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Abstract— This paper investigates different batch mode adiaening techniques for the
classification of remote sensing (RS) images withp®rt vector machines (SVMs). This is done
by generalizing to multiclass problems techniquefneéd for binary classifiers. The investigated
techniques exploit different query functions, whate based on the evaluation of two criteria:
uncertainty and diversity. The uncertainty critarics associated to the confidence of the
supervised algorithm in correctly classifying thensidered sample, while the diversity criterion
aims at selecting a set of unlabeled samples tlgatag more diverse (distant one another) as
possible, thus reducing the redundancy among tleeted samples. The combination of the two
criteria results in the selection of the potenyiatiost informative set of samples at each iteration
of the active learning process. Moreover, we prepasiovel query function that is based on a
kernel clustering technique for assessing the dityeof samples and a new strategy for selecting
the most informative representative sample fromheeaster. The investigated and proposed

techniques are theoretically and experimentally mamed with state-of-the-art methods adopted



for RS applications. This is accomplished by coasiy VHR multispectral and hyperspectral
images. By this comparison we observed that thpgeed method resulted in better accuracy with
respect to other investigated and state-of-thensthods on—beth the considered data sets.
Furthermore, we derived some guidelines on thegdesif active learning systems for the

classification of different types of RS images.

Index Terms — Active learning, query functions, image classificabn, hyperspectral

images, very high spatial resolution images, suppbvector machines, remote sensing.

l. INTRODUCTION

Land cover classification from RS images is gemgrperformed by using supervised
classification techniques, which require the avmlity of labeled samples for training the
classification algorithm. The amount and the qyadit the available training samples are crucial
for obtaining accurate classification maps. Howevke collection of labeled samples is time
consuming and costly, and the available trainingas are often not enough for an adequate
learning of the classifier. A possible approachattress this problem is to exploit unlabeled
samples in the learning of the classification athom according to semisupervised or transductive
classification procedure. The semisupervised ambrb@as been widely investigated in the recent
years in the RS community [1]-[5]. A different appch to both enrich the information given as
input to the supervised classifier and improvestatistic of the classes is to iteratively expamal t
original training set according to a process tlguires an interaction between the user and the
automatic recognition system. This approach is knaomvthe machine learning community as
active learning (AL) and, although marginally calesied in the RS community, can result very
useful for different applications. The AL processonducted according to an iterative process. At
each iteration, the most informative unlabeled dampre chosen for a manual labeling and the
supervised algorithm is retrained with the addiidiabeled samples. In this way, the unnecessary
and redundant labeling of non informative sampéeavioided, greatly reducing the labeling cost
and time. Moreover, AL allows one to reduce the potational complexity of the training phase.
In this paper we focus our attention on AL methods.

In RS classification problems, the collection didéed samples for the initial training set and

the labeling of queried samples can be derivedrdoupto: 1) in situ ground surveys, which are



associate to high cost and required time; 2) thpegxnterpretation of color compositémage
photointerpretation) which is cheaper and faster; or 3) hybrid solwgiowhere both
photointerpretation and ground surveys are used.choice of the labeling strategy depends on
the considered problem and image type. For exanydecan reasonably assume that for the
classification of very high resolution (VHR) imagéise labeling of samples can be easily carried
out by photointerpretation. The metric or sub-neetgsolution of these images allows a human
expert to identify and label the objects on theug on the basis of the inspection of their
geometric and spectral properties in real or falder compositions. In case of medium (or low)
resolution multispectral images and hyperspectath ére considered, the land-cover classes are
characterized only on the basis of their spectgalagures (the geometric properties of the objects
are not visible and cannot be used by the photqrgter, and usually cannot be recognized with
high reliability by a human expert. For examplepéngpectral data, thanks to a dense sampling of
the spectral signature, allows one characteriziagemal different land-cover classes (e.qg.,
associated to different arboreal species) thatataoe recognized by a visual analysis of different
false color compositions. Thus, in these casesmgf@aurvey are necessary for the labeling of
samples.

On the basis of the aforementioned consideratiaepending on both the type of
classification problem and the type of data, thst @nd time associated to the labeling process
significantly changes. These different scenariggiire the definition of different AL schemes: we
expect that in cases where photointerpretationssiple, several iterations of the labeling step ar
feasible; whereas in cases where ground truth gsiraee necessary, only few iterations of the AL
process are doable, because of both high cost emuired time associated with in situ data
collection.

Most of the previous studies in AL have focusedsefecting the single most informative
unlabeled sample to include in the training setath iteration, by assessing its uncertainty [6]-
[12]. This can be inefficient, since the classifies to be retrained for each new labeled sample
added to the training set. This approach can bgpnogriate for RS image classification tasks for
the abovementioned reasons. Thus, in this papdoeus on batch mode active learning, where a
batch ofh>1 unlabeled samples is queried at each iteratior. prbblem with such an approach
is that by selecting the samples of the batch enbisis of the uncertainty only, some of the
selected samples could be similar to each othertlams do not provide additional information for
the model updating with respect to other sampldabhénbatch. The key issue of batch mode AL is
to select sets of samples with little redundan@y tteat they can provide the highest possible

information to the classifier. Thus, the query fliow adopted for selecting the batch of the most



informative samples should take into account twanncateria: 1) uncertainty, and 2) diversity of
samples [13]-[15]. The uncertainty criterion is @sated to the confidence of the supervised
algorithm in correctly classifying the consideresimple, while the diversity criterion aims at
selecting a set of unlabeled samples that are as dierse (distant one another) as possible, thus
reducing the redundancy among the selected samjflescombination of the two criteria results
in the selection of the potentially most informatiset of samples at each iteration of the AL
process.

The aim of this paper is to investigate differerit fechniques proposed in the machine
learning literature and to properly generalize thtanthe classification of RS images with
multiclass problem addressed by support vector mash(SVMs). The investigated techniques
use different query functions with different stigigss to assess the uncertainty and diversity
criteria in the multiclass case. Moreover, we psga novel query function that is based on a
kernel clustering technique for assessing the diiyeof samples and a new strategy for selecting
the most informative representative sample fromhedaster. The investigated and proposed
techniques are theoretically and experimentally mam@ad among them and with other AL
algorithms proposed in the RS literature in thesgifécation of VHR images and hyperspectral
data. On the basis of this comparison some guiglelanre derived on the use of AL techniques for
the classification of different types of RS images.

The rest of this paper is organized as follows.tiSecll reviews the background on AL
methods and their application to RS problems. 8edti presents the investigated batch mode AL
techniqgues and the proposed generalization to cass problems. Section IV presents the
proposed novel query function based on kernel efurggy and an original selection of cluster most
informative samples. Section V presents the detsonpof the three considered data sets that
include both VHR and hyperspectral images and gsga of experiments. Section VI illustrates
the results obtained by the extensive experimemtalysis carried out on the considered data sets.

Finally, Section VII draws the conclusion of thisnk.

[l. BACKGROUND ON ACTIVE LEARNING

A. Active Learning Process

A general active learner can be modeled as a quian(G, Q, S T, U) [6]. G is a supervised
classifier, which is trained on the labeled tramnsetT. Q is a query function used to select the
most informative unlabeled samples from a pdobf unlabeled sample§ is a supervisor who
can assign the true class label to any unlabeletpleaof U. The AL process is an iterative

process, where the supervis8rinteracts with the system by iteratively labelitije most



informative samples selected by the query functipmat each iteration. At the initial stage, an
initial training setT of few labeled samples is required for the firsirting of the classifies.
After initialization, the query functio is used to select a set of samp¥eom the poolU and
the supervisofs assigns them the true class label. Then, theselalmsied samples are included
into T and the classifieG is retrained using the updated training set. Tlheedl loop of querying
and retraining continues for some predefined it@nat or until a stop criterion is satisfied.

Algorithm 1 gives a description of a general AL g@es.

Algorithm 1: Active Learning procedure

1. Train the classifieG with the initial training seT

2. Classify the unlabeled samples of the pdol

Repeat

3. Query a set of samples (with query funct@nfrom the poolJ
4. A label is assigned to the queried samples byubpersisorS
5. Add the new labeled samples to the traininglset

6. Retrain the classifier

Until a stopping criteria is satisfied.

