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Abstract— This paper investigates different batch mode active learning techniques for the 

classification of remote sensing (RS) images with support vector machines (SVMs). This is done 

by generalizing to multiclass problems techniques defined for binary classifiers. The investigated 

techniques exploit different query functions, which are based on the evaluation of two criteria: 

uncertainty and diversity. The uncertainty criterion is associated to the confidence of the 

supervised algorithm in correctly classifying the considered sample, while the diversity criterion 

aims at selecting a set of unlabeled samples that are as more diverse (distant one another) as 

possible, thus reducing the redundancy among the selected samples. The combination of the two 

criteria results in the selection of the potentially most informative set of samples at each iteration 

of the active learning process. Moreover, we propose a novel query function that is based on a 

kernel clustering technique for assessing the diversity of samples and a new strategy for selecting 

the most informative representative sample from each cluster. The investigated and proposed 

techniques are theoretically and experimentally compared with state-of-the-art methods adopted 
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for RS applications. This is accomplished by considering VHR multispectral and hyperspectral 

images. By this comparison we observed that the proposed method resulted in better accuracy with 

respect to other investigated and state-of-the art methods on both the considered data sets. 

Furthermore, we derived some guidelines on the design of active learning systems for the 

classification of different types of RS images. 

 

Index Terms – Active learning, query functions, image classification, hyperspectral 

images, very high spatial resolution images, support vector machines, remote sensing. 

 

I.  INTRODUCTION  

Land cover classification from RS images is generally performed by using supervised 

classification techniques, which require the availability of labeled samples for training the 

classification algorithm. The amount and the quality of the available training samples are crucial 

for obtaining accurate classification maps. However, the collection of labeled samples is time 

consuming and costly, and the available training samples are often not enough for an adequate 

learning of the classifier. A possible approach to address this problem is to exploit unlabeled 

samples in the learning of the classification algorithm according to semisupervised or transductive 

classification procedure. The semisupervised approach has been widely investigated in the recent 

years in the RS community [1]-[5]. A different approach to both enrich the information given as 

input to the supervised classifier and improve the statistic of the classes is to iteratively expand the 

original training set according to a process that requires an interaction between the user and the 

automatic recognition system. This approach is known in the machine learning community as 

active learning (AL) and, although marginally considered in the RS community, can result very 

useful for different applications. The AL process is conducted according to an iterative process. At 

each iteration, the most informative unlabeled samples are chosen for a manual labeling and the 

supervised algorithm is retrained with the additional labeled samples. In this way, the unnecessary 

and redundant labeling of non informative samples is avoided, greatly reducing the labeling cost 

and time. Moreover, AL allows one to reduce the computational complexity of the training phase. 

In this paper we focus our attention on AL methods. 

In RS classification problems, the collection of labeled samples for the initial training set and 

the labeling of queried samples can be derived according to: 1) in situ ground surveys, which are 
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associate to high cost and required time; 2) the expert interpretation of color composites (image 

photointerpretation), which is cheaper and faster; or 3) hybrid solutions where both 

photointerpretation and ground surveys are used. The choice of the labeling strategy depends on 

the considered problem and image type. For example, we can reasonably assume that for the 

classification of very high resolution (VHR) images, the labeling of samples can be easily carried 

out by photointerpretation. The metric or sub-metric resolution of these images allows a human 

expert to identify and label the objects on the ground on the basis of the inspection of their 

geometric and spectral properties in real or false color compositions. In case of medium (or low) 

resolution multispectral images and hyperspectral data are considered, the land-cover classes are 

characterized only on the basis of their spectral signatures (the geometric properties of the objects 

are not visible and cannot be used by the photointerpreter, and  usually cannot be recognized with 

high reliability by a human expert. For example, hyperspectral data, thanks to a dense sampling of 

the spectral signature, allows one characterizing several different land-cover classes (e.g., 

associated to different arboreal species) that cannot be recognized by a visual analysis of different 

false color compositions. Thus, in these cases ground survey are necessary for the labeling of 

samples. 

