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Abstract— This paper presents a novel iterative active learning (AL) technique aimed at 

defining effective multitemporal training sets to be used for the supervised detection of land-cover 

transitions in a pair of remote sensing images acquired on the same area at different times. The 

proposed AL technique is developed in the framework of the Bayes rule for compound 

classification. At each iteration it selects the pair of spatially aligned unlabeled pixels in the two 

images that are classified with the maximum uncertainty. These pixels are then labeled by an 

external supervisor and included in the training set. Uncertainty of a pair of pixels is assessed by 

the joint entropy defined considering two possible different simplifying assumptions: i) class-

conditional independence, and ii) temporal independence between multitemporal images. 

Accordingly, different algorithms are introduced. The proposed joint entropy based AL algorithms 

for compound classification are compared to each other and with a marginal entropy based AL 

technique (in which the entropy is computed separately on single-date images) applied to the post-

classification comparison method. Experimental results obtained on two multispectral and 

multitemporal data sets show the effectiveness of the proposed technique. 
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I.  INTRODUCTION  

The analysis of multitemporal remote sensing images to detect land-cover transitions plays an 

important role in many applications, such as assessment of damaged areas (e.g., burned areas, 

flooded areas, etc.), analysis of urban expansion, study on shifting cultivation, etc. [1]. In the 

literature many algorithms that address the above-mentioned applications are available; generally 

they can be split into two categories: i) unsupervised algorithms, in which land-cover changes are 

detected by comparing the spectral reflectance values of remote sensing images [2]-[4], and ii) 

supervised algorithms, which require the availability of labeled training samples [5]-[8]. In the 

most of the cases unsupervised methods provide binary change-detection maps, where only the 

information about presence/absence of change is highlighted. On the contrary, supervised 

algorithms provide also the information about the kind of transitions occurred on the ground (i.e., 

the labels of pixels before and after the change) at the cost of requiring reference data. The 

performance of unsupervised techniques is generally affected by the differences in atmospheric 

conditions, in sensor calibration, in ground conditions, etc. Supervised techniques are less affected 

by this kind of problems as they are based on the classifiers that recognize the transitions on the 

basis of the information present in the training set, which is used in the learning phase of the 

classification algorithm [5]-[8]. 

Only few approaches have been presented in the literature to detect the land-cover transitions 

by supervised techniques. The simplest supervised method to detect land-cover transitions (and 

also changes) is the post-classification comparison [5], which compares the classification maps 

obtained by independently classifying two remote-sensing images of the same area acquired at 
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different times. The accuracy obtained by this technique is close to the product of the accuracies 

obtained at the two times (if errors on the two classification maps are independent), as temporal 

dependence between multitemporal images is ignored. Temporal dependence between 

multitemporal images is exploited by the supervised direct multidata classification and compound 

classification techniques, which can obtain improved accuracy in the detection of land-cover 

transitions. The supervised direct multidata classification technique considers each transition as a 

class and trains a classifier to identify the transitions [5]. However, this technique has some 

limitations: i) the training samples at the two times should be related to the same points on the 

ground, and ii) the training samples should be statistically representative for all the possible 

transitions in the whole scene. In [6]-[8], the compound classification technique has been 

presented, which overcomes the constraints of direct multidata classification and increases the 

accuracy of the post-classification comparison technique (which is affected by the error-

propagation phenomenon) by taking into account the temporal dependence between the images. In 

compound classification, temporal dependence is modeled by the prior joint probabilities of land-

cover transitions between multitemporal images [6]-[8]. 

In this paper, we focus our attention on compound classification due to its effectiveness for 

the detection of land-cover transitions. One of the main motivations for which we consider the 

supervised compound classification technique is the increased interest that we expect in the future 

for supervised change-detection methods in remote sensing. This mainly depends on the properties 

of the last generation of passive sensors that can acquire images with either very high geometrical 

resolution (VHR) or very high spectral resolution (hyperspectral). VHR images are currently 

widely available at commercial level (i.e., Quickbird, SPOT-5, Eros, etc.) whereas hyperspectral 

images will be available on a larger scale soon, as several satellite missions are under 

development. On the one hand, the many critical factors that affect the acquisition of VHR 

multitemporal images (e.g., sensor view angle, sunrays angle) make it difficult to compare them by 
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completely unsupervised algorithms that work only on the radiance of the images without 

extracting the semantic meaning of the spectral differences (see [9] for greater details). On the 

other hand, the spectral signature measured by hyperspectral sensors is very detailed and many 

differences can be observed in the radiometric behavior of the images (e.g., due to soil moisture 

differences in the ground conditions) even when no changes occurred on the ground. Thus, even in 

this case it is difficult to obtain reliable change-detection maps without supervised algorithms and 

thus reference data. Although many studies are in progress for defining unsupervised change-

detection algorithms for the aforementioned kinds of data, the relevance of supervised approaches 

is expected to increase with respect to the past. 

Although the compound classification technique is less critical with regard to the definition 

of the training set when compared to the multidate direct classification [6], the amount and quality 

of the available training samples are important to obtain accurate transition maps. However, the 

collection of multitemporal labeled samples is time consuming and costly; thus, to acquire a 

sufficient number of labeled training samples for each single-date image is a difficult task in real 

applications. To deal with this problem, active learning (AL) [10]-[27] and semi-supervised 

learning (SSL) [27]-[30] methods have been presented in the literature in the context of 

classification of single-date images. AL methods automatically select the most informative 

unlabeled samples to be manually labeled by a human expert in order to properly build up a non-

redundant and effective training set, whereas SSL methods exploit both labeled and unlabeled 

samples in the learning of the classification algorithm [27]-[30]. In [27], the performances of the 

SSL and AL classification approaches have been compared, and it has been shown that SSL 

provides good results when the two analyzed images have similar properties. However, only AL is 

reliable when the spectral differences between the two images are significant. For this reason, in 

this paper we focus our attention on AL by generalizing its use to the context of compound 

classification. In greater detail, we present a novel AL technique for compound classification that 
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can be used to detect land-cover transitions. The proposed AL technique models the uncertainty of 

the labeling of pair of pixels in images acquired on the same area at different times by defining a 

joint entropy measure. The joint entropy uncertainty measure is defined in general and analyzed in 

two cases under different simplifying assumptions: i) the class-conditional independence in the 

time domain, and ii) the temporal independence. The experiments conducted on two different 

multitemporal and multispectral data sets show the effectiveness of proposed AL technique.  