The query functiorQ is of fundamental importance in AL techniques, vkhaften differ
only in their query functions. Several methods hbgen proposed so far in the machine learning
literature. A probabilistic approach to AL is prated in [7], which is based on the estimation of
the posterior probability density function of thiasses both for obtaining the classification rule
and to estimate the uncertainty of unlabeled sasnphethe two-class case, the query of the most
uncertain samples is obtained by choosing the ssmgdbsest to 0.5 (half of them below and half
above this probability value). The query functioogosed in [16] is designed to minimize future
errors, i.e., the method selects the unlabelecipathat, once labeled and added to the training
data, is expected to result in the lowest errotest samples. This approach is applied to two
regression models (i.e., weighted regression antiung of Gaussians) where an optimal solution
for minimizing future error rates can be obtainadciosed form. Unfortunately, this solution is
intractable to calculate the expected error rateniost classifiers without specific statistical
models. A statistical learning approach is usedlif] for regression problems with multilayer
perceptron. In [18], a method is proposed thatcsglthe next example according to an optimal
criterion (which minimizes the expected error ratefuture test samples), but solves the problem
by using a sampling estimation. The authors in [if@&sent two techniques for estimating future
error rate. In the first technique, the future emnate is estimated by log-loss using the entrapy o

the posterior class distribution on the set of belad samples. In the second technique, a 0-1 loss



function using the posterior probability of the mpeobable class for a set of unlabeled samples is
used. Instead of estimating the expected error theefull distribution, the error is measured over
the samples in the pobl. Furthermore, the estimation of the error is af®diusing the learner at
the previous iteration. The query function causesdelection of the examples which maximize
the sharpness of learner’s existing belief overuhi@beled examples. The method is implemented
using naive Bayes.

Another popular paradigm is given by committee-dasetive learners. The “query by
committee” approach [19]-[21] is a general AL aitfun that has theoretical proofed guarantees
on the reduction in prediction error with the numbéqueries. A committee of classifiers using
different hypothesis about parameters is trainddlel a set of unknown examples. The algorithm
selects the samples where the disagreement betieatassifiers is maximal. In [22], two query
methods are proposed that combine the idea of goergommittee and that of boosting and
bagging.

An interesting category of AL approaches, which éhayained significant success in
numerous real-world learning tasks, is based orusigeof support vector machines (SVMs) [8]-
[14]. The SVM classifier [23]-[24] is particularlpuited to AL due to its intrinsic high
generalization capabilities and because its claasibn rule can be characterized by a small set of
support vectors that can be easily updated overesso/e learning iterations [12]. One of the most
popular (and effective) query heuristic for act&¥M learning is margin sampling (MS), which
selects the data point closest to the current atipgrhyperplane. This method results in the
selection of the unlabeled sample with the lowesifidence, i.e., the maximal uncertainty on the
true information class. The query strategy propasddO] is based on the splitting of the version
space [10],[13]: the points which split the curremtrsion space into two halves having equal
volumes are selected at each step, as they ary likebe the actual support vectors. Three
heuristics for approximating the above criterioa described; the simplest among them selects the
point closest to the hyperplane as in [8]. In [8) approach is proposed that estimates the
uncertainty level of each sample according to tiput score of a classifier and selects only those
samples whose outputs are within the uncertaintgealn [11], the authors present possible
generalizations of the active SVM approach to rolaltis problems.

It is important to observe that the abovementiomethods consider only the uncertainty of
samples, which is an optimal criterion only for tbelection of one sample at each iteration.
Selecting a batch dfi >1 samples exclusively on the basis of the uncestgimg., the distance to
the classification hyperplane) may result in tHecen of similar (redundant) samples that do not

provide additional information. However, in manyoplems it is necessary to speed up the



learning process by selecting batches of more ¢tim@nsample at each iteration. In order to address
this shortcoming, in [13] an approach is presergspecially designed to construct batches of
samples by incorporating a diversity measure thatsiclers the angles between the induced
classification hyperplanes (more details on thisrapch are given in the next section). Another
approach to consider the diversity in the querycfiom is the use of clustering [14]-[15]. In [14],
an AL heuristic is presented, which explores thestaring structure of samples and identifies
uncertain samples avoiding redundancy (detailfigfdpproach are given in the next Section). In
[25]-[26], the authors present a framework for batwode AL that applies the Fisher information
matrix to select a number of informative examplesustaneously.

Nevertheless, most of the abovementioned approaieedesigned for binary classification
and thus are not suitable for most of the RS diaation problems. In this paper, we focus on
multiclass SVM-based AL approaches that can seldmtch of samples at each iteration for the
classification of RS images. The next subsecti@aviges a discussion and a review on the use of
AL for the classification of RS images.

B. Active learning for the classification of RSalat

Active learning has been applied mainly to texegatization and image retrieval problems.
However, the AL approach can be adopted for theraative classification of RS images by taking
into account the specific features of this dom&nRS problems, the supervis8ris a human
expert that can derive the land-cover type of treaan the ground associated to the selected
patterns according to the three possible strategoestified in the introduction, i.e.,
photointerpretation, ground survey, or hybrid s®gss. Here, these different strategies are
associated with significantly different costs amdets, and the choice of the strategy (and thus the
costs and times) depends on the considered ctagif problem. The image photointerpretation
is relatively cheep but it strongly depends on expeability to reliably identify the correct labef
selected samples. The cost of ground surveys imalty much higher and depends on the
considered area. According to these strategiedAlth@pproach can be run as 1) interactive expert-
guided classification tool or 2) in-situ groundseys planning and supervised classification tool.
In [27], the AL problem is formulated consideringspatially dependent label acquisition costs.
With the present work we observe that the labetiogt mainly depends on the type of the RS
data, which affects the aforementioned labelingtsgy. For example, in case of multispectral
VHR images, often the labeling of samples can gexhout by photointerpretation, while in the
case of medium/low resolution multispectral images hyperspectral data, expensive ground

surveys are necessary. No particular restrictiorsugually considered for the definition of the



initial training setT and his sizejT|, since we expect that the AL process can be dtanpewith

few samples for each class without affecting theveogence capability (the initial samples can
affect the number of iterations necessary for olngi convergence). The pool of unlabeled
sampledJ can be associated to the whole considered image aportion of it (for reducing the
computational time associated to the query functind/or for considering only the areas of the
scene accessible for labeling). An important issuelated to the capability of the query function
to select batches df >1 samples, which results to be of fundamental ingyoné for the adoption
of AL in real-world RS problems. It is worth to mohere the importance of the choice of the
valuein the design of the AL classification system, taagfiects the number of iterations and thus
both the performance and the cost of the classificasystem. In general, we expect that for the
classification of VHR images (where photointerptieta is possible), several iterations of the
labeling step may be carried out and small valee$ fcan be adopted; whereas in cases where
ground truth surveys are necessary, only few i@matof the AL process are possible and ldrge
values are necessary.

In the RS domain, AL was applied to the detectibsubsurface targets, such as landmines
and unexploded ordnance in [29]-[30]. In [30], dinceent AL procedure is developed, based on a
mutual information measure. In this procedure, ioit&lly performs excavation with the purpose
of acquiring labels to improve the classifier, amte this AL phase is completed, the resulting
classifier is applied to the remaining unlabelaghatures to quantify the probability that each item
is an unexploded ordnance. Some preliminary wobdautathe use of AL for RS classification
problems can be found in [12], [31]-[32]. The teicjue proposed in [12] is based on MS and
selects the most uncertain sample for each bingiy $1 a One-Against-All (OAA) multiclass
architecture (i.e., queryinh=n samples, whera is the number of classes). In [31], two batch
mode AL techniques for multiclass RS classificajwablems are proposed. The first technique is
MS by closest support vector (MS-cSV), which coassdthe smallest distance of the unlabeled
samples to tha hyperplanes (associated to thbinary SVMs in a (OAA) multiclass architecture)
as the uncertainty value. At each iteration, thestmmcertain unlabeled samples, which do not
share the closest SV, are added to the trainingreet second technique, called entropy query-by
bagging (EQB), is a classifier independent apprdzeded on the selection of unlabeled samples
according to the maximum disagreement between anitbee of classifiers. The committee is
obtained by bagging: first different training séssociated to different EQB predictors) are drawn
with replacement from the original training data[31], each training set is used to train the OAA

SVM architecture to predict the different labels éach unlabeled sample. Finally, the entropy of



the distribution of the different labels associatedeach sample is calculated to evaluate the
disagreement among the classifiers on the unlatsglegbles. The samples with maximum entropy
(i.e., those with maximum disagreement among thesdiers) are added to the current training
set. In [32], an AL technique is presented, whietests the unlabeled sample that maximizes the
information gain between the a posteriori probapililistribution estimated from the current
training set and the training set obtained by idirlg that sample into it. The information gain is
measured by the Kullback—Leibler (KL) divergencaisTKL-Maximization (KL-Max) technique
can be implemented with any classifier that camrege the posterior class probabilities. However

this technique can be used to select only one saatach iteration.

