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Abstract—This paper addresses the problem of land-cover maps updating by classification of 
multi-temporal remote sensing images in the context of domain adaptation. The basic 
assumptions behind the proposed approach are two. The first one is that training data (ground 
reference information) are available for one of the considered multi-temporal acquisitions 
(source domain) whereas they are not for the other (target domain). The second one is that multi-
temporal acquisitions (i.e., target and source domains) may be characterized by different sets of 
classes. Unlike other approaches available in the literature, the proposed Domain Adaptation 
Bayesian classifier based on Maximum a Posteriori decision rule (DA-MAP) automatically 
identifies whether there exist differences between the set of classes in the target and source 
domains and properly handles these differences in the updating process. The proposed method 
was tested in different scenarios of increasing complexity related to multitemporal image 
classification. Experimental results on a medium resolution and a very high resolution 
multitemporal remote sensing data sets confirm the effectiveness and the reliability of the 
proposed DA-MAP classifier. 
 

Index Terms—Domain adaptation, Partially supervised learning, Partially unsupervised 
learning, Bayesian Classifier, Maximum-a-Posteriori classifier, Multi-temporal images 
classification, Land-cover map updating, Remote sensing 

 
I. INTRODUCTION 

The objective of Domain Adaptation (DA) techniques (also known as transfer learning or partially 

supervised/unsupervised learning) is to take advantage of the available knowledge on a given source 

domain in order to infer a model/classifier suitable for the classification of a related (yet not identical) 

target domain for which a priori information is not available [1],[2]. This kind of techniques have 

proven to be effective in different applications mainly related to text analysis and natural language 

processing [1]-[4]. Moreover, few successful examples can be found also in remote sensing where DA 
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techniques become useful when there is a need of classifying images acquired: 1) on spatially disjoint 

areas that show similar characteristics; or 2) on the same geographical area at different times. In this 

work the attention is focused on the analysis of multi-temporal remote-sensing images acquired on the 

same area at different times and the related land-cover maps updating [5]-[8]. Due to the periodic and 

regular acquisition of remote sensing images on the same geographical area and to the difficulties in 

collecting the reference data on the ground with the same frequency, it is not possible to apply standard 

supervised classification algorithms to each available image. In this context, DA techniques have a 

high importance for the development of monitoring systems aimed at regularly mapping geographical 

areas of interest. In this specific scenario the source domain is identified as the first image to be 

classified for which a training set is assumed to be available, whereas the target domain is associated to 

each new available image to be classified (acquired on the same geographical area of the source 

domain) for which a training set is likely to be not available [7]-[12]. In this context, DA should be 

faced according to semisupervised strategies that take advantage of the training set available for the 

source domain and the unlabeled samples from target domain in order to derive a classification rule 

suitable for the target domain. 

The few domain adaptation methods proposed in the remote sensing literature are based on the 

assumption that the set of land-cover classes that models the target domain should be the same as those 

included in the source domain. In other words, the differences between the two domains are only 

related to differences in the statistical parameters of land-cover classes due to differences in the 

acquisition conditions (e.g., differences in the atmospheric conditions at the image acquisition dates, 

sensor nonlinearities, different levels of soil moisture). Under this assumption, in [9] a partially-

unsupervised approach is proposed, which can update the parameters of an already trained parametric 

maximum-likelihood (ML) classifier on the basis of the distribution of a new image for which no 

ground reference information is available. In [10], in order to take into account the temporal correlation 
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between images acquired over the same area at different times, the partially-unsupervised ML 

classification approach is reformulated in the framework of the Bayesian rule for cascade classification. 

The basic idea in both approaches consists in modeling the observed spaces by a mixture of 

distributions, whose components are estimated through the employment of unlabeled data according to 

a proper inference applied to training samples of the reference image. In [11] and [12] partially-

unsupervised classification approaches based on a multiple-classifier system and a multiple-cascade-

classifier system (MCCS) have been defined, respectively. However, even if the above-mentioned 

methods resulted effective in many applications, in some real cases it is not possible to assume that the 

set of land-cover classes that models the target domain is the same as those included in the source 

domain. In these cases land-cover classes may not only change their statistical behaviors but may also 

appear and/or disappear. Differences in the set of classes that characterize source and target domains 

strongly affect the effectiveness of standard domain adaptation methods that cannot address this kind of 

problem. 

In this work, we propose a domain adaptation technique that overcomes the abovementioned limit. 

This technique is based on the use of a maximum-a-posteriori (MAP) Bayesian classifier [13]. 

However, other kinds of classifiers could be adopted in the context of the proposed method, as for 

example machine learning based classification algorithms [7],[8]. The standard approach to domain 

adaptation based on MAP classifier considers the class statistical parameters estimated in a supervised 

way from an image for which training data are available (the source domain) as rough estimate of the 

statistical parameters of classes in each new image to be classified (target domain). These values need 

to be properly adapted to the target domain according to the characteristics of the new image that has to 

be analyzed. Unlike standard methods, the proposed technique identifies before performing adaptation 

whether the new classes have appeared and/or some of the existing classes disappeared in the new 

considered image by integrating well established change-detection techniques [15],[16],[17] with a 
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statistical distance measure in the analysis of the multi-temporal images. According to the specific 

detected situation on the relationship between classes present in the two images, the proposed approach 

properly initializes the domain adaptation procedure and updates the class statistical parameters 

relevant to the new image by using the Expectation Maximization (EM) algorithm. Before computing 

the final classification map, the Bayesian information criterion is used to validate the estimated model. 

The manuscript is organized into seven sections. Section II introduces the notation and background 

of the addressed domain adaptation problem. Section III presents the proposed system for land-cover 

maps updating. Section IV details the proposed procedure for domain adaptation. The multitemporal 

Landsat and QuickBird datasets used in the experiments are described in Sections V and VI, 

respectively, together with the different scenarios used to test the effectiveness of the proposed 

approach and the achieved results. Finally, Section VII draws the conclusions of this work. 

II. DEFINITIONS AND PROBLEM FORMULATION 

Let X1 be a multispectral image made up of B spectral channels and M pixels acquired over a 

geographical area of interest at time t1. Let x1,j be the feature vector associated with the jth pixel of 

image X1. Let us assume that reliable reference data on the ground (and thus a training set T1) are 

available for image X1 (source domain). Let Ω1={ω1,ω2,…,
1Kω } be the set of land-cover classes that 

characterizes the considered geographical area at time t1, where K1 is the number of classes modeled in 

the training set T1. 

In the context of the Bayes decision theory, the decision rule that maximizes the posterior 

probability (i.e., that minimizes the error probability in the sense of Bayesian theory) is expressed as 

follows [13],[14]: 

{ }
1

1 1 1,( ) ( ) 1
i

, j k k i j ix   argmax P p x  with j ,...,M
ω ∈Ω

∈ ω ⇔ ω = ω |ω =  (1)

where 1( )iP ω  is the estimate of the a priori probability of class ωi in image X1, 1,( )j ip x |ω  is the value 

estimated for 1( )ip X |ω  for feature vector x1,j given ωi in X1, and 1( )ip X |ω  is the conditional density 
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function of random variable X1 associated to image X1. According to (1), the training phase of a MAP 

classifier requires the estimation of 1( )iP ω  and 1( )ip X |ω  for each class ωi Ω1. Such estimates can be 

obtained by using classical supervised approaches which use the information present in the considered 

training set T1 [13],[14]. Let us assume (as usually done in the remote sensing literature) that classes in 

images acquired by multispectral passive sensors are Gaussian distributed (i.e., p(X1|ωk), k=1,…,K1, 

can be modeled by a Gaussian function) [14]. Under this assumption, the probability density function 

p(X1) of pixel values in X1 can be described as a mixture of multivariate Gaussian distributions with as 

many components as the number of classes in the training set T1, i.e., 
1

1 1 1
1

( ) = ( ) ( )
K

k k
k

p X P p X
=

ω |ω∑ . 

Therefore, the solution of the MAP supervised classification of X1 requires the estimation of the set of 

parameters 1 1 1 1{ ( )},k ,k k, ,Pθ μ= Σ ω , k=1,…,K1, where 1,kμ  and 1,kΣ  are the mean vector and the covariance 

matrix of ωk ϵ Ω1, respectively, obtained according to maximum likelihood estimation in the feature 

space of image X1 according to the available training set T1. 1( )kP ω  is the estimation of the prior 

probability of ωk ϵ Ω1. It is computed, as usually done in the remote sensing literature, on the basis of 

the relative frequency of classes in T1. 

Let us now assume that at time t2, another B-dimensional multispectral image X2 of size M is 

acquired on the same geographical area as X1, and that the land-cover map of the area should be 

updated. Furthermore, let us assume that the reference data on the ground about X2 (target domain) is 

not available, as it often happens in real applications. In this situation, the few domain adaptation 

techniques presented in the remote sensing literature usually assume that the set of classes Ω2 that 

characterizes image X2 is the same that describes X1 (i.e., Ω2=Ω1). Despite this assumption, in general 

the classifier trained on the image X1 does not properly work on the image X2 because the estimates of 

statistical class parameters at t1 do not provide an accurate approximation for the same terms at t2. As 

stated in the introduction, this is due to several factors that alter the spectral signatures of land cover 
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classes at different acquisition times and consequently, the distributions of such classes in the feature 

space. However, usually the parameters in 1θ  estimated on X1 represent reasonable rough estimate for 

the ones on X2. Thus, the goal of the domain adaptation procedure is to adapt the parameters in 1θ  to 

the properties of X2. Adaptation can be carried out according to the unsupervised iterative Expectation-

Maximization (EM) algorithm [9] but other approaches can be used also [7]. 

