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Abstract – The detection of multiple changes (i.e., different kinds of change) in multitemporal 

remote sensing images is a complex problem. When multispectral images having B spectral bands 

are considered, an effective solution to this problem is to exploit all available spectral channels in 

the framework of supervised or partially supervised approaches. However, in many real 

applications it is difficult/impossible to collect ground truth information for either multitemporal or 

single date images. On the opposite, unsupervised methods available in the literature are not 

effective in handling the full information present in multispectral and multitemporal images. They 

usually consider a simplified sub-space of the original feature space having small dimensionality 

and thus characterized by a possible loss of change information. In this paper, we present a 

framework for the detection of multiple changes in bi-temporal and multispectral remote sensing 

images that allows one to overcome the limits of standard unsupervised methods. The framework is 

based on: i) a compressed yet efficient 2-dimensional (2D) representation of the change 

information; and ii) a 2-step automatic decision strategy. The effectiveness of the proposed 

approach has been tested on two bi-temporal and multispectral data sets having different 

properties. Results obtained on both data sets confirm the effectiveness of the proposed approach. 

 



2 
 

Key words – multitemporal images, multiple changes, change detection, change vector analysis, 

low dimensional representation, thresholding procedure, Bayes decision rule, remote sensing. 

 

I. INTRODUCTION 

In the literature, the problem of multiple-change detection (i.e., the detection of different 

kinds of change) has been usually treated as a problem of explicitly detecting land-cover 

transitions according to (semi-, partially-) supervised methods [1],[2]. The easiest approach in 

such cases is Post-Classification Comparison (PCC), where two multitemporal images, acquired 

over the same area at different times, are independently classified and land-cover transitions are 

estimated according to a pixel-by-pixel comparison of classification maps [3]. The performance 

of this approach critically depends on the accuracies of the single classification maps and (under 

the assumption of independent errors in the maps) it is close to the product of the accuracies 

yielded at the two times. This method has the drawback that it does not consider temporal 

correlation between available acquisitions. A possible alternative is given by Direct Multidate 

Classification (DMC) [3]. In this technique the two images acquired at different dates are 

simultaneously classified by stacking their feature vectors. Each possible transition is considered 

as a class, and thus a training set made up of pixels with labels for both available acquisitions 

should be defined. In real applications this represents a strong constraint. In order to overcome 

the drawbacks that affect the two aforementioned approaches, recently other methods have been 

developed in the context of partially supervised or domain adaptation techniques. These methods 

assume that ground truth information is available for only one acquisition date while it is not 

given for the second one. Information about class transitions is obtained by jointly exploiting 

unlabeled patterns from the second acquisition and labeled patterns available for the first one [4]-

[6]. However, also these methods require the availability of ground truth information for at least 
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one of the images to be analyzed. When dealing with real applications, the ground truth 

information collection requires a significant effort from the economical and practical viewpoint. 

Moreover, in many cases, due to real application constraints, it is almost impossible to retrieve 

such kind of information. In order to cope with these situations, unsupervised techniques have 

been developed, which do not require any prior information about land-cover classes. Exhaustive 

surveys of unsupervised change-detection methods for multispectral images acquired by passive 

sensors can be found in [3],[7]-[16]. Despite these methods can perform change detection 

without prior information and with a reduced computational burden, most of them allow only the 

detection of presence/absence of changes but do not discriminate different kinds of change. In 

the literature some examples exist of methods that try to distinguish in an unsupervised way 

between different kinds of change [17]. However, often they require the selection of only 2 (or 

few) spectral channels among the available ones. This process may lead to a significant loss of 

information, a degradation of the accuracy of the change-detection process and a failure to 

identify some kinds of change. Moreover unsupervised methods for the detection of multiple 

changes at the state-of-art (included [17]) do not address the problem of the change information 

extraction in an automatic way, neither in the full-dimensional nor in a lower dimensional 

representation of SCVs. From this analysis it emerges a lack of unsupervised methods being able 

to properly detect the presence of multiple changes in an unsupervised and automatic way. 

In this manuscript we propose a framework for the detection of multiple changes in bi-

temporal and multispectral remote sensing images, which allows one to overcome the limits of 

standard unsupervised methods. The framework is based on: i) a compressed yet efficient 2-

dimensional (2D) representation of the change information; and ii) a 2-step automatic decision 

strategy. First the multidimensional feature space of SCVs is compressed into a 2-dimensional 
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one without neglecting any available spectral band (and thus possible information about 

changes). This representation allows one to easily display and understand change information in 

a polar coordinates system. Second, an automatic 2-step method for both separating unchanged 

from changed patterns and distinguishing different kinds of change is presented. 

The rest of the paper is organized into six sections. The next section introduces mathematical 

notation and summarizes the background behind the proposed framework. Section III introduces 

the proposed compressed 2D representation and the characterization of the change information in 

bi-temporal multispectral images. Section IV presents the proposed technique for extracting 

multiple-change information and computing the final change-detection map. Section V illustrates 

the experimental results obtained on two real multitemporal datasets acquired by Landsat-5 and 

Quickbird satellites multispectral sensors. Finally, Section VI draws the conclusion of this work. 

II. NOTATION AND BACKGROUND 

Let us consider two coregistered multispectral images, X1 and X2 of size I×J acquired over 

the same geographical area at different times t1 and t2, respectively. Let Xb,t be the image 

representing the bth (b=1,…,B) component of the multispectral image Xt (t=1,2). Unsupervised 

change-detection methods usually exploit the multispectral difference image XD by subtracting 

the spectral feature vectors associated with each corresponding spatial position in the two 

considered images X1 and X2, i.e., 

XD = X2 - X1 (1)

Let Xb,D be the image representing the bth (b=1,…,B) component of XD. Finally, let Ω={ωn, 

Ωc} be the set of classes to be identified. ωn represents the class of no-changed pixels and Ωc={

1cω , 2cω ,…, cKω } is a meta-class that gathers all the K possible classes (kinds) of change 

occurred in the considered area. 
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In the past, many unsupervised approaches have been developed for exploiting the 

information present in XD [3],[8],[9]. The most common and easiest one reduces the BD problem 

to a 1D problem [18]-[20], by considering only the magnitude ρ of spectral change vectors 

(SCVs). A simple thresholding of the magnitude variable allows one to obtain a change-detection 

map that highlights the presence/absence of changes [18]-[20]. However, in this way no 

information can be retrieved about possible different kinds of change (i.e., multiple changes 

cannot be distinguished). 

The above mentioned drawback can be addressed by the definition of more advanced 

techniques that try to solve the change-detection problem by including all available features in 

the decision process.1 In this case the detection of changes requires the solution of a complex BD 

problem, where an unsupervised analysis would imply the application of clustering algorithms to 

BD vectors [17],[21]. However, in real applications, the data complexity and the noise present in 

the BD feature space (refer to [17] for further details on this issue) affect the performance of 

clustering procedure, which in many cases result in change-detection accuracies smaller than 

those provided by a simple thresholding of the 1D magnitude of SCVs [3],[19]. A further 

drawback of working in a BD space is that this space is difficult or impossible to visualize when 

the considered dimensions are more than 2. This implies that the process of understanding the 

change-detection problem structure when semi-automatic interactive solutions are investigated 

with the support of an expert can become rather complex. 