[Il.  INVESTIGATED QUERY FUNCTIONS

In this section we investigate different query fiioies Q based on SVM for multiclass RS
classification problems. SVM is a binary classifiathich goal is to divide thel-dimensional

feature space into two subspaces (one for each)alasg a separating hyperplane. Let us assume

N

that a training seT made up oN pairs (x;, ).,

is available, where; are the training samples

and y, {41, -1} are the associated labels. The decision rule usdmhd the membership of an
unknown sample is based on the sign of the disnatian function f (x) =(w [X) +b associated
to the hyperplane. An important property of SVMsrétated to the possibility to project the
original data into a higher dimensional featurecepaa a kernel operatdf (1), which satisfies
the Mercer’'s conditions [28]. The training phase tbé classifier can be formulated as a
minimization problem by using the Lagrange optirticaa theory, which lead to the calculation of

the values of Lagrange multiplierg associated with the original training pattems] X’ . After
the training, the discrimination function is given

F() =2 yia K(x X)+b 1)

idsv
where SV is the set of support vectors, i.e., thiing samples associated 40> 0. In order to

address multiclass problems on the basis of bickgsifiers, the general approach consists of
defining an ensemble of binary classifiers and damb them according to some decision rules
[24]. The design of the ensemble of binary classsfinvolves the definition of a set of two-class
problems, each modeled with two groups of clasBkes.selection of these subsets depends on the
kind of approach adopted to combine the ensemhe, @&cording t@ne-Against-Al(OAA) or
One-Against-OnéOAO) strategies [24]. In this work we adopt thastrategy, which involves

10



a parallel architecture made up fSVMs, one for each information class. Each SVM/aesla
two-class problem defined by one information clagainst all the others. We refer the reader to
[24] for greater details on SVM in RS.

The investigated AL techniques are based on stdndathods; however, some of them are
presented here with modifications with respecthi d¢riginal version to overcome shortcomings
that would affect their applicability to real RSptems. In particular, the presented techniques are
adapted to classification problems characterizedalhyumber of classea>2 (using a OAA
multiclass strategy) and to the inclusion of a batth >1 samples at each iteration in the training
set (thus reducing the number of iterations requiog the AL process to reach the desired
accuracy, which is very important, taking into asebthe costs and the times associated to the
labeling process in RS classification problems)e Trvestigated query functions are based on the
evaluation of the uncertainty and diversity criiedpplied in two consecutive steps. Time> h
most uncertain samples are selected in the unertatep and the most diverbe(m> h>1)
samples among these uncertain samples are chosen in the diversity. si&ye ratio m/ h
provides an indication on the tradeoff between ttag#ty and diversity. In this section we present

different possible implementations for both stépsysing on the OAA multiclass architecture.

A. Techniques for Implementing the Uncertainty €ritn with Multiclass SVMs

The uncertainty criterion aims at selecting theabeled samples that have maximum
uncertainty about their correct label among all glasin the unlabeled sample pal Since the
most uncertain samples have the lowest probalitityoe correctly classified by the current
classification model, they are the most useful@arziuded in the training set. In this paper, we
investigate two possible techniques in the framé&wof multiclass SVM: a) binary-level
uncertainty (which evaluates uncertainty at thel®f binary SVM classifiers), and b) multiclass-
level uncertainty (which analyzes uncertainty witthe considered OAA architecture).

Binary-Level Uncertainty (BLU)

The binary-level uncertainty (BLU) technique sepalsa selects a batch of the most
uncertain unlabeled samples from each binary SVMherbasis of the MS query function. In the
technique adopted in [12], at each iteration orig (single) sample fronJ closest to the
hyperplane of each binary SVM was added to thaitrgiset (i.e.,h=n). In the presented BLU

technique, at each iteration the most uncertpifg>1) samples are selected from each binary

SVM (instead of a single sample). In greater detabinary SVMs are initially trained with the
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current training set and the functional distarfcé), i =1,...n [given by (1)] of each unlabeled

samplexJU to the hyperplane is obtained. Then, the sef osﬁamples{xfﬁ”,x?}“,...,quiLU},

i=12,...n closest to the corresponding hyperplane are seldcieeach binary SVM, where

BLU

X;i » 1=12,...0, represents the selecte¢th sample from the-th SVM. Totally p=qgn

samples are taken. Since some unlabeled sampldsecseiected by more than one binary SVM,

the redundant samples are removed. Thus, thertotaberm of selected samples can actually be

smaller thanp (i.e., m< p). The set ofm most uncertain sampleg;™”, x5 ,...,x2} is

forwarded to the diversity step. Fig. 1 shows tlahidecture of the investigated BLU technique.

OAA BLU
I _______ a r-----—-—-"—-"="-""""""""=""""""""—""—"=
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|
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Fig. 1. Multiclass architecture adopted for the Bigdhnique

Multiclass-Level Uncertainty (MCLU)
The adopted multiclass-level uncertainty (MCLU) hieicjue selects the most uncertain

samples according to a confidence val(&), x[OOU , which is defined on the basis of their
functional distancé, (x), i =1,...n to then decision boundaries of the binary SVM classifiers
included in the OAA architecture [31], [33]. In shiechnique, the distance of each sam¢dldJ
to each hyperplane is calculated and a set distance value§ f,(x), f,(x),...T, (x)} is obtained.
Then, the confidence valug(x) can be calculated using different strategies. Here consider
two strategies: 1) the minimum distance funct@mp (x) strategy, which is obtained by taking the
smallest distance to the hyperplanes (as abscilte) i.e., [31]

Con () = Min {abg 00} (2)

12



and 2) the difference function,, (x) strategy, which considers the difference betwéenfirst
largest and the second largest distance valué®tbyperplanes, i.e, [33]

M max = arg ma){ fi (( }

i=1,2,..n

Fomax = argmax{fj((} 3)

max ~ )
J:lrzv--'n 'J;trlmax

Caire (X) = fﬁmax (x) - ferax(X)

The ¢

L.in (X) function models a simple strategy that computesctinfidence of a sampletaking
into account the minimum distance to the hypergasnaluated on the basis of the most uncertain

binary SVM classifier. Differently, the,, (x) strategy assesses the uncertainty between the two

most likely classes. If this value is high, the pbew is assigned ta, ., with high confidence. On

max
the contrary, ifc,, (x) is small, the decision for, .. is not reliable and there is a possible conflict
with the class,,, (i.e., the sampl& is very close to the boundary between clgss andr,,.., ).

Thus, this sample is considered uncertain andiésteel by the query function for better modeling
the decision function in the corresponding positidrthe feature space. Once th&) value of
each xJU is obtained based on one of the two above-merdi®imtegies, then samples

MCLU MCLU MCLU
Xy X, X

with lower c(x) are selected to be forwarded to the diversity.Stigpe that
x'“*“ denotes the select¢dh most uncertain sample based on the MCLU styat€ig. 2 shows

the architecture of the investigated MCLU technique

OAA
I L CO T C ORI %)
> svm1 H >
| |
U ={X;, X5.... X} : v I X)), X))y Fo(X,)}
t
i SVIN| 2 i Z {X;ACLU, Xg/ICLU ..... Xrl\:CLU}
| ' I 0O >
| | | -
. .
| |
| ! } {fn(XJ)’ fn(XZ) """ fn(Xu)}
» svmn H >
I I

Fig. 2. Architecture adopted for the MCLU technique
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B. Techniques for Implementing the Diversity Crder

The main idea of using diversity in AL is to selacbatch of samplesh(>1) which have
low confidence values (i.e., the most uncertainspnend at the same time are diverse from each
other. In this paper, we consider two diversity moels: 1) the angle based diversity (ABD); and 2)
the clustering based diversity (CBD). Before coesiy the multiclass formulation, in the

following we recall their definitions for two-claggoblems.

Angle Based Diversity (ABD)
A possible way for measuring the diversity of umaer samples is to consider the cosine

angle distance. It is a similarity measure betwaensamples defined in the kernel space by [13]

0%, [, ) K (%, X;)

Kk X. = =

jcos(0 & x, ) leo]ex;)| KO x K (% %) @
K (X, X;)

O(x;,x;)=cos (\/K(xi,xi)K(X;’Xj)

where ¢(I)) is a nonlinear mapping function ari€i(LI) is the kernel function. The cosine angle

distance in the kernel space can be constructed asily the kernel function without considering

the direct knowledge of the mapping functigh)l. The angle between two samples is small

(cosine of angle is high) if these samples areectosach other and vice versa.

Clustering Based Diversity (CBD)

Clustering techniques evaluate the distributiorihef samples in a feature space and group
the similar samples into the same clusters. In,[thY standar#-means clustering [34] was used
in the diversity step of binary SVM AL techniquéhélaim of using clustering in the diversity step
is to consider and analyze the distribution of utage samples. Since the samples within the same
cluster are correlated and provide similar infoliorata representative sample is selected for each
cluster. The advantage of this approach is thatetprototypes are implicitly sparse in the featur
space, i.e., distant one another. In [14], the $artimt is closest to the corresponding cluster

center (called medoid sample) is chosen as repesansample.

C. Proposed combination of Uncertainty techniquesl ®iversity techniques generalized to
Multiclass Problems
In this paper, each uncertainty technique is coetdbiwith one of the (binary) diversity

techniques presented in the previous section.drutitertainty step, the most uncertain samples
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are selected using either MCLU or BLU. In the dsigr step, the most diverde< m samples are
chosen based on either ABD or CBD generalized & rthulticlass case. Here, four possible
combinations are investigated: 1) MCLU with ABD d¢ed by MCLU-ABD), 2) BLU with
ABD (denoted by BLU-ABD), 3) MCLU with CBD (denotday MCLU-CBD), and 4) BLU with
CBD (denoted by BLU-CBD).