In real applications, despite Ω2 and Ω1 show a high correlation, it is not possible to guarantee that 

they are the same. According to this observation and differently to what commonly assumed in the 

literature [9], we consider the possibility that classes in Ω2 are partially different from those in Ω1. In 

other words, classes might have been appeared or disappeared between the two acquisition dates. 

Moreover, we consider that land-cover classes common to both X1 and X2 may change over time their 

spatial distribution within the geographical area of interest. This means that spatial changes might have 

occurred on the ground without necessarily implying differences between classes in Ω1 and Ω2. The 

following cases can be identified: 

CASE A. No changes or only a spatial shift of classes have been detected: Ω2 Ω1.  

CASE B. A new unknown class ωu has been detected in the image X2: Ω2 Ω1 {ωu}. 

CASE C. A class ωk ϵ Ω1 disappeared between X1 and X2: Ω2 Ω1\{ωk}. 

CASE D. A joint occurrence of CASEs B and C:  Ω2 Ω1\{ωk} {ωu}.  

CASE E. Complex situation in which combinations of CASEs A-D can be detected. This is often 

the case that may occurs in real applications, i.e.:  

i) more than one new unknown class is detected: Ω2 Ω1 ΩU, where ΩU is the set of 

unknown U added classes; 

ii) more than one class disappeared: Ω2 Ω1\ΩK, where ΩK is the set of K deleted ωk 

classes; 

iii) some classes are appeared and some others are disappeared simultaneously: 
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Ω2 Ω1\ΩK ΩU. 

As it will be explained in the next section, the adaptation procedure based on the EM algorithm [9] 

requires specific modifications in order to handle the abovementioned cases. 

It is worth noting that, although Ω2 may differ from Ω1, a high correlation between them is 

expected. In other words, most of the classes present in the considered area at time t1 (and represented 

in the training T1) are also present at time t2. This is the case of many real applications in which land-

cover maps updating is required. A reasonable assumption for the proposed DA technique is to 

consider a maximum of two added and/or two deleted classes (i.e., K and U ≤ 2). If this is not the case, 

it would not be realistic to adapt the MAP classifier trained on T1 to image X2, as target and source 

domains would result in significantly different problems making senseless the adaptation process. 

III. PROPOSED SYSTEM FOR LAND-COVER MAPS UPDATING 

The objective of the proposed domain adaptation method is to compute a reliable classification map 

of a given remote sensing image X2, for which reference data on the ground are not available. In this 

situation, it is not possible to estimate class statistical parameters only from the information carried by 

image X2. As standard domain adaptation methods, the proposed technique assumes that an image X1 

previously acquired over the same geographical area is available together with a reliable training set for 

it. Furthermore it assumes that the information about land-cover classes present in the training set for 

X1 does not completely represents land-cover classes in image X2, as classes may be appeared or 

disappeared between the two acquisitions. In order to cope with this problem, a 4-step approach is 

proposed based on: i) hypothesis formulation on the differences between land-cover classes at the two 

acquisition dates; ii) domain adaptation (based on EM algorithm); iii) hypothesis validation; and iv) 

generation of the classification map of image X2. The block diagram in Figure 1 points out the general 

architecture of the proposed approach. 
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Figure 1. Block diagram of the proposed domain adaptation technique. 

 

The first step aims at formulating the hypothesis on the classes present in Ω2 and their relationship 

with the ones in Ω1. The goal is to establish whether Ω2 is equal to Ω1 or not. If not, the procedure tries 

to identify the cause of differences between the two sets. This step takes advantage of unsupervised 

change-detection methods in order to formulate proper hypothesis. Accordingly, the set of class 

statistical parameters 0
2θ  for image X2 is initialized. Under the specific hypothesis formulated in the 

first step, the second step performs the adaptation of the Maximum-A-Posteriori classifier built for X1 

to the statistical properties of X2. Once the new model 2θ̂  for X2 is estimated, adequate statistical 

criteria are used for validation purposes. In this step, the model 2θ̂  built according to the proposed 

method is compared to the one that could be achieved under the common assumption that the set of 

classes Ω2 that characterizes image X2 is the same that describes X1 i.e., 2
Aθ̂  (CASE A). If validated, the 

parameters in 2θ̂  are used to define the MAP classifier, and labels in X2 are assigned as follows 

{ }
2

2 2 2( ) ( ) 1
i

, j k k i , j i
ˆ ˆx     argmax P p x  with j ,...,M

ω ∈Ω
∈ ω ⇔ ω = ω |ω =  (2)

Where, Ω2 is the set of classes that properly describes the new image X2, and 2 ( )iP̂ ω  and 2( ), j ip̂ x |ω  are 

the class prior probabilities and class conditional probabilities, respectively, defined according to the 

proposed method. K2 is the cardinality of Ω2 and depends on K1 according to the formulated 

hypothesis. 

In the following section our attention is devoted to steps i) to iii) of the proposed procedure, which 

represent the main novel contributions of this paper. 

Classification 
Map at t2 

Hypothesis 
Validation X2 

1θ

Hypothesis 
Formulation 

MAP 
Classification 

X1 

Classification 
Map at t1 

0
2θ  Domain 

Adaptation 
2θ̂  

2
Aθ̂  
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IV. DOMAIN ADAPTATION PROCEDURE 

A. Hypothesis Formulation 

The Hypothesis Formulation step aims at detecting whether X2 shares all the classes with the image 

X1 (except for their spatial position), i.e., Ω2 Ω1, or not, i.e., Ω2 Ω1. In the second case, the proposed 

procedure aims at identifying and modeling the differences that characterize the two sets. In order to 

achieve this goal in an unsupervised way (as no training set is available for X2), the unsupervised 

Change Vector Analysis technique [15] is applied to images X1 and X2 for change detection purposes. 

The vectors representing the two images are subtracted from each other pixel-by-pixel in order to build 

a multispectral difference image. The information present in the multispectral difference image is 

exploited according to the theoretical framework for unsupervised change detection based on Change 

Vector Analysis in polar domain proposed in [17]. According to [17], for simplicity two spectral bands 

out of B are selected such that the most informative features with respect to the specific considered 

problem are isolated excluding noisy and misleading spectral channels from the analysis. It is worth 

noting that, even if the assumption of working with a couple of spectral channels is reasonable in many 

change-detection problems [16],[17], the method can be also applied to all spectral channels. From the 

defined 2-dimensional feature space, the polar representation of the change-detection problem is built 

on the basis of the magnitude and the direction of spectral change vectors. In this feature space, no-

changed pixels are concentrated close to the origin of the polar domain and fall within the Circle of no-

changed (Cn) pixels, whereas changed pixels fall far from the origin within the Annulus of changed (Ac) 

pixels [17]. The threshold value T that separates Cn from Ac along the magnitude variable ρ can be 

computed according to any thresholding technique available in the literature [18]. Changed pixels 

belonging to different land-cover transitions (i.e., different kinds of change) show along the direction 

variable ϑ in Ac different preferred directions and fall therefore in different Annular sectors of change 

(Sk). Each sector is bounded by a pair of angular thresholds 
1kϑ  and 

2kϑ  that can be detected according 
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to the method in [19]. It is worth noting that the identification of annular sectors Sk makes it possible to 

reduce the effect on the change-detection map of noisy pixels (e.g., due to registration noise) that fall in 

Ac but are not associated with changes on the ground [17]. Figure 2 summarizes the decision regions 

according to the CVA framework. 

 
Figure 2. Representation of the regions of interest for the CVA technique in the Polar coordinate system. 

 

Once the mentioned decision thresholds have been detected along both the magnitude and the 

direction variables, under the assumption that each identified annular sector corresponds to one (and 

only one) kind of change, each pixel of the considered scene can be associated to the class of no-

changed pixels or to one of the possible kinds of change. Each annular sector isolates a cluster of pixels 

in the considered scene that experienced the same land-cover transition. The reader is referred to [15]-

[19] for further theoretical details on the CVA framework and on how decision threshold values can be 

computed. It is worth stressing that this process is carried out in an unsupervised way. Therefore from 

the change-detection step, no explicit knowledge about the specific land-cover classes present in the 

two considered images and the specific land-cover transitions can be extracted. 