The paper is organized into seven sections. Section II gives background on AL, whereas 

Section III formulates the considered problem. The proposed AL method defined for compound 

classification is introduced in Section IV. Section V presents the description of the considered data 

sets and the design of experiments. Section VI illustrates the experimental results. Finally, Section 

VII draws the conclusion of this work. 

II.  BACKGROUND ON ACTIVE LEARNING  

In this section, we give the general definition for AL, and review some AL techniques presented in 

the literature for classification of single remote sensing images. AL techniques iteratively expand 

the size of an initial labeled training set T selecting the most informative samples from a pool U of 

unlabeled samples for manual labeling. At each iteration, the most informative unlabeled samples 

(for a given classifier G) are selected based on a query function Q, labeled by a supervisor S and 

added to the current training set T. Finally, the supervised classifier G is retrained with the samples 

moved from U to T. It is worth nothing that the initial training set T requires few labeled samples 

for the first training of the classifier G and then is enriched iteratively by including the most 

informative samples selected from U. At the convergence, the training set T is made up of a 

minimum number of samples “optimal” for the considered classifier G. When the AL process is 

completed, the classifier G is trained once again and the classification of the image under 

investigation is carried out. The general flowchart of the AL-based classification approach is given 

in Fig. 1. The selection of the most informative samples from a pool U to be included in the 
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training set T on the basis of AL offers three main advantages: i) the labeling cost is reduced due to 

the avoidance of redundant samples, ii) the computational complexity of the learning phase is 

reduced due to the selection of an optimal subset of training samples (i.e., a set with a small 

number of most representative samples), and iii) accurate classification accuracy can be obtained 

due to the improved class models estimated on a high quality training set on the basis of the 

classification rule used from the considered classifier. The supervisor S is usually a human expert 

who gives the true class labels to the selected samples. For remote sensing (RS) classification 

problems, the labeling of both the initial training set and of queried samples can be obtained by: 1) 

in situ ground surveys, 2) image photointerpretation, or 3) hybrid solutions (both 

photointerpretation and ground surveys). 

 
Fig. 1. General scheme of an AL based classification approach (T: Training set, G: Supervised classifier; Q: Query 
function; S:Supervisor; U: pool of unlabeled samples). 

 

Active learning approaches can be divided into two main categories: i) uncertainty based 

approaches, and ii) query by committee based approaches. Uncertainty based approaches select the 

unlabeled samples that have the lowest confidence (i.e., the maximal uncertainty) to be correctly 

classified by a given classifier (therefore most likely to be misclassified), and differ from each 

other for the adopted query functions. Uncertainty can be defined in different ways depending on 

the considered classifier. In [10] this kind of approaches has been implemented on the basis of the 

class-conditional posterior probabilities in the context of a maximum a-posteriori Bayesian 

classifier. The samples that do not show a predominant value of the estimated class-conditional 
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probability of one class over the others are selected as uncertain. The margin sampling (MS) 

technique has been proposed in [11], [12] for support vector machine (SVM) classifiers. It selects 

the unlabeled sample that is closest to the classification boundary. In [13] and [14] the most 

informative samples are selected among the most uncertain ones (which are the closest to the SVM 

classification boundary) on the basis of the standard k-means clustering technique and the angles 

between the induced classification hyperplanes, respectively. The marginal entropy based 

uncertainty criterion has been defined on the basis of conditional posterior probabilities of classes 

in [15],[16]. In these works, unlabeled samples that have the maximum entropy, i.e., those having 

the maximum uncertainty among classes, are added to the training set at each iteration of AL. 

Query by committee based techniques select unlabeled samples that have the maximum 

disagreement within a committee of classifiers [17]-[18]. The disagreement among ensemble of 

classifiers is measured with Kullback–Leibler (KL) divergence in [17] and with entropy in [18].  

The MS query function is extended to multiclass classification problems for multispectral 

images in [19] by selecting the most uncertain sample from each binary SVM. An AL method 

based on mutual information has been presented in [20] for the detection of unexploded ordnance. 

The AL technique proposed in [21] chooses the unlabeled sample that maximizes the information 

gain measured by the KL divergence. The KL divergence is calculated between the posterior 

probability distribution of the current training set and the training set obtained by including each 

unlabeled sample, one by one, into the training set. Two different AL techniques for multiclass RS 

classification problems are presented in [22]. In the first technique, the unlabeled samples that both 

have the smallest distance to the decision hyperplane of each binary SVM and do not share the 

same closest support vector are selected as uncertain and added to the training set. The second 

technique assesses the uncertainty on decisions of a committee of classifiers, i.e., uncertain 

samples are those having maximum disagreement between a committee of classifiers. 

Disagreement among the classifiers is measured by the entropy in the distribution of the labels 
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provided by the committee members for each sample. Label acquisition costs sensitive AL 

techniques, which pay attention to the requirements of physical access to spatial locations for 

labeling process, have been proposed in [23],[24]. An AL technique based on a kernel-clustering 

has been presented in [25] to select the most informative representative samples among the most 

uncertain patterns. In this technique, the kernel-clustering is applied to the most uncertain samples 

selected according to the Multiclass-Level Uncertainty strategy [25]; then the most uncertain 

sample of each cluster is added to the training set. The AL methods presented in [13] and [14] 

have been modified in [25] to handle their limitations on real RS problems. A cluster-assumption 

based fast and reliable AL method defined on the basis of an histogram-thresholding algorithm has 

been presented in [26] for addressing critical problems where significantly biased initial training 

sets are available.  