Combination of Uncertainty techniques with ABD Kdulticlass SVMs (MCLU-ABD and BLU-
ABD)

In the binary AL algorithm presented in [13], thecartainty and ABD criteria are combined
based on a weighting parameterOn the basis of this combination, a new samglés included
in the selected batckaccording to the following optimization problem:

x =argmin A| f & )+ (-1 ) max K0.x) (5)
X 0l/ X I XX \/K(Xiixi)K(Xi X))

where | denotes the set of unlabeled examples whose destanthe classification hyperplane is

less than one, i.el, :{xi Ou :| f(x )| <]}, I / X represents the set of unlabeled sampldstiudt

are not contained in the current bakkhand A provides the tradeoff between uncertainty and
diversity. The cosine angle distance between eanipke inl / X and the samples included Xn

is calculated and the maximum value is taken as thersity value of the corresponding sample.
Then, the sum of the uncertainty and diversity @alweighted byl is considered to define the

combined value. The unlabeled sampléhat minimizes such value is includeddnThis process
is repeated until the number of samples of theXsgK|) is equal tch. This technique guarantees

that the selected unlabeled sampleX are diverse regarding to their angles to all e in the
kernel space. Since the initial sizeXis zero, the first sample included Xnis always the most
uncertain sample of (i.e., the sample closest to the hyperplane). Wferlize this technique to
multiclass architectures presenting the MCLU-ABRI &1.U-ABD algorithms (see Algorithms 2
and 3).
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Algorithm 2: MCLU-ABD

Inputs:

A (weighting parameter that tune the tradeoff betwagcertainty and diversity)
m (number of samples selected on the basis of tineentainty)

h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each samplec[JU .

2. Select the set ofm unlabeled samples with lowerc(x) value (most uncertain)

MCLU MCLU MCLU
(X Xy Xy )

3. Initialize X to the empty set.
4. Include inX the most uncertain sample (the one that has theskx(x) value).

Repeat
5. Compute the combination of uncertainty and dinvgrwith the following equation formulated
for the multiclass architecture:

} (6)

x =argmin Alc; )+ (-1 ) max K%
i=L,..m ' KX K (X K (X, %)

where we consider th@& most uncertain samples selected at the step Z@)dis calculated as

explained in the MCLU subsection (with, (X) or c,, (X) strategy).

6. Include the unlabeled samplén X.

Until | X| = h

7. The supervisoB adds the label to the set of sampla§ "%, x )<tV 480 | x Ve A8 O X
and these samples are added to the current traseirig

It is worth noting that the main difference betwd®h and (6) is that the uncertainty in (6) is

evaluated considering the confidence functagr, ) instead of the functional distandgx;) as in

the binary case.
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Algorithm 3: BLU-ABD

Inputs:

A (weighting parameter that tune the tradeoff betwesrertainty and diversity)

m (number of samples selected on the basis of tineentainty)

h (batch size)

g (number of unlabeled samples selected for eachnbBM in the BLU technique)
n (total class number)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Select theg mostuncertain samples from each of théinary SVM included in the multiclass
OAA architecture (totallyo = gnsamples are obtained).

BLU XBLU BLU}

1 )

2. Remove the redundant samples and consider tlo¢ se< p patterngx 5 seen X
3. Computec(x) for the set ofm samples as follows: if one sample is selected byenthan one
binary SVM, c¢(x) is calculated as explained in the MCLU subsecfioith ¢, (X) or c,, (X)

strategy); otherwise(x) is assigned to the corresponding functional destain(x) .

4. Initialize X to the empty set.
5. Include inX the most uncertain sample (the one that has thesliac(x) value).

Repeat
6. Compute the combination of uncertainty and diNgmwith the equation (6).

7. Include the unlabeled sampg|én X.

Until |X| =h

8. The supervisoB adds the label to the set of pattefm§-"' "% x -5 x> **3 0 X and
these samples are added to the current training set

Combination of Uncertainty techniques with CB® Multiclass SVM{MCLU-CBD and BLU-
CBD)

The uncertainty and CBD were combined for binaryMS¥AL in [14]. The uncertain
samples are identified according to the MS strategyed on their distance to the hyperplane.
Then, the standarkdmeans clustering is applied in the original featgpace to the unlabeled
samples whose distance to the hyperplane (computéte kernel space) is less than one (i.e.,

those that lie in the margin) and tkeh clusters are obtained. The medoid sample of elastec

is added tX (i.e., |X| = h), labeled by the supervis8and moved to the current training set. This
algorithm evaluates the distribution of the undertsamples within the margin and selects the
representative of uncertain samples based on sthridmeans clustering. We extend this
technique to multiclass problems, by defining th€NU-CBD and BLU-CBD algorithms (see
Algorithms 4 and 5).
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Algorithm 4: MCLU-CBD

Inputs:

m (number of samples selected on the basis of tineentainty)
h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each sample U .

2. Select the set ah unlabeled samples with lowesfx) (with c,,(X) or c,, (X) strategy) value

'min

H MCLU MCLU MCLU
(most uncertainf X, -, X5, ..., Xy ).

3. Apply thek-means clustering (diversity criterion) to the sedelm most uncertain samples with

k=h.
4. Calculate theh cluster medoid samplex)'-"~<®° x V=80 | x M+ PR3 " one for each

cluster.

5. Initialize X to the empty set and includeXrthe set oh patterns

MCLU-CBD MCLU-CBD MCLU- CB
{x} | X e X 30X

6. The supervisoB adds the label to the settpatterns{x;" "=, x =0 Ix M B3O X
and these samples are added to the current traseing

Algorithm 5: BLU-CBD

Inputs:

m (number of samples selected on the basis of tineerntainty)

h (batch size)

g (number of unlabeled samples selected for eachnbBM in the BLU technique)
n (total class number)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Select the mostuncertain samples from each of theinary SVMs included in the multiclass
OAA architecture (totallyp = gnsamples are obtained).

2. Remove the redundant samples and consider tioé¢ se< p patterng{x;"”, x5, ..., x>} .

3. Computec(x) for the set ofm samples as follows: if one sample is selected byenthan one
binary SVM, c¢(x) is calculated as explained in the MCLU subsecfisith ¢, (X) or c,, (X)
strategy); otherwise(x) is assigned to the corresponding functional destain(x) .

4. Apply thek-means clustering (diversity criterion) to the sttel m most uncertain samples
(k=h).

5. Calculate thé cluster medoid samplgsV %" x 2Y=%0  x P ©*8 "one for each cluster.

6. Initialize X to the empty set and includeXthe set oh patterns

BLU-CBD BLU-CBD BLU- CB
{x; , X2 e X B0X

7. The superviso® adds the label to the settopatterns{x>V~®° x 2V x P 30X and
these samples are added to the current training set
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IV. PROPOSEDNOVEL QUERY FUNCTION

Clustering is an effective way to select the magtite samples considering the distribution
of uncertain samples in the diversity step of theerg function. In the previous section we
generalized the CBD technique presented in [14fhto multiclass case. However, some other
limitations can compromise its effectiveness: B standarck-means clustering is applied to the
original feature space and not in the kernel spduere the SVM separating hyperplane operates,
and 2) the medoid sample of each cluster is seleateéhe diversity step as the corresponding
cluster representative sample (but more “infornedtisamples in that cluster could be selected).
Indeed, because of the kernel mapping, the setast mhiverse sample in the original space may
not be the most diverse in the kernel space, tbuselecting the most informative samples for the
classifier. In addition, the selection of the metlof each cluster does not result in the seleaion
the most uncertain batch of samples.

To overcome these problems, we propose a novelygueiction that is based on the
combination of one of the uncertainty criteria foulticlass problems presented in the previous
section and a novel Enhanced CBD (ECBD) technifjuéhe proposed query function, MCLU is

used with the difference,, (x) strategy in the uncertainty step to selectthenost uncertain

samples. The proposed ECBD technique, unlike thiedsird CBD, works in the kernel space by
applying the kernek-means clustering [35], [36] to tme samples obtained in the uncertainty step
to select theh < m most diverse patterns. The kerkReheans clustering iteratively divides the
samples intdk=h clusters C,,C,,...C,) in the kernel space. At the first iteration, igitclusters
C,.C,,...G, are constructed assigning initial cluster labelsdach sample [35]. In next iterations, a
pseudo centre is chosen as the cluster center dhhrster centers in the kernel space
o(14). (1) ,--9(14,) can not be expressed explicitly). Then the distasfoeach sample from all
cluster centers in the kernel space is computedeant sample is assigned to the nearest cluster.