On the basis of the aforementioned considerations, depending on both the type of 

classification problem and the type of data, the cost and time associated to the labeling process 

significantly changes. These different scenarios require the definition of different AL schemes: we 

expect that in cases where photointerpretation is possible, several iterations of the labeling step are 

feasible; whereas in cases where ground truth surveys are necessary, only few iterations of the AL 

process are doable, because of both high cost and required time associated with in situ data 

collection. 

Most of the previous studies in AL have focused on selecting the single most informative 

unlabeled sample to include in the training set at each iteration, by assessing its uncertainty [6]-

[12]. This can be inefficient, since the classifier has to be retrained for each new labeled sample 

added to the training set. This approach can be inappropriate for RS image classification tasks for 

the abovementioned reasons. Thus, in this paper we focus on batch mode active learning, where a 

batch of 1h >  unlabeled samples is queried at each iteration. The problem with such an approach 

is that by selecting the samples of the batch on the basis of the uncertainty only, some of the 

selected samples could be similar to each other, and thus do not provide additional information for 

the model updating with respect to other samples in the batch. The key issue of batch mode AL is 

to select sets of samples with little redundancy, so that they can provide the highest possible 

information to the classifier. Thus, the query function adopted for selecting the batch of the most 
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informative samples should take into account two main criteria: 1) uncertainty, and 2) diversity of 

samples [13]-[15]. The uncertainty criterion is associated to the confidence of the supervised 

algorithm in correctly classifying the considered sample, while the diversity criterion aims at 

selecting a set of unlabeled samples that are as more diverse (distant one another) as possible, thus 

reducing the redundancy among the selected samples. The combination of the two criteria results 

in the selection of the potentially most informative set of samples at each iteration of the AL 

process. 

The aim of this paper is to investigate different AL techniques proposed in the machine 

learning literature and to properly generalize them to the classification of RS images with 

multiclass problem addressed by support vector machines (SVMs). The investigated techniques 

use different query functions with different strategies to assess the uncertainty and diversity 

criteria in the multiclass case. Moreover, we propose a novel query function that is based on a 

kernel clustering technique for assessing the diversity of samples and a new strategy for selecting 

the most informative representative sample from each cluster. The investigated and proposed 

techniques are theoretically and experimentally compared among them and with other AL 

algorithms proposed in the RS literature in the classification of VHR images and hyperspectral 

data. On the basis of this comparison some guidelines are derived on the use of AL techniques for 

the classification of different types of RS images. 

The rest of this paper is organized as follows. Section II reviews the background on AL 

methods and their application to RS problems. Section III presents the investigated batch mode AL 

techniques and the proposed generalization to multiclass problems. Section IV presents the 

proposed novel query function based on kernel clustering and an original selection of cluster most 

informative samples. Section V presents the description of the three considered data sets that 

include both VHR and hyperspectral images and the design of experiments. Section VI illustrates 

the results obtained by the extensive experimental analysis carried out on the considered data sets. 

Finally, Section VII draws the conclusion of this work. 

II.  BACKGROUND ON ACTIVE LEARNING  

A. Active Learning Process 

A general active learner can be modeled as a quintuple (G, Q, S, T, U) [6]. G is a supervised 

classifier, which is trained on the labeled training set T. Q is a query function used to select the 

most informative unlabeled samples from a pool U of unlabeled samples. S is a supervisor who 

can assign the true class label to any unlabeled sample of U. The AL process is an iterative 

process, where the supervisor S interacts with the system by iteratively labeling the most 
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informative samples selected by the query function Q at each iteration. At the initial stage, an 

initial training set T of few labeled samples is required for the first training of the classifier G. 

After initialization, the query function Q is used to select a set of samples X from the pool U and 

the supervisor S assigns them the true class label. Then, these new labeled samples are included 

into T and the classifier G is retrained using the updated training set. The closed loop of querying 

and retraining continues for some predefined iterations or until a stop criterion is satisfied. 

Algorithm 1 gives a description of a general AL process. 

 

Algorithm 1: Active Learning procedure    
1. Train the classifier G with the initial training set T 
2. Classify the unlabeled samples of the pool U 
Repeat 
3. Query a set of samples (with query function Q) from the pool U 
4. A label is assigned to the queried samples by the supervisor S 
5. Add the new labeled samples to the training set T 
6. Retrain the classifier 
Until a stopping criteria is satisfied. 
 

