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Abstract— This paper presents a novel iterative active legrfAL) technique aimed at
defining effective multitemporal training sets te bsed for the supervised detection of land-cover
transitions in a pair of remote sensing images iaedwn the same area at different times. The
proposed AL technique is developed in the framewofkthe Bayes rule for compound
classification. At each iteration it selects thér jmd spatially aligned unlabeled pixels in the two
images that are classified with the maximum una@sta These pixels are then labeled by an
external supervisor and included in the training B®certainty of a pair of pixels is assessed by
the joint entropy defined considering two possitil#erent simplifying assumptions: i) class-
conditional independence, and ii) temporal indepecd between multitemporal images.
Accordingly, different algorithms are introducedeéelproposed joint entropy based AL algorithms
for compound classification are compared to eatlkeroand with a marginal entropy based AL
technique (in which the entropy is computed sepérain single-date images) applied to the post-
classification comparison method. Experimental ltsswbtained on two multispectral and

multitemporal data sets show the effectivenesh®proposed technique.



Index Terms Multitemporal images, compound classification, \&etiearning, joint entropy,

change detection, remote sensing

l. INTRODUCTION

The analysis of multitemporal remote sensing imagpedetect land-cover transitions plays an
important role in many applications, such as assest of damaged areas.q, burned areas,
flooded areasetc), analysis of urban expansion, study on shiftimdfivation, etc. [1]. In the
literature many algorithms that address the abosggtimned applications are available; generally
they can be split into two categories: i) unsupsagtialgorithms, in which land-cover changes are
detected by comparing the spectral reflectanceegabf remote sensing images [2]-[4], and ii)
supervised algorithms, which require the availapitf labeled training samples [5]-[8]. In the
most of the cases unsupervised methods provideybotenge-detection maps, where only the
information about presence/absence of change iklitiged. On the contrary, supervised
algorithms provide also the information about tivedkof transitions occurred on the groune.(
the labels of pixels before and after the changethea cost of requiring reference data. The
performance of unsupervised techniques is geneadigcted by the differences in atmospheric
conditions, in sensor calibration, in ground coiodi$, etc. Supervised techniques are less affected
by this kind of problems as they are based on khssifiers that recognize the transitions on the
basis of the information present in the training, seéhich is used in the learning phase of the
classification algorithm [5]-[8].

Only few approaches have been presented in thatlire to detect the land-cover transitions
by supervised techniques. The simplest supervisetthad to detect land-cover transitions (and
also changes) is the post-classification compar[&pnwhich compares the classification maps

obtained by independently classifying two remotessgy images of the same area acquired at



different times. The accuracy obtained by this tégqie is close to the product of the accuracies
obtained at the two times (if errors on the twassification maps are independent), as temporal
dependence between multitemporal images is ignoréemporal dependence between
multitemporal images is exploited by the supervidedct multidata classification and compound
classification techniques, which can obtain imprbwaecuracy in the detection of land-cover
transitions. The supervised direct multidata cfasgion technique considers each transition as a
class and trains a classifier to identify the titorss [5]. However, this technique has some
limitations: i) the training samples at the two gisnshould be related to the same points on the
ground, and ii) the training samples should beistiedlly representative for all the possible
transitions in the whole scene. In [6]-[8], the qmund classification technique has been
presented, which overcomes the constraints of tiredtidata classification and increases the
accuracy of the post-classification comparison negple (which is affected by the error-
propagation phenomenon) by taking into accountehgoral dependence between the images. In
compound classification, temporal dependence iseheddby the prior joint probabilities of land-
cover transitions between multitemporal imaged$]-

In this paper, we focus our attention on compouadsification due to its effectiveness for
the detection of land-cover transitions. One of th&n motivations for which we consider the
supervised compound classification technique igrtbeeased interest that we expect in the future
for supervised change-detection methods in ren®isisg. This mainly depends on the properties
of the last generation of passive sensors thaacgnire images with either very high geometrical
resolution (VHR) or very high spectral resolutiomygerspectral). VHR images are currently
widely available at commercial levald,, Quickbird, SPOT-5, Erogtc) whereas hyperspectral
images will be available on a larger scale soon,sasgeral satellite missions are under
development. On the one hand, the many criticalofacthat affect the acquisition of VHR

multitemporal imagese(g, sensor view angle, sunrays angle) make it diffimucompare them by



completely unsupervised algorithms that work only the radiance of the images without
extracting the semantic meaning of the spectrdemihces (see [9] for greater details). On the
other hand, the spectral signature measured byréypetral sensors is very detailed and many
differences can be observed in the radiometric Wiehaf the imagesd.g, due to soil moisture
differences in the ground conditions) even wherimnges occurred on the ground. Thus, even in
this case it is difficult to obtain reliable changgetection maps without supervised algorithms and
thus reference data. Although many studies areragrpss for defining unsupervised change-
detection algorithms for the aforementioned kintidaia, the relevance of supervised approaches
is expected to increase with respect to the past.

Although the compound classification techniqueessicritical with regard to the definition
of the training set when compared to the multidhtect classification [6], the amount and quality
of the available training samples are importanbldtain accurate transition maps. However, the
collection of multitemporal labeled samples is tim@nsuming and costly; thus, to acquire a
sufficient number of labeled training samples facte single-date image is a difficult task in real
applications. To deal with this problem, activeriteag (AL) [10]-[27] and semi-supervised
learning (SSL) [27]-[30] methods have been presente the literature in the context of
classification of single-date images. AL methodgomatically select the most informative
unlabeled samples to be manually labeled by a huerpart in order to properly build up a non-
redundant and effective training set, whereas S®thats exploit both labeled and unlabeled
samples in the learning of the classification atpan [27]-[30]. In [27], the performances of the
SSL and AL classification approaches have been aosdp and it has been shown that SSL
provides good results when the two analyzed imbhggs similar properties. However, only AL is
reliable when the spectral differences betweentwteimages are significant. For this reason, in
this paper we focus our attention on AL by genenad its use to the context of compound

classification. In greater detail, we present agh@\L technique for compound classification that



can be used to detect land-cover transitions. Topgsed AL technique models the uncertainty of
the labeling of pair of pixels in images acquiredtbe same area at different times by defining a
joint entropy measure. The joint entropy uncertameasure is defined in general and analyzed in
two cases under different simplifying assumptiofghe class-conditional independence in the
time domain, and ii) the temporal independence. &kgeriments conducted on two different

multitemporal and multispectral data sets showeffectiveness of proposed AL technique.