The Euclidean distance betwegfx, ) and¢(4,), v=1,2,...h, is calculated as [35], [36]:

D2(@(x,), 1)) = |x,) - s,

=K (%)~ —|i (@0 ),.G K (% %, )+

> 8(x,).C)3@x ). G K (K, X)

j=11=1

2

X)) -

c, |Z5(¢(X ), G)#Ax;)

(7)

1

2
<
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where 5(¢7(xj),Cv) shows the indicator function. Thé(qp(xj),Cv):l only if x; is assigned to

C,, otherwise 5((p(xj),Cv):0. The |CV| denotes the total number of samplesGp and is

calculated asC,| :ZJ(qo(xj),Cv). As mentioned beforeg(l) is a nonlinear mapping function
i=1

from the original feature space to a higher dimamai space and (L1}l is the kernel function. The
kernelk-means algorithm can be summarized as follows [35]:

1. The initial value ofd(¢(x;),C,), i=1,2,..m, v=1,2,...h, is assigned ant initial clusters
{c..C,,..G} are obtained.
2. Thenx; is assigned to the closest cluster.

1 ifD°@&)ew )<D* @&k )pw ) OFv

0 otherwise

3(¢(x;).C,) :{ 8

3. The sample that is closestzp (the Euclidean distance is calculated in the Kespace by
equation (7)) is selected as the pseudo centid C, .

n, = aggurginDz o(x) ow,)) 9)

4. The algorithm is iterated until converge, whistachieved when samples do not change clusters

anymore.

After C,,C,,...C, are obtained, unlike in the standard CBD technitjuemost informative

(i.e., uncertain) sample is selected as the reptaisee sample of each cluster. This sample is

defined as
XY ECEP = arg min{cdiff Y )} v=12,..h (10)
ox )G,
where x“V 58P represents the-th sample selected using the proposed query fumdfiCLU-

ECBD and is the most uncertain sample of ¥t cluster (i.e., the sample that has minimum

C,« (X) in thev-th cluster). Totallyh samples are selected, one for each cluster, (50)g

In order to better understand the difference indblkection of the representative sample of
each cluster between the query function of the Qi&sented in [14] (which selects the medoid
sample as cluster representative) and the propge€&D query function (which selects the most
uncertain sample of each cluster), Fig. 3 presamsalitative example. Note that, for simplicity,

the example is presented for a binary SVM in ottdevisualize the confidence valug, (x) as
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the functional distance (MS is used instead of MELThe uncertain samples are firstly selected
based on MS for both techniques, and then the sityestep is applied. The query function
presented in [14] selects the medoid sample of elatter (reported in blue in the figure), which
however is not in agreement with the idea to clibeemost uncertain sample in the cluster. On the
contrary, the proposed query function considers ri@st uncertain sample of each cluster
(reported in red in the figure), which in the biypaxample is the sample closest to the SVM
hyperplane. This is a small difference with respictthe algorithmic implementation but a

relevant difference from a theoretical viewpointidor possible implications on the results.

(a) (b)
Fig. 3. Comparison between the samples selectéd)lije CBD technique presented in [14],
and (b) the proposed ECBD technique.

The proposed MCLU-ECBD algorithm can be summareagébllows:
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Algorithm 6: Proposed MCLU-ECBD

Inputs:

m (the number of samples selected on the basis wfitheertainty)
h (batch size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Computec(x) for each samplex[JU .
2. Select the set ofm unlabeled samples with lowerc(x) value (most uncertain)

{X]MCLU’ Xg/ICLU XMCLU} ]

ey X
3. Apply the kernelk-means clustering (diversity criterion) to the séd& m most uncertain
samples witkk=h.

4. Select the representative sampl§" """ v=1,2.... ,h (i.e., the most uncertain sample) of
each cluster according to (10).

5. Initialize X to the empty set and includeXnthe set of samples' " **°0 X , v=1,2,... ,h.

6. The supervisoB adds the label to the set of samplg§"“"5®°*0X , v=1,2,...,h, and these
samples are added to the current training set.

V. DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS

A. Data set description

In our experiments we used one VHR and two hypetsgledata sets. The first data set is a
hyperspectral image acquired on a forest area @Mibunt Bondone in the Italian Alps (near the
city of Trento) on September 2007. This image iaf1613x 104¢ pixels and 63 bands with a
spatial resolution of 1 m. The available labeledad@545 samples) were collected during a
ground survey in summer 2007. The reader is refeilwg37] for greater details on this dataset.
The samples were randomly divided to derive a wagilich setv of 455 samples (which is used for
model selection), a test SESof 2272 samples (which is used for accuracy assas3, and a pool
U of 1818 samples. 4% of the samples of each ctassaadomly chosen frotd as initial training
samples and the rest are considered as unlabetgalesa This choice was done in order to have a
minimum reasonable number of samples for each ,clasging the number of the samples
assumed initially available. The land cover classes the related number of samples used in the
experiments are shown in Table 1.

The second data set is a Quickbird multispectragienacquired on the city of Pavia
(northern Italy) on June 23, 2002. This image idekithe four pan-sharpened multispectral bands
and the panchromatic channel with a spatial remwudf 0.7 m. The image size 24x 102«
pixels. The reader is referred to [38] for greatetails on this dataset. The available labeled data

(6784 samples) were collected by photointerpratatichese samples were randomly divided to
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derive a validation se¥ of 457 samples, a test SEf of 4502 samples and a paddl of 1825
samples. According to [38], Test pixels were cd#dcon both homogeneous ar8&s and edge
areasTS of each class. 4% of the samples of each clads$ are randomly selected as initial
training samples, and the rest are considered labelad samples. Table 2 shows the land cover
classes and the related number of samples usbd experiments.

The third data set is a hyperspectral image acguwrethe Kennedy Space Center (KSC),
Florida, U.S., on March 23, 1996. This image cdssig 512x 614 pixels and 224 bands with a
spatial resolution of 18 m. The number of bandmiisally reduced to 176 by removing water
absorption and low signal-to noise bands. The abhil labeled data (5121 samples) were
collected using land cover maps derived from calrared photography provided by KSC and
Landsat Thematic Mapper (TM) imagery. The readeeferred to [40] for greater details on this
dataset. After the elimination of noisy sampleg tabeled samples were randomly divided to
derive a validation se¥ of 513 samples, a test SEB of 2556 samples, and a pddl of 2052
samples. 4% of the samples of each class are rdpatimsen fromU as initial training samples
and the rest are considered as unlabeled sampiedaiid cover classes and the related number of
samples used in the experiments are shown in Table

The first two data sets were used for all the expamts, whereas the third data set is not
used for initial comparisons among investigatedhnépues and for the sensitivity analysis related
to different parameter values (which require a hsgeof experiments), but for further assessing
the effectiveness of the proposed novel methodfandomparing it only with the most effective

investigated and literature methods.

TABLE 1. NUMBER OF SAMPLES OF EACH CLASS INJ, V AND TSFOR THETRENTO DATA SET

Class U vV | TS

Fagus Sylvatica 720 180900
Larix Decidua 172 | 43 215
Ostrya Carpinifoliag 160 | 40| 200
Pinus Nigra 186| 47 232
Pinus Sylvestris 340 8% 42
Quercus Pubescens240 | 60| 300
Total 1818| 455 | 2272

OT
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TABLE 2. NUMBER OF SAMPLES OF EACH CLASS IV, V, TS1AND TS2FOR THEPAVIA DATA SET.
Class U V | TS | TS
Water 58 14| 154 61

Tree areas 111 28 278 118
Grass areas 108 26 206 115
Roads 316 79 402 211
Shadow 230/ 57 355 311
Red buildings| 734/ 1841040 580

Gray buildings| 191 48 250 17}

White building| 82 21| 144, 105
Total 1825| 457 | 2824 | 1678

TABLE 3. NUMBER OF SAMPLES OF EACH CLASS IJ, VAND TS FOR THEKSC DATA SET.