According to the relationship between image X1 and X2, two main different situations can be 

detected in the polar representation: i) all the multispectral change vectors fall into Cn and none of them 

in Ac, i.e., no changes occurred on the ground and Ω2 Ω1; and ii) a significant (from the statistical 
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point of view) number of multispectral change vectors fall into Ac. In this second case, changes are 

occurred between the two acquisitions. Such changes may correspond to a spatial shift of classes (i.e., 

changes occurred on the ground but still Ω2 Ω1) or to the appearance/disappearance of some classes in 

the X2 image (i.e., Ω2 Ω1). It is worth noting, that for each detected kind of change, the land-cover 

class at time t1 is known, whereas the one at t2 is unknown. On the basis of this observation, and in 

order to distinguish between these possible situations, the second step of the Hypothesis Formulation is 

a comparison between the computed change-detection map and the classification map obtained for X1. 

This comparison is performed in order to understand if the change event(s) affected: i) only a part of 

the pixels belonging to a given class ωk in Ω1 (CASE A and CASE B); or ii) all the pixels belonging to 

that class (CASE C and CASE D). 

CASE A and CASE B 

If only a part of the pixels of ωk have been affected by the change event, it means that ωk is still 

present in X2, but a further investigation is needed to understand whether the change event caused only 

a spatial shift of classes (i.e., the transition occurred in the direction of a class already existing in Ω1) or 

if a new class is present in X2. To this end, we first remove changed pixels from the processing. For the 

remaining set of pixels, the basic assumption made by standard domain adaptation procedure (i.e., 

Ω2=Ω1) is satisfied (as they are not changed between the two dates) [9]. Under this assumption, a first 

rough estimate of the statistical parameters in 0
2θ  that characterize land-cover classes at time t2 can be 

obtained by exploiting the Maximum Likelihood (ML) estimates at time t1 performed on the available 

training set, i.e.,  

0
2 1θ θ= . (3)

The equivalence in (3) holds as we can assume that classes in image X2 are Gaussian distributed as the 

ones in X1, being X2 a multispectral passive sensor image as well as X1 and it is valid only for classes 
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ωk that belong both to Ω1 and Ω2.1 Being both p(X2) and p(X1) a mixture of as many Gaussian 

distributions as land-cover classes, equation (3) can be rewritten as 

0 0 0
2 1 2 1 2 1( ) ( ),k ,k ,k ,k ,k ,k, , P Pμ μ ω ω= Σ =Σ =  (4)

for each classes ωk that belongs both to Ω1 and Ω2. 

The adaptation of 1θ  to the properties of X2 is achieved in a robust way through the iterative 

Expectation-Maximization algorithm [9],[24]. It can be demonstrated that under the assumption of 

Gaussian distributed classes, the iterative equations to be applied for estimating the statistical terms 

associated with each class ωk in X2 are as follows [22]-[24]: 

2 2

2 21
2

2

( ) ( | )1( ) ( ), j

s
k , j ks

k s
, jx

P p xP M p x
+

∈

ω ωω = ∑
X

 (5)
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2 2

2 2
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21
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∈
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∑

∑
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∈+
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∑
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X

 (7)

where the superscripts s and s+1 refer to the values of the parameters at the current and next iterations, 

respectively. The iterative process ends when a local maximum of the log-likelihood function L( 2θ̂ ) is 

achieved. 2θ̂  obtained at convergence is the new set of estimated parameters 2 2 2 2{ , ( )},k ,k k
ˆ ˆˆˆ , Pθ μ ω= Σ , that 

describes in the feature space of X2 classes ωk common to both Ω1 and Ω2. 

Once the statistical parameters for image X2 have been estimated the attention is focused on the 

changed pixels. The similarity/dissimilarity of unknown class ωu associated with changed pixels in X2 

with respect to known (from the relationship with X1) classes ωk ϵ Ω2 in X2 is evaluated according to a 

statistical distance measure. It is expected that the distance between ωu and a class ωk ϵ Ω2 is small if 

changed pixels in X2 belong to ωk, whereas it is high if pixels do not belong to it. In other words, if for 
 

1 In this paper we are implicitly assuming that classes with the same subscript k correspond to the same land cover on the ground in both X1 and X2. 
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the set of changed pixels there exists a class ωk ϵ Ω2 such that the statistical distance measure is below 

a user defined threshold value TL, then changed pixels in X2 are likely to belong to that class ωk that is 

present also in X1 (i.e., ωu=ωk). Accordingly, a spatial shift of classes is detected and Ω2 Ω1 (CASE 

A). On the opposite, if the set of changed pixels shows for all the classes ωk a statistical distance 

measure higher than a user defined threshold value TH, then ωu is statistically different from all the 

classes in Ω1 and an addition of class is detected, i.e., Ω2 Ω1 {ωu} (CASE B). It is worth stressing 

that, even if it is possible to detect the existence of a new class, we do not know anything about the 

land-cover label associated to this specific class because we do not have ground truth information for 

X2. 

In this work, we have selected the Jeffreys-Matusita (JM) distance as statistical distance measure 

which is defined between classes ωk and ωu as: 

( )2 1 kuB
kuJM e−= −  (8)

where Bku is the Bhattacharyya distance between the two mentioned classes defined as 

2

2 2 2ln ( ) ( )ku k u
X

B p X p X dX
⎧ ⎫⎪ ⎪= − | ω | ω⎨ ⎬
⎪ ⎪⎩ ⎭
∫  (9)

Under the assumption of Gaussian distributed classes, Bku can be rewritten as 

1
2, 2, 2, 2,

2, 2, 2, 2, 2, 2,
1 1( ) ( ) log 28 2 2

k u k ut
ku k u k u k uB μ μ μ μ

−∑ + ∑ ⎡ ∑ + ∑ ⎤⎛ ⎞
= − − + ∑ ∑⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
 (10)

where the statistical parameters μ2,k, Σ2,k of class ωk are those obtained according to EM algorithm, 

whereas the statistical parameters μ2,u, Σ2,u of class ωu are the ML-estimates of the mean vector and co-

variance matrix evaluated only on changed pixels in the feature space defined by X2. Figure 3 shows 

the general behavior of the JM distance versus the Bhattacharyya (B) distance. The asymptotic 

properties of JM as a function of B [14] are exploited for the definition of the threshold values TL and 

TH. When the classes are highly separated (i.e., they can be considered as being associated to two 
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different land-cover classes) the Bhattacharyya distance is high and the JM distance saturates to 2  [as 

it is clear from (8)]. It is worth noting that the JM distance is related to the Chernoff upper bound to the 

error probability [25]. Thus it is expected that the saturation is obtained when the classes are well 

separated in terms of Bayes classification rule. Here, we empirically consider JM distance as being 

saturated when it comes close to the 90% of 2 . Accordingly, the upper threshold TH is set equal to 

1.27. On the other hand, two classes are highly similar to each other (i.e., they have a high probability 

of being the same land-cover class), when the Bhattacharyya distance is small and the JM distance is 

far from the saturation. Here, to be conservative, this condition is considered to be satisfied when JM 

distance is smaller than 70% of 2 , i.e., TL = 0.99. Even if TL is set empirically, its value is not critical 

and different choices do not significantly affect the performance of the proposed method. The region 

between TL and TH is a region of uncertainty. For a pair of classes that would result in a distance 

between TL and TH it is not possible to conclude whether they are different or similar. Accordingly, a 

change that leads to this ambiguous situation deserves further non-automatic analysis. 

 
Figure 3. Behavior of the Jeffreys-Matusita (JM) distance versus the Bhattacharyya (B) distance. 

 

CASE C and CASE D 

If all the pixels belonging to a given class ωk in Ω1 are affected by a change event, the specific 

considered land-cover transition resulted in a deletion of class ωk at t2. Also in this situation, a further 

analysis is required in order to understand whether a class already existing in Ω1 has replaced ωk or if a 
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new class is present in X2. To this end, the same procedure already described before is applied without 

considering the deleted class ωk (i.e., the set Ω1\{ωk} is considered). Once pair-wise JM distances have 

been computed, if changed pixels show a small distance (smaller than TL) with respect to one of the 

classes in Ω2 a simple deletion is detected: accordingly Ω2 Ω1\{ωk} (CASE C). Otherwise, if changed 

pixels show a high distance (higher than TH) with respect to all the classes in Ω1\{ωk}, then a 

simultaneous deletion/addition of classes is detected and Ω2 Ω1\{ωk} {ωu} (CASE D). 

 

The described procedure is applied separately to each kind of change (i.e., land-cover transition) 

detected in the change-detection step. Therefore different combinations of cases A-D can be detected, 

i.e., simultaneous multiple additions and deletions of classes can be detected. Figure 4 gives a synthetic 

overview of possible hypothesis that can be formulated according to the proposed method about the 

relationship between Ω2 and Ω1. 

 
Figure 4. Overview of possible cases associated with the relation between Ω1 and Ω2. 

 

B. Unsupervised Retraining and Hypothesis Validation 

For each of the abovementioned cases an adequate initialization of the retraining process should be 

defined. 

 

Changes 
detected 

Comparison between 
X1, X2 

No-changes 
detected 

CASE A 
Ω2=Ω1 

Ω2 Ω1 CASE A 
Ω2=Ω1 

CASE B 
Ω2 Ω1 {ωu} 

CASE D 
Ω2 Ω1\ {ωk} {ωu} 

CASE C 
Ω2 Ω1\ {ωk} 
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CASE A: Ω2 Ω1. 