The paper is organized into seven sections. Settigives background on AL, whereas
Section Il formulates the considered problem. Pheposed AL method defined for compound
classification is introduced in Section IV. SectMmpresents the description of the considered data
sets and the design of experiments. Section \Atilies the experimental results. Finally, Section

VIl draws the conclusion of this work.

. BACKGROUND ON ACTIVE LEARNING

In this section, we give the general definition Adr, and review some AL techniques presented in
the literature for classification of single rematnsing images. AL techniques iteratively expand
the size of an initial labeled training Seselecting the most informative samples from a pubof
unlabeled samples for manual labeling. At eaclaiiten, the most informative unlabeled samples
(for a given classifieG) are selected based on a query funcgmabeled by a supervis@ and
added to the current training SetFinally, the supervised classifi€ris retrained with the samples
moved fromU to T. It is worth nothing that the initial training sétrequires few labeled samples
for the first training of the classifie& and then is enriched iteratively by including tmest
informative samples selected frooh At the convergence, the training Setis made up of a
minimum number of samples “optimal” for the consete classifierG. When the AL process is
completed, the classifieG is trained once again and the classification e thmage under
investigation is carried out. The general flowcladrthe AL-based classification approach is given

in Fig. 1. The selection of the most informativengées from a poolJ to be included in the



training sefl on the basis of AL offers three main advantagee labeling cost is reduced due to
the avoidance of redundant samples, ii) the contipa@ complexity of the learning phase is
reduced due to the selection of an optimal subsetaming samplesi. a set with a small
number of most representative samples), and iguate classification accuracy can be obtained
due to the improved class models estimated on | figlity training set on the basis of the
classification rule used from the considered cfassiThe superviso8 is usually a human expert
who gives the true class labels to the selectedpbkemmFor remote sensing (RS) classification
problems, the labeling of both the initial trainisgt and of queried samples can be obtained by: 1)
in situ ground surveys, 2) image photointerpretation, or I3/brid solutions (both

photointerpretation and ground surveys).

Active Learning
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Fig. 1. General scheme of an AL based classifinaipproachT: Training set,G: Supervised classifieQ: Query
function; SSupervisoryJ: pool of unlabeled samples).

Active learning approaches can be divided into twain categories: i) uncertainty based
approaches, and ii) query by committee based appesaUncertainty based approaches select the
unlabeled samples that have the lowest confideinee tbhe maximal uncertainty) to be correctly
classified by a given classifier (therefore mokely to be misclassified), and differ from each
other for the adopted query functions. Uncertagag be defined in different ways depending on
the considered classifier. In [10] this kind of eqgches has been implemented on the basis of the
class-conditional posterior probabilities in thentsxt of a maximum a-posteriori Bayesian

classifier. The samples that do not show a predaminalue of the estimated class-conditional



probability of one class over the others are sete@s uncertain. The margin sampling (MS)
technique has been proposed in [11], [12] for suppector machine (SVM) classifiers. It selects
the unlabeled sample that is closest to the claasdn boundary. In [13] and [14] the most
informative samples are selected among the mosrtaic ones (which are the closest to the SVM
classification boundary) on the basis of the steshlaneans clustering technique and the angles
between the induced classification hyperplanespeds/ely. The marginal entropy based
uncertainty criterion has been defined on the baiscnditional posterior probabilities of classes
in [15],[16]. In these works, unlabeled sampleg theve the maximum entropye., those having
the maximum uncertainty among classes, are addedetdraining set at each iteration of AL.
Query by committee based techniques select unkhbstemples that have the maximum
disagreement within a committee of classifiers {{ll4]. The disagreement among ensemble of
classifiers is measured with Kullback—Leibler (Kdiyergence in [17] and with entropy in [18].

The MS query function is extended to multiclassssiication problems for multispectral
images in [19] by selecting the most uncertain dani@m each binary SVM. An AL method
based on mutual information has been presente2Dinf¢r the detection of unexploded ordnance.
The AL technique proposed in [21] chooses the wldbsample that maximizes the information
gain measured by the KL divergence. The KL divecgers calculated between the posterior
probability distribution of the current trainingtsand the training set obtained by including each
unlabeled sample, one by one, into the trainingTs&o different AL techniques for multiclass RS
classification problems are presented in [22]himfirst technique, the unlabeled samples that both
have the smallest distance to the decision hypeeptd each binary SVM and do not share the
same closest support vector are selected as uncartd added to the training set. The second
technigue assesses the uncertainty on decisiors admmittee of classifierg,e., uncertain
samples are those having maximum disagreement eetwe committee of classifiers.

Disagreement among the classifiers is measuredhdyemntropy in the distribution of the labels



provided by the committee members for each sampiel acquisition costs sensitive AL
techniques, which pay attention to the requiremefitphysical access to spatial locations for
labeling process, have been proposed in [23],[2A]AL technique based on a kernel-clustering
has been presented in [25] to select the mostnrdbve representative samples among the most
uncertain patterns. In this technique, the kerhedtering is applied to the most uncertain samples
selected according to the Multiclass-Level Uncettaistrategy [25]; then the most uncertain
sample of each cluster is added to the training de¢ AL methods presented in [13] and [14]
have been modified in [25] to handle their limibauws on real RS problems. A cluster-assumption
based fast and reliable AL method defined on trsesbaf an histogram-thresholding algorithm has
been presented in [26] for addressing critical s where significantly biased initial training

sets are available.