III.  PROBLEM FORMULATION  

Differently from the AL techniques proposed in the RS literature that are devoted to single-date 

image classification, this paper aims to re-define AL in the context of the classification of 

multitemporal images. Let 1 1,1 1,2 1,{ , ,..., }BI x x x=  and 2 2,1 2,2 2,{ , ,..., }BI x x x=  denote two co-

registered remote-sensing images made up of B pixels and acquired on the same area at two 

different times t1 and t2, respectively. Let ( )1, 2,,j jx x  be the j-th pair of temporally correlated pixels 

made up of a pixel 1, jx  acquired at time t1 and a spatially corresponding pixel 2, jx  acquired at time 

t2. Let { }1 2, , , Mω ω ωΩ = …  be the set of possible land-cover classes at time t1, and 

{ }1 2N , , , Nv v v= …  be the set of possible land-cover classes at time t2. Land-cover transitions (i.e., 

changes in the labels) are observed if the two classes ωm ( )1, ,m M= …  and nv  ( )1, ,n N= … , to 

which the pair ( )1, 2,,j jx x  is assigned, are different. Here, differently from AL approaches for 

single-date image classification, the training set T and the pool U include pairs of pixels, and at 
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each iteration of the AL process, the training set T should be enriched by selecting the most 

informative pair of samples from the pool U of unlabeled pair of samples for manually labeling.  

A basic trivial approach to apply AL to multitemporal image classification for the detection 

of land-cover transitions is to analyze the problem in the context of the post-classification 

comparison technique. Post-classification comparison is based on independent classification of 

each image. AL can be implemented by selecting the most uncertain samples from each single-

date image by exploiting any AL technique proposed in the literature. In this way the training set 

of each image is independently enriched from the others. Although this method is simple, it has all 

disadvantages of the post-classification comparison technique explained in the previous section. 

For this reason, we focus on the definition of AL in the context of the Bayesian decision rule for 

compound classification. In particular, we present a novel technique to select the most uncertain 

pairs of pixels at each iteration of the AL process, which takes advantages of temporal dependence 

between images.  

IV.  PROPOSED JOINT ENTROPY BASED ACTIVE LEARNING METHOD FOR COMPOUND 

CLASSIFICATION  

The proposed AL technique evaluates uncertainty according to the well-known entropy concept, 

which has been previously exploited in the literature in the context of AL-based single-date image 

classification [15]. In order to deal with multitemporal image classification, we propose a novel 

joint entropy based AL technique to measure the uncertainty. The general definition of joint 

entropy is firstly introduced. Then, different formulations defined under different simplifying 

assumptions on the temporal dependence between images are given. Before explaining the 

proposed technique, we briefly recall the compound classification technique for multitemporal 

images. 
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A. Bayesian Decision Rule for Compound Classification 

The Bayesian decision rule for compound classification identifies the best (in terms of Bayesian 

decision theory) pair of labels (classes) to be assigned to each pair of pixels ( )1, 2,,j jx x  by 

explicitly considering temporal dependence [6],[7], i.e.,  

( ) ( ) ( ) { }1, 2, 1, 2,
,

, ,  if , arg max ( , , )  
i k

j j m n m n i k j j
v N

x x v v P v x x
ω

ω ω ω
∈Ω ∈

∈ =
 

(1) 

where 1, 2,( , , )i k j jP v x xω  is the joint conditional posterior probability of the pair of classes ( ),i kvω , 

given the pair of pixels ( )1, 2,j jx x . In the context of automatic detection of land-cover transitions, 

the estimation of the statistical quantities involved in (1) is a complex task due to the difficulty in 

collecting enough training samples for properly modeling the multitemporal dependence between 

all possible temporal combinations of classes. Therefore, according to the literature [6],[7], we 

adopt the conventional assumption of class-conditional independence in the time domain to 

simplify the estimation of the joint conditional posterior probabilities. Under this assumption, (1) 

can be rewritten as [6],[7] 

( ) ( ) ( )1, 2,

1, 2,
1,

, ,1, 2,

                                                  , ,  so that ,

( ) ( ) ( , )
arg max  =arg max ( ) (

( ) ( ) ( , )i k i k

s r

j j m n m n

j i j k i k
j i

v N v Nj s j r s r
v N

x x v v

p x p x v P v
p x p x

p x p x v P vω ω
ω

ω ω

ω ω
ω

ω ω∈Ω ∈ ∈Ω ∈

∈Ω ∈

∈

 
 =  

   
 
∑ ∑

{ }2, ) ( , )j k i kv P vω  

(2)
 
where 1,( )j ip x ω  and 2,( )j kp x v  are the single-date class-conditional density functions, and 

( , )i kP vω  is the joint prior probability of having classes iω  at t1 and kv  at t2 in the multitemporal 

images. Joint prior probabilities of land-cover transitions can be estimated from the images under 

investigation by an iterative procedure defined on the basis of the expectation-maximization (EM) 

algorithm. The recursive equation to estimate ( , )i kP vω  is defined as [7] 
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1, 2, 1

1 1, 2, 1

( ) ( ) ( , )1
( , )

( ) ( ) ( , )
s r

B
j i j k z i k

z i k
j j s j r z s r

v N

p x p x v P v
P v

B p x p x v P v
ω

ω ω
ω

ω ω
−

= −
∈Ω ∈

=
  

∑
∑ ∑  

(3) 

 

where ( , )z i kP vω  and 1( , )z i kP vω−  are the joint prior probability estimates at the zth and (z-1)th 

iterations, respectively. The estimates are initialized by assigning equal joint prior probabilities to 

each pair of classes (eventually including possible specific constraints on some transitions 

according to prior information). Then (3) is iterated until convergence, which is achieved when the 

maximum difference between the estimates at two successive iterations is below a given threshold 

[7]. It is worth nothing that it is unfeasible to estimate joint prior probabilities directly from the 

multitemporal training set due to the difficulty in having training sets with a sufficient number of 

representative samples for each possible combination of classes [7]. For detailed information on 

compound classification, the reader is referred to [6],[7]. 

