Active Learning (AL) giving a priority to samples detected as being changed at the 

first iterations. This is because they have a high probability to be most informative among all the 

other unlabeled samples. Therefore this choice allows one to increase rapidly the classification 

accuracy by labeling few specific unlabeled samples of the target domain, and thus to optimize the 

classification accuracy. In the remaining iterations priority is removed, and AL is applied in a 

standard way. Thanks to the AL step, the proposed approach does not have limitations on the sets 

of land-cover classes that characterize the two domains. When the AL process is completed, in the 

third step the target image is classified to obtain the classification map.  

Experimental results obtained on two multitemporal data sets show that: i) the change-

detection-driven TL step generates reliable initial training set for the target domain reducing the 

cost of labeled sample collection to the minimum; and ii) the change-detection-driven AL with 

Priority AL rule provides a faster convergence to the desired accuracy, with respect to standard 

AL. In greater details, in most of the cases we achieved high accuracy on the target image by 
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adding few (10-20) labeled samples for the target domain. From a different perspective, if no 

changes occurred between the two considered images, the proposed method can provide accurate 

classification results also without labeling new samples for the target domain. 

It is worth nothing that the proposed approach is very promising for possible operational 

applications due to both its general properties and its simplicity in the implementation. As a final 

remark, we point out that the proposed method can be easily applied to long time series by 

extracting different pairs of source and target images from the series and applying an iterative 

pairwise analysis. 
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