A possible alternative to solve the BD problem with a limited loss of information is to split it 

in a set of ( )2
B  2D problems by considering all possible pairs of spectral channels. The obvious 

drawback of this approach is the need of defining an effective strategy for combining the ( )2
B  

                                                                          
1 The BD feature space could be either the one of the multispectral difference image or an alternative multidimensional representation of it like 

the one achieved by Principal Component Analysis (PCA). 
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solutions in the final decision step (It is worth noting that in the literature it doesn’t exist a 

change-detection method based on this strategy). Therefore the most common practice is to 

select only one out of all the possible 2D problems (i.e., neglecting B-2 spectral bands) and to 

use this sub-optimal representation as the solution to the initial BD change-detection problem 

[22],[23]. This is for instance done in PCA-based change-detection approaches where only the 

first 2 (or few) principal components are selected for the solution of the BD problem [24]. In 

practice, the two selected spectral channels of XD are commonly used to represent the change-

detection problem in 2D polar coordinates (2D-CVA) according to the magnitude  and direction 

variables: 

2 2
, ,

,

,

X X
Xarctan X

⎧ = +
⎪
⎨ ⎛ ⎞= ⎜ ⎟⎪

⎝ ⎠⎩

m D n D

m D

n D

ρ

ϑ
 (2)

where Xn,D and Xm,D represent the considered nth and mth spectral channels of XD, respectively. 

Independently on the selected channels, the drawback of this strategy is that the change-

detection solution is usually affected by a loss of information (except for simple cases) with 

respect to the original multitemporal and multispectral feature space (or to the BD SCVs feature 

space). To limit this effect, prior knowledge on the specific considered problem (i.e., on the 

kinds of change occurred on the ground) could be employed to select the 2 most relevant 

channels [19],[25]. However, in most of the practical applications, prior information is not 

available and it is not possible to assure that change information is constrained to only two 

channels (e.g., there are different kinds of change that affect the spectral signatures of the land 

covers in different bands). Thus the 2D representation can result in poor change-detection 

performance. Nevertheless, it shows the advantage of being easy to visualize and analyze. 

Table I summarizes advantages and disadvantages of the different representations available  
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TABLE I ADVANTAGES AND DISADVANTAGES OF THE DIFFERENT POSSIBLE REPRESENTATION OF THE BD CHANGE-
DETECTION PROBLEM GIVEN BY THE MULTISPECTRAL DIFFERENCE IMAGE. 

Representation Unsupervised approach 
to CD Advantages Disadvantages 

BD 
(B>2) • BD clustering. • Information about multiple 

kinds of change is preserved. 

• Complex to manage. 
• Change information cannot be to 

visualized. 
• Clustering techniques are often 

not effective. 

BD 
(sub-optimal) 

(B>2) 

• Solve 2
B⎛ ⎞

⎜ ⎟
⎝ ⎠

 2D problems. 

• Combine 2
B⎛ ⎞

⎜ ⎟
⎝ ⎠

 solutions. 
• Information about multiple 

kinds of change is preserved. 

• Sub-optimal detection of changes. 
• The combination of 2D solutions 

for generating the BD solution 
requires an additional step. 

• Combination strategies are not 
available in the literature yet. 

2D 
• Select 2 out of B bands. 
• Threshold magnitude 

and direction variables. 

• Easy and intuitive to 
visualize. 

• Different kinds of change can 
be detected. 

• Requires prior information about 
changes for band selection. 

• Depending on selected bands 
some kinds of change can be lost. 

1D • Threshold the 
magnitude variable. • Easy to manage and visualize.

• Only information about 
presence/absence of changes can 
be extracted. 

 

in the literature. From its analysis and recalling that different kinds of change have different 

effects on different features (i.e., all spectral channels are potentially useful for solving the 

change-detection problem and no channel can be neglected a priori), it emerges the need of 

defining a framework where the information about multiple changes can be easily managed in a 

2 dimensional feature space without completely neglecting any spectral channel (and the 

information about changes in them). Moreover the framework should integrate effective change-

detection techniques able to distinguish multiple changes in an unsupervised and automatic way. 

III. PROPOSED COMPRESSED REPRESENTATION OF THE CHANGE INFORMATION 

In order to preserve the most of the available information present in the BD feature space and 

to obtain a feature space easy to visualize and manage from a user point of view, here we 

propose a transformation that maps the BD feature space into a 2D feature space without the 

need of any prior information about the specific change-detection problem. The two considered 

features are: i) the magnitude of spectral change vectors, and ii) a direction variable that models 
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the information about different kinds of change without rejecting any spectral channel. The two 

features define a space in which the change information can be effectively and intuitively 

represented and extracted. 

A. Magnitude of Spectral Change Vectors 

The first of the considered features is the well known and widely used magnitude ρ of 

multidimensional spectral change vectors in XD defined as: 

( )22
,D ,2 ,1

1 1
X X X ,     [0, ]

= =
= = − ∈∑ ∑

B B

b b b max
b b

ρ ρ ρ . (3)

where ρmax is the maximum value assumed by the magnitude for the considered image pair. 

Theoretically ρmax could tend to infinity, however in practical applications it is bounded by the 

digital nature of the data. 

As widely known [3],[19], the magnitude carries information about the presence/absence of 

changes. On this feature changed pixels show a relative high value whereas unchanged pixels 

assume a relatively low value [3],[17]-[19]. Despite the magnitude does not carry information 

about different kinds of change, it represents a valuable and robust variable for distinguishing 

changed from no-changed pixels. In the literature several automatic and unsupervised approaches 

to change detection that analyze the magnitude variable are available [3],[7],[9]. Among them 

the most widely used are those based on automatic thresholding techniques [9],[18],[19]. 

B. Direction of Spectral Change Vectors 

As the magnitude of SCVs does not include any information about different kinds of change, 

a complementary feature is proposed to distinguish multiple changes. A measure α [alternative 

to ϑ, see eq. (2)] is proposed that effectively compresses the information about different kinds of 

change to a 1-dimensional variable. α is defined as an angle computed in radians between two 
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multidimensional vectors t and r 

( ) 2 2

1 1 1
arccos ,     [0, ]

B B B

b b b b
b b b

t r t rα α π
= = =

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠
∑ ∑ ∑  (4)

where tb and rb are the bth components of BD vectors t and r, respectively [26]. 

Such kind of measure has been already successfully employed in the context of: i) supervised 

approaches to geological mapping in high and very high geometrical resolution images [27]-[29]; 

ii) supervised classification and/or clustering of hyperspectral and multispectral images 

[30],[31]; iii) supervised change detection [32]; iv) spectral unmixing [33],[34]; v) target 

detection in hyperspectral images [35]; and vi) pansharpening quality assessment. In these 

applications the angle defined in (4) is used as a supervised similarity measure between a given 

spectral signature X and reference spectra Xref (i.e., spectral libraries or end-members stored in a 

database) and is commonly referred to as Spectral Angle Mapper (SAM) [36]. In such cases, 

equation (4) can be rewritten as 

where Xb and Xb,ref are the bth components of BD vectors X and Xref, respectively. 

However, as we are dealing with an unsupervised approach to change detection no libraries 

for Xref are available. Therefore in this work we propose an alternative way to use the angular 

distance measure defined in (4). In the BD feature space of the multispectral difference image 

XD, we define the vector t as the spectral change vector associated to each spatial position and r 

as a BD unit vector u with elements ub (b=1,…,B) all equal to each other. The latter choice 

corresponds to use a reference vector in which the same weight is given to all spectral channels 

in the change analysis procedure. This is due to the absence of prior information about changes 

occurred on the ground that doesn’t make it possible to establish a relative relevance of spectral 

( ) 2 2
, ,

1 1 1
arccos X X X X ,     [0, ]

B B B

b b ref b b ref
b b b

α α π
= = =

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠
∑ ∑ ∑  (5)
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channels and thus a more specific reference vector. Without loss of generality, in order to define 

a normalized vector ub we set elements of u equal to B B . Therefore the desired angle variable 

can be written as: 

( ) 2 2 2
,D ,D ,D ,D

1 1 1 1 1

1arccos X X arccos X X ,     [0, ]
B B B B B

b b b b b b
b b b b b

u u
B

α α π
= = = = =

⎡ ⎤⎛ ⎞ ⎛ ⎞
= = ∈⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑ ∑  (6)

It is worth noting that if any information is available to establish a relative relevance of the 

spectral channels, different choices can be made for the elements of u. 