 
B. Joint Entropy based AL Method for Compound Classification 

The proposed AL method is based on the selection of unlabeled pairs of samples that have 

maximum uncertainty on their labels assigned by the Bayesian rule for compound classification. In 

order to consider temporal dependence in modeling the uncertainty of samples, the method is 

defined by using the joint entropy ( )1, 2,,j jH x x  of the decisions obtained by compound 

classification for the generic pair of pixels in corresponding positions ( )1, 2,,j jx x . For each pair of 

pixels ( )1, 2,,j jx x  in the multitemporal images, the joint entropy is defined as 

( )1, 2, 1, 2, 1, 2,, ( , , ) log ( , , )
i k

j j i k j j i k j j
v

H x x P v x x P v x x
ω

ω ω
∈Ω ∈Ν

= −∑ ∑  (4) 

 

If ( )1, 2,,j jH x x  is small, the corresponding pair of pixels is classified with high confidence, i.e., the 

decision on compound classification of these samples is reliable. If ( )1, 2,,j jH x x  is high, the 

decision is not reliable, and therefore the corresponding pair of pixels is considered uncertain and 
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critical for the classifier. Samples that satisfy the latter condition are suitable to be included in the 

training set after manual labeling by an external supervisor. In the proposed AL method, at each 

iteration the parameters (the class probability density functions and the joint prior probability of 

classes) are estimated for each pair of pixels ( )1, 2,j jx x U∈  (where U can be associated with the 

pixels of the entire image or with a subset of them). Then the joint entropies of all the pairs are 

calculated. The most uncertain h unlabeled pairs of samples, i.e., those that have the maximum 

joint entropy, are extracted and given to the supervisor S for labeling. This process is iterated until 

convergence, which is reached when either i) the values of class parameters do not change 

anymore, or ii) the desired number of samples is labeled (i.e., the upper bound of the cost for 

labeling samples is achieved). Fig. 2 shows the architecture of the proposed joint entropy based 

AL method. 

 
Fig. 2. Architecture of the proposed joint entropy based AL method 

 

The definition in (4) depends on the joint conditional posterior probabilities of the pairs of classes, 

which play a key role in the definition of joint entropy. As mentioned above, in general it is 

difficult to a have a sufficient number of labeled samples for a reliable estimation of these 
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quantities. Accordingly, we adopted simplifying assumptions that result in different algorithms for 

the proposed AL technique. These algorithms are defined under either i) the assumption of class-

conditional independence, or ii) the assumption of temporal independence between multitemporal 

images. 

AL Algorithm Defined Under the Assumption of Class-Conditional Independence (JEAL): 

According to the simplified approach usually adopted in compound classification, initially we 

work under the assumption of class-conditional independence in the time domain, i.e., 

1, 2, 1, 2,( , , ) ( ) ( )j j i k j i j kp x x v p x p x vω ω= . Under this assumption, we can write:  

 
In this condition ( , )i kP vω  is the only term that models the temporal dependence between the two 

images, i.e., we use only the prior knowledge on the possible pair of labels and not the temporal 

dependence in the measured reflectance. Thus (4) can be rewritten as 

( )1, 2,,j jH x x  expresses the confidence of the decision on (1, 2,,j jx x ) taking into account the 

temporal dependence between multitemporal images modeled by the joint prior probabilities 

( , )i kP vω . The temporal dependence between reflectance measures (i.e., the possible correlation 

between the signals measured on the two pixels considered) is neglected. This is a reasonable 

tradeoff between the complexity of the estimation problem of joint conditional probabilities and 

the simplistic assumption of temporal independence. 
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∑ ∑
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        (6) 
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AL Algorithm Defined Under the Assumption of Temporal Independence Between Multitemporal 

Images (JEALInd): 

In order to further simplify the estimation of the joint conditional posterior probabilities given in 

(4), we can introduce a stronger simplifying assumption considering also the independence of a-

priori class probabilities in the two images (i.e., ( , ) ( ) ( )i k i kP v P P vω ω= ). According to this 

additional assumption, the term 1, 2,( , , )i k j jP v x xω  can be rewritten as: 

Thus the joint entropy defined in (6) becomes: 

Equation (8) can be rewritten as: 

 

As expected, the last element of each term in (9) equals to 1. Thus, since marginal entropies 

1,( )jH x  and 2,( )jH x  are defined as 
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         (10)

 
under the considered assumptions of independence the joint entropy is equal to the sum of 

marginal entropies computed on each image, i.e., 

 
Under the above-mentioned assumptions, we derive a simplified version of the joint entropy based 

AL method (JEALInd), which selects the most uncertain pairs of samples according to the sum of 

marginal entropies, assuming temporally independence between multitemporal images. This 

means assuming that mutual information among them is zero. Indeed, from the information theory 

we can write [31]: 

 
where 1, 2,( , )j jMI x x  shows the mutual information between 1, jx  and 2, jx . A comparison between 

(11) and (12) confirms that in the case of temporal independence assumption 1, 2,( , ) 0j jMI x x = . As 

a result of the adopted assumptions, the parameter estimation step is simplified whereas the 

advantage of exploiting the prior information on the class temporal dependence is lost. 

By analyzing JEAL and JEALInd in greater detail, we can have a better understanding of the 

difference between AL applied to single images or used in the context of compound classification. 

In the JEALInd algorithm, the sum of marginal entropies 1,( )jH x  and 2,( )jH x
 

models the 

uncertainty of a pair of spatially corresponding pixels ( )1, 2,j jx x U∈
 

and the samples with 

maximum sum of marginal entropies are selected as uncertain. High joint entropy values can be 

1, 2, 1, 2,( , ) ( ) ( )j j j jH x x H x H x= + .     (11) 