[Il.  PROBLEM FORMULATION

Differently from the AL techniques proposed in tR8 literature that are devoted to single-date

image classification, this paper aims to re-defile in the context of the classification of
multitemporal images. Letl, ={X;, X;,..., Xz} and |, ={X,, X,,...,X,g} denote two co-
registered remote-sensing images made up @ixels and acquired on the same area at two

different timedt; andt,, respectively. Le(xllj,xzvj) be theg-th pair of temporally correlated pixels
made up of a pixek, ; acquired at timé¢; and a spatially corresponding pixel; acquired at time
tr. Let Q={w,w,....a,} be the set of possible land-cover classes at timeand
N ={v,,V,,...,} be the set of possible land-cover classes at timend-cover transitions.¢.,
changes in the labels) are observed if the twesekesy, (m=1,...,M) andv, (n=1,..,N), to

which the pair(xlyj,xzyj) is assigned, are different. Here, differently fréxh approaches for

single-date image classification, the training Betnd the pool include pairs of pixels, and at



each iteration of the AL process, the training Feshould be enriched by selecting the most
informative pair of samples from the pddglof unlabeled pair of samples for manually labeling

A basic trivial approach to apply AL to multitempbimage classification for the detection
of land-cover transitions is to analyze the problemthe context of the post-classification
comparison technique. Post-classification comparisobased on independent classification of
each image. AL can be implemented by selectingmbst uncertain samples from each single-
date image by exploiting any AL technique proposethe literature. In this way the training set
of each image is independently enriched from therst Although this method is simple, it has all
disadvantages of the post-classification comparischnique explained in the previous section.
For this reason, we focus on the definition of AlLtlhe context of the Bayesian decision rule for
compound classification. In particular, we presamtovel technique to select the most uncertain
pairs of pixels at each iteration of the AL progegkich takes advantages of temporal dependence

between images.

IV. PROPOSEDJOINT ENTROPY BASED ACTIVE LEARNING METHOD FOR COMPOUND

CLASSIFICATION

The proposed AL technique evaluates uncertaintpraanog to the well-known entropy concept,
which has been previously exploited in the literatun the context of AL-based single-date image
classification [15]. In order to deal with multitporal image classification, we propose a novel
joint entropy based AL technique to measure theetamty. The general definition of joint
entropy is firstly introduced. Then, different fantations defined under different simplifying
assumptions on the temporal dependence betweenesmae given. Before explaining the
proposed technique, we briefly recall the compoulassification technique for multitemporal

images.

10



A. Bayesian Decision Rule for Compound Classificati

The Bayesian decision rule for compound classificaidentifies the best (in terms of Bayesian
decision theory) pair of labels (classes) to beagassl to each pair of pixel%xllj,xzvj) by

explicitly considering temporal dependence [6],[-4.,

(%505 ) O (@) i (e v) =argmaf Peoy | x; ., ) 1)

Qv ON

where P(cq,vk‘xu, X% ;) is the joint conditional posterior probability thfe pair of classe(scq,vk),

given the pair of pixels{&,j,xzj ) In the context of automatic detection of land-@otransitions,

the estimation of the statistical quantities inealvin (1) is a complex task due to the difficulty i
collecting enough training samples for properly eody the multitemporal dependence between
all possible temporal combinations of classes. dfoee, according to the literature [6],[7], we
adopt the conventional assumption of class-conttiandependence in the time domain to
simplify the estimation of the joint conditional gierior probabilities. Under this assumption, (1)

can be rewritten as [6],[7]

(Xl,j Xz,;)D(C%,Vn) so that(aw, v,)

_ P(X,|a) P(%; | ¥) Ra, ¥) _ | P
S Tots ) KOt ) R, ][ gt P bl e Pt )

@10 v,ON
2)

where p(X |a() and p(x,; |\4) are the single-date class-conditional density tions, and

P(w,V,) is the joint prior probability of having classes att; andv, att; in the multitemporal

images. Joint prior probabilities of land-covems#ions can be estimated from the images under
investigation by an iterative procedure definedlmbasis of the expectation-maximization (EM)

algorithm. The recursive equation to estimB{ey, v, ) is defined as [7]
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where P,(w,Vv,) and P_ (w,V,) are the joint prior probability estimates at thth and -1)th

iterations, respectively. The estimates are imzem by assigning equal joint prior probabilities t
each pair of classes (eventually including possigbecific constraints on some transitions
according to prior information). Then (3) is itexdtuntil convergence, which is achieved when the
maximum difference between the estimates at twoessive iterations is below a given threshold
[7]. It is worth nothing that it is unfeasible tstenate joint prior probabilities directly from the
multitemporal training set due to the difficulty raving training sets with a sufficient number of
representative samples for each possible combmatialasses [7]. For detailed information on

compound classification, the reader is referrel@ld7].