Class U V | TS
Scrub 305| 76| 380
Willow swamp 97 | 24| 120
Cabbage palm hammock 102 %26 1pP8
Cabbage palm/oak hammogckl0l | 25| 125
Slash pine 65| 14 80
Oak/broadleaaf hammock 92 23 114
Hardwood swamp 42| 11 52
Graminoid marsh 173 43 21p
Spartina marsh 208 52 260
Cattail marsh 151 3§ 188
Salt marsh 168 42 209
Mud flats 185| 46| 231
Water 363| 91| 454
Total 2052| 513 | 2556

B. Design of Experiments

In our experiments, without loosing in generalitye adopt an SVM classifier with RBF
kernel. The values for the regularization param&teand the spreads of the RBF kernel
parameters are chosen performing a grid-searchImsetietion only at the first iteration of the AL
process. Indeed, initial experiments revealed tifag reasonable number of initial training
samples is considered, performing the model selectt each iteration does not increase
significantly the classification accuracies at tost of a much higher computational burden. The
MCLU step is implemented with differemh values defined on the basis of the valuéndi.e.,
m=4h, 6h, 10h), with h=5,10,40,100. In the BLU technique, ttyeh most uncertain samples are
selected for each binary SVM. Thus the total nundfeselected samples for all SVMsads= gn.
After removing repetitive patternan< p samples are obtained. The value Afused in the
MCLU-ABD and the BLU-ABD [for computing (6)] is vaed as A =0.3,0.5,0.6,0.. The total

cluster numbek for both kernek-means clustering and stand&rtheans clustering is fixed to

All the investigated techniques and the proposed WKECBD technique are compared with the

24



EQB and the MS-cSV techniques presented in [31¢ fEsults of EQB are obtained fixing the
number of EQB predictors to eight and selectingtftoap samples containing 75 % iaftial
training patterns. These values have been sugges{@d]. Since the MS-cSV technique selects
diverse uncertain samples according to their digtda the SVs, and its literature formulation can
consider at most one sample related to each SV it3%]not possible to define greater than the
total number of SVs. For this reason we can proWt&cSV results for only=5,10 for Trento
and Pavia data setb=5,10,40 for KSC data set. Also the results obthiby the KL-Max
technique proposed in [32] are provided for congmari purposes. Since the computational
complexity of KL-Max implemented with SVM is verygh, in our experiments at each iteration
an unlabeled sample is chosen from a randomly teelesubset (made up of 100 samples) of
unlabeled data. Note that the KL-Max technique banimplemented with any classifier that
exploits posterior class probabilities for detenmgnthe decision boundaries [32]. In order to
implement KL-Max technique with SVM, we converteaetoutputs of each binary SVM to
posterior probabilities exploiting the Platt's med{39].

All experimental results are referred to the averagcuracies obtained in ten trials
according to ten initial randomly selected trainisgts. Results are provided as learning rate

curves, which show the average classification amuversus the number of training samples used

to train the SVM classifier. In all the experimeritse size of final training s¢T| Is fixed to 473

for the Trento data set, 472 for the Pavia dataaset 483 for the KSC dataset. The total number
of iterations is given by the ratio between the banof samples to be added to the initial training

set and the pre-defined valuehof

VI. EXPERIMENTAL RESULTS

We carried out different kinds of experiments iderto: 1) compare the effectiveness of the
different investigated techniques that we genegdlimw the multiclass case in different conditions;
2) assess the effectiveness of the novel ECBD tgubn3) compare the investigated methods and
the proposed MCLU-ECBD technique with the techngjused in the RS literature; and 4)
perform a sensitivity analysis with respect toeliént parameter settings and strategies.

A. Results: Comparison among Investigated Techei@eneralized to the Multiclass Case

In the first set of trials, we analyze the effeehess of the investigated techniques
generalized to multiclass problems. As an exanffilg, 4 compares the overall accuracies versus
the number of initial training samples obtainedthy MCLU-ABD, the MCLU-CBD, the BLU-
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ABD and the BLU-CBD techniques with=5, k=5 andl =0.6. In the MCLU,m=20 samplegsre
selected for both data sets. In the Bud< 30 and m< 40 samples are chosen for the Trento and

Pavia data sets, respectively. The confidence valealculated with the,, (x) strategy for both
MCLU and BLU, as preliminary tests pointed out thgtfixing the query function, the, (x)
strategy is more effective than tlog, (x) strategy in case of using MCLU, whether it progide

similar classification performance to tleg, (x) strategy when using BLU. Fig. 4 shows that the

MCLU-ABD technique is the most effective on botlrefto and Pavia data sets. Note that similar
behaviors are obtained by using different valuespafameters (i.e.m, h,AA and k). The
effectiveness of the MCLU and BLU techniques focentainty assessment can be analyzed by
comparing the results obtained by combining therh whe same diversity techniques under the
same conditions (i.e., same values for parametérsjn Fig. 4, one can observe that the MCLU
technique is more effective than the BLU in theesebn of the most uncertain samples on both
data sets (i.e., the average accuracies providedebyICLU-ABD are higher than those obtained
by the BLU-ABD and a similar behavior is obtainedhathe CBD). This trend is confirmed by
using different values of parameters (ima,,h, A andk ). The ABD and CBD techniques can be
compared by combining them with the same uncestagthnique under the same conditions (i.e.,
same values for parameters). From Fig. 4, one earttsat the ABD technique is more effective
than the CBD technique. The same behavior can lads@bserved by varying the values of

parameters (i.em, h, A andk).
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Fig. 4. Overall classification accuracy obtainediiyy MCLU and BLU uncertainty criteria when comldne
with the ABD and CBD diversity techniques in thengaconditions for (a) Trento, and b) Pavia data. set
The learning curve of Pavia data set is reportadisg from 87 samples until 312 in order to better
highlight the small differences.

B. Results: Proposed MCLU-ECBD Technique

In the second set of trials, we compare the stah@&8D with the proposed novel ECBD

using the MCLU uncertainty technique with tleg, (x) strategy and fixing the same parameter

values. For discriminating the contributions of th@® novel components of the proposed ECBD,
we report also the classification results obtaiwét kernel CBD (KCBD), where the clustering is
performed with kernek-means but the medoid sample is selected from easter, instead of the
proposed most uncertain sample.

As an example, Fig. 5 shows the results obtaingd wi=40,h=10,k= 1( for the three
data sets. From these graphs one can see thaC#P Echnique provides the selection of more
informative samples compared to CBD and KCBD teghes, achieving higher accuracies for the
same number of samples (or the same accuracy egshslamples). Moreover, we can observe that
performing the clustering in the kernel space caprove the results with respect to standard
CBD, while the selection of the most uncertain sienfpom each cluster (in the kernel space)
allows one to further slightly improve the classafion accuracies. Tables 4, 5 and 6 report the

mean and standard deviation of classification aagas obtained on ten trials versus different

iteration numbers and different training data sfl’z|efor the three considered data sets. From these

tables we can observe that the classification acoes obtained with the proposed MCLU-ECBD

are generally higher and also more stable (i.eh Wwer standard deviation over the ten trials)
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with respect to both the CBD and KCBD. These rssait also confirmed in other experiments

with different values of parameters (not reportedsipace constraints).
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Fig. 5. Overall classification accuracy obtaingdte MCLU uncertainty criterion when combined with
the standard CBD, KCBD and the proposed ECBD dityetschniques for (a) Trento, (b) Pavia and (c)
KSC data sets. The line “All training samples” rgpd in (b) and (c) shows the accuracy obtaineadgusi
the full pool as training set.
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TABLE 4. AVERAGE CLASSIFICATION ACCURACY(CA) AND STANDARD DEVIATION (STD) OBTAINED ON TEN
TRIALS FOR DIFFERENT TRAINING DATA SIZE(|T|) AND ITERATION NUMBERS(ITER. NUM) (TRENTO DATA

SET)

T|=163 T|=193 |T|=333
Technique (Iter.Num. 9)| (Iter. Num. 12)| (Iter. Num. 26)
CA std CA Std CA std
Proposed MCLU-ECBD 726y 091 7373 1.26 78{12 0.83
MCLU-KCBD 72.28| 1.25| 73.44, 151 77.83 1.00
MCLU-CBD 71.39| 1.60f 7281 130 76.39 1.22

TABLE 5. AVERAGE CLASSIFICATION ACCURACY(CA) AND STANDARD DEVIATION (STD) OBTAINED ON TEN
TRIALS FOR DIFFERENT TRAINING DATA SIZE(|T|) AND ITERATION NUMBERS(ITER. NUM) (PAVIA DATA

SET)
T|=102 | |T|=142 T|=172
Technique (Iter.Num. 3)| (Iter. Num. 7)| (Iter. Num. 10)
CA std CA std CA std
Proposed MCLU-ECBD 84.10| 1.66] 85.66 1.29 86.28 1.09
MCLU-KCBD 83.58| 1.78/ 85.32 144 8534 1.17
MCLU-CBD 81.32| 1.77| 8363 162 8535 1.39

TABLE 6. AVERAGE CLASSIFICATION ACCURACY(CA) AND STANDARD DEVIATION (STD) OBTAINED ON TEN
TRIALS FOR DIFFERENT TRAINING DATA S|ZE(|T|) AND ITERATION NUMBERS(ITER. NUM) (KSC DATA SET)
T|=173 T|=203 T|=243

Technique (Iter.Num. 9)| (Iter. Num. 12)| (Iter. Num. 16)
CA std CA std CA std
Proposed MCLU-ECBDO 90.18| 1.69] 91.33 1.37 92.82 0.46

MCLU-KCBD 89.46| 1.65 90.77] 129 9233 0.82
MCLU-CBD 89.06| 1.94] 9025 104 9126 1.20

C) Results: Comparison Among the Proposed AL Tqakesiand Literature Methods

In the third set of trials, we compare the investiggl and proposed techniques with AL
techniques proposed in the RS literature. We coenfag MCLU-ECBD and the MCLU-ABD
techniques with the MS-cSV [31], the EQB [31] ahd KL-Max [32] methods. According to the
accuracies reported in section V.A, we presentdbalts obtained with the MCLU, which is more
effective than the BLU. Fig. 6 shows the averagrigacies versus the number of training samples
obtained in the case ¢f=5 (h=1 only for KL-Max) for the three data sets. In figure we report
the highest average accuracy (obtained with the Jadges of the parameters andm) of each
technique. Note that, since the MCLU-CBD proveds lescurate than the MCLU-ECBD (see
section V. B), its results are no more reportechEor the Trento and KSC data sets, the highest
accuracies for MCLU-ECBD are obtained with=30 (while k=5), whereas the best results for
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MCLU-ABD are obtained with =0.6 andm=20. For the Pavia data set, the highest accuracies
for MCLU-ECBD are obtained withm=20 (while k=5), whereas the best results for MCLU-
ABD are obtained withl =0.6 andm= 20.