This is the case in which no changes (or only a spatial shift of classes) have been detected. In this 

situation, the hypothesis made in [9] holds and the retraining process can be carried out according to 

eq. (5)-(7). In the following, we will refer to this case as “standard” because this is the assumption 

commonly made by domain adaptation methods published in the literature [7],[9]. 

 

CASE B: Ω2 Ω1 {ωu}. 

This is the case in which a new class has been detected in the image X2. For all classes common to 

X1 and X2, the same initialization approach as in CASE A can be adopted, whereas this is not possible 

for class ωu. Since we can reasonably assume that all the pixels representing the class ωu are those that 

in X2 are detected as being changed (see the previous section), the initial values for 2 ,uμ  and 2 ,uΣ  are 

the ML-estimation of the mean vector and co-variance matrix of changed pixels evaluated in the 

feature space of X2, and P2(ωu) is their relative frequency. The initial set of class statistical parameters 

to be used in the iterative adaptation procedure is defined as 

0 0 0 0
2 1 2 2 2{ ( )},u ,u u, ,Pθ θ μ= ∪ Σ ω  (11)

Where, the prior probabilities of classes in 1θ  are rescaled to take into account the prior probability of 

the new class ωu. Once the initial values have been fixed, equations (5)-(7) can be iteratively applied 

until convergence including also ωu in the updating process. 

 

CASE C: Ω2 Ω1\{ωk}. 

This is the case in which the class has disappeared between X1 and X2. For all classes common to 

X1 and X2 the same approach as for CASE A can be adopted, whereas this is not possible for class ωk. 

As this class is no longer present in the new image to be classified, its statistical parameters are 
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removed from the estimation problem. Therefore 0
2θ  is defined as 

0
2 1 1 1 1{ ( )},k ,k k\ , ,Pθ θ μ= Σ ω  (12)

where the prior probabilities of classes are properly rescaled for taking into account the lack of the 

class ωk. Equations (5)-(7) can be iteratively applied until convergence. 

 

CASE D: Ω2 Ω1\{ωk} {ωu}. 

This case is a combination of CASE B and CASE C. Accordingly, 0
2θ  is defined as 

0 0 0 0
2 1 1 1 1 2 2 2{ ( )} { ( )},k ,k k ,u ,u u

ˆ ˆˆˆ\ , ,P , ,Pθ θ μ μ= Σ ω ∪ Σ ω  (13)

 

As the polar framework for change detection allows us to distinguish different sources of spectral 

change [15], each detected complex case of multiple addition/deletion of classes can be split in sub-

cases ascribable to one of the basic cases A-D. In such complex cases, the definition of the initial set of 

statistical parameters 0
2θ  that describes X2 can therefore be performed according to straightforward 

combinations of (11)-(13). 

According to the above analysis of all the possible situations that one may encounter, it is possible 

to define the number K2 of classes in Ω2 as a function of the number K1 of classes in Ω1, i.e., 

K2=K1+U-K (14)

K and U are the number of deleted and unknown added classes, respectively. 

C. Hypothesis Validation 

Once the hypothesis about addition and deletion of classes has been formulated and the set 2θ̂  of 

statistical parameters of classes in X2 has been estimated according to the EM algorithm, given the 

complexity of the problem it is important to apply a procedure to further confirm the validity of the 

model in order to increase the reliability of the method. The objective of this step is to understand if the 
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class model defined for X2 according to the proposed domain adaptation procedure is better than the 

model that could be obtained under the standard hypothesis (i.e., Ω2 Ω1). To this end, the Bayesian 

Information Criterion (BIC) proposed by Schwarz [21] is adopted. This criterion is used for the model 

selection among a set of parametric models with a different number of parameters. According to our 

notation, BIC can be written as2 

2

2
1

2 ( ) ( )
K

k
k

BIC ln p X nln M
=

⎡ ⎤= − |ω +⎢ ⎥⎣ ⎦
∑  (15)

Where, K2 is the number of classes in X2. The value of K2 is a function of K1 and depends on the 

number of added and deleted classes (14). The first term in (15) is the likelihood of data given the 

model, whereas the second term is a penalty term that avoids possible over-fitting that may arise from 

the increment in the number of parameters n that characterize the considered model. In our case, n is 

equal to the number of classes multiplied by the set of class parameters, and M is the number of 

samples (i.e., the image size). In our architecture, BIC is computed for different models namely the one 

obtained according to the proposed domain adaptation procedure 2θ̂  and the one obtained according to 

the assumption that no changes are present between the classes of the two considered images, 2
Aθ̂ . As 

the smaller values of BIC indicate better fitting, if the proposed model results in the lowest BIC value 

then the hypothesis formulated according to the proposed domain adaptation approach is validated [21] 

and the MAP decision rule in (2) is applied to compute the desired classification map of X2 with 

parameters in 2θ̂ . Else the model cannot be validated and we assume that the problem is too complex to 

be managed in a completely unsupervised way and thus external supervision (e.g., the analysis of the 

problem from an expert) is required to confirm or change the assumption on the classes at t2. 

 

 

2 This expression is an asymptotic result derived under the assumptions that the data distribution is in the exponential family. This assumption is verified in 
our case as classes are supposed to be Gaussian distributed. 
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V. EXPERIMENTAL RESULTS: LANDSAT DATA SET 

A. Data Set Description 

In order to test the effectiveness of the proposed DA-MAP classifier, we first considered a data set 

made up of two co-registered multispectral images acquired by the Thematic Mapper (TM) sensor of 

the Landsat-5 satellite. Bands 1-5 and 7 of the TM sensor were involved in the experiments (the 

thermal infrared band was neglected due to its lower geometrical resolution) for a total number of B=6 

spectral channels. The selected test site is a section of 412×382 pixels of a scene including the area 

surrounding Lake Mulargias on the Island of Sardinia (Italy). The two images were acquired in 

September 1995 (Y) and July 1996 (Z), respectively. Figure 5 shows as an example of channels 4 of 

both images. The available ground truth information was used to derive a training set and a test set for 

each image. The two images share five land-cover classes [i.e., pasture (ω1), forest (ω2), urban area 

(ω3), water (ω4), vineyard (ω5)]. The image acquired in September 1995 also includes one additional 

class [i.e., bare soil (ω6)]. In other words, if we consider Y as X1 and Z as X2 (as temporally logic in 

the considered data set) then one class (i.e., bare soil) has disappeared between the two acquisitions. It 

is worth noting that in previous works [7],[9] based on the same data set the presence of bare soil class  
 

(a) (b) 
Figure 5. Band 4 of the multispectral Landsat-5 TM images: (a) September 1995 (Y); and (b) July 1996 (Z). 
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was neglected by removing the related areas from the training and test sets. This choice practically 

allowed us to work under the simplifying assumption that Ω2 Ω1. In the following, this simple case 

will not be documented. The reader is referred to [7],[9] for details on the effectiveness of the method 

under this hypothesis. 

In order to test the proposed domain adaptation method in various situations and with growing 

complexity conditions, we have adopted two strategies. First, we observed that by reversing the role of 

images (using Z as X1 and vice versa), we can simulate also the case of addition of one class (i.e., bare 

soil). Second, to simulate more complex situations with multiple addition/deletion of classes, the 

spectral signature of changes due to an event of forest fire was included in homogeneous regions of 

both images. In practice, this was done by considering a data set made up of two multispectral images 

acquired by the Landsat-5 TM multispectral sensor on the Island of Elba (Italy) in August 1994 and 

September 1994 [15]. Between these two acquisitions, a wildfire destroyed a large part of the 

vegetation in the north-west part of the island. On the basis of the available ground truth for Elba data 

set, areas affected from the fire were isolated and the digital numbers of the related spectral channels 

were inserted in the Sardinia Island one. Two different images were generated:  

• Image Y’ (Figure 6.a) is obtained by introducing the spectral signature of burned areas (ω7), taken 

from the Elba dataset, in forest areas of image Y, and the corresponding reference information for 

training and test is also generated. 

• Image Z’ (Figure 6.b) is obtained by introducing the spectral signature of burned areas (ω7), taken 

from the Elba dataset, in forest areas of image Z, and the corresponding reference information for 

training and test is also generated.  

Images Y’ and Z’ allowed us the simulation of addition and deletion of a further class represented by 

burned areas. 

Table I lists the number of training and test patterns available for each original and simulated 
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image. 

(a) (b) 
Figure 6. Band 4 of the multispectral Landsat-5 TM images with simulated burned areas: (a) September 1995 (Y’) 
and (b) July 1996 image (Z’). 
 

TABLE I. TRAINING AND TEST SETS FOR THE ORIGINAL AND THE MODIFIED IMAGES. 
Land–cover 

classes September 1995 July 1996  

 Y Y’ Z Z’ 

 Train 
set 

Test 
set 

Train 
set 

Test 
set 

Train 
set 

Test 
set 

Train 
set 

Test 
set 

Pasture (ω1) 554 589 554 589 554 589 554 589 
Forest (ω2) 304 274 128 159 304 274 128 159 
Urban Area (ω3) 408 418 408 418 408 418 408 418 
Water (ω4) 804 551 804 551 1120 867 1120 867 
Vineyard (ω5) 179 117 179 117 179 117 179 117 
Bare soil (ω6) 316 316 316 316 - - - - 
Burned Area (ω7) - - 176 115 - - 176 115 
Total 2565 2265 2565 2265 2565 2265 2565 2265 

 

In the following, images Y and Z and their modifications (Y’ and Z’) are alternately used as X1 and 

X2 in order to simulate a variety of scenarios. In each experiment, we assume that only the training set 

associated with the image considered as X1 is available, whereas the training set for X2 is not available. 