B. Joint Entropy based AL Methémk Compound Classification
The proposed AL method is based on the selectiomntdbeled pairs of samples that have
maximum uncertainty on their labels assigned byBigesian rule for compound classification. In

order to consider temporal dependence in modelwguncertainty of samples, the method is

defined by using the joint entropy-l(xllj,xzyj) of the decisions obtained by compound
classification for the generic pair of pixels inn@sponding positionéxl'j,xzyj ) For each pair of

pixels (xLJ., Xz,j) in the multitemporal images, the joint entropyéined as

H (% %;) == 3 Pl@.v|%;. % )log R, ¥| % . %) @)

a0Q v ON

If H (x1J xzyj) is small, the corresponding pair of pixels is sifisd with high confidencae,e., the

decision on compound classification of these samjsereliable. If H(x,,%,;) is high, the

decision is not reliable, and therefore the comesing pair of pixels is considered uncertain and

12



critical for the classifier. Samples that satigig tatter condition are suitable to be includethim
training set after manual labeling by an externgdesvisor. In the proposed AL method, at each

iteration the parameters (the class probabilitysdgrfunctions and the joint prior probability of

classes) are estimated for each pair of pi>(ex{§, X, ) U (whereU can be associated with the

pixels of the entire image or with a subset of thehinen the joint entropies of all the pairs are
calculated. The most uncertdinunlabeled pairs of samplesg., those that have the maximum
joint entropy, are extracted and given to the suiper Sfor labeling. This process is iterated until
convergence, which is reached when either i) theegaof class parameters do not change
anymore, or ii) the desired number of samples lielid (i.e., the upper bound of the cost for
labeling samples is achieved). Fig. 2 shows thaitcture of the proposed joint entropy based

AL method.

Proposed Active Learning Architecture

PO, @)

Compound | p i Joint Selection of |
L—J> Classifier (@uJ L Entropy Uncertain |:

(G) pO%, %) Computation Samples

e [

C

onvergence —>
i Expanded
_________________________________________________________________________________ T
Fig. 2. Architecture of the proposed joint entrdg@ased AL method

The definition in (4) depends on the joint condiabposterior probabilities of the pairs of classes
which play a key role in the definition of joint teopy. As mentioned above, in general it is

difficult to a have a sufficient number of labeledmples for a reliable estimation of these

13



guantities. Accordingly, we adopted simplifying @sgtions that result in different algorithms for
the proposed AL technique. These algorithms armegfunder either i) the assumption of class-
conditional independence, or ii) the assumptioteaiporal independence between multitemporal
images.

AL Algorithm Defined Under the Assumption of Cl&@ssiditional Independence (JEAL):
According to the simplified approach usually addpte compound classification, initially we

work under the assumption of class-conditional peaiwlence in the time domain.e.,

P(X,;: %, @, ¥) = (% |@) | % | ¥). Under this assumption, we can write:

o p(x ) PO%; | ) R, )
P 1 VK jl ] - :J J (5)
@45 %) > D[ pOx; ) pO% | ¥) Red, v) ]
wQ v, [N

In this conditionP(«, V) is the only term that models the temporal depenel&@tween the two

images,i.e., we use only the prior knowledge on the possilalie pf labels and not the temporal

dependence in the measured reflectance. Thusri4)eceewritten as

H(lei”‘zj):
Ty p(%;lw) POx, |¥) Rey, y) 0 B xlw) bxlY) DY
400 DN Z Zl:p(xl,j|a)s) p(xz,j|V) Ra, V)] z Z[ FQB,(1|WS) p%ﬂ N R, r\)]

w;0Q v,ON ws0Q v,[ON

(6)

H(xlyj,xzyj) expresses the confidence of the decision 8n,&,;) taking into account the

temporal dependence between multitemporal imagedel®d by the joint prior probabilities
P(«w,v). The temporal dependence between reflectance mesage. the possible correlation
between the signals measured on the two pixelsidenesl) is neglected. This is a reasonable

tradeoff between the complexity of the estimatioabem of joint conditional probabilities and

the simplistic assumption of temporal independence.
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AL Algorithm Defined Under the Assumption of Terapémdependence Between Multitemporal
Images (JEAlq):

In order to further simplify the estimation of tj@nt conditional posterior probabilities given in
(4), we can introduce a stronger simplifying asstiompconsidering also the independence of a-

priori class probabilities in the two imagese( P(w,v )= P(w)Fy)). According to this

additional assumption, the ter®(«, \, ‘ X ;s %,;) can be rewritten as:

POx, [e) B0, [¥) Rew) R ¥)
2 [POx; ) PU%;]¥) Rap) R y) | (7)

w0Q,v,0ON

P(a‘?’vk‘)i,j’ %)=

Thus the joint entropy defined in (6) becomes:

H(Xl,i’xz,J):
vy PO, ) PO, V) R) RY) b xlw) bx[Y &) RY
GG Y Y e l@) px VIR R | X D exl@) 6x]Y &) @Y
@0Q v,IN @,0Q v,ON
(8)
Equation (8) can be rewritten as:
H(Xl,j’xz,i):
y P(x, |«) P(@) j0g| — % &) Rev) > ix M) RY
&2 [ PO a)P@) | 7 [ Ot w) R | [dF D[ #x,[ v Ry
ws0Q ws0Q v, ON (9)
B P(%; [\) A(Y) 0 P(%,; [\) A(Y) > i X @) Ra)
B[ POs R || D[ PO [ RY) | a3 D[ H X w) Ra) |
v, ON v, ON @00

As expected, the last element of each term in (Rjaks to 1. Thus, since marginal entropies

H(x ;) andH(x,;) are defined as
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(10)

under the considered assumptions of independeregotht entropy is equal to the sum of

marginal entropies computed on each image,

H(Xl,j'x2,j):H(le)+H(X2j)- (11)
Under the above-mentioned assumptions, we dersmnplified version of the joint entropy based
AL method (JEALyg), which selects the most uncertain pairs of sampteording to the sum of
marginal entropies, assuming temporally indepenelebetween multitemporal images. This
means assuming that mutual information among tiseperio. Indeed, from the information theory
we can write [31]:

H(X,;, %) = H(X; )+ H(%,; ) = MI(x; , X)) (12)

where MI (X, ;,X,;) shows the mutual information betwee, and x,;. A comparison between
(11) and (12) confirms that in the case of tempordépendence assumptiddl (x, ;,X,;) =0. As

a result of the adopted assumptions, the paranest@mation step is simplified whereas the
advantage of exploiting the prior information oe ttlass temporal dependence is lost.
By analyzing JEAL and JEAl4 in greater detail, we can have a better undersigraf the

difference between AL applied to single imagessediin the context of compound classification.