C. Proposed Compressed Change Vector Analysis 

Following an approach similar to the one in [17], the properties of the two features defined 

according to (3) and (6) can be exploited for defining a compressed polar representation of the 

change-detection problem represented by the multispectral SCVs in a 2D feature space. We call 

this feature space as Compressed CVA (C2VA) domain. The C2VA domain is bounded by the 

ranges of existence of ρ and α, i.e., 

{ }2C VA [0, ]  and  [0, ]maxρ α π= ∈ ρ ∈  (7)

Eq. (7) represents a semi-circle that includes all SCVs of the considered images (see Figure 1). 

Within this domain, regions of interest can be identified associated to different classes in Ω. 

Since no-changed pixels are expected to have a magnitude close to zero, whereas changed pixels 

are expected to show a magnitude far from zero [3],[17],[19], the C2VA domain can be divided 

into two regions with respect to the magnitude variable. The first region is associated with 

unchanged pixels, whereas the second one is associated with changed pixels. The two regions 

can be separated according to the optimal (in the sense of the theoretical Bayesian decision 

theory) threshold value T that separates pixels belonging to ωn from pixel belonging to Ωc (dark 

and light gray areas in Figure 1, respectively) [17],[19]. 
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The first region is the semicircle SCn of no-changed pixels (dark gray area in Figure 1) 

located close to the origin of the C2VA domain. This region is defined mathematically as follows 

{ }, : 0  and  0nSC Tρ α ρ α π= ≤ < ≤ ≤  (8)

The second region is the semi-annulus of changed pixels SAc (light gray area in Figure 1) 

located far from the origin of the C2VA domain, and is mathematically defined as 

{ }max, :  and  0cSA Tρ α ρ ρ α π= < ≤ ≤ ≤  (9)

Let us now consider the information carried out by the direction variable α. As it represents 

the similarity between each considered SCV and a reference vector, it is expected that different 

kinds of change will be characterized by different values of α. According to this observation, 

within the semi-annulus of changed pixels different annular sectors Sk (k=1,…,K) of the semi-

annulus SAc can be detected along α, and defined as 

{ }1 2 1 2, :   and  ,  0= ≥ ≤ < ≤ < ≤α α α α α α πk k k k kS ρ ρ T  (10)

where lkα  and 2kα  are the two angular thresholds that bounds the sector Sk. Each sector (hatched 

area in Figure 1) can be associated in principle with a specific kind of change ω kc Ωc occurred 

on the ground. 

 

 

Figure 1. Regions of interest for the compressed 2D representation of the change-detection problem. 
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D. Discussion 

Despite the applied compression considers all spectral channels, some ambiguity rises from 

the process of information compression which is mainly due to the simplified representation 

given by the direction variable. The loss of information may result in similar values of α for 

different kinds of change. In this situation, each detected sector Sk must be associated to more 

kinds of change in Ωc instead of only one. However, this is a drawback common to other low 

dimensional representations (i.e., lower than the original one) usually adopted for unsupervised 

change detection. Nevertheless, the defined 2D feature space has two valuable advantages: i) the 

ambiguity does not affect the detection of changes (the magnitude is used like in standard CVA) 

but just the possible merging (in some specific cases) of different kinds of change; and ii) it 

considers in the solution of the change-detection problem all available spectral bands thus 

avoiding the need of prior information about relevant features. This is important because can 

result in the lost of unexpected kinds of changes having a high value in the operational 

applications. Moreover the obtained 2D representation makes it easy to visualize the B-

dimensional change-detection problem for interaction with the end-user. 

In order to better understand the importance of the two mentioned advantages let us compare 

the proposed representation of change information with the ones that can be obtained by 

applying either the standard CVA to a pair of spectral channels (2D-CVA) or the PCA-based 

change-detection methods. In 2D-CVA, 2 out of B spectral channels are selected according to 

prior information about the spectral behavior of possible kinds of changes occurred in the 

considered area. Even if good prior information is available, this implies a complete loss of 

information about those changes (maybe unexpected but also for this reason possibly important) 

that are visible only in the neglected spectral channels, and a partial loss for the ones visible both 
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in neglected and selected ones. Thus the 2D-CVA allows one to obtain a suitable 2-dimensional 

representation of the change-detection problem, but can entirely miss some kinds of changes. In 

PCA-based approaches, the relevant information is compressed in the first principal components 

(i.e., the ones with the highest eigenvalues). However, when dealing with changes, it is not 

possible to ensure that the change information is associated only to the first principal 

components. In other words, we cannot know a priori in which principal components the change 

information is represented (when changes are a minority in the image, their information can fall 

also in the last principal components). Furthermore, in the selection of principal components, 

prior information about the considered data set can not be used like in 2D-CVA, as there is no 

explicit relationship between each principal component and the physic of the problem. Thus, also 

for the PCA-based methods the selection of 2 out of B principal components (to obtain a 2D 

representation of the change-detection problem) results in the possible loss of information about 

some kinds of changes. This reasoning can be easily generalized to other kinds of transformation 

techniques that result in more than 2 transformed components. 

Concluding, for both the 2D-CVA and the PCA-based change-detection methods, the 

selection of 2 features out of B can result in losing the information on some specific kinds of 

change, whereas the proposed representation results, in the worst case, in misclassification 

among kinds of changes but not in misdetections. Moreover, given a pair of images of the same 

area. the proposed compressed representation of the change information results in a well defined 

2D feature space. On the contrary, for both 2D-CVA and PCA-based change-detection methods 

the 2D representation of change information significantly changes according to the selected 

features. 
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IV. PROPOSED TECHNIQUE FOR THE DETECTION OF MULTIPLE CHANGES 

The proposed 2D representation suggests a change-detection approach based on a 2-step 

procedure: i) identification of the semicircle SCn of no-changed pixels and of the semi-annulus 

SAc of changed pixels (i.e., separation of changed and unchanged patterns) by the analysis of the 

distribution of the magnitude variable ρ; and ii) identification of annular sectors Sk (k=1,…,K) in 

the semi-annulus SAc (i.e., detection of different kinds of change within the set of changed 

patterns identified in the first step) by the analysis of the distribution of the direction variable α. 

It is worth noting that from a theoretical point of view the identification of the different regions 

in the C2VA domain should be carried out by jointly analyzing ρ and α. Nonetheless we simplify 

the process by analyzing separately ρ and α thus implicitly assuming the independence between 

them. 

A. Discrimination between Changed and Unchanged Pixels 

In the first step changed and unchanged pixels are distinguished from each other according to 

a well known and widely used unsupervised technique based on the Expectation-Maximization 

algorithm [37],[38]. 

Let P(ωn), P(Ωc), p(ρ|ωn) and p(ρ|Ωc) be the prior probabilities and the conditional 

probability density functions of class ωn and meta-class Ωc, respectively. Let us assume that the 

distribution of the observed magnitude variable can be expressed as a mixture density 

distribution, i.e.: 

( ) ( ) ( | ) ( ) ( | )n n c cp P p P pρ ω ρ ω ρ= + Ω Ω  (11)

Under simple assumptions it is possible to prove that in the 2D case the magnitude of 

changed and unchanged classes can be modeled by a Rayleigh and a Rice density function, 

respectively (see [17] for greater details). However, in the considered case these hypotheses are 
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not satisfied as: i) more than two spectral channels are involved in the process; ii) Ωc can include 

in general more than one kind of change; and iii) no assumption is made on the statistical 

parameters of changed and unchanged pixels in the domain of the multispectral difference image. 