The query function Q is of fundamental importance in AL techniques, which often differ 

only in their query functions. Several methods have been proposed so far in the machine learning 

literature. A probabilistic approach to AL is presented in [7], which is based on the estimation of 

the posterior probability density function of the classes both for obtaining the classification rule 

and to estimate the uncertainty of unlabeled samples. In the two-class case, the query of the most 

uncertain samples is obtained by choosing the samples closest to 0.5 (half of them below and half 

above this probability value). The query function proposed in [16] is designed to minimize future 

errors, i.e., the method selects the unlabeled pattern that, once labeled and added to the training 

data, is expected to result in the lowest error on test samples. This approach is applied to two 

regression models (i.e., weighted regression and mixture of Gaussians) where an optimal solution 

for minimizing future error rates can be obtained in closed form. Unfortunately, this solution is 

intractable to calculate the expected error rate for most classifiers without specific statistical 

models. A statistical learning approach is used in [17] for regression problems with multilayer 

perceptron. In [18], a method is proposed that selects the next example according to an optimal 

criterion (which minimizes the expected error rate on future test samples), but solves the problem 

by using a sampling estimation. The authors in [18] present two techniques for estimating future 

error rate. In the first technique, the future error rate is estimated by log-loss using the entropy of 

the posterior class distribution on the set of unlabeled samples. In the second technique, a 0-1 loss 
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function using the posterior probability of the most probable class for a set of unlabeled samples is 

used. Instead of estimating the expected error over the full distribution, the error is measured over 

the samples in the pool U. Furthermore, the estimation of the error is obtained using the learner at 

the previous iteration. The query function causes the selection of the examples which maximize 

the sharpness of learner’s existing belief over the unlabeled examples. The method is implemented 

using naïve Bayes. 

Another popular paradigm is given by committee-based active learners. The “query by 

committee” approach [19]-[21] is a general AL algorithm that has theoretical proofed guarantees 

on the reduction in prediction error with the number of queries. A committee of classifiers using 

different hypothesis about parameters is trained to label a set of unknown examples. The algorithm 

selects the samples where the disagreement between the classifiers is maximal. In [22], two query 

methods are proposed that combine the idea of query by committee and that of boosting and 

bagging. 

An interesting category of AL approaches, which have gained significant success in 

numerous real-world learning tasks, is based on the use of support vector machines (SVMs) [8]-

[14]. The SVM classifier [23]-[24] is particularly suited to AL due to its intrinsic high 

generalization capabilities and because its classification rule can be characterized by a small set of 

support vectors that can be easily updated over successive learning iterations [12]. One of the most 

popular (and effective) query heuristic for active SVM learning is margin sampling (MS), which 

selects the data point closest to the current separating hyperplane. This method results in the 

selection of the unlabeled sample with the lowest confidence, i.e., the maximal uncertainty on the 

true information class. The query strategy proposed in [10] is based on the splitting of the version 

space [10],[13]: the points which split the current version space into two halves having equal 

volumes are selected at each step, as they are likely to be the actual support vectors. Three 

heuristics for approximating the above criterion are described; the simplest among them selects the 

point closest to the hyperplane as in [8]. In [6], an approach is proposed that estimates the 

uncertainty level of each sample according to the output score of a classifier and selects only those 

samples whose outputs are within the uncertainty range. In [11], the authors present possible 

generalizations of the active SVM approach to multiclass problems. 

It is important to observe that the abovementioned methods consider only the uncertainty of 

samples, which is an optimal criterion only for the selection of one sample at each iteration. 

Selecting a batch of 1h >  samples exclusively on the basis of the uncertainty (e.g., the distance to 

the classification hyperplane) may result in the selection of similar (redundant) samples that do not 

provide additional information. However, in many problems it is necessary to speed up the 
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learning process by selecting batches of more than one sample at each iteration. In order to address 

this shortcoming, in [13] an approach is presented especially designed to construct batches of 

samples by incorporating a diversity measure that considers the angles between the induced 

classification hyperplanes (more details on this approach are given in the next section). Another 

approach to consider the diversity in the query function is the use of clustering [14]-[15]. In [14], 

an AL heuristic is presented, which explores the clustering structure of samples and identifies 

uncertain samples avoiding redundancy (details of this approach are given in the next Section). In 

[25]-[26], the authors present a framework for batch mode AL that applies the Fisher information 

matrix to select a number of informative examples simultaneously. 