By analyzing Fig. 6a (Trento data set) one canmiestnat MCLU-ECBD and MCLU-ABD
results are in general better than MS-cSV and fsogmtly better than EQB and KL-Max results.
The KL-Max accuracies are similar to the MS-cSVuaacies at early iterations but significantly
decrease with bigger sizes of the training set wat$pect to MCLU-ECBD, MCLU-ABD, and
MS-cSV. The accuracy at the final size of the tragrset (473 samples) obtained with the EQB is
significantly smaller than those obtained with tb#ner techniques. This accuracy could be
improved by re-estimating the SVM model, but in @xperiments, in order to have a fair
comparison, we decided not to perform model revegion for any of the considered AL
methods. On this data set, the classification amyuobtained with the final training size does not
reach the convergence with none of the consideredmg&thods; i.e., using the full pool for
training the SVM classifier (i.e., 1818 samplesg tbbtained accuracy is 84.24%, while the
maximum accuracy reached with AL methods with 4@@@les does not reach 81% of accuracy.
The results obtained on the Pavia data set (see6bjgshow that the proposed MCLU-ECBD
technique leads to the highest accuracies in mbghe iterations; furthermore, it achieves
convergence in less iterations (and thus with allemaumber of labeled samples) than the other
techniques. The MCLU-ECBD technique yield an accyraf 86.77% with only 232 samples,
while using the full pool as training set (1825 géa#B) we obtain an accuracy of 86.82%. The
MCLU-ABD method provides in general slightly lowaccuracy than MCLU-ECBD and higher
accuracies than MS-cSV. The EQB method providesfagntly lower accuracies with respect to
MCLU-ECBD, MCLU-ABD and MS-cSV in the first iteraths and reaches the convergence
around 250 samples. The KL-Max technique accuraamiesn general significantly smaller than
those achieved with other techniques for the sammabers of labeled samples. The results
obtained on the KSC data set (Fig. 6¢) show thatptoposed MCLU-ECBD provides similar
results compared to MCLU-ABD, and both of them #igantly outperforms the rest of the other
considered methods. The MCLU-ECBD technique reaalneaccuracy of 94.64% with only 413
samples, while using the full pool as training (852 samples) we obtain an accuracy of 94.68%.
As opposed to the other data sets, with KSC the E@Bod provides in general better accuracies
than the MS-cSV technique. This is in agreemertt witat is reported in [31].

For a more detailed comparison, additional expenimevere carried out on varying the
values of the parameters (numerical results areepuirted for space constraints). In all cases, we
observed that MCLU-ECBD and MCLU-ABD techniquesldgidigher classification accuracies
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than the other AL techniques when smialivalues are considered. Thus, the values for the
parametem andA , which should be defined by the user, are noicetifor the accuracies of both
the MCLU-ECBD and MCLU-ABD techniques. Moreover, wieserved that the EQB technique is
not effective when selecting a small numbesf samples, but when relatively highvalues are
considered it can lead to accuracies close to tho$¢CLU-ECBD and MCLU-ABD. MS-cSV
can not be used for highvalues when small initial training set are avdgatince the maximum
number ofh is equal to the total number of SVs. KL-Max resuan only be provided fée=1 and

the related accuracies are smaller than thosenatavith both MCLU-ECBD and MCLU-ABD
methods. In order to assess the statistical saamfie of the difference between the proposed
method and state-of-the-art methods we computedMbBemar test [41] for five different
training set sizes for all data sets. We found thataccuracies obtained by the MCLU-ECBD
technique are statistically different from thosdanted by MS-cSV and EQB with a confidence
greater than 95%.

Table 7 reports the computational time (in secondsguired (for one trial) by MCLU-
ECBD, MCLU-ABD, MS-cSV, and EQB for differerit values, and the computational time taken
from KL-Max (related tch=1). In this case, the value wffor MCLU-ECBD and MCLU-ABD is
fixed to 4h. It can be noted that MCLU-ECBD and MCLU-ABD aseest both for small and high
values ofh. The computational time of MS-cSV and EQB is véigh in the case of smakh
values, whereas it decreases by increasing tredue. The largest computational time is obtained
with KL-Max that with an SVM classifier requiresethuse of the Platt algorithm for computing the
class posterior probabilities. The results obtainedthe three data sets confirm that both the
proposed MCLU-ECBD and the investigated MCLU-ABe arery effective in terms of both
classification accuracy and computation complexty] they outperforms state-of-the-art methods

in most of the cases.
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Fig. 6. Overall classification accuracy obtainediwy MCLU-ECBD, MCLU-ABD, MS-cSV,
EQB and KL-Max techniques for (a) Trento, (b) Pagiad (c) KSC data sets. The learning curves
are reported starting from 178 samples for Tre@2osamples for Pavia, and 142 samples for KSC
data sets in order to better highlight the diffees The line “All training samples” reported i) (b

and (c) shows the accuracy obtained using thetdl as training set.
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Table 7. Examples of computational time (in secptalen from the MCLU-ECBD, MCLU-
ABD, MS-cSV, EQB and KL-Max techniques

. h
Data Set Technique 1 5 10 20 100
Proposed MCLU-ECBD - 10 6 8 12
MCLU-ABD - 10 6 7 10
Trento MS-cSV - 584 | 452 - -
EQB - 300| 148] 34 12
KL-Max 72401 - - - -
Proposed MCLU-ECBD - 10 6 7 11
MCLU-ABD - 10 5 6 10
Pavia MS-cSV - 384 | 193 - -
EQB - 138| 68 16 6
KL-Max 71380| - - - -
Proposed MCLU-ECBD - 17 14 15 19
MCLU-ABD - 18 13 15 19
KSC MS-cSV - 977| 614 134 -
EQB - 652 | 312 95 21
KL-Max 97309 - - - -

D. Results: Sensitivity Analysis with Respect fée@nt Parameter Settings and Strategies
The aim of the fourth set of trials is to analyke tonsidered AL techniques under different

parameter settings and strategies.

Analysis of the effect of different batch size @alu

We carried out an analysis of the performancediftédrent AL techniques varying the value
of the batch sizé by fixing the query function. As an example, Figshows the accuracies versus
the number of training samples obtained on Trem Ravia data sets adopting the proposed
MCLU-ECBD query function. The results are obtainedth m=4h and k=h. The
computational time taken from the MCLU-ECBD (retht® one trial) for differenh values is
given in Table 8. From the table one can obseraettie largest learning time corresponds to the
case where one sample is selected at each iterafio® computational time decreases by
increasing théh value. From Fig. 7, one can see that for both data selecting smali values
results in similar (or better) classification acaxies compared to those obtained selecting only one
sample at each iteration. On the contrary, higkalues decrease the classification accuracy
without decreasing the computational time if congplato smallh values. Another interesting
observation is that on the Pavia data set, whergusnallh values, convergence is achieved with
less samples than when using large values. Notesitindar behaviors are obtained with the other

guery functions.