According to these considerations, the simplifying assumption that p(ρ|ωn) and p(ρ|Ωc) follow a 

Gaussian distribution seems a reasonable and simple approximation. The threshold T that 

separates class ωn and meta-class Ωc can be computed according to the Bayes decision theory 

after retrieving the class prior probabilities P(ωn) and P(Ωc) and the class statistical parameters 

(the mean values μc,ρ and μn,ρ and variances σ2
c,ρ and σ2

n,ρ in the magnitude domain ρ of change 

and no-change classes, respectively). As change detection is approached in an unsupervised way, 

the well know Expectation-Maximization algorithm [37],[38] can be used for estimating these 

parameters. After initialization, the following iterative equations that allow us to solve the 

estimation problem under Gaussian assumption can be applied [19]: 

1

( )

( ) ( ( ))| )1( )
( ( ))

s s
n ns

n s
i,j

P ω p i,j ωP ω IJ p i,jρ ρ

ρ
ρ

+

∈
= ∑  (12)
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( )

( ) ( ( )) ) ( )
( ( ))
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n, s s
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ρ ρ
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ρ
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∈+

∈
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∈
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where ρ(i,j) is the magnitude value of pixel in spatial position (i,j) within the magnitude image. 

Superscript s indicates the iteration. Initial values for the statistical parameters of both classes are 

computed as sample mean and variance and relative frequency of pixels within a set of patterns 

with a high probability to belong to the two classes, respectively. Such sets are built by applying 

two thresholds for selecting the pixels with very high (meta-class Ωc) or very low magnitude 
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values (class ωn) according to the properties of the ρ [19]. The iterative process stops when the 

likelihood function reaches a local maximum. 

Once class statistical parameters are estimated, the Bayes decision rule can be used for 

pattern labeling, i.e., 

{ } { }
{ } { }

( ( )) ( ) ( ( ) )
i n c i n c

h i i i
ω , ω ,

arg max P ω | i,j arg max P ω p i,j |ω
ω ω

ω ρ ρ
∈ Ω ∈ Ω

= =  (15)

The explicit solution of (15) leads to the definition of a Bayesian decision threshold T [19]. Thus 

each pixel x(i,j) in spatial position (i,j) is assigned to the class of changed or unchanged pixels 

according to the following decision rule 

( )
( )

( )
n

c

ω if   i, j T
x i, j

if   i, j T
ρ
ρ

<⎧
∈⎨Ω ≥⎩

 (16) 

B. Identification of Different Kinds of Change 

Once changed pixels have been separated from no-changed ones, the attention is focused on 

the set of changed pixels only (i.e., in the semi-annulus of changed pixels SAc). The aim of this 

step is to separate the contributions of possible different kinds of change within the meta-class 

Ωc. This can be done by exploiting the direction variable. 

Let P( ckω |ρ≥T) and p(α| ckω ,ρ≥T) (k=1, …, K) be the prior probability and the conditional 

probability density function of the class ckω Ωc, k=1,…,K, given that changes occurred (i.e., 

given that the magnitude variable is higher than the threshold T). Under this hypothesis, the 

observed direction variable in the semi-annulus of changed pixels can be written as a mixture 

density distribution: 

1

( | ) ( | ) ( | , )k k

K

c c
k

p T P T p Tα ρ ω ρ α ω ρ
=

≥ = ≥ ≥∑  (17)

The derivation of the analytical expression for the conditional probability density function p(α|
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ckω ,ρ≥T) is a complex task [17] and results in distributions that are difficult to be used in the 

context of automatic techniques. Thus for simplicity, the statistical distribution of each class of 

change ckω Ωc, k=1,…,K is approximated by a Gaussian function. Under this simplified 

approximation, the generic class of change ckω  can be statistically described with its class prior 

probability P( ckω |ρ≥T), the mean value ( kc ,μ α ) and the variance value ( 2
kc ,ασ ) computed along 

the direction variable α. Given the statistical parameters of classes, labeling can be performed 

according to 

{ } { }[ ( ) ] ( | ) [ ( ) ]
i c i c

h i i iargmax P ω | i,j , T argmax P ω T p i,j |ω , T
ω ω

ω α ρ ρ α ρ
∈Ω ∈Ω

= ≥ = ≥ ≥  (18)

Statistical parameters of each class iω Ωc can be estimated according to the iterative equations 

as in (12)-(14). However, unlike the case of the magnitude variable where a reasonable initial 

assumption can be done on the position of classes, along the direction variable no hypotheses can 

be formulated on the location of the classes associated to different kinds of change. Therefore in 

this case a K-mean clustering [39] is applied in order to determine in an unsupervised way 

reasonable initial seeds for the iterative algorithm. K-mean clustering requires the definition of 

the number of expected clusters, i.e., the number K of expected kinds of change occurred on the 

ground. This information can be recovered according to: i) some prior knowledge on the 

considered problem; ii) interactions with the end-user; iii) a visual analysis of the number of 

clusters represented in the C2VA domain; or iv) methods for validation of clustering results [40]-

[43]. 

The explicit solution of (18) leads to the definition in the direction domain of a pair of 

thresholds lkα  and 2kα  for each kind of change. Each pixel x(i,j) that falls to the SAc (i.e., ρ(i,j)>T) 

is assigned to one of the detected kinds of change ckω Ωc according to the following decision 
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rule: 

1 11 l 2

l 2

( )
( )

( )K KK

c

c

if   < i, j
x i, j

if < i, j

ω α α α

ω α α α

≤⎧
⎪∈⎨
⎪ ≤⎩

M M  (19) 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to assess the reliability of both the proposed 2D representation in the C2VA domain 

and the effectiveness of the proposed change-detection technique, several experiments were 

carried out on two multispectral and bitemporal datasets. The first data set is made up of two 

images acquired by the Thematic Mapper sensor mounted on the Landsat 5 satellite and 

represents a 6D problem. The second data set includes two very high geometrical resolution 

images of an area nearby the city of Trento (Italy) acquired by the multispectral sensor mounted 

on the Quickbird satellite and represents a 4D problem. 

The reliability of the proposed C2VA representation was studied by a comparison with the 

standard CVA polar framework [17]. We briefly recall here that the CVA framework is defined 

by the magnitude ρ (ρ [0, ρmax]) and the direction ϑ (ϑ [0,2π)) computed by selecting 2 out of 

B spectral channels according to (2) (it is worth stressing that the selection of 2 out of B spectral 

channels may result in a significant loss of information). Following [17], the domain of interest 

is represented by a circle with outer radius ρmax. Within this domain one can identify: i) a circle 

of no-changed pixels (Cn); and ii) an annulus of changed pixels (Ac) separated by a threshold T. 

Within Ac, sectors of annuls Sk that correspond to different kinds of change occurred on the 

ground can be defined bounded by two angular thresholds 1kϑ  and 2kϑ  (see Figure 2). The 

magnitude ρ and direction ϑ variables observed in the CVA polar framework can be described as 

mixture of Gaussian distributed densities [i.e., p(ρ) and p(ϑ|ρ≥T), respectively], similarly to what 

done for ρ and α variables in the C2VA domain. Thus, thanks to this similarity, the proposed 
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Figure 2. Representation of the regions of interest for the CVA technique in the Polar coordinate system. 