1, 2, 1, 2, 1, 2,( , ) ( ) ( ) ( , )j j j j j jH x x H x H x MI x x= + −  (12) 
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obtained in the following cases: i) a sample has an uncertain label simultaneously for both single-

date images [i.e., marginal entropies 1,( )jH x  and 2,( )jH x  are both high], or ii) a sample shows 

uncertainty at least on one of the single-date images (i.e., only one marginal entropy value is high, 

thus the sum of the marginal entropies can be high). If the joint entropy is small, the corresponding 

pair of samples is classified with high confidence on both images, i.e., marginal entropies 1,( )jH x  

and 2,( )jH x
 
are both low. On the contrary, in the case of JEAL the 1, 2,( , )j jMI x x  may be different 

from zero. This means that the final uncertainty on the selected pair of pixels depends not only on 

the marginal entropies but also on the mutual information which is modeled by ( , )i kP vω . In this 

case 1, 2,( , )j jMI x x  is zero only if class labels are independent on the two images. We also observe 

that in the case in which ( , )i kP vω  have the same values for all possible pairs of classes (land-

cover transitions with the same probability) the pairs of samples selected by JEAL and JEALInd are 

the same. Despite considering marginal entropies, JEALInd still exploits some information from 

multitemporal images, i.e., it analyzes pixels with the same coordinate on the two images that 

correspond to the same areas on the ground. A further simplification can be obtained measuring 

the uncertainty by independently exploiting the marginal entropies on each considered image. In 

other words, we can also neglect the only remaining temporal information in JEALInd, which is the 

spatial correspondence of pixels. The marginal entropy based AL algorithm (MEAL), which 

selects the most uncertain unlabeled samples from a single-date image on the basis of the standard 

marginal entropy (i.e., ignoring the temporal dependence between images) has already been used 

for single-date image classification in [15]. In order to use MEAL in compound classification, 

marginal entropy of each unlabeled sample can be calculated according to (11). At each iteration, 

the most uncertain / 2h  unlabeled samples of the image acquired at time t1 and the most uncertain 

/ 2h
 
unlabeled samples of the image acquired at time t2 are selected. These samples are merged 

into a set of h uncertain pairs of samples. Since the same pairs can be selected more than one time, 
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the redundant (repetitive) ones are replaced with the next most uncertain pair. Finally, the 

supervisor S adds labels to the uncertain pairs of samples that are then added to the training set.  

V. DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS  

A. Data set description 

Experimental analyses are conducted on two multitemporal data sets. The first data set is made up 

of two multispectral images acquired by the Quickbird multispectral sensor on the city of Trento, 

Italy, in October 2005 and July 2006. In the pre-processing phase both images were pan-sharpened 

and co-registered. The two images of this data set share six land-cover classes [i.e., water, bare 

soil, vegetation, road, shadow, building]. Five different kinds of land-cover transitions can be 

identified between the two images (i.e., from vegetation to bare soil, from bare soil to vegetation, 

from shadow to bare soil, from shadow to water, and from shadow to vegetation). This data set has 

a test set TS of 2083 pairs of samples and a pool U of 1868 pairs of samples. Table I and Table II 

show the number of samples corresponding to each land-cover transition occurred between the 

images for the pool and the test set, respectively. From the pool U, 10 pairs of samples related to 

each land-cover transition are randomly selected as initial training samples (therefore the training 

set T has 100 pairs of samples) and the remaining samples are considered as unlabeled. As one can 

see from the tables, the land-cover transition from shadow to vegetation is not represented in the 

pool U. Nonetheless, as it occurred, it has been included in the test set TS for accuracy assessment 

purposes. 

The second data set is made up of two co-registered multispectral images acquired by the 

Landsat-5 satellite on the Island of Sardinia, Italy, in September 1995 and July 1996. The images 

share five land-cover classes (i.e., pasture, forest, urban area, water, vineyard) and no land-cover 

changes are observed. Table III and Table IV show the land-cover classes and the related number 

of sample pairs used in the experiments for the pool and the test set, respectively. The test set has 
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1949 samples and the pool has 2249 samples. From the pool U, 20 pairs of samples related to each 

land-cover transition are randomly selected as initial training samples (therefore the training set 

has 100 pairs of samples) and the remaining samples are considered as unlabeled. 

 
TABLE I. NUMBER OF SAMPLE PAIRS IN U FOR EACH LAND-COVER TRANSITION (TRENTO DATA SET). 

July 
2006 

October 
2005 

Water 
(ν1) 

Bare soil 
(ν2) 

Vegetation 
(ν3) 

Road 
(ν4) 

Shadow 
(ν5) 

Building 
(ν6) 

Total 

Water (ω1) 352 - - - - - 352 
Bare soil (ω2) - 234 276 - - - 510 
Vegetation (ω3) - 62 276 - - - 338 
Road (ω4) - - - 241 - - 241 
Shadow (ω5) 77 70 - - 101 - 248 
Building (ω6) - - - - - 179 179 
Total 429 366 552 241 101 179 1868 

 
 

TABLE II.  NUMBER OF SAMPLE PAIRS IN TS FOR EACH LAND-COVER TRANSITION (TRENTO DATA SET). 
July 
2006 

October 
2005 

Water 
(ν1) 

Bare soil 
(ν2) 

Vegetation 
(ν3) 

Road 
(ν4) 

Shadow 
(ν5) 

Building 
(ν6) 

Total 

Water (ω1) 466 - - - - - 466 
Bare soil (ω2) - 254 225 - - - 479 
Vegetation (ω3) - 213 161 - - - 374 
Road (ω4) - - - 223 - - 223 
Shadow (ω5) 108 50 52 - 93 - 303 
Building (ω6) - - - - - 238 238 
Total 574 517 438 223 93 238 2083 
 

TABLE III.  NUMBER OF SAMPLE PAIRS IN U  FOR EACH LAND-COVER TRANSITION (SARDINIA DATA SET). 
July 
1996 

September 
1995 

Pasture 
(ν1) 

Forest 
(ν2) 

Urban Area 
(ν3) 

Water Body 
(ν4) 

Wineyard 
(ν5) 

Total 

Pasture (ω1) 554 - - - - 554 
Forest (ω2) - 304 - - - 304 
Urban Area (ω3) - - 408 - - 408 
Water Body (ω4) - - - 804 - 804 
Wineyard (ω5) - - - - 179 179 
Total 554 304 408 804 179 2249 
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TABLE IV.  NUMBER OF SAMPLE PAIRS IN TS FOR EACH LAND-COVER TRANSITION (SARDINIA DATA SET). 