In the JEAL.q algorithm, the sum of marginal entropigd(x,;) and H(x,;) models the

uncertainty of a pair of spatially correspondinggbé (xl'j,le.)DU and the samples with

maximum sum of marginal entropies are selectednasrtain. High joint entropy values can be

16



obtained in the following cases: i) a sample hasirarertain label simultaneously for both single-
date imagesile., marginal entropiedd (x ;) and H(x,;) are both high], or ii) a sample shows

uncertainty at least on one of the single-date asdge., only one marginal entropy value is high,

thus the sum of the marginal entropies can be hlgth)e joint entropy is small, the corresponding

pair of samples is classified with high confideeceboth images,e., marginal entropies (x, ;)

and H(x,;) are both low. On the contrary, in the case of JE#d MI (x, ;,X,;) may be different

from zero. This means that the final uncertaintytios selected pair of pixels depends not only on

the marginal entropies but also on the mutual métron which is modeled b¥(«,V,). In this
caseMI (x,;,X,;) is zero only if class labels are independent enttio images. We also observe

that in the case in whicP(«w,v,) have the same values for all possible pairs dsela (land-

cover transitions with the same probability) the@gpaf samples selected by JEAL and JEkAkre

the same. Despite considering marginal entropiedLq still exploits some information from
multitemporal imagesi.e., it analyzes pixels with the same coordinate an tthio images that
correspond to the same areas on the ground. Aefusimplification can be obtained measuring
the uncertainty by independently exploiting the giaal entropies on each considered image. In
other words, we can also neglect the only remaitengporal information in JEAkg, Which is the
spatial correspondenc® pixels. The marginal entropy based AL algoritfMEAL), which
selects the most uncertain unlabeled samples fremgle-date image on the basis of the standard
marginal entropyi(e., ignoring the temporal dependence between imduesalready been used
for single-date image classification in [15]. Inder to use MEAL in compound classification,
marginal entropy of each unlabeled sample can lmeileéed according to (11). At each iteration,
the most uncertail/ 2 unlabeled samples of the image acquired at tiraed the most uncertain
h/2 unlabeled samples of the image acquired at tinage selected. These samples are merged

into a set oh uncertain pairs of samples. Since the same pawr®easelected more than one time,

17



the redundant (repetitive) ones are replaced wih mext most uncertain pair. Finally, the

supervisolS adds labels to the uncertain pairs of samplesatteathen added to the training set.

V. DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS

A. Data set description

Experimental analyses are conducted on two mulpteal data sets. The first data set is made up
of two multispectral images acquired by the Quickbnultispectral sensor on the city of Trento,
Italy, in October 2005 and July 2006. In the preegssing phase both images were pan-sharpened
and co-registered. The two images of this dateslsate six land-cover classes] water, bare
soil, vegetation, road, shadow, building]. Fivefeliént kinds of land-cover transitions can be
identified between the two imagese(, from vegetation to bare soil, from bare soil eggtation,
from shadow to bare soil, from shadow to water, faoch shadow to vegetation). This data set has
a test seTSof 2083 pairs of samples and a ptobf 1868 pairs of samples. Table | and Table I
show the number of samples corresponding to eauhdaver transition occurred between the
images for the pool and the test set, respectialym the poolJ, 10 pairs of samples related to
each land-cover transition are randomly selecteihiaal training samples (therefore the training
setT has 100 pairs of samples) and the remaining sanapéeconsidered as unlabeled. As one can
see from the tables, the land-cover transition felradow to vegetation is not represented in the
pool U. Nonetheless, as it occurred, it has been inclinléige test seT Sfor accuracy assessment
purposes.

The second data set is made up of two co-registendtispectral images acquired by the
Landsat-5 satellite on the Island of Sardiniayltah September 1995 and July 1996. The images
share five land-cover classas( pasture, forest, urban area, water, vineyard)remthnd-cover
changes are observed. Table Il and Table IV shmMdnd-cover classes and the related number

of sample pairs used in the experiments for thd and the test set, respectively. The test set has
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1949 samples and the pool has 2249 samples. FepotiU, 20 pairs of samples related to each
land-cover transition are randomly selected asainitaining samples (therefore the training set

has 100 pairs of samples) and the remaining saraptesonsidered as unlabeled.

TABLE |. NUMBER OF SAMPLE PAIRS IN U FOREACH LAND-COVER TRANSITION (TRENTO DATA SET).

Jul

200)23 Water | Bare soil | Vegetation | Road | Shadow | Building Total
October (W) (Vo) (») (a) (%) (Vo)
2005
Water () 352 - - - - - 352
Bare soil () - 234 276 - - - 510
Vegetation () - 62 276 - - - 338
Road (a) - - - 241 - - 241
Shadow(as) 77 70 - - 101 - 248
Building (&) - - - - - 179 179
Total 429 366 552 241 101 179 1868

TABLE Il. NUMBER OF SAMPLE PAIRS IN TSFOREACH LAND-COVER TRANSITION (TRENTO DATA SE7).

Jul

200{3 Water | Bare soil | Vegetation | Road | Shadow | Building Total
October (W) (1) (a) (va) (vs) (Vo)
2005
Water (a,) 466 - - - - - 466
Bare soil () - 254 225 - - - 479
Vegetation () - 213 161 - - - 374
Road (ay) - - - 223 - - 223
Shadow(as) 108 50 52 - 93 - 303
Building (&) - - . - - 238 238
Total 574 517 438 223 93 238 2083

TABLE Ill. NUMBER OF SAMPLE PAIRS INU FOREACH LAND-COVER TRANSITION (SARDINIA DATA SET).