Test sets for both X1 and X2 are only used for performance evaluation, but they are not involved in the 

processing. It is worth stressing that in this controlled experimental set up, we know a priori the land-

cover classes that appeared and/or disappeared between the two acquisitions. Therefore, in the 

following, for the sake of readiness, we will refer to bare soil (ω6) and burned areas (ω7) classes 
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explicitly. However this kind of information is usually not available in real applications and is not used 

by the proposed method. 

The quantitative evaluation of DA-MAP is documented in terms of user accuracy (or precision), 

producer accuracy (or recall) and overall accuracy computed according to the test set available for 

image X2. 

B. Description of Experiments 

To verify the robustness and effectiveness of proposed method, the following experiments are 

carried out on the medium resolution dataset. 

 

Addition of Class(es) 

Here we propose two different scenarios: the first one represents the simple case of the addition of 

one single class (CASE B), while the second one represents a more complex scenario in which two 

new classes have appeared between X1 and X2 (CASE E). These scenarios are simulated by 

considering Ω1={ω1,ω2,ω3,ω4,ω5} and by adding: 

• Experiment 1: the bare soil class to Ω1, i.e., ωu=ω6, Ω2=Ω1 {ω6}, U=1; 

• Experiment 2: the bare soil and burned area classes ΩU={ω6,ω7} to Ω1, Ω2=Ω1 {ω6,ω7}, U=2; 

Table II documents the image pairs involved for the simulations of the two scenarios. 

 

Deletion of Class(es)  

Also in this case, two scenarios are proposed. The first one is associated to the deletion of one 

single class (CASE C), whereas the second one is associated to the deletion of two classes (CASE E). 

The scenarios are simulated by: 

• Experiment 3: considering Ω1={ω1,ω2,ω3,ω4,ω5,ω6} and deleting the bare soil class ωk=ω6 from 

Ω1, i.e., Ω2=Ω1\{ω6}, K=1; 
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• Experiment 4: considering Ω1={ω1,ω2,ω3,ω4,ω5,ω6,ω7} and deleting the bare soil and burned area 

classes ΩK={ω6,ω7} from Ω1, i.e., Ω2=Ω1\{ω6,ω7}, K=2; 

Table II documents the image pairs involved for the simulations of the two scenarios. As one can 

observe, multi-temporal datasets for this case are generated by just swapping the images used for 

scenarios in CASE B. 

 

Simultaneous Addition and Deletion of Classes 

CASE E represents a more complex situation: a combination of scenarios taken from CASES B and 

C. In greater detail, we have the addition of one class and simultaneously also the deletion of one class 

between images X1 and X2. We simulated these scenarios by: 

• Experiment 5: considering Ω1={ω1,ω2,ω3,ω4,ω5,ω7} and by both adding the bare soil class 

(ωu=ω6) to Ω1 and deleting the burned area class (ωk=ω7) from Ω1, i.e., Ω2=Ω1 {ω6}\{ω7}, K=1 

and U=1; 

• Experiment 6: considering Ω1={ω1,ω2,ω3,ω4,ω5,ω6} and by both deleting the bare soil class 

(ωk=ω6) from Ω1 and adding the burned area class (ωu=ω7) to Ω1, i.e., Ω2=Ω1\{ω6} {ω7}, K=1 

and U=1; 

Table II documents the image pairs involved for the simulations of the two scenarios and the number of 

classes involved for X1 and X2. 

TABLE II. SUMMARY OF THE EXPERIMENTAL SETUPS FOR THE LANDSAT DATASET. 

Case Experiment Case description X1 X2 
# of classes 
K1 K2 

B 1 Addition bare soil class Z Y 5 6 
2 Addition of burned area and bare soil classes Z Y’ 5 7 

C 3 Deletion bare soil class Y Z 6 5 
4 Deletion of burned area and bare soil classes Y’ Z 7 5 

E 
5 Deletion bare soil class and addition of burned area class Y Z’ 6 6 
6 Deletion burned area class and addition of bare soil class Z’ Y 6 6 
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C. Results 

To carry out the experiments described above, we assumed that for each multi-temporal image pair 

only training set associated with image considered as X1 is available, whereas, the reference ground 

data associated with the image considered as X2 is used only to evaluate the performance of the 

proposed technique. 

Experiment 1: Addition of One Class (CASE B). In order to apply the proposed method, at first the 

supervised MAP classification is obtained for image X1 (i.e., Z) and the set of parameters 1θ  which 

characterizes the probability density functions of the classes in Ω1={ω1,ω2,ω3,ω4,ω5} is estimated. The 

supervised classification of X1 leads to an overall accuracy of 93.64% on the test set. In order to 

compute the desired classification map of image X2 (i.e., Y), we need to understand how to properly 

initialize the set 0
2θ . To this end we use the proposed method. 

We apply the CVA in polar coordinates to images X1 and X2 in order to formulate a proper 

hypothesis according to the procedure proposed in Sec. IV.A. For this data set, bands 4 and 7 of the 

TM sensors were used for change detection purposes. CVA resulted in a threshold value T along ρ 

equal to 31, and in 2 angular thresholds along the direction variable ϑ equal to 28° and 55°, 

respectively. The reader is referred to [17] for further details on how the change-detection step has 

been performed. The automatic comparison between the classification map of X1 and the change 

detection map pointed out that the change affected only partially the water class (ω4). After that, 

standard adaptation of the MAP classifier to X2 is applied and the pairwise JM distances between each 

class in X2 and changed pixels in image X2 is computed according to (8). As one can see from Table 

III, all distance measures resulted in large values (much greater than the threshold value TH =1.27 

which is 90% of the saturation value) for each possible land-cover class already present in Ω1. Based 

on this result, the hypothesis of addition of one class (CASE B) is formulated. 0
2θ  is initialized 

according to (11) and the domain adaptation procedure is applied. For comparison and validation 
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purposes also the hypothesis that Ω2=Ω1, (i.e., neglecting the possibility that classes could change 

between the two acquisitions) is tested. Once the two models are available, the BIC [26] is used for 

hypothesis validation. The 6-class model resulted in a BIC6 = -1.7776e+005 whereas the 5-class model 

resulted in BIC value greater than the 6-class model. Thus, the hypothesis of class addition is validated. 

TABLE III. JM DISTANCES COMPUTED BETWEEN THE DETECTED CHANGED PIXELS AND CLASSES IN X2 (EXPERIMENT 
1, ADDITION OF BARE SOIL CLASS, LANDSAT DATASET). 

Land-Cover Class JM 
Pasture (ω1) 1.3709 
Forest (ω2) 1.4129 
Urban Area (ω3) 1.3052 
Water (ω4) 1.4142 
Vineyard (ω5) 1.3685 

 

A further evidence of the correctness of the addition of class hypothesis and of the effectiveness of 

the proposed domain adaptation procedure comes from the analysis of the overall accuracy evaluated 

on the ground truth available for X2.3 The overall accuracy obtained with the 6-class model is of about 

87.95% (see Table IV). This value is very close to the one that can be obtained by the supervised MAP 

classification of X2 using available training samples, i.e., 90.38% (which can be considered an upper 

bound for the proposed procedure). 

TABLE IV. USER, PRODUCER AND OVERALL ACCURACY (%) ON THE TEST SET FOR IMAGE X2 OBTAINED WITH THE 
PROPOSED DOMAIN ADAPTATION TECHNIQUE AND THE SUPERVISED MAP CLASSIFICATION (EXPERIMENT 1, ADDITION 

OF BARE SOIL CLASS, LANDSAT DATASET). 