 

automatic technique for the detection of multiple changes can be effectively applied also to the 

2D CVA. 

In our experiments, for each data set, CVA in polar coordinates is applied to two different 

pairs of spectral channels: i) one made up of a couple of bands chosen in a random way (this 

simulates problems in which no prior information on the kinds of change is available); and ii) 

one made up of two spectral channels chosen according to some prior knowledge on the 

considered changes occurred on the ground. 

The effectiveness of the proposed framework was evaluated according to: i) a qualitative 

comparison between the capabilities in representing the change information of the proposed 

C2VA and the standard 2D CVA;ii) a quantitative analysis of the performance of the proposed 

technique for the detection of multiple changes (which was conducted according to an available 

reference map) applied to both the C2VA and 2D CVA, and iii) a comparison of the performance 

obtained with the proposed automatic and unsupervised method with those achieved by an 

empirical manual trial-and-error procedure (MTEP), i.e., a procedure that selects the threshold 

values both along magnitude and direction in a supervised way by minimizing the overall error 



20 
 

with respect to the available reference map. It is worth noting that, the accuracy obtained by the 

MTEP can be considered as an upperbound for the one achieved by the proposed automatic 

method. 

A. Dataset 1: Thematic Mapper Images of Landsat-5 

The first data set is made up of a couple of images acquired on the Sardinia Island (Italy) in 

September 1995 and July 1996, respectively, by the Thematic Mapper sensor mounted on the 

Landsat 5 satellite. This data set is characterized by a spatial resolution of 30mx30m. The 

selected area is a section (412x300 pixels) of two full scenes including Lake Mulargia. In the 

pre-processing phase the two images were radiometrically corrected and co-registered in order to 

make them as more comparable as possible. As an example of the images used in this 

experiment, Figures 3 (a) and (b) show band 4 of the September and July images, respectively. 

Between the two acquisition dates three kinds of change occurred (K=3): i) an enlargement of an 

open quarry between the two branches of the lake (bottom right part of the scene, 1cω ); ii) a 

burned area (bottom left part of the scene, 2cω ) (this is a simulated change, refer to [17] for 

further details on how the change has been included in a realistic way); and iii) an enlargement 

of the lake surface associated to an increase of the water volume of Lake Mulargia (centre of the 

scene, 3cω ). A reference map of the analyzed site was defined according to a detailed visual 

analysis of the bitemporal images and some prior information. The obtained reference map 

contains 10180 changed pixels and 113492 unchanged pixels. In greater details, 214 pixels are 

related to 1cω , 2414 to 2cω and 7480 to 3cω  (see Figure 3 (c)). 

First of all we represented the change information in the Compressed CVA (C2VA) domain. 

To this purpose, according to the procedure described in Section III, we reduced the dimension 

of the feature space from 6 (i.e., the number of spectral channels of the TM images, excluding 
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(a) (b) 
 

(c)  
Figure 3. Images of Lake Mulargia (Italy) acquired by the Thematic Mapper sensor of the Landsat 5 satellite; (a) 
channel 4 of the image acquired in September 1995 and (b) channel 4 of the image acquired in July 1996; (c) 
reference map. 

 

the thermal channel) to 2 computing the magnitude of the multispectral difference image 

according to (3) and the angle α according to (6). Elements of vector u were all set to 6 6 . 

Figure 4 (a) shows the scatterogram in the C2VA domain. Figure 4 (b) and (c) show the 

scatterogram in the polar domain obtained by applying CVA to two pairs of spectral channels: i) 

Figure 4 (b) is obtained from the analysis of bands 1 and 3 (which were randomly selected), 

whereas ii) Figure 4 (c) is obtained from the analysis of bands 4 and 7 (which were selected 

according to prior knowledge about changes related to water and burned areas). In the 

scatterogram obtained with the proposed representation (Figure 4 (a)) three main clusters can be 

easily identified showing a high magnitude and specific preferential values along α. As expected  
 

No-change 

Kinds of change: 

Enlargement of the open quarry 1cω  

Burned area 2cω  

Enlargement of the lake 3cω  
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(a) 

(b) (c) 
Figure 4. Scatterograms obtained by: (a) the proposed 2D C2VA representation; the polar CVA applied to spectral 
channels (b) 1 and 3, and (c) 4 and 7 (Landsat 5 dataset). 
 
(and confirmed by our experimental analysis) in the other two representations (Figure 4 (b) and 

(c)), only two clusters can be clearly identified with a high magnitude and a preferred direction 

and therefore only two types of change can be detected. The proposed approach to multiple 

change detection estimated a threshold value T (that separates along ρ pixels belonging to ωn 

from pixels belonging to Ωc) equal to 45 when ρ was computed considering all spectral channels 

(C2VA), whereas it was equal to 35 considering spectral channels 1 and 3, and to 31 considering 

bands 4 and 7 (2D CVA). As an example, Figure 5 reports the distribution of the SCVs along the 

magnitude variable. In particular, Figure 5 (a) shows the real distribution derived from the 

histogram (h(ρ)) of the magnitude of SCVs (grey line) and the distribution estimated as a  
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(a) (b) 
Figure 5. (a) h(ρ) (grey line) and p(ρ) (black line) obtained with all spectral channels; and (b) P(ωn)p(ρ|ωn) (black 
line) and P(Ωc)p(ρ|Ωc) (grey line) estimated by the EM algorithm under Gaussian assumption (Landsat 5 dataset). 
 
mixture of Gaussians (p(ρ)), while Figure 5 (b) shows separately the distributions P(ωn)p(ρ|ωn) 

of the class ωn (black line) and the distribution P(Ωc)p(ρ|Ωc) of the class Ωc (grey line) estimated 

along the magnitude variable by the EM algorithm (eq. (12)-(14)) for the C2VA. The fitting of 

the two distributions (the estimated and real ones) confirms the reasonable approximation 

obtained with the Gaussian distributions [Figure 5 (a)]. Then we derived the distribution 

p(α|ρ≥T) of SCVs along the direction variable considering only patterns labeled as changed. 

According to Sec. III.D, threshold values were identified in order to separate contributions from 

different kinds of change. Here, we inferred the information about K from a visual analysis of the 

scatterograms (Figure 4) and of the histograms along the direction variable of SCVs in the semi-

annulus (or annulus for CVA) of changed pixels (h(α|ρ≥T)) (Figure 6). In the C2VA domain K 

was set equal to 3 (three clusters having relatively high magnitude values are present in the 

scatterograms of Figure 4 (a); thus, the histograms in Figure 6 (a) presents 3 main peaks in 

positions corresponding to the ones of clusters in the scatterogram). Differently, in the two polar 

CVA representations the value of K was set equal to 2 (see Figure 4 (b) and (c) and Figure 6 (b) 

and (c)). As one can see from Figure 6, the distribution estimated with the EM algorithm (black 

line Figure 6) matches well the real distribution of SCVs (grey line Figure 6), thus confirming 

ρ ρ 
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the reasonable approximation with a Gaussian distribution. In order to improve the visual quality 

of Figure 6 (and of similar ones in the following) the level corresponding to zero occurrence was 

moved from the origin to a semicircle/circle (perimeter of the grey semicircle/circle) slightly 

shifted from the origin of the plot itself. This choice avoids the bias in the visualized information 

due to the collapse of probability density functions in the origin due to polar coordinates. The 

separation of the three different kinds of change is achieved by applying the Bayes decision rule 

in (19). This operation results in the identification of three threshold values and three annular 

sectors (S1, S2 and S3) in SAc corresponding to one of the different kinds of change. The first 

annular sector is defined as S1={ρ,α : ρ≥45 and 0°≤ α≤70°}. All SCVs that fall into S1 are 

labeled as 1cω  and are associated to the change caused by the quarry enlargement. The second 

annular sector is defined as S2={ρ,α : ρ≥45 and70°≤ α≤142°}. All SCVs that fall into S2 are 

labeled as 2cω  (i.e., forest fire). Finally, the third annular sector is defined as S3={ρ,α : ρ≥45 and 