Jul

199{3 Pasture | Forest | Urban Area | Water Body | Wineyard Total
Septembe (n) (») () (va) (vs)
1995
Pasture («,) 554 - - - - 554
Forest () - 304 - - - 304
Urban Area (az) - - 408 - - 408
Water Body (cu) - - - 804 - 804
Wineyard () - - - - 179 179
Total 554 304 408 804 179 2249

19



TABLE IV. NUMBER OF SAMPLE PAIRS IN TSFOREACH LAND-COVER TRANSITION (SARDINIA DATA SET).

Jul

199):3 Pasture | Forest | Urban Area | Water Body | Wineyard Total
Septembe (v) (v2) (v3) (Va) (vs)
1995
Pasture (@) 589 - - - - 589
Forest (a,) - 274 - - i 274
Urban Area (as) - - 418 - - 418
Water Body () - - - 551 - 551
Wineyard (as) - - - - 117 117
Total 589 274 418 551 117 1949

B. Design of experiments

We carried out experiments with batch size valbe$0 and h=20. The prior probabilities

(P(w), @UQ, and P(v), v,ON) and the class probability density functionp((g'j|cq),
p(x2’j|\4()) are estimated from the training set. Accordinghe remote sensing literature [32],

class probability density functions are assumetbd¢oGaussian. The joint prior probabilities of

classesP(@w, Vv, ), @ 0Q, v, N are calculated by exploiting the EM algorithm a@he threshold

value to stop iterations is fixed to 0.001 as ih At each iteration of the AL process, the estiesat
of prior probabilities, class probability densityntctions and joint prior probabilities of classes a
updated. All experimental results are given asatierage accuracy obtained in 10 trials related to
10 initial randomly selected training sets. The2 s final training set is fixed to 400 for bothtaa
sets.

For both Trento and Sardinia multitemporal datas,sete carried out two kinds of
experiments: i) the first set of trials assesseseffiectiveness of the proposed AL method defined
under the considered simplifying assumptionise.,[ the JEAL algorithm (which uses the
assumption of class-conditional independence intithe domain), the JEAkg algorithm (which
assumes temporally independence between the imamad)the MEAL algorithm (which also

neglects spatial correspondence among pixels)],iiqride second set of trials is devoted to the
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comparison of the proposed AL method defined famgound classification with a marginal
entropy based AL method applied to a post-claggibio comparison technique (AL-PCC). The
post-classification comparison technique is defilgd using a standard Bayesian maximum
posterior probability classifier for each image endthe Gaussian assumption for class
distributions. AL-PCC is implemented by initiallglecting the set ofi uncertain samples from
each single image (independently from the othergemaon the basis of marginal entropy (see
(10)), and then performing post-classification camgon.

In order to further assess the reliability of thepgmsed technique, we also compared the
robustness to registration noisee( effects of non perfect alignment between multpgenal
images) of both the proposed method and the AL-R&€Bnique. To this end, imafiewas shifted
of a given number of pixels in the horizontal ahd vertical directions. In the following, the value
of the displacement will be indicated with a pdinambers i§,m) that indicate the amount and the
direction of the shift in pixelsn is positive for shifts in right direction and néiga otherwise,

while mis positive for upward shifts and negative otherwi

VI. EXPERIMENTAL RESULTS

A. Trento Data Set

In the first set of trials, we compare the effeetiess of proposed AL algorithms with each other
in the context of compound classification. Fig.n®ws the average (on 10 trials) accuracies in the
detection of land-cover transitions versus the nemmtf training samples obtained by JEAL,
JEALnq and MEAL algorithms wheh=10 andh=20. The results show that accuracies of JEAL,
JEALg and MEAL are quite similar at early iterations, esas those of JEAL significantly
increase with the size of the training set. MorepVE=AL reaches convergence in a smaller
number of iterationsi.e., with a smaller number of labeled pairs of samjplasn the other

algorithms. MEAL algorithm provides in general mualgher accuracies than JEfLin case of
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h=10, and slightly higher accuracies in casene20. As an example (see Fig.3a that refers to
h=10), the JEAL algorithm provides an accuracy of69% with only 190 samples, whereas
JEALg and MEAL reach a similar accuracy with almost 3#mples. Moreover, the JEAL
algorithm yields an accuracy of 98.22% with 400 gke®, whereas the accuracies obtained by
using the full pool as training set (1868 sample$8.51%. The higher accuracy obtained by the
guery based on MEAL than that of the query basedEAL,qg might appear unexpected. However
it can be explained by the fact that if we do nabtded the dependence by the joint prior
probabilities of classesg., if we neglect almost all the temporal informatiarorking on the joint
entropies of pixels may result misleading (and tless effective) than selecting the most uncertain

pixels for each image.
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Fig. 3. Average (on 10 trials) overall accuracyhe detection of land-cover transitions obtainedubing the JEAL,
JEAL,,q and MEAL algorithms when (d=10 and (bh=20 and the full pool as training set (Trento d=§.
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(Trento data set).
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In the second set of trials, we compare the effengss of JEAL and AL-PCC. Fig. 4 shows
the obtained results in terms of the average ovacauracy in the detection of the land-cover
transitions. By analyzing the figure, one can obsehat the JEAL algorithm leads to the highest
accuracies for all the iterations and significardlytperforms the AL-PCC method. These results
demonstrate: i) the effectiveness of compound ifieason technique, and ii) the effectiveness of
joint entropy criterion for query in AL. Table V dnTable VI show the average (on 10 trials)
accuracies for each land-cover transitions obtalmethe JEAL and AL-PCC, respectively at the
8th iteration (.e., the training data set includes 180 pairs of saspl As one can see from the
tables, the accuracies obtained by the JEAL algworiare significantly higher than those yielded
by AL-PCC for all the transitions but the shadowwater and the shadow to vegetation ones. This
is due to the fact that the shadow class is detegith a very high accuracy (almost 100%) in the
October image; thus the transitions that involve shadow class result in a high accuracy even
with the post-classification comparison technigNenetheless, the general effectiveness of the
techniques should be evaluated taking into accthenoverall accuracy.