July 
1996 

September 
1995 

Pasture 
(ν1) 

Forest 
(ν2) 

Urban Area 
(ν3) 

Water Body 
(ν4) 

Wineyard 
(ν5) 

Total 

Pasture (ω1) 589 - - - - 589 
Forest (ω2) - 274 - - - 274 
Urban Area (ω3) - - 418 - - 418 
Water Body (ω4) - - - 551 - 551 
Wineyard (ω5) - - - - 117 117 
Total 589 274 418 551 117 1949 

 

B. Design of experiments  

We carried out experiments with batch size values h=10 and 20h = . The prior probabilities 

( ( )iP ω , iω ∈Ω , and ( )kP v , kv N∈ ) and the class probability density functions (1,( )j ip x ω , 

2,( )j kp x v ) are estimated from the training set. According to the remote sensing literature [32], 

class probability density functions are assumed to be Gaussian. The joint prior probabilities of 

classes ( , )i kP vω , iω ∈Ω , kv N∈  are calculated by exploiting the EM algorithm and the threshold 

value to stop iterations is fixed to 0.001 as in [7]. At each iteration of the AL process, the estimates 

of prior probabilities, class probability density functions and joint prior probabilities of classes are 

updated. All experimental results are given as the average accuracy obtained in 10 trials related to 

10 initial randomly selected training sets. The size of final training set is fixed to 400 for both data 

sets. 

For both Trento and Sardinia multitemporal data sets, we carried out two kinds of 

experiments: i) the first set of trials assesses the effectiveness of the proposed AL method defined 

under the considered simplifying assumptions, [i.e., the JEAL algorithm (which uses the 

assumption of class-conditional independence in the time domain), the JEALInd algorithm (which 

assumes temporally independence between the images), and the MEAL algorithm (which also 

neglects spatial correspondence among pixels)], and ii) the second set of trials is devoted to the 
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comparison of the proposed AL method defined for compound classification with a marginal 

entropy based AL method applied to a post-classification comparison technique (AL-PCC). The 

post-classification comparison technique is defined by using a standard Bayesian maximum 

posterior probability classifier for each image under the Gaussian assumption for class 

distributions. AL-PCC is implemented by initially selecting the set of h uncertain samples from 

each single image (independently from the other image) on the basis of marginal entropy (see 

(10)), and then performing post-classification comparison.  

In order to further assess the reliability of the proposed technique, we also compared the 

robustness to registration noise (i.e., effects of non perfect alignment between multitemporal 

images) of both the proposed method and the AL-PCC technique. To this end, image I1 was shifted 

of a given number of pixels in the horizontal and the vertical directions. In the following, the value 

of the displacement will be indicated with a pair of numbers (n,m) that indicate the amount and the 

direction of the shift in pixels. n is positive for shifts in right direction and negative otherwise, 

while m is positive for upward shifts and negative otherwise. 

VI.  EXPERIMENTAL RESULTS 

A. Trento Data Set 

In the first set of trials, we compare the effectiveness of proposed AL algorithms with each other 

in the context of compound classification. Fig. 3 shows the average (on 10 trials) accuracies in the 

detection of land-cover transitions versus the number of training samples obtained by JEAL, 

JEALInd and MEAL algorithms when h=10 and h=20. The results show that accuracies of JEAL, 

JEALInd and MEAL are quite similar at early iterations, whereas those of JEAL significantly 

increase with the size of the training set. Moreover, JEAL reaches convergence in a smaller 

number of iterations (i.e., with a smaller number of labeled pairs of samples) than the other 

algorithms. MEAL algorithm provides in general much higher accuracies than JEALInd in case of 
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h=10, and slightly higher accuracies in case of h=20. As an example (see Fig.3a that refers to 

h=10), the JEAL algorithm provides an accuracy of 97.60% with only 190 samples, whereas 

JEALInd and MEAL reach a similar accuracy with almost 300 samples. Moreover, the JEAL 

algorithm yields an accuracy of 98.22% with 400 samples, whereas the accuracies obtained by 

using the full pool as training set (1868 samples) is 98.51%. The higher accuracy obtained by the 

query based on MEAL than that of the query based on JEALInd might appear unexpected. However 

it can be explained by the fact that if we do not model the dependence by the joint prior 

probabilities of classes, i.e., if we neglect almost all the temporal information, working on the joint 

entropies of pixels may result misleading (and thus less effective) than selecting the most uncertain 

pixels for each image. 

  
(a) (b) 

Fig. 3. Average (on 10 trials) overall accuracy in the detection of land-cover transitions obtained by using the JEAL, 
JEALInd and MEAL algorithms when (a) h=10 and (b) h=20 and the full pool as training set (Trento data set). 
 

  
(a) (b) 

Fig. 4. Average (on 10 trials) overall accuracy in the detection of land-cover transitions obtained by the JEAL with 
compound classification (JEAL) and AL with post-classification comparison (AL-PCC) when (a) h=10 and (b) h=20 
(Trento data set). 
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In the second set of trials, we compare the effectiveness of JEAL and AL-PCC. Fig. 4 shows 

the obtained results in terms of the average overall accuracy in the detection of the land-cover 

transitions. By analyzing the figure, one can observe that the JEAL algorithm leads to the highest 

accuracies for all the iterations and significantly outperforms the AL-PCC method. These results 

demonstrate: i) the effectiveness of compound classification technique, and ii) the effectiveness of 

joint entropy criterion for query in AL. Table V and Table VI show the average (on 10 trials) 

accuracies for each land-cover transitions obtained by the JEAL and AL-PCC, respectively at the 

8th iteration (i.e., the training data set includes 180 pairs of samples ). As one can see from the 

tables, the accuracies obtained by the JEAL algorithm are significantly higher than those yielded 

by AL-PCC for all the transitions but the shadow to water and the shadow to vegetation ones. This 

is due to the fact that the shadow class is detected with a very high accuracy (almost 100%) in the 

October image; thus the transitions that involve the shadow class result in a high accuracy even 

with the post-classification comparison technique. Nonetheless, the general effectiveness of the 

techniques should be evaluated taking into account the overall accuracy.  