142°≤ α≤180°}. All SCVs that fall into S3 are labeled as 3cω  and are associated to the change 

related to the enlargement of the lake surface. Concerning the 2D CVA approach, the analysis of 

the first pair of channels (1 and 3) led to the identification of pixels belonging to 1cω  (SCVs with 

ϑ [0°,182°), ρ≥35) and pixels belonging to 3cω  (ϑ [182°,360°), ρ≥35). Considering bands 4 and 

7, it is possible to isolate changes due to 2cω  (SCVs with ϑ [323°,360°] ∪ [0°,28°), ρ≥31) and to 

3cω  (SCVs with ϑ [28°,323°), ρ≥31). A further analysis of all the ( )6
2  possible combinations of 

2D spectral representations pointed out that it is not possible to identify a pair of spectral 

channels including information about all mentioned kinds of change (this analysis is not reported 

for space constraints). 
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(a) 

(b) (c) 
Figure 6. (a) p(α|ρ≥T) (black line) and h(α|ρ≥T)  (grey line) in SAc; (b) p(ϑ|ρ≥T) (black line) and h(ϑ|ρ≥T) (grey 
line) in Ac when using spectral channels 1 and 3; and (c) p(ϑ|ρ≥T) (black line) and h(ϑ|ρ≥T) (grey line) in Ac when 
using spectral channels 4 and 7 (Landsat 5 dataset). 

 

Using the derived threshold values (both in magnitude and direction) a change-detection map is 

computed for each change-detection problem representation. Figure 7 (a) shows the change- 

detection map obtained by isolating the three clusters in SAc according to (19). Each kind of 

change is clearly identified with a different color (Figure 7). Figure 7 (b) and (c) show the 

change-detection maps obtained using the two couples of spectral channels with the CVA. As 

expected, in these maps only two out of three changes appear ( 1cω  and 3cω  considering spectral 

channels 1 and 3; and 2cω  and 3cω , considering bands 4 and 7). 
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(a)  

  
(b) (c) 

Figure 7. Change-detection maps obtained with the proposed change-detection technique applied to: (a) the 
proposed C2VA representation; (b) the polar framework (spectral channels 1 and 3); and (c) the polar framework 
(spectral channels 4 and 7). (Landsat 5 dataset). 

 

A comparison of these maps with the reference map in Figure 3 (c) allows us a quantitative 

evaluation of performance. Tables II-IV report the confusion matrices for the three considered 

cases. As one can see, the overall accuracies computed on the three change-detection maps are 

very similar to each other, and always higher than 96%. However the proposed representation 

allowed us to retain the main information related to changes and to distinguish all different kinds 

of change. This is because C2VA preserves the most of the information, although it maps a 

feature space of dimension 6 into one of dimension 2. It is worth stressing that this result is 

achieved without the need of any prior information about the kinds of change occurred on the 

ground. On the contrary, the representations obtained considering only couples of spectral 

channels [17],[19] resulted in total (or partial) loss of change information depending on the 

No-change 

Kinds of change: 

Enlargement of the open quarry 1cω  

Burned area 2cω  

Enlargement of the lake 3cω  
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considered pair of bands. One can observe that the CD map obtained considering all the spectral 

channels suffers of a higher impact of noisy components than the other two. This is because the 

use of all spectral channels not only preserves change information, but also introduces some 

noise. However, according to the previous considerations, the slightly higher amount of false 

alarms that affects the C2VA change-detection map becomes acceptable from an application 

point of view, where the possible loss of a kind of change could be more critical. The false 

alarms can then be reduced with the application of proper pre-processing techniques. 

TABLE II. CHANGE-DETECTION RESULTS OBTAINED BY THE PROPOSED CHANGE-DETECTION METHOD BASED ON 
THE C2VA REPRESENTATION APPLIED TO ALL THE SPECTRAL CHANNELS (LANDSAT 5 DATASET). 

  True Class User 
Accuracy   1cω  2cω  3cω  nω  

E
st

im
at

ed
 

C
la

ss
 

1cω  185 0 0 1487 11.06 

2cω  5 2160 445 736 64.55 

3cω  19 24 7032 1525 81.77 

nω  5 230 3 109744 99.78 
Producer Accuracy 86.45 89.48 94.01 96.70  

Kappa Accuracy 0.7966 
Overall Accuracy 96.38 

 

In order to further assess the effectiveness of the proposed approach its performance are 

compared with those provided by the MTEP. As demonstrated from Table V, the proposed 

method and MTEP lead to quite similar threshold values and therefore to very close overall 

accuracies (96.38% versus 96.73%). This confirms the validity of both the automatic procedure 

and the selected approximated statistical model for class distributions. An analysis of these 

results points out that the errors of omission and commission among classes have to be ascribed 

to the overlapping of classes in the considered problem rather than to the proposed automatic 

method.2 

                                                                          
2 Similar observations hold for the results achieved by the 2D CVA, as well for the ones obtained on the Quickbird data set that are not reported 

for space constraints. 
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TABLE III. CHANGE-DETECTION RESULTS OBTAINED BY THE PROPOSED CHANGE-DETECTION METHOD APPLIED TO 
THE POLAR FRAMEWORK (SPECTRAL CHANNELS 1 AND 3) (LANDSAT 5 DATASET). 

  True Class User 
Accuracy   1cω  2cω  3cω  nω  

E
st

im
at

ed
 

C
la

ss
 

1cω  133 0 0 187 41.56 

2cω  0 0 0 0 0.00 

3cω  10 0 5390 163 96.89 

nω  71 2414 2090 113142 96.11 
Producer Accuracy 62.15 0.00 72.06 99.69

Kappa Accuracy 0.6747 
Overall Accuracy 96.01   

 
TABLE IV. CHANGE-DETECTION RESULTS OBTAINED BY THE PROPOSED CHANGE-DETECTION METHOD APPLIED TO 

THE POLAR FRAMEWORK (SPECTRAL CHANNELS 4 AND 7) (LANDSAT 5 DATASET). 
  True Class User 

Accuracy   1cω  2cω  3cω  nω  

E
st

im
at

ed
 

C
la

ss
 

1cω  0  0 0 0 0.00 

2cω  0 2354 109 478 80.04 

3cω  105 3 7364 1815 79.29 

nω  109 57 7 111199 99.84 
Producer Accuracy 0.00 97.51 98.45 97.98  

Kappa Accuracy 0.8705 
Overall Accuracy 97.83 

 
TABLE V. THRESHOLD VALUES OBTAINED BY THE PROPOSED CHANGE-DETECTION METHOD AND THE OPTIMAL 

SUPERVISED MTEP ON THE C2VA REPRESENTATION APPLIED TO ALL THE SPECTRAL CHANNELS (LANDSAT 5 
DATASET). 

 T 11α  2 11 2α α≡  2 12 3α α≡  23α  
C2VA 45 0° 70° 142° 180° 
MTEP 50 0° 60° 140° 180° 

 
It is worth noting that, in absence of any prior information about relevant spectral bands with 

respect to the considered problem (i.e., no spectral bands can be neglected) the standard 

automatic unsupervised procedures simply threshold the magnitude variable obtained from all 

spectral channels (i.e., only first step of the proposed change-detection procedure is applied). The 

resulting change-detection map is as the one in Figure 7 (a) but different kinds of change are not 

distinguished. It follows that the proposed technique can significantly improve the change 

information extracted from the considered dataset by allowing the separation of the contributions 
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from different kinds of change in a automatic way. 