Table VII shows the performances of both JEAL andR*CC at the & iteration (.e., the
training data set includes 180 pairs of samplesfleunvarious amounts of simulated
misregistration,i.e., with different values ofn;m). From the table, one can observe that any
possible misregistration between images decredsespérformance of both methods when
compared to the ones achieved with perfectly atigineages ife., (n,m)=(0,0)]. However, JEAL
always performs better than AL-PCC, thus pointingt @s robustness to the presence of
registration noise. As an example, in the casengh)€(-1,0), the accuracy of JEAL is 96.20%

whereas that of AL-PCC is 92.97%.
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TABLE V. AVERAGE (ON 10 TRIALS) ACCURACIES(%) OF EACH LAND-COVER TRANSITION OBTAINED BY
JEAL (TRENTODATA SET)

Jul

200323 Water | Bare soil | Vegetation | Road | Shadow | Building
October (W) (Vo) (Va) (V) (Vs) (V)
2005
Water («,) 99.89 - - - - -
Bare soil () - 100 96.80 - - -
Vegetation () - 100 100 - - -
Road () - - - 97.04 - -
Shadow(as) 95.92 100 75.76 - 94.08 -
Building (&) - - . - 94.36

TABLE VI. AVERAGE (ON 10 TRIALS) ACCURACIES(%) OF EACH LAND-COVER TRANSITION OBTAINED BY
AL-PCC(TRENTODATA SET).

Jul

200325 Water | Bare soil | Vegetation | Road | Shadow | Building
October (W) (Vo) (v) (Va) () (Vo)
2005
Water («,) 99.59 - - - - -
Bare soil (ap) - 99.56 96.31 - - -
Vegetation () - 99.95 100 - - -
Road () - - - 87.35 - -
Shadow(as) 96.66 100 84.03 - 93.01 -
Building (&) - - - - - 80.46

TABLE VII. AVERAGE (ON 10 TRIALS) OVERALL ACCURACIES(%) PROVIDED BY JEAL AND AL-PCC
UNDER DIFFERENTMISREGISTRATIONCONDITIONS (TRENTODATA SET).

Amountof | Overall Accuracy (%)
Misregistration

(n,m) JEAL AL-PCC
(0,0) 97.42 94.45
(+1,0) 96.02 92.68
(-1,0) 96.20 92.97
(0,+1) 95.92 93.30
(0,-1) 96.78 93.71
(+1,+1) 94.78 92.26

B. Sardinia Data Set

Fig. 5 shows the behavior of the average (on Hsdroverall accuracies obtained by the proposed
AL algorithms in the detection of land-cover trdimsis versus the number of training samples on
the Sardinia data set. By analyzing the figure, cae observe that the JEAL algorithm, again,

provides the highest accuracies for most of thetitens and for both values of Moreover, it
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reaches convergence in a smaller number of iteratiban the other methods. In this case, the
JEALg algorithm provides slightly higher accuracies thihe MEAL one for both values df.

The JEAL algorithm achieves an accuracy of 95.53% wnly 170 samples, whereas the JRAL
and the MEAL techniques could not obtain such auaxy. The accuracy yielded using the full
pool as training set (2249 samples) is 93.22%, adsethe highest accuracies obtained by JEAL,
JEALg and MEAL are 95.53% (with 170 samples), 94.81%tH{wi60 samples), and 94.84 %
(with 280 samples), respectively. The reason ofeaiing higher accuracies with JEAL, JEAL
and MEAL compared to the case of using the whola pe training set is related to the presence
of noisy samples (or outliers) in the pool. Theampgles do not properly model the distribution of
test pixels. It is worth nothing that an outliereispected to be assigned to a wrong class by the
classifier with high confidencd.¢., with low uncertainty); accordingly, it is not seted as an
uncertain sample by the proposed AL method. Frdrthalresults, we can observe that, when the
compound classification is considered, the unaettacriterion based on joint entropy that
considers temporal dependence between multitemporages i(e., JEAL) can improve the
classification accuracy with respect to the statidaarginal entropyif., MEAL) as well as the
sum of entropiesi.e., JEALnqg). This demonstrates the importance of informatonveyed by
temporal dependence between multitemporal imagesdtmizing the definition of the training

sets.
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Fig. 6 shows the comparison of the accuracies endétection of land-cover transitions
obtained by JEAL and AL-PCC for both valueshofOne can observe that the JEAL algorithm
results in the highest accuracy at each iteratibenvcompared to the AL-PCC method. These
results confirm the effectiveness of both the conmabclassification and the proposed AL method
based on the JEAL criterion. The average (on Hsjriaccuracies on the detection of each land-
cover transition obtained by JEAL and AL-PCC areveh in TABLE VIII and Table IX,
respectively, at the 7th iteratione(, the training data includes 170 pairs of samplEs)m the
tables, one can see that the accuracies obtainAd{RCC is significantly improved by exploiting
JEAL.