Land-cover class Proposed Technique Supervised MAP 
classification 

User Producer User Producer 
Pasture (ω1) 77.08 91.45 82.17 91.15 
Forest (ω2) 96.72 96.02 97.45 90.20 
Urban Area (ω3) 87.32 79.00 94.74 83.19 
Water (ω4) 100.00 100.00 100.00 100.00 
Vineyard (ω5) 70.09 59.42 62.39 77.66 
Bare Soil (ω6) 87.03 79.25 87.34 87.07 
Overall Accuracy 87.95 90.38 

 
Experiment 2: Addition of Two Classes (CASE E). In order to better assess the effectiveness of the 

proposed domain adaptation procedure in the case of class addition, a more complex situation in which 

two new classes are present in the second image is considered. The same trials described for CASE B 

 

3 It is important to recall that available test patterns were used only for validation purposes, but they were not involved in the domain adaptation procedure. 
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were carried out in the simulated case of addition of both bare soil (ω6) and burned area (ω7) classes 

(see simulated dataset description in Sec. V.A). The supervised MAP classifier trained on X1 resulted 

in a set of parameters 1θ  that gives an overall accuracy on the test set of 93.64%. Using the proposed 

approach to find the classification map for X2, we applied CVA to images X1 and X2. The 

representation within the polar domain of the considered change-detection problem pointed out the 

presence of two clusters in Ac. Thus two annular sectors could be identified, each of them 

corresponding to a different kind of change. The first one corresponds to the appearance of the bare soil 

class (ω6) due to the decrease of the extension of the lake surface. The reader is referred to Experiment 

1 for an analysis of this kind of change and to Table III for the pair-wise distances between this 

changed area and classes in X2. The second cluster in Ac includes pixels with a magnitude higher than 

T=31 and direction values in [323°,360°] ∪ [0°,28°). As for the previous case, also in this one it was 

detected that only a part of the forest class experienced a change. The analysis of statistical distances of 

changed pixels from the already known classes present in X2 resulted in a set of high values (see Table 

V) suggesting the presence of a new class, namely the burned area class (ω7). According to this 

analysis the final hypothesis is of addition of two classes. 

TABLE V. JM DISTANCES COMPUTED BETWEEN THE DETECTED CHANGED PIXELS AND CLASSES IN X2 (EXPERIMENT 2, 
ADDITION OF BURNED AREA CLASS, LANDSAT DATASET). 

Land Cover Class JM 
distance 

Pasture (ω1) 1.4142 
Forest (ω2) 1.4137 
Urban Area (ω3) 1.4137 
Water (ω4) 1.4142 
Vineyard (ω5) 1.4142 

 
According to the formulated hypothesis, (11) is applied for both kinds of change initializing 0

2θ  

with ΩU={ω6,ω7}, and the unsupervised adaptation is performed to obtain the new classifier for X2. 

Also in this case BIC is used to validate the hypothesis on the number of classes present in X2. As in 

the previous case, the model with 7 classes is compared with the one with 5 classes (i.e., no new class 
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detected), and with two models with 6 classes (i.e., only one new class out of two detected). Again the 

hypothesis formulated according to the proposed approach (i.e., the 7-class model) resulted to be the 

best one as it was associated with the lowest BIC value. 

The effectiveness of the proposed method is further confirmed by an analysis of the accuracies 

evaluated on the ground truth of X2 (see Table VI). The classifier obtained with the proposed method 

(7-class model) resulted in an 88.12% of overall accuracy, which is very close to the one obtained by 

the supervised MAP classifier trained on X2 (assuming the availability of a training set) which is equal 

to 90.33%. This is a relevant result, especially remarking that the proposed method did not use any 

ground truth information on X2. 

TABLE VI. USER, PRODUCER AND OVERALL ACCURACY (%) ON THE TEST SET FOR IMAGE X2 OBTAINED WITH THE 
PROPOSED DOMAIN ADAPTATION TECHNIQUE AND THE SUPERVISED MAP CLASSIFICATION (EXPERIMENT 2, ADDITION 

OF BARE SOIL AND BURNED AREA CLASSES, LANDSAT DATASET). 

Land-cover class Proposed Technique Supervised MAP 
classification 

User Producer User Producer 
Pasture (ω1) 76.91 91 33 82.17 89.80 
Forest (ω2) 97.48 75.24 95.60 85.39 
Urban Area (ω3) 89.95 87.24 94.26 83.83 
Water (ω4) 100.00 100.00 100.00 100.00 
Vineyard (ω5) 61.54 70.59 62.39 78.50 
Bare Soil (ω6) 89.24 75.81 87.66 86.83 
Burned Area (ω7) 93.04 100.00 100.00 100.00 
Overall Accuracy 88.12 90.33 

 
Experiment 3: Deletion of One Class (CASE C). Experiments on class deletion are preformed 

similarly to the ones on class addition. The supervised MAP classifier trained on X1 (i.e., Y) resulted in 

a set of parameters 1θ  and an overall accuracy of 90.38%. The change-detection step applied to this 

specific case gives the same decision boundaries and thus change-detection map as the case of one-

class addition. This is because the two trials involve the same images Y and Z by only exchanging their 

role, i.e., Y=X1 and Z=X2 instead of Y=X2 and Z=X1 (see Table II), but CVA is not sensitive to image 

order. The comparison of the change-detection map with the classification map of X1 this time points 

out that all the area associated to the bare soil class (ω6) is affected by the change event and therefore 
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ω6 does not appear in X2. To understand whether the land-cover transition resulted in a new class or in 

a class already existing in Ω2, statistical distances between classes in X2 (after standard retraining) and 

the changed area in image X2 are computed. 

As one can see from Table VII, the area of change shows a high distance with respect to all classes 

but one: the water class. The JM distance with water class is much smaller than TL=0.99 (which is the 

70% of the saturation value). This suggests that changed pixels belong to a class (namely water class) 

already existing in X2. Accordingly, the proposed method formulates the hypothesis of deletion of class 

ω6. Therefore 0
2θ  is initialized according to (12) and unsupervised retraining is performed. 

TABLE VII. JM DISTANCES COMPUTED BETWEEN THE DETECTED CHANGED PIXELS AND CLASSES IN X2 (EXPERIMENT 
3, DELETION OF BARE SOIL CLASS, LANDSAT DATASET). 

Land Cover Class JM 
distance 

Pasture (ω1) 1.4142 
Forest (ω2) 1.4142 
Urban Area (ω3) 1.4142 
Water (ω4) 0.6460 
Vineyard (ω5) 1.4142 

 
TABLE VIII. USER, PRODUCER AND OVERALL ACCURACY (%) ON THE TEST SET FOR IMAGE X2 OBTAINED WITH THE 

PROPOSED DOMAIN ADAPTATION TECHNIQUE AND THE SUPERVISED MAP CLASSIFICATION (EXPERIMENT 3, DELETION 
OF BARE SOIL CLASS, LANDSAT DATASET). 

Land-cover class Proposed Technique Supervised MAP 
classification 

User Producer User Producer 
Pasture (ω1) 94.06 89.77 92.02 89.59 
Forest (ω2) 87.23 97.16 92.70 88.81 
Urban Area (ω3) 93.06 96.53 93.30 93.08 
Water (ω4) 99.89 100.00 99.89 100.00 
Vineyard (ω5) 64.10 55.97 58.97 77.53 
Bare Soil (ω6) - - - - 
Overall Accuracy 93.73 93.64 

 

The validation of the hypothesis is carried out by comparing the BIC value obtained assuming that 

Ω2=Ω1 (6-class model) with the one obtained under the hypothesis formulated according to the 

proposed method (5-class model). The first model resulted in a higher BIC value than the second one, 

thus validating the assumption of the proposed method. 

The confirmation of the effectiveness of the proposed procedure comes from the analysis of the 



 

29 
 

overall accuracy obtained with the supervised MAP classifier trained on X2 on the test set available for 

X2 (i.e., 93.64%) and the one obtained at convergence by the proposed classifier, i.e., 93.73%. 

Experiment 4: Deletion of Two Classes (CASE E). This experiment has been carried out by 

inverting the role of images of Experiment 2 (addition of two classes). The supervised MAP 

classification of X1 results in set of parameters 1θ  that achieve an overall accuracy of about a 90.33%. 

After that, the application of CVA to the two images pointed out the occurrence of two kinds of 

change. The first detected change corresponds to the one in Experiment 3; thus, according to Table VII, 

the hypothesis of class deletion is formulated. Concerning the second change, the comparison with the 

classification map of X1 pointed out that all the burned area experienced a change. Statistical distances 

between changed pixels in X2 and already known classes in X2 (see Table IX) show that changed pixels 

exhibit a high distance from all classes in X2 except one (i.e., the forest class). The distance with the 

forest class is much smaller than TL=0.99. Accordingly, the formulated hypothesis is of two-class 

deletion, and 0
2θ  is initialized as in (12) for both kinds of change. 

TABLE IX. JM DISTANCES COMPUTED BETWEEN THE DETECTED CHANGED PIXELS AND CLASSES IN X2 (EXPERIMENT 4, 
DELETION OF BURNED AREA CLASS, LANDSAT DATASET). 

Land Cover Class JM 
distance 

Pasture (ω1) 1.3561 
Forest (ω2) 0.5935 
Urban Area (ω3) 1.4106 
Water (ω4) 1.4142 
Vineyard (ω5) 1.4110 

 

After unsupervised retraining, also in this case the analysis of the BIC values confirmed the validity 

of the formulated hypothesis. 

Finally the effectiveness of the proposed method is also pointed out by the overall accuracies 

computed on the test set available for X2. The proposed method resulted in an accuracy of 94.22%, 

which is even slightly better than that of the supervised MAP classification of X2 which results in an 

overall accuracy of 93.64%. This can be explained by the capability of the EM algorithm to exploit the 
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information present in the unlabeled pixels of X2. 

TABLE X. USER, PRODUCER AND OVERALL ACCURACY (%) ON THE TEST SET FOR IMAGE X2 OBTAINED WITH THE 
PROPOSED DOMAIN ADAPTATION TECHNIQUE AND THE SUPERVISED MAP CLASSIFICATION (EXPERIMENT 4, DELETION 

OF BARE SOIL AND BURNED AREA CLASSES, LANDSAT DATASET). 