Nevertheless, most of the abovementioned approaches are designed for binary classification 

and thus are not suitable for most of the RS classification problems. In this paper, we focus on 

multiclass SVM-based AL approaches that can select a batch of samples at each iteration for the 

classification of RS images. The next subsection provides a discussion and a review on the use of 

AL for the classification of RS images. 

 

B. Active learning for the classification of RS data 

Active learning has been applied mainly to text categorization and image retrieval problems. 

However, the AL approach can be adopted for the interactive classification of RS images by taking 

into account the specific features of this domain. In RS problems, the supervisor S is a human 

expert that can derive the land-cover type of the area on the ground associated to the selected 

patterns according to the three possible strategies identified in the introduction, i.e., 

photointerpretation, ground survey, or hybrid strategies. Here, these different strategies are 

associated with significantly different costs and times, and the choice of the strategy (and thus the 

costs and times) depends on the considered classification problem. The image photointerpretation 

is relatively cheep but it strongly depends on expert’s ability to reliably identify the correct label of 

selected samples. The cost of ground surveys is normally much higher and depends on the 

considered area. According to these strategies, the AL approach can be run as 1) interactive expert-

guided classification tool or 2) in-situ ground surveys planning and supervised classification tool. 

In [27], the AL problem is formulated considering a spatially dependent label acquisition costs. 

With the present work we observe that the labeling cost mainly depends on the type of the RS 

data, which affects the aforementioned labeling strategy. For example, in case of multispectral 

VHR images, often the labeling of samples can be carried out by photointerpretation, while in the 

case of medium/low resolution multispectral images and hyperspectral data, expensive ground 

surveys are necessary. No particular restrictions are usually considered for the definition of the 
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initial training set T and his size T , since we expect that the AL process can be started up with 

few samples for each class without affecting the convergence capability (the initial samples can 

affect the number of iterations necessary for obtaining convergence). The pool of unlabeled 

samples U can be associated to the whole considered image or to a portion of it (for reducing the 

computational time associated to the query function and/or for considering only the areas of the 

scene accessible for labeling). An important issue is related to the capability of the query function 

to select batches of 1h >  samples, which results to be of fundamental importance for the adoption 

of AL in real-world RS problems. It is worth to note here the importance of the choice of the h 

value in the design of the AL classification system, as it affects the number of iterations and thus 

both the performance and the cost of the classification system. In general, we expect that for the 

classification of VHR images (where photointerpretation is possible), several iterations of the 

labeling step may be carried out and small values for h can be adopted; whereas in cases where 

ground truth surveys are necessary, only few iterations of the AL process are possible and large h 

values are necessary.  

In the RS domain, AL was applied to the detection of subsurface targets, such as landmines 

and unexploded ordnance in [29]-[30]. In [30], an efficient AL procedure is developed, based on a 

mutual information measure. In this procedure, one initially performs excavation with the purpose 

of acquiring labels to improve the classifier, and once this AL phase is completed, the resulting 

classifier is applied to the remaining unlabeled signatures to quantify the probability that each item 

is an unexploded ordnance. Some preliminary works about the use of AL for RS classification 

problems can be found in [12], [31]-[32]. The technique proposed in [12] is based on MS and 

selects the most uncertain sample for each binary SVM in a One-Against-All (OAA) multiclass 

architecture (i.e., querying h n=  samples, where n is the number of classes). In [31], two batch 

mode AL techniques for multiclass RS classification problems are proposed. The first technique is 

MS by closest support vector (MS-cSV), which considers the smallest distance of the unlabeled 

samples to the n hyperplanes (associated to the n binary SVMs in a (OAA) multiclass architecture) 

as the uncertainty value. At each iteration, the most uncertain unlabeled samples, which do not 

share the closest SV, are added to the training set. The second technique, called entropy query-by 

bagging (EQB), is a classifier independent approach based on the selection of unlabeled samples 

according to the maximum disagreement between a committee of classifiers. The committee is 

obtained by bagging: first different training sets (associated to different EQB predictors) are drawn 

with replacement from the original training data. In [31], each training set is used to train the OAA 