Table X shows the accuracies provided by both JBAd AL-PCC at theth iteration (.e.,
the training data set includes 170 pairs of samddgsintroducing misregistration between the
images. The results are provided for different am®wf misalignmentnim). By analyzing the
table, one can see that also on this data setrtpoged method is always more accurate than the
AL-PCC technique. As an example, in the casengh)&(-1,0), the accuracy of JEAL is 95.57%,
whereas that of AL-PCC is 88.17%. It is worth ngtthat on this data set the accuracies obtained
with misaligned images are not always lower thars¢hyielded with co-registered images. This is

mainly due to the fact that the available grounéerence samples are mainly related to
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homogeneous areaise(, they are not close to the class borders), ansl tties misregistration does

not imply misclassification.

TABLE VIII. AVERAGE (ON 10 TRIALS) ACCURACIES(%) ON EACH LAND-COVER TRANSITION
OBTAINED BY JEAL (SARDINIA DATA SET).

July
1996
Septembe
1995

Pasture

(W)

Forest

(Vo)

Urban Area

(Va)

Water Body
(va)

Wineyard
(vs)

Pasture ()

94.97

Forest (a,)

94.39

Urban Area (as)

Water Body ()

Wineyard ()

AL-PCC (SARDINIA DATA SET).

TABLE IX. AVERAGE (ON 10 TRIALS) ACCURACIES(%) ON EACH LAND-COVER TRANSITION OBTAINED BY

July
1996
Septembe
1995

Pasture

(W)

Forest

(V2)

Urban Area

(Va)

Water Body
(va)

Wineyard
(vs)

Pasture ()

82.05

Forest (a,)

92.26

Urban Area (as)

Water Body ()

Wineyard ()

TABLE X. AVERAGE (ON 10 TRIALS) OVERALL ACCURACIES(%) PROVIDED BY JEAL AND AL-PCC UNDER

DIFFERENTMISREGISTRATIONCONDITIONS (SARDINIA DATA SET).

Amount of Overall Accuracy (%)
Misregistration
(n,m) JEAL AL-PCC
(0,0) 95.53 87.43
(+1,0) 95.16 87.47
(-1,0) 95.57 88.17
(0,+1) 95.98 86.96
(0,-1) 94.99 86.89
(+1,+1) 95.40 87.60
VIl. DiscUsSION AND CONCLUSION

In this paper, active learning for the detectionasfd-cover transitions in multitemporal remote

sensing images has been addressed. This has beenbgantroducing active learning in the
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framework of the compound classification and préagra novel uncertainty criterion defined in
the context of Bayes rule for compound classifaatiThe proposed uncertainty criterion is based
on the joint entropy associated with the compouladsification decisions and is implemented
under different simplifying assumptions on the temah dependence between images. The first
assumption considers the class-conditional indegec®l in the time domain. This assumption is
necessary because, as explained in the paperadtiqe it is very difficult to define a trainingtse
suitable for a reliable estimation of the joint ddaional posterior probabilities of all possible
combinations of classes. Under this assumptionutieertainty of a pair of samples is evaluated
taking into account the temporal dependence modejethe joint prior probabilities of classes
(JEAL algorithm). The second stronger assumptiamoduces temporal independency among
prior probabilities of classes together with thedithesis of class-conditional independence in the
time domain. This results in the calculation of jbiat entropy of corresponding pairs of pixels as
the sum of marginal entropiese., the mutual information between decisions is agslito be
zero (JEALqg algorithm). The third assumption also neglectsittiermation associated with the
spatial correspondence of pixels (MEAL algorithrA)l the derived active learning algorithms
have been theoretically and experimentally comparigial each other. Experimental results show
that using the temporal dependence in the defmitibactive learning for compound classification
problems ie. exploiting the definition of joint entropy obt&d under the first assumption)
results in higher accuracies in the detection eflimd-cover transitions than the other algorithms
when the same number of labeled samples are coedidérom another perspective, the JEAL
algorithm can achieve the same accuracy achievedthmr techniques with a sharply smaller
number of labeled samples. This is a very significavantage, given the complexity and the cost
of the collection of reference samples, especially multitemporal context. Summarizing, we can
state that:

1) JEAL exploits in the query function the temporapededence between images modeled by
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both the prior joint probabilities of classes ahd torresponding spatial position of pixels.

2) JEALnq exploits in the query function as only source efmporal information the
corresponding spatial position of pixels (which dae misleading when the prior joint
probabilities of classes are modeled as the prodfithe marginal prior probabilities of
classes on each single image).

3) MEAL assumes complete independence between imadhs guery function.

In the experimental analysis we also compared ttopgsed active learning algorithms
defined in the context of compound classificatioihwa marginal entropy based active learning
technique based on the post-classification compariBy this comparison, we observed that the
accuracies in the detection of land-cover trans#timbtained by active learning with post-
classification comparison are significantly incredsby the proposed technique thanks to the
information extracted from temporal dependence betwimages in both the active learning and
the classification tasks. In addition, we also gpedl the effects of registration errors on the
performance of both techniques. By this analysis,albiserved that the residual misregistration
between images may decrease the classificatioompeahce of both technigques. Nonetheless, the
proposed algorithm still outperforms the AL-PCCoalls presence of misregistration.

As a final remark, we would like to point out thhie use of efficient techniques for the
exploitation of supervised change-detection methadseal applications is becoming more and
more important. This is due to the increased corifyief the first generation of the satellite VHR
and hyperspectral images, which decreases thetigéfieess of unsupervised change-detection
methods. In this context, the proposed approackeiig promising as it allows to optimize the
definition of a multitemporal training set to beedsin change detection, decreasing significantly
the cost and effort required for multitemporal refece data collection.

As a future development of this work, we plan tdeex the proposed active learning

algorithms by including a diversity criterion defoh in the context of compound classification.
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This criterion should consider the concept of dsitgrin the selection of unlabeled pairs of

samplesj.e., it should select uncertain samples that are digerse to each other to reduce the

possible redundancy in the defined training seaddition, we are also investigating the use of the

proposed active learning algorithms when constsaomt some available labels.g, on the first

image) are given.
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