33



Classification Accuracy

100 150 200 250 300 350 400 450
Number of Training Samples

(@)

Classification Accuracy

100 150 200 250 300 350
Number of Training Samples
| . (b) . |
Fig. 7. Overall classification accuracy versusrithenber of training samples obtained by the MCLU-BCB
technique with differen values for a) Trento and b) Pavia data sets

TABLE 8. EXAMPLES OF COMPUTATIONAL TIME(IN SECONDY TAKEN FROM THEMCLU-ECBD TECHNIQUE
WITH RESPECT TO DIFFERENH VALUES

MCLU MCLU-ECBD
Data Set h h
1 10 40 100
Trento 47 6 8 12
Pavia 46 6 7 11

Analysis of the effect of different batch size @all on the diversity criteria

Finally, we analyze the accuracy obtained by usamly uncertainty criteria and the
combination of uncertainty with diversity criterfar differenth values. As an example, Fig. 8
shows the average accuracy versus the numberimhtyasamples obtained by MCLUn(is fixed
equal toh for a fair comparison) and MCLU-ECBD wittn=4h,h=5,10C and k = h. One can

observe that, as expected, using only the uncéytariterion provides poor accuracies whers
small, whereas the classification performances sigmificantly improved by using both
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uncertainty and diversity criteria. On the contrahe choice of complex query functions is not
justified when a large batch of samples is addethéotraining set at each iteration (i.e., similar
results can be obtained with and without consideuiiversity). This mainly depends on the
intrinsic capability of a large number of sampthet® represent patterns in different positions ef th

feature space. Similar behaviors are observedtilother query functions.
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Fig. 8. Overall classification accuracy versusrthenber of training samples for the uncertaintyeciitn
and the combination of uncertainty and diversiitecia with differenth values: a) Trento and b) Pavia data
sets

VIl. DIsScUSSION AND CONCLUSION

In this paper, AL in RS classification problems Hasen addressed. The use of AL
techniques for the classification of RS images ceduhe computational time and the number of
labeled samples used for training the supervisgdrighm (which is associated to cost and time
for defining the training set) and increases tlessification accuracy with respect to traditional
passive techniques. Query functions based on MQudJELU in the uncertainty step, and ABD
and CBD in the diversity step have been generalimeshulticlass problems and experimentally
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compared on different RS data sets. Furthermoneval MCLU-ECBD query function has been
proposed. This query function is based on MCLUhm @incertainty step and on the analysis of the
distribution of most uncertain samples by meansk-ofieans clustering in the kernel space.
Moreover, it selects the batch of samples at etrhtion according to the identification of the
most uncertain sample of each cluster.

In the experimental analysis we compared the iny&std and the proposed techniques with
state-of-the-art AL methods adopted in RS appliceti for the classification of both VHR
multispectral and hyperspectral images. By this mamson we observed that the proposed
MCLU-ECBD method and the investigated MCLU-ABD medhresulted in higher accuracy with
respect to other state-of-the-art methods on theethonsidered data sets for the same number of
labeled samples. In addition they can reach comvexgwith a smaller number of labeled samples
than the other techniques. We underline that the very important advantage, because the main
goal of AL is to perform an effective learning otlassifier with the minimum possible number of
labeled samples. It was also shown that MCLU-ECBD BMICLU-ABD techniques are generally
more effective than the other considered techni@issin terms of computational time (especially
for small values of). Thus, they are actually well-suited for applicas in which sample labeling
is carried out with both ground survey and imagetpimterpretation. Moreover, we showed that:
1) the MCLU technique is more effective in the sgtn of the most uncertain samples for

multiclass problems than the BLU technique; 2) the(x) strategy is more precise than the

C..n(X) strategy to assess the confidence value in the M@&ddnique; 3) it is possible to have
similar (sometimes better) classification accuraiaiéth lower computational complexity when
selecting small batches bfsamples rather than selecting only one sampladit igeration; 4) the
use of both uncertainty and diversity criteria &c@ssary wheh is small, whereas high values
do not require the use of complex query functiobsithe performance of the standard CBD
technique can be significantly improved by adoptthg ECBD technique, thanks to both the
kernelk-means clustering and the selection of the mostrimicn sample of each cluster instead of
the medoid sample.

In greater detail, on the basis of our experimamsan state that:

1) The proposed novel MCLU-ECBD technique showsebent performance in terms of
classification accuracy and computational compyexmproving the performance of the standard
CBD method. It is important to note that this tegue has a computational complexity suitable to
the selection of batch of samples made up of asyat number of patterns, thus it is compatible

with both photointerpretation and ground-surveyedabeling of unlabeled data.
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2) The MCLU-ABD technique provides slightly lower similar classification accuracies
than the MCLU-ECBD method in most of the caseshwitsimilar computational time. It can be
used for selecting a batch made up of any desiuadber ofh samples. Thus, also the MCLU-
ABD technique is suitable for both photointerprietatand ground-survey based labeling of
unlabeled data.

3) The MS-cSV technique provides quite good classibn accuracies. However, the

maximum value oh that can be used is equal to the total numbewsf|SVy (i.e., h<|Svq and

therefore it can not be implemented for anyvalue). Nevertheless, the original algorithm
presented in [31] could be modified in order toidvis issue. In the case of smalalues, the
computational complexity of this technique is munegher than that of the other investigated and
proposed techniques. This complexity decreases Wwihareases.

4) The EQB technique results in poorer classifarataccuracies with respect to the other
techniques with small values bfandcomparable classification accuracies with high &alafh.
The computational complexity of this technique @swhigh in case of selecting few samples, and
decreases whilk increases. Although it is possible to select aesirgéd number df samples with
the EQB, it is not properly suitable when few lagksamples are included by photointerpretation
at each iteration due to its high computational glexity and poor classification performance with
smallh values.

5) The KL-Max technique is different from the abawentioned methods since it is only
able to select one sample at each iteration andbeammplemented with any classifier that
estimates a posteriori class probabilities. In experiments we converted the SVM results into
probabilities and results showed that this techmicgi not effective with SVM classifiers and
requires very high computational complexity.

We assessed the compatibility of the considerede®hniques with the strategies to label
unlabeled samples by image photointerpretatiorraurgd data collection in order to provide some
guidelines to the users under different conditioAs. mentioned before, in the case of VHR
images, in many applications the labeling of unladbe samples can be achieved by
photointerpretation, which is compatible with saléterations of the AL process in which a small
value h of samples are included in the training set athestep according to an interactive
procedure of labeling carried out by an expert afger On our VHR data set, we observed that
batches ofh=5 or 10 samples can result in the best tradeoff éetwaccuracy and number of
considered labeled samples. In the case of hyparaper medium/low resolution multispectral
data, expensive and time consuming ground surveyssaally necessary for the labeling process.
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Under this last condition, only very few iterationg the AL process are realistic. Thus, it is
reasonable to collect large batches (of e.g., hedsdof samples) for each iteration. In this case, w
observed that sophisticated query functions arenecessary, as with many samples often the
uncertainty criterion alone is sufficient for obtaig good accuracies. As a final remark, we point
out that in real applications, some geographicaasumay be not accessible for ground survey (or
the process might be too expensive). Thus, thenitiefi of the poolU should be carried out
carefully, in order to avoid these areas.

As a future development, we consider to extend gheposed method by including a
spatially-dependent labeling costs, which take® iatcount that traveling to a certain area
involves some type of costs that should be takenancount in the selection of batch of unlabeled
samples [27]. In addition, we plan to define hyksgbroaches that integrate semisupervised and

AL methods in the classification of RS images.

APPENDIX
TABLE 9. TABLE OF SYMBOLS
Symbol Description Symbol Description
mcLu-ecep | V-th sample selected using

n Total class number X, ECBD

m Number of unlabeled samples selected at I Set of indices of m most
the uncertainty step uncertain samples
Total number of unlabeled samples adged

h to the training set at each iteration (batch X Set Offh samples selected by|a
size) query function
Number of unlabeled samples selected Indices of unlabeled samples |of

g Ig::hr?izﬁz binary SVM in the BLY 1/X | that are not contained K
Number of total samples selected in the o

P BLU technique (i.e.0 = qn) |X| Cardinality of seX

u Total number of unlabeled samples t Index of an unlabeled sample

that will be included irK
Weighting parameter for the

BLU Selected j-th sample from the-th SVM

Xji based on the BLU technique % ABD technique
XBLU Selec_tedj-th sample based on the BLU S Supervisor
J technique
MCLU Selectedj-th sample based on the MCLU :
X technigue Q Query function
c(x) Confidence value of pattem T Training set
Coin (X) Minimum distance function of patterx U Unlabeled sample pool
Cqr (X) | Difference function of patterx G Classifier
no Index of the binary SVM with highest TS Test set
output score
Index of the binary SVM with the second L
Fomax highest output score v Validation set
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f(x) Functional distance of pattesn to thei- K Number of Clusters for the
! th hyperplane CBD or ECBD techniques
K (CIY Kernel function C, v-th cluster
7. Q) Nonlinear mapping function M, v-th cluster center
14 Spread of the RBF kernel function o(! Indicator function
C SVM penalty parameter n, Pseudo centre afth cluster
TABLE 10.TABLE OF ACRONYMS
Acronyms Description Acronyms Description
RS Remote Sensing KCBD Kernel CBD
AL Active Learning ECBD Enhanced CBD
SVM Support Vector Machine BLU-ABD BLU with ABD
SV Support Vector BLU-CBD BLU with CBD
RBF Radial Basis Function MCLU-ABD MCLU with ABD
OAA One Against All MCLU-CBD MCLU with CBD
MS Margin Sampling MCLU-ECBD MCLU with ECBD
BLU Binary-Level Uncertainty MS-cSV MS by closesigport Vector
MCLU Multiclass-Level Uncertainty EQB Entropy Qudny Bagging
ABD Angle Based Diversity KL-Max Kullback-Leibler-8k technique
CBD Clustering Based Diversity
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