Table VII shows the performances of both JEAL and AL-PCC at the 8th iteration (i.e., the 

training data set includes 180 pairs of samples) under various amounts of simulated 

misregistration, i.e., with different values of (n,m). From the table, one can observe that any 

possible misregistration between images decreases the performance of both methods when 

compared to the ones achieved with perfectly aligned images [i.e., (n,m)=(0,0)]. However, JEAL 

always performs better than AL-PCC, thus pointing out its robustness to the presence of 

registration noise. As an example, in the case of (n,m)=(-1,0), the accuracy of JEAL is 96.20% 

whereas that of AL-PCC is 92.97%. 
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TABLE V. AVERAGE (ON 10 TRIALS) ACCURACIES (%) OF EACH LAND-COVER TRANSITION OBTAINED BY 

JEAL (TRENTO DATA SET) 
July 
2006 

October 
2005 

Water 
(ν1) 

Bare soil 
(ν2) 

Vegetation 
(ν3) 

Road 
(ν4) 

Shadow 
(ν5) 

Building 
(ν6) 

Water (ω1) 99.89 - - - - - 
Bare soil (ω2) - 100 96.80 - - - 
Vegetation (ω3) - 100 100 - - - 
Road (ω4) - - - 97.04 - - 
Shadow (ω5) 95.92 100 75.76 - 94.08 - 
Building (ω6) - - - -  94.36 

 
TABLE VI.  AVERAGE (ON 10 TRIALS) ACCURACIES (%) OF EACH LAND-COVER TRANSITION OBTAINED BY 

AL-PCC (TRENTO DATA SET). 
July 
2006 

October 
2005 

Water 
(ν1) 

Bare soil 
(ν2) 

Vegetation 
(ν3) 

Road 
(ν4) 

Shadow 
(ν5) 

Building 
(ν6) 

Water (ω1) 99.59 - - - - - 
Bare soil (ω2) - 99.56 96.31 - - - 
Vegetation (ω3) - 99.95 100 - - - 
Road (ω4) - - - 87.35 - - 
Shadow (ω5) 96.66 100 84.03 - 93.01 - 
Building (ω6) - - - - - 80.46 

 

TABLE VII.  AVERAGE (ON 10 TRIALS) OVERALL ACCURACIES (%) PROVIDED BY JEAL AND AL-PCC 

UNDER DIFFERENT MISREGISTRATION CONDITIONS (TRENTO DATA SET). 
 

Amount of 
Misregistration 

(n,m) 

Overall Accuracy (%) 

JEAL AL-PCC 

(0,0) 97.42 94.45 
(+1,0) 96.02 92.68 
(-1,0) 96.20 92.97 
(0,+1) 95.92 93.30 
(0,-1) 96.78 93.71 

(+1,+1) 94.78 92.26 
 

B. Sardinia Data Set 

Fig. 5 shows the behavior of the average (on 10 trials) overall accuracies obtained by the proposed 

AL algorithms in the detection of land-cover transitions versus the number of training samples on 

the Sardinia data set. By analyzing the figure, one can observe that the JEAL algorithm, again, 

provides the highest accuracies for most of the iterations and for both values of h. Moreover, it 
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reaches convergence in a smaller number of iterations than the other methods. In this case, the 

JEALInd algorithm provides slightly higher accuracies than the MEAL one for both values of h. 

The JEAL algorithm achieves an accuracy of 95.53% with only 170 samples, whereas the JEALInd 

and the MEAL techniques could not obtain such an accuracy. The accuracy yielded using the full 

pool as training set (2249 samples) is 93.22%, whereas the highest accuracies obtained by JEAL, 

JEALInd and MEAL are 95.53% (with 170 samples), 94.81% (with 260 samples), and 94.84 % 

(with 280 samples), respectively. The reason of achieving higher accuracies with JEAL, JEALInd 

and MEAL compared to the case of using the whole pool as training set is related to the presence 

of noisy samples (or outliers) in the pool. These samples do not properly model the distribution of 

test pixels. It is worth nothing that an outlier is expected to be assigned to a wrong class by the 

classifier with high confidence (i.e., with low uncertainty); accordingly, it is not selected as an 

uncertain sample by the proposed AL method. From all the results, we can observe that, when the 

compound classification is considered, the uncertainty criterion based on joint entropy that 

considers temporal dependence between multitemporal images (i.e., JEAL) can improve the 

classification accuracy with respect to the standard marginal entropy (i.e., MEAL) as well as the 

sum of entropies (i.e., JEALInd). This demonstrates the importance of information conveyed by 

temporal dependence between multitemporal images for optimizing the definition of the training 

sets. 

  
(a) (b) 

Fig. 5. Average (on 10 trials) overall accuracy in the detection of land-cover transitions obtained by using the JEAL, 
JEALInd and MEAL algorithms when (a) h=10 and (b) h=20 and the full pool as training set (Sardinia data set). 
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(a) (b) 

Fig. 6. Average (on 10 trials) overall accuracy in the detection of land-cover transitions obtained by the JEAL with 
compound classification (JEAL) and AL with post-classification comparison (AL-PCC) when (a) h=10 and (b) h=20 
(Sardinia data set). 
 

Fig. 6 shows the comparison of the accuracies in the detection of land-cover transitions 

obtained by JEAL and AL-PCC for both values of h. One can observe that the JEAL algorithm 

results in the highest accuracy at each iteration when compared to the AL-PCC method. These 

results confirm the effectiveness of both the compound classification and the proposed AL method 

based on the JEAL criterion. The average (on 10 trials) accuracies on the detection of each land-

cover transition obtained by JEAL and AL-PCC are shown in TABLE VIII and Table IX, 

respectively, at the 7th iteration (i.e., the training data includes 170 pairs of samples). From the 

tables, one can see that the accuracies obtained by AL-PCC is significantly improved by exploiting 

JEAL.  

Table X shows the accuracies provided by both JEAL and AL-PCC at the 7th iteration (i.e., 

the training data set includes 170 pairs of samples) by introducing misregistration between the 

images. The results are provided for different amounts of misalignment (n,m). By analyzing the 

table, one can see that also on this data set the proposed method is always more accurate than the 

AL-PCC technique. As an example, in the case of (n,m)=(-1,0), the accuracy of JEAL is 95.57%, 

whereas that of AL-PCC is 88.17%. It is worth noting that on this data set the accuracies obtained 

with misaligned images are not always lower than those yielded with co-registered images. This is 

mainly due to the fact that the available ground reference samples are mainly related to 
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homogeneous areas (i.e., they are not close to the class borders), and thus the misregistration does 

not imply misclassification.  