SVM architecture to predict the different labels for each unlabeled sample. Finally, the entropy of 
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the distribution of the different labels associated to each sample is calculated to evaluate the 

disagreement among the classifiers on the unlabeled samples. The samples with maximum entropy 

(i.e., those with maximum disagreement among the classifiers) are added to the current training 

set. In [32], an AL technique is presented, which selects the unlabeled sample that maximizes the 

information gain between the a posteriori probability distribution estimated from the current 

training set and the training set obtained by including that sample into it. The information gain is 

measured by the Kullback–Leibler (KL) divergence. This KL-Maximization (KL-Max) technique 

can be implemented with any classifier that can estimate the posterior class probabilities. However 

this technique can be used to select only one sample at each iteration. 

III.  INVESTIGATED QUERY FUNCTIONS 

In this section we investigate different query functions Q based on SVM for multiclass RS 

classification problems. SVM is a binary classifier, which goal is to divide the d-dimensional 

feature space into two subspaces (one for each class) using a separating hyperplane. Let us assume 

that a training set T made up of N pairs ( ) 1
,

N

i i i
y

=
x  is available, where ix  are the training samples 

and { 1; 1}iy ∈ + − are the associated labels. The decision rule used to find the membership of an 

unknown sample is based on the sign of the discrimination function ( )f b= 〈 ⋅ 〉 +x w x  associated 

to the hyperplane. An important property of SVMs is related to the possibility to project the 

original data into a higher dimensional feature space via a kernel operator ( , )K ⋅ ⋅ , which satisfies 

the Mercer’s conditions [28]. The training phase of the classifier can be formulated as a 

minimization problem by using the Lagrange optimization theory, which lead to the calculation of 

the values of Lagrange multipliers iα  associated with the original training patterns i ∈x X . After 

the training, the discrimination function is given by 

 ( ) ( )i i i
i SV

f y K bα
∈

= ⋅ +∑x x x  (1) 

where SV is the set of support vectors, i.e., the training samples associated to 0iα > . In order to 

address multiclass problems on the basis of binary classifiers, the general approach consists of 

defining an ensemble of binary classifiers and combining them according to some decision rules 

[24]. The design of the ensemble of binary classifiers involves the definition of a set of two-class 

problems, each modeled with two groups of classes. The selection of these subsets depends on the 

kind of approach adopted to combine the ensemble, e.g., according to One-Against-All (OAA) or 

One-Against-One (OAO) strategies [24]. In this work we adopt the OAA strategy, which involves 
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a parallel architecture made up of n SVMs, one for each information class. Each SVM solves a 

two-class problem defined by one information class against all the others. We refer the reader to 

[24] for greater details on SVM in RS. 

The investigated AL techniques are based on standard methods; however, some of them are 

presented here with modifications with respect to the original version to overcome shortcomings 

that would affect their applicability to real RS problems. In particular, the presented techniques are 

adapted to classification problems characterized by a number of classes 2 n >  (using a OAA 

multiclass strategy) and to the inclusion of a batch of 1 h > samples at each iteration in the training 

set (thus reducing the number of iterations required by the AL process to reach the desired 

accuracy, which is very important, taking into account the costs and the times associated to the 

labeling process in RS classification problems). The investigated query functions are based on the 

evaluation of the uncertainty and diversity criteria applied in two consecutive steps. The m h>  

most uncertain samples are selected in the uncertainty step and the most diverse h ( 1m h> > ) 

samples among these m uncertain samples are chosen in the diversity step. The ratio /m h 

provides an indication on the tradeoff between uncertainty and diversity. In this section we present 

different possible implementations for both steps, focusing on the OAA multiclass architecture. 