As a final remark, it is worth noting that the proposed C2VA representation made it possible 

to identify a third kind of minority change in the considered data set that was not observed in 

previous works neither by photointerpreters, nor by automatic techniques based on the 

exploitation of spectral channels 4 and 7 in the CVA framework. Moreover, despite the possible 

loss of change information induced by the 2D representations, numerical results allow one to 

conclude that the proposed automatic technique for the detection of multiple changes is effective 

when applied to both C2VA and 2D CVA representations. In all the cases the proposed technique 

extracted all information about changes available in the considered representation. 

B. Dataset 2: Quickbird Images 

Experiments similar to the ones conducted on the Thematic Mapper data set were carried out 

on a pair of very high geometrical resolution images acquired by the Quickbird sensor in October 

2005 and July 2006 on the city of Trento (Italy) (Figure 8). In the pre-processing phase the two 

images were: i) pan-sharpened; ii) radiometrically corrected; and iii) co-registered. In particular, 

we considered pan-sharpened images as we expect that the pan-sharpening process can improve 

the results of the change-detection process, as demonstrated in previous work [44]. To this 

purpose we applied the minimum mean square error (MMSE) pansharpening method [45] to the 

panchromatic channel and the four bands of the multispectral images. Concerning radiometric 

corrections, we simply normalized the images by subtracting from each spectral channel of the 

two considered images its mean value. The registration process was carried out in a simple way 

by using a polynomial function of order 2 according to 12 ground control points (GCPs), and by 

applying a nearest neighbor interpolation [46]. The final data set is made up of images of 

992x992 pixels with spatial resolution on the ground of 0.7m. Between the two acquisition dates  
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(a) (b) 
Figure 8. True color composition of an area nearby the city of Trento (Italy) acquired by the Quickbird VHR 
multispectral sensor in (a) July 2005 and (b) October 2006. White circles identify the main areas affected by 
changes. 
 

some changes related to urban and rural areas occurred on the ground. In particular, three 

different kinds of change can be observed, i.e. K=3 (see circles in Figure 8): i) changes in the a 

cover of both buildings (i.e., changes in roofs related to saturation problems of the sensor) and 

crop fields (i.e., new structures built for covering fields) that have the same spectral signature, 

1cω ; ii) seasonal changes in vegetated areas, both in crop fields and wooded zones, 2cω ; and iii) 

changes along the river bank due to an increase of the water level, 3cω . In order to perform 

quantitative analysis on this data set, we defined a sampled ground truth (based on a spatial 

random sampling as we do not have a complete knowledge of the changes occurred on the 

ground) containing: 22652 pixels labeled as 1cω , 27660 as 2cω , 6554 as 3cω  and 383396 pixels 

of no change. 

As for the Sardinia data set, we reduced the size of the feature space from 4 (the number of 

the multispectral channels of the Quickbird images) to 2, computing the magnitude of the 
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multispectral difference image according to (3) and the angle according to (6). In this case u=[

4 4 , 4 4 , 4 4 , 4 4 ]. Figure 9 (a) shows the scatterogramms that represent the considered 

change-detection problem within the proposed C2VA domain. We compared this plot with the 

polar scatterograms obtained by applying the CVA technique to: channels 2 and 3 (Figure 9 (b)), 

which were randomly selected; and channels 3 and 4 (Figure 9 (c)), which were selected 

according to some prior knowledge about changes occurred on the ground. 

(a) 

(b) (c) 
Figure 9. Scatterograms obtained by applying: (a) the proposed 2D representation; (b) the polar CVA to spectral 
channels 2 and 3; and (c) the polar CVA to spectral channels 3 and 4 (Quickbird Dataset). 

 

The threshold value T for C2VA which separates the SCn from the SAc resulted equal to 350. 

Four main clusters were identified in SAc in the scatterogram (see dashed circles in Figure 9 (a)) 
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and four modes are present in h(α|ρ≥T) (see grey line in Figure 10 (a)), therefore K was set equal 

to 4.3 The visual analysis of Figure 10 (a) points out that the estimated distribution p(α|ρ≥T) 

(black line) fits quite well with the behavior of the real histogram h(α|ρ≥T) (grey line), thus 

confirming the reliability of the Gaussian approximation. The second step of the thresholding 

procedure led us to the definition of the following four annular sectors: 

{ }1 , : 350  and  0 27S ρ ρα α= ≥ ° ≤ < °
 

{ }2 , : 350  and  27 110S ρ ρα α= ≥ ° ≤ < °
 

{ }3 , : 350  and  110 156S ρ ρα α= ≥ ° ≤ < °
 

{ }4 , : 350  and  156 180S ρ ρα α= ≥ ° ≤ ≤ °  

(20)

Analyzing each sector it is possible to observe that S1, S2 and S3 are associated to: 1cω , 2cω , 

and 3cω , respectively, whereas S4 is mainly related to the effects of registration noise. This result 

was expected as registration noise in VHR images significantly affects the change-detection 

process introducing clusters with a high magnitude and preferred direction that have properties 

similar to changed pixels [47]. An analysis of this kind of noise within C2VA domain is out of 

the purposes of this work. Therefore in the following SCVs that fall in S4 and that are identified 

as being of registration noise will be neglected from further analysis and classified as unchanged 

patterns. The reader is referred to [47],[48] for further details on this challenging problem and on 

techniques for reducing registration noise impacts on the change-detection process. 

With regard to the analysis in the polar domain, as for the analysis in the proposed C2VA 

domain, we retrieved the threshold value T (T=350 when considering bands 2 and 3 and T=300 

for spectral channels 3 and 4). According to the analysis of both the scatterograms (Figure 9 (b) e 

(c)) and the histograms (Figure 10 (b) e (c)), the value of K was set to 2 for the case of bands 2  
 

                                                                          
3 It is worth noting that also in this case a light grey semi-circle/circle is introduced to slightly shift from the origin of the plot the level 

corresponding to zero occurrences, thus avoiding a bias in the information visualization. 
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(a) 

 
(b) (c) 

Figure 10. (a) Estimated p(α|ρ≥T) (black line) and h(α|ρ≥T) (grey line) in SAc; (b) estimated p(ϑ|ρ≥T) (black line) 
and h(ϑ|ρ≥T) (grey line) in Ac when using spectral channels 2 and 3; and (c) estimated p(ϑ|ρ≥T) (black line) and 
h(ϑ|ρ≥T) (grey line) in Ac when using spectral channels 3 and 4 (Quickbird Dataset). 
 

and 3, and to 4 for bands 3 and 4. The second step of the proposed thresholding procedure was 

applied to distinguish the different contributions to Ωc. Concerning the first pair of bands (2 and 

3) two sectors were identified, S1 made up of SCVs with ϑ [0°,103°] and S2 with 

ϑ [103°,360°). It is possible to show that S1 is related to changes in building or crop covers ( 1cω

), whereas S2 is related to registration noise effects. This means that considering only spectral 

channels 2 and 3 it is not possible to extract information about 2cω  and 3cω . The analysis 

conducted on the second pair of spectral channels results in the definition of 4 sectors, S1 made 

up of SCVs with ϑ [0°,63°), S2 with ϑ [63°,168°), S3 with ϑ [168°,253°), and S4 with 
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ϑ [253°,360°). It can be shown that, as for the proposed method, pixels associated to 1cω  fall in 

S1, pixels belonging to 2cω  fall in S2, pixels belonging to 3cω  fall in S3, and pixels in S4 are 

associated to registration noise. It is worth stressing that the considered spectral channels were 

selected according to some prior information about changes, whereas the proposed method 

achieves similar results (i.e., it detects all kinds of change present in the multitemporal data set) 
 

 

(a)  

(b) (c) 
Figure 11. Change-detection map obtained with the proposed change-detection technique applied to: (a) the 
proposed C2VA domain data representation; (b) the polar framework (spectral channels 2 and 3); and (c) the polar 
framework (spectral channels 3 and 4). (Quickbird Dataset) 

No-change 

Kinds of change: 

Roofs and crop fields cover 1cω  

Seasonal 2cω  

River water level 3cω  
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without any prior information. 