Land-cover class Proposed Technique Supervised MAP 
classification 

User Producer User Producer 
Pasture (ω1) 95.42 89.21 92.02 89.59 
Forest (ω2) 88.32 96.41 92.70 88.81 
Urban Area (ω3) 91.87 97.46 93.30 93.08 
Water (ω4) 99.89 100.00 99.89 100.00 
Vineyard (ω5) 68.38 64.52 58.97 77.53 
Bare Soil (ω6) - - - - 
Burned Area (ω7) - - - - 
Overall Accuracy 94.22 93.64 

 
Simultaneous Addition and Deletion of Classes: CASE E. The last set of experiments aims at 

validating the effectiveness of the proposed approach in a complex scenario in which one class 

disappeared and a new one appeared between the two acquisition dates. Under such a condition, the 

total number of classes remains the same at both the time instances but the set of classes are different. 

To study the scenario of simultaneous addition and deletion of classes, two experiments were carried 

out. Both of them are a combination of the four experiments described above. Therefore we will not 

discuss how hypotheses are formulated and validated. 

 

Experiment 5: Addition of Burned area Class and Deletion of Bare Soil Class. Initially the MAP 

classifier is trained with the supervised technique on the X1 image. The overall accuracy obtained by 

using this classifier on test set of X1 is 90.38%. The comparison of the change detection map and the 

classification map of X1, and the study of the statistical JM distances (see Table XI) allow us to 

formulate the following hypotheses: i) one added class i.e., burned area (Change 1), and ii) one deleted 

class i.e., bare soil (Change 2). The initial estimates 0
2θ  of class statistical parameters were defined 

accordingly to this hypothesis and based on (11) and (12). After adaptation, a classifier for X2 was 

defined. The obtained statistical model of classes was validated using BIC. Here BIC values were 

computed: i) assuming that Ω2=Ω1; ii) considering that only the deletion of one class has been detected; 
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and iii) considering the model formulated with the proposed method. Also in this case the minimum 

BIC value was obtained for the hypothesis formulated with the proposed domain adaptation method. 

This confirms the validity of the method itself. The MAP classifier obtained at convergence resulted in 

a classification accuracy of 94.04% which is better than that obtained with a supervised MAP classifier 

trained on X2 (i.e., 93.07%) (see Table XII). 

TABLE XI. JM DISTANCES COMPUTED BETWEEN THE DETECTED CHANGED PIXELS AND CLASSES IN X2 (EXPERIMENT 5, 
ADDITION OF BURNED AREA CLASS AND DELETION OF BARE SOIL CLASS, LANDSAT DATASET). 

Land Cover Class 
JM distance 

Change 1 Change 2 
Pasture (ω1) 1.4142 1.4142 
Forest (ω2) 1.4142 1.4142 
Urban Area (ω3) 1.4142 1.4142 
Water (ω4) 0.6460 1.4142 
Vineyard (ω5) 1.4142 1.4142 

 

TABLE XII. USER, PRODUCER AND OVERALL ACCURACY (%) ON THE TEST SET FOR IMAGE X2 OBTAINED WITH THE 
PROPOSED DOMAIN ADAPTATION TECHNIQUE AND THE SUPERVISED MAP CLASSIFICATION (EXPERIMENT 5, ADDITION 

OF BURNED AREA CLASS AND DELETION OF BARE SOIL CLASS, LANDSAT DATASET). 

Land-cover class Proposed Technique Supervised MAP 
classification 

User Producer User Producer 
Pasture (ω1) 96.94 87.85 91.85 87.68 
Forest (ω2) 85.54 86.62 81.13 80.12 
Urban Area (ω3) 91.15 97.19 93.30 92.64 
Water (ω4) 99.65 100.00 99.65 100.00 
Vineyard (ω5) 60.68 74.74 58.97 79.31 
Bare Soil (ω6) - - - - 
Burned Area (ω7) 93.04 100.00 100.00 100.00 
Overall Accuracy 94.04 93.07 

 

Experiment 6: Deletion of Burned Area Class and Addition of Bare Soil Class. This experiment is 

the complementary of the previous one. Supervised MAP classification on X1 resulted in an overall 

accuracy of 93.07%. According to the proposed method and in accordance with JM distances in Table 

XIII, the hypotheses of addition of one class, i.e., bare soil class (Change 3) and deletion of one class, 

i.e., burned area class (Change 4) is formulated. The set of parameters 0
2θ  are initialized using (11) and 

(12), and adaptation is performed. The effectiveness of the new class model is confirmed by BICs 

analysis. Accuracies in Table XIV also confirm the effectiveness of the proposed technique. 
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TABLE XIII. JM DISTANCES COMPUTED BETWEEN THE DETECTED CHANGED PIXELS AND CLASSES IN X2 (EXPERIMENT 
6, DELETION OF BURNED AREA CLASS AND ADDITION OF BARE SOIL CLASS, LANDSAT DATASET). 

Land Cover Class 
JM distance 

Change 3 Change 4 
Pasture (ω1) 1.3700 1.3996 
Forest (ω2) 1.4109 0.6955 
Urban Area (ω3) 1.3084 1.4097 
Water (ω4) 1.4142 1.4142 
Vineyard (ω5) 1.3641 1.4098 

 
TABLE XIV. USER, PRODUCER AND OVERALL ACCURACY (%) ON THE TEST SET FOR IMAGE X2 OBTAINED WITH THE 

PROPOSED DOMAIN ADAPTATION TECHNIQUE AND THE SUPERVISED MAP CLASSIFICATION (EXPERIMENT 6, DELETION 
OF BURNED AREA CLASS AND ADDITION OF BARE SOIL CLASS, LANDSAT DATASET). 

Land-cover class Proposed Technique Supervised MAP 
classification 

User Producer User Producer 
Pasture (ω1) 76.57 91.48 82.17 91.15 
Forest (ω2) 96.72 96.015 97.44 90.20 
Urban Area (ω3) 87.32 79.52 94.74 83.19 
Water (ω4) 100.00 100.00 100.00 100.00 
Vineyard (ω5) 70.09 59.42 62.39 77.66 
Bare Soil (ω6) 87.03 79.02 87.34 87.07 
Burned Area (ω7) - - - - 
Overall Accuracy 87.82 90.38 

 
VI. EXPERIMENTAL RESULTS: QUICKBIRD DATA SET 

A. Data Set Description and Experimental Set-Up 

The second data set is made up of two co-registered and pansharpened multispectral Very High 

geometrical Resolution (VHR) images acquired by the QuickBird satellite. All the 4 spectral bands of 

QuickBird were considered in the experiments. The selected test site is a section of 1520×1504 pixels 

of a scene including an area on the south part of the city of Trento (Italy). The two images were 

acquired in October 2005 (Y) and July 2006 (Z), respectively (see Figure 7). The available prior 

information about the considered area was used to build a training set and a test set for each image. 

Five main land-cover classes common to the two considered dates were identified, i.e., water (ω1), red 

roof (ω2), asphalt (ω3), fields (ω4), and bare soil (ω5). For the image acquired in July 2006 one 

additional class has been detected, i.e., plastic-mulched fields (ω6). Therefore, if we consider Y as X1 

and Z as X2 (as temporally logic in the considered data set) a new class (i.e., plastic-mulched fields) 

appeared between the two acquisitions. Table XV lists the number of training and test patterns 
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available for each original and simulated image. In addition the deletion of the plastic-mulched fields 

class was simulated by reversing the role of images (using Z as X1 and vice versa). To verify the 

robustness and effectiveness of proposed method, the following experiments are carried out on the 

VHR dataset. 

(a) (b) 
Figure 7 Band 1 of the multispectral QuickBird VHR images: (a) image acquired in October 2005 (Y); and (b) 
image acquired in July 2006 (Z). 
 

TABLE XV. TRAINING AND TEST SETS FOR THE QUICKBIRD DATASET. 

Land–cover classes October 2005 (Y) July 2006 (Z) 
Training set Test set Training set Test set 

Water (ω1) 1099 1104 1099 1104 
Red roof (ω2) 449 469 449 469 
Asphalt (ω3) 673 474 673 474 
Fields (ω4) 647 534 647 534 
Bare soil in field (ω5) 1017 773 600 483 
Plastic-mulched field (ω6) - - 417 290 

Total 3885 3354 3885 3354 
 
Addition of One Class: CASE B 

For this data set, only one scenario is proposed for CASE B: addition of a single class between X1 

and X2. In this scenario, Ω1={ω1,ω2,ω3,ω4,ω5} and the new plastic-mulched field class is present in X2, 

i.e., ωu=ω6, Ω2=Ω1 {ω6} (Experiment 7). 

Deletion of One Class: CASE C 

Also in this case, one single scenario is proposed associated to the deletion of a class. In this 
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scenario, Ω1={ω1,ω2,ω3,ω4,ω5,ω6} and the plastic-mulched field class is deleted between the two 

acquisitions, i.e., ωk=ω6 and Ω2=Ω1\{ω6} (Experiment 8). 