 

A. Techniques for Implementing the Uncertainty Criterion with Multiclass SVMs 

The uncertainty criterion aims at selecting the unlabeled samples that have maximum 

uncertainty about their correct label among all samples in the unlabeled sample pool U. Since the 

most uncertain samples have the lowest probability to be correctly classified by the current 

classification model, they are the most useful to be included in the training set. In this paper, we 

investigate two possible techniques in the framework of multiclass SVM: a) binary-level 

uncertainty (which evaluates uncertainty at the level of binary SVM classifiers), and b) multiclass-

level uncertainty (which analyzes uncertainty within the considered OAA architecture). 

 

Binary-Level Uncertainty (BLU) 

The binary-level uncertainty (BLU) technique separately selects a batch of the most 

uncertain unlabeled samples from each binary SVM on the basis of the MS query function. In the 

technique adopted in [12], at each iteration only the (single) sample from U closest to the 

hyperplane of each binary SVM was added to the training set (i.e., h n= ). In the presented BLU 

technique, at each iteration the most uncertain q  ( 1q > ) samples are selected from each binary 

SVM (instead of a single sample). In greater detail, n binary SVMs are initially trained with the 
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current training set and the functional distance ( )if x , 1,...,i n=  [given by (1)] of each unlabeled 

sample U∈x  to the hyperplane is obtained. Then, the set of q  samples { }1, 2, ,, ,...,BLU BLU BLU
i i q ix x x , 

1,2,...,  i n= closest to the corresponding hyperplane are selected for each binary SVM, where 

,
BLU
j ix , 1,2,...,j q= , represents the selected  j-th sample from the i-th SVM. Totally qnρ =  

samples are taken. Since some unlabeled samples can be selected by more than one binary SVM, 

the redundant samples are removed. Thus, the total number m of selected samples can actually be 

smaller than ρ  (i.e., m ρ≤ ). The set of m most uncertain samples 1 2{ , ,..., }BLU BLU BLU
mx x x  is 

forwarded to the diversity step. Fig. 1 shows the architecture of the investigated BLU technique. 

 

Fig. 1. Multiclass architecture adopted for the BLU technique 
 

Multiclass-Level Uncertainty (MCLU) 

The adopted multiclass-level uncertainty (MCLU) technique selects the most uncertain 

samples according to a confidence value ( )c x , U∈x , which is defined on the basis of their 

functional distance ( )if x , 1,...,i n=  to the n decision boundaries of the binary SVM classifiers 

included in the OAA architecture [31], [33]. In this technique, the distance of each sample U∈x  

to each hyperplane is calculated and a set of n distance values { }1 2( ), ( ),... ( )nf f fx x x  is obtained. 

Then, the confidence value ( )c x  can be calculated using different strategies. Here, we consider 

two strategies: 1) the minimum distance function min ( )c x  strategy, which is obtained by taking the 

smallest distance to the hyperplanes (as absolute value), i.e., [31]  

 { }min 1,2,...,
( ) min [ ( )]       i

i n
c abs f
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=x x  (2) 
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and 2) the difference function ( )diffc x  strategy, which considers the difference between the first 

largest and the second largest distance values to the hyperplanes, i.e, [33]  

 

{ }

{ }
1max

1max 2 max

1max
1,2,...,

2max
1,2,..., , 

arg max ( )

arg max ( )

( ) ( ) ( )

i
i n

j
j n j r

diff r r

r f

r f

c f f

=

= ≠

=

=

= −

x

x

x x x

 (3) 

The min ( )c x  function models a simple strategy that computes the confidence of a sample x taking 

into account the minimum distance to the hyperplanes evaluated on the basis of the most uncertain 

binary SVM classifier. Differently, the ( )diffc x  strategy assesses the uncertainty between the two 

most likely classes. If this value is high, the sample x is assigned to 1maxr  with high confidence. On 

the contrary, if ( )diffc x  is small, the decision for 1maxr  is not reliable and there is a possible conflict 

with the class2maxr  (i.e., the sample x is very close to the boundary between class 1maxr  and 2maxr ). 

Thus, this sample is considered uncertain and is selected by the query function for better modeling 

the decision function in the corresponding position of the feature space. Once the ( )c x  value of 

each U∈x  is obtained based on one of the two above-mentioned strategies, the m samples 

1 2, ,...,MCLU MCLU MCLU
mx x