According to the threshold values estimated with the proposed technique for each of the three 

representations change-detection maps are generated (see Figure 11). A quantitative analysis of 

the results achieved on the three considered representations for the reference data set is reported 

in Tables VI-VIII. These tables confirm the qualitative evaluation. The proposed technique for 

multiple change detection applied to both the C2VA and the CVA (spectral channels 3 and 4) 

achieved similar results (overall accuracy equal to 95.0% and 95.5% respectively). However, 

CVA requires prior information about possible kinds of change for selecting spectral channels. 

Moreover, the proposed multiple-change detection technique permits to identify and separate all 

different kinds of change, showing good accuracies for all of them (higher than 80 % for user 

accuracy and higher than 70% for the producer accuracy). On the contrary, the standard CVA on 

randomly selected spectral channels (i.e., bands 2 and 3) allows us to identify only the changes in 

building and crop covers. All other kinds of change are undetected. 

It is worth noting that some registration noise effects are still visible in the change-detection 

maps affecting significantly the user accuracy which is always smaller than 83% for all the kinds 

of change in the three analyzed cases. Advanced change-detection techniques developed for 

VHR images (i.e. context sensitive or multiscale techniques [48],[49]) could be employed for 
 

TABLE VI. CHANGE-DETECTION RESULTS OBTAINED BY THE PROPOSED CHANGE-DETECTION METHOD BASED ON 

THE C2VA REPRESENTATION APPLIED TO ALL THE SPECTRAL CHANNELS (QUICKBIRD DATASET). 
  True Class User 

Accuracy   1cω  2cω  3cω  nω  

E
st

im
at

ed
 

C
la

ss
 

1cω  18728 823 0 4896 76.61 

2cω  3479 24948 139 6706 70.73 

3cω  0 12 5691 2473 69.61 

nω  445 1858 722 358671 99.16 
Producer Accuracy 82.68 90.26 86.86 96.22  

Kappa Accuracy 0.8077 
Overall Accuracy 94.98 
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reducing the effects of the residual registration noise in change-detection maps. These strategies 

can be easily extended to the proposed C2VA domain. However, this is out of the purpose of this 

work, for which we just consider the comparison of C2VA and CVA at pixel level. 

As for the Landsat-5 data set a comparison with MTEP results leads to the conclusion that 

the proposed procedure as well as the assumption of Gaussian distributed classes are effective 

and reliable. The presence of mislabeled pixels is therefore due to the complexity of the 

considered problem. According to the analysis of results it is possible to conclude that the 

proposed representation allows us to preserve the information about all the possible kinds of 

change, even by reducing dimensionality from 4 to 2 (and thus introducing ambiguity in the 

process). On the contrary, the representation obtained considering only couples of channels may 

result in a total (or partial) loss of information related to specific changes. This depends on the 

selected spectral bands and thus on the available prior information. Furthermore, the proposed 

automatic technique for the detection of multiple changes demonstrated to be successful when 

applied to both C2VA and 2D CVA representations. In all the cases the proposed technique 

effectively detected all information about changes available in the considered representation. 

 

TABLE VII. CHANGE-DETECTION RESULTS OBTAINED BY THE PROPOSED CHANGE-DETECTION METHOD APPLIED TO 
THE POLAR FRAMEWORK (SPECTRAL CHANNELS 2 AND 3) (QUICKBIRD DATASET). 

  True Class User 
Accuracy   

1cω  2cω  3cω  nω  

E
st

im
at

ed
 

C
la

ss
 

1cω  21872 1782 0 6034 73.67 

2cω  0 0 0 0 0.00 

3cω  0 0 0 0 0.00 

nω  780 25874 6547 372700 91.82 
Producer Accuracy 96.56 0.00 0.00 98.41  

Kappa Accuracy 0.4944 
Overall Accuracy 90.58 
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TABLE VIII. CHANGE-DETECTION RESULTS OBTAINED BY THE PROPOSED CHANGE-DETECTION METHOD APPLIED TO 
THE POLAR FRAMEWORK (SPECTRAL CHANNELS 3 AND 4) (QUICKBIRD DATASET). 

  True Class User 
Accuracy   1cω  2cω  3cω  nω  

E
st

im
at

ed
 

C
la

ss
 

1cω  20463 2168 0 5573 72.55 

2cω  4 23902 161 4794 82.82 

3cω  1 35 4877 2744 63.69 

nω  2184 1538 8 360283 98.98 
Producer Accuracy 90.34 86.47 96.65 96.49  

Kappa Accuracy 0.8226 
Overall Accuracy 95.52 

 

VI. CONCLUSION 

In this paper an automatic technique for the detection of multiple changes in multitemporal 

and multispectral remote sensing images has been presented. The proposed method compresses 

the original BD feature space to be explored for the solution of the change-detection problem (B 

is the number of spectral channels acquired by the considered sensor) to a 2D space and applies a 

2-step decision strategy for detecting changes. The compression is accomplished by computing 

the magnitude of spectral change vectors, and the angle (direction) between the spectral 

difference vector and a reference one. In this way we obtain a 2D representation of the change-

detection problem that preserves the relevant information present in all available spectral 

channels. The change information can be represented according to the two proposed variables in 

a 2D domain, which is defined as Compressed Change Vector Analysis (C2VA) domain. The 

proposed transformation leads to a 2D representation of the change-detection problem that can 

be visualized without the need of selecting a pair of spectral channels as usually done in standard 

approaches. This represents a valuable advantage as spectral channel selection would require 

some prior knowledge about possible changes occurred on the ground which often is not 

available or incomplete. Accordingly, missed alarms associated to possible unexpected kinds of 
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change only visible in non-selected spectral bands are reduced. 

Qualitative and quantitative results obtained on both Lansat-5 and Quickbird images 

confirmed the effectiveness of the proposed automatic technique for the detection of multiple 

changes when applied to both C2VA and standard 2D CVA. This also confirms the reliability of 

the Gaussian approximation for the distribution of the classes (however statistical models 

different from the Gaussian one could be integrated within the proposed method). Furthermore, 

results pointed out the better capabilities in representing the change information of the proposed 

C2VA representation with respect to the standard 2D CVA. In C2VA, although the information is 

projected from a BD into a 2D space, it is possible to retrieve the main information related to 

changes and to distinguish all different kinds of change occurred on the ground. When the C2VA 

representation is used the advantage of identifying all kinds of change by using all spectral 

channels implies an increase of false alarms due to noisy components. 

As a final remark, it is worth noting that in complex change-detection problems some 

ambiguity may rise from the dimension reduction process, mainly due to the simplified 

representation of the angle variable. This may result in loss of information about the distribution 

of different kinds of change. Anyway it is preferable to more standard representations based on 

the use of couple of spectral channels that often implies a significant loss of information about 

kinds of change. 

As future work we plan to exploit the potentialities of the proposed technique in the context 

of more complex approaches to change detection like those that exploit 

multiscale/multiresolution information intrinsically present in VHR images and the ones robust 

to registration noise. 
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