 
TABLE VIII.  AVERAGE (ON 10 TRIALS) ACCURACIES (%) ON EACH LAND-COVER TRANSITION 

OBTAINED BY JEAL (SARDINIA DATA SET). 
July 
1996 

September 
1995 

Pasture 
(ν1) 

Forest 
(ν2) 

Urban Area 
(ν3) 

Water Body 
(ν4) 

Wineyard 
(ν5) 

Pasture (ω1) 94.97 - - - - 
Forest (ω2) - 94.39 - - - 
Urban Area (ω3) - - 97.12 - - 
Water Body (ω4) - - - 100 - 
Wineyard (ω5) - - - - 64.95 

 

TABLE IX.  AVERAGE (ON 10 TRIALS) ACCURACIES (%) ON EACH LAND-COVER TRANSITION OBTAINED BY 

AL-PCC (SARDINIA DATA SET). 
July 
1996 

September 
1995 

Pasture 
(ν1) 

Forest 
(ν2) 

Urban Area 
(ν3) 

Water Body 
(ν4) 

Wineyard 
(ν5) 

Pasture (ω1) 82.05 - - - - 
Forest (ω2) - 92.26 - - - 
Urban Area (ω3) - - 86.55 - - 
Water Body (ω4) - - - 100 - 
Wineyard (ω5) - - - - 47.26 

 
 

TABLE X. AVERAGE (ON 10 TRIALS) OVERALL ACCURACIES (%) PROVIDED BY JEAL AND AL-PCC UNDER 

DIFFERENT MISREGISTRATION CONDITIONS (SARDINIA DATA SET). 
Amount of 

Misregistration 
(n,m) 

Overall Accuracy (%) 

JEAL AL-PCC 

(0,0) 95.53 87.43 
(+1,0) 95.16 87.47 
(-1,0) 95.57 88.17 
(0,+1) 95.98 86.96 
(0,-1) 94.99 86.89 

(+1,+1) 95.40 87.60 
 

VII.  DISCUSSION AND CONCLUSION  

In this paper, active learning for the detection of land-cover transitions in multitemporal remote 

sensing images has been addressed. This has been done by introducing active learning in the 
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framework of the compound classification and presenting a novel uncertainty criterion defined in 

the context of Bayes rule for compound classification. The proposed uncertainty criterion is based 

on the joint entropy associated with the compound classification decisions and is implemented 

under different simplifying assumptions on the temporal dependence between images. The first 

assumption considers the class-conditional independence in the time domain. This assumption is 

necessary because, as explained in the paper, in practice it is very difficult to define a training set 

suitable for a reliable estimation of the joint conditional posterior probabilities of all possible 

combinations of classes. Under this assumption, the uncertainty of a pair of samples is evaluated 

taking into account the temporal dependence modeled by the joint prior probabilities of classes 

(JEAL algorithm). The second stronger assumption introduces temporal independency among 

prior probabilities of classes together with the hypothesis of class-conditional independence in the 

time domain. This results in the calculation of the joint entropy of corresponding pairs of pixels as 

the sum of marginal entropies, i.e., the mutual information between decisions is assumed to be 

zero (JEALInd algorithm). The third assumption also neglects the information associated with the 

spatial correspondence of pixels (MEAL algorithm). All the derived active learning algorithms 

have been theoretically and experimentally compared with each other. Experimental results show 

that using the temporal dependence in the definition of active learning for compound classification 

problems (i.e., exploiting the definition of joint entropy obtained under the first assumption) 

results in higher accuracies in the detection of the land-cover transitions than the other algorithms 

when the same number of labeled samples are considered. From another perspective, the JEAL 

algorithm can achieve the same accuracy achieved by other techniques with a sharply smaller 

number of labeled samples. This is a very significant advantage, given the complexity and the cost 

of the collection of reference samples, especially in a multitemporal context. Summarizing, we can 

state that: 

1) JEAL exploits in the query function the temporal dependence between images modeled by 
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both the prior joint probabilities of classes and the corresponding spatial position of pixels. 

2) JEALInd exploits in the query function as only source of temporal information the 

corresponding spatial position of pixels (which can be misleading when the prior joint 

probabilities of classes are modeled as the product of the marginal prior probabilities of 

classes on each single image).  

3) MEAL assumes complete independence between images in the query function. 

In the experimental analysis we also compared the proposed active learning algorithms 

defined in the context of compound classification with a marginal entropy based active learning 

technique based on the post-classification comparison. By this comparison, we observed that the 

accuracies in the detection of land-cover transitions obtained by active learning with post-

classification comparison are significantly increased by the proposed technique thanks to the 

information extracted from temporal dependence between images in both the active learning and 

the classification tasks. In addition, we also analyzed the effects of registration errors on the 

performance of both techniques. By this analysis, we observed that the residual misregistration 

between images may decrease the classification performance of both techniques. Nonetheless, the 

proposed algorithm still outperforms the AL-PCC also in presence of misregistration.  

As a final remark, we would like to point out that the use of efficient techniques for the 

exploitation of supervised change-detection methods in real applications is becoming more and 

more important. This is due to the increased complexity of the first generation of the satellite VHR 

and hyperspectral images, which decreases the effectiveness of unsupervised change-detection 

methods. In this context, the proposed approach is very promising as it allows to optimize the 

definition of a multitemporal training set to be used in change detection, decreasing significantly 

the cost and effort required for multitemporal reference data collection.  

As a future development of this work, we plan to extend the proposed active learning 

algorithms by including a diversity criterion defined in the context of compound classification. 
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This criterion should consider the concept of diversity in the selection of unlabeled pairs of 

samples, i.e., it should select uncertain samples that are also diverse to each other to reduce the 

possible redundancy in the defined training set. In addition, we are also investigating the use of the 

proposed active learning algorithms when constraints on some available labels (e.g., on the first 

image) are given. 
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