Table XVI summarizes the image pairs involved for the simulations of the two scenarios and the 

number of classes for X1 and X2. 

TABLE XVI. SUMMARY OF THE EXPERIMENTAL SETUPS FOR QUICKBIRD DATASET. 

Case Experiment Case description X1 X2 
# of classes 
K1 K2 

B 7 Addition plastic-mulched field class Y Z 5 6 
C 8 Deletion plastic-mulched field class Z Y 6 5 

 

B. Results 

As in the experiments for the Landsat dataset, also here we assumed that only the training set 

associated with image considered as X1 is available, whereas the training set associated with the image 

X2 is used only for validation. 

Experiment 7: Addition of One Class (CASE B). Initially, the supervised MAP classification is 

applied to image X1 (i.e., Y) and the set of parameters 1θ  which characterizes the probability density 

functions of the classes in Ω1 is estimated. The supervised classification of X1 leads to an overall 

accuracy of 97.29% on the test set. In order to adapt the classifier obtained for X1 to the statistical 

properties of X2 (i.e., Z), we applied the proposed method. Channels 3 and 4 of the QuickBird images 

were selected for the change-detection step. CVA resulted in the threshold value T along ρ equal to 

300, and in 2 angular thresholds along the direction variable ϑ equal to 0° and 63°, respectively. (The 

reader is referred to [17] and [27] for further details on how CVA can be applied to VHR data). The 

unsupervised and automatic analysis of the information in the polar domain led to the identification of 

a single kind of change. The comparison with the supervised classification map of X1 pointed out that 

only part of the fields class has changed. The pair-wise JM distances between the spectral signatures of 

changed pixels in X2 and each class in X2 already present in Ω2 (after standard adaptation of the MAP 

classifier) are computed according to (8). All the distance measures result in large values, much greater 
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than the threshold value TH (see Table XVII). Accordingly, the hypothesis of addition of one class 

(CASE B) is formulated. The set 0
2θ  is initialized using (11) and the domain adaptation procedure is 

applied. As for the Landsat dataset, the hypothesis that Ω2=Ω1 (i.e., neglecting the possibility that 

classes could change between the two acquisitions) is also tested. Once the two models are available, 

the BIC [26] is used for hypothesis validation. The 6-class model resulted in BIC value smaller than the 

5-class model. Thus, the hypothesis of class addition is validated. 

TABLE XVII. JM DISTANCES COMPUTED BETWEEN THE DETECTED CHANGED PIXELS AND CLASSES IN X2 
(EXPERIMENT 7, ADDITION OF PLASTIC-MULCHED FIELD CLASS, QUICKBIRD DATASET). 

Land-Cover Class JM 
Water (ω1) 1.4142 
Red roof (ω2) 1.3868 
Asphalt (ω3) 1.3878 
Fields (ω4) 1.4142 
Bare soil (ω5) 1.4132 

 

TABLE XVIII. USER, PRODUCER AND OVERALL ACCURACY (%) ON THE TEST SET FOR IMAGE X2 OBTAINED WITH THE 
PROPOSED DOMAIN ADAPTATION TECHNIQUE AND THE SUPERVISED MAP CLASSIFICATION (EXPERIMENT 7, ADDITION 

OF PLASTIC-MULCHED FIELDS CLASS, QUICKBIRD DATASET). 

Land-cover class Proposed Technique Supervised MAP 
classification 

User Producer User Producer 
Water (ω1) 96.52 100.00 96.52 100.00 
Red roof (ω2) 100.00 82.43 97.44 94.23 
Asphalt (ω3) 94.52 99.12 50.00 98.34 
Fields (ω4) 100.00 98.71 94.76 98.64 
Bare soil (ω5) 78.06 99.74 50.52 99.19 
Plastic-mulched fields (ω6) 100.00 83.33 100.00 36.12 
Overall Accuracy 94.91 83.42 

 

A further evidence of both the correctness of the formulated hypothesis and the effectiveness of the 

proposed domain adaptation procedure come from the analysis of the overall accuracy evaluated on the 

test set available for X2. The overall accuracy obtained with the 6-class model is of about 94.91% (see 

Table XVIII). This value is higher compared to the one that can be obtained by the supervised MAP 

classification of X2 using available training samples, i.e., 83.42%. 

Experiment 8: Deletion of One Class (CASE C). Similar steps as in Experiment 7 were conducted 

for the case of deletion of a class. The supervised MAP classifier trained on X1 (i.e., Z) results in an 
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overall accuracy of 83.42%. The change-detection step applied to this specific case gave the same 

decision boundaries and thus change-detection map as the previous one. The comparison with the 

classification map obtained at X1 showed that all the pixels in ω6 were affected by the change. The 

statistical distances (see Table XIX) between changed pixels in X2 and classes in X2 (after adaptation) 

were all high but the one related to the bare soil class was smaller than TL. This suggests that the 

changed pixels belong to a class (namely bare soil class) already existing in X2. Accordingly, the 

proposed method formulates the hypothesis of deletion of class ω6. Therefore 0
2θ  is initialized according 

to (12) and adaptation is performed. 

TABLE XIX JM DISTANCES COMPUTED BETWEEN THE DETECTED CHANGED PIXELS AND CLASSES IN X2 (EXPERIMENT 
8, DELETION OF PLASTIC-MULCHED FIELDS CLASS, QUICKBIRD DATASET). 

Land Cover Class JM 
distance 

Water (ω1) 1.4142 
Red roof (ω2) 1.4055 
Asphalt (ω3) 1.4142 
Fields (ω4) 1.4139 
Bare soil (ω5) 0.9328 

 
The validation of the hypothesis is carried out by comparing the BIC value obtained assuming that 

Ω2=Ω1 (6-class model) with the one obtained under the hypothesis formulated according to the 

proposed method (5-class model). The first model resulted in a higher BIC value than the second one, 

thus validating our assumption. 

TABLE XX. USER, PRODUCER AND OVERALL ACCURACY (%) ON THE TEST SET FOR IMAGE X2 OBTAINED WITH THE 
PROPOSED DOMAIN ADAPTATION TECHNIQUE AND THE SUPERVISED MAP CLASSIFICATION (EXPERIMENT 8, DELETION 

OF PLASTIC-MULCHED FIELD CLASS, QUICKBIRD DATASET). 

Land-cover class Proposed Technique Supervised MAP 
classification 

User Producer User Producer 
Water (ω1) 95.65 100.00 95.74 97.60 
Red roof (ω2) 99.79 65.00 99.36 92.10 
Asphalt (ω3) 55.06 100.00 100.00 98.55 
Fields (ω4) 100.00 98.34 95.51 98.65 
Bare soil (ω5) 98.45 98.32 97.80 98.57 

Plastic-mulched fields (ωu=ω6) - - - - 
Overall Accuracy 91.83 97.29 

 
The confirmation of the effectiveness of the proposed procedure comes from the analysis of the 

overall accuracy obtained with the supervised MAP classifier trained on X2 with the reference ground 
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data available for X2 (i.e., 97.29%) and the one obtained at convergence after adaptation (i.e., 91.83%). 

VII. CONCLUSION 

In this work a novel approach to domain adaptation in the context of classification of multi-

temporal remote sensing images has been proposed. This approach addresses a very important problem 

related to the analysis of multitemporal images, which is connected with the need to update land-cover 

maps every time that a new image is available for a given geographical area. Unlike other techniques 

presented in the remote sensing literature, the proposed DA method can address problems in which the 

set of land-cover classes that model the target domain (image at t1) is different from those that model 

the source domain (image at t2). In greater detail, the method extends the use of the standard domain 

adaptation technique based on the Maximum-A-Posteriori classifier and Expectation-Maximization 

algorithm to cases in which the set of classes that characterize the two domains are potentially 

different. This is an important methodological and applicative improvement with respect to DA 

methods presented in the remote sensing literature that usually assume that the same classes are present 

in the source and target domains. Addition and/or deletion of class(es) is detected according to the joint 

use of change-detection methods and Jeffreys-Matusita (JM) statistical distance measure. The final 

model is validated according to the Bayesian Information Criterion. Proper strategies for initializing 

the adaptation step in the different cases are defined. The possibility to consider different sets of classes 

for source and target domains makes the proposed DA-MAP classifier highly flexible with respect to a 

number of possible (and common) applicative situations. The proposed method was tested within a set 

of scenarios showing different levels of complexity: i) addition or deletion of a single class; ii) addition 

or deletion of multiple classes; and iii) simultaneous addition and deletion of classes. For all setups and 

for different kind of remote sensing multispectral images (both medium and very high resolution) the 

proposed DA-MAP technique demonstrated to be highly effective resulting in classifications 

accuracies comparable with those achieved by a supervised MAP classifier without any training data 
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for the second image. 

As future work, we plan to test the proposed method on image time series made up of more than 

two images for both further validating the presented DA classifier and for exploiting it in studies on the 

dynamic of land-covers of specific study areas. In addition, we plan to extend the proposed domain 

adaptation procedure to be used with kernel based classifiers and in particular with Support Vector 

Machines [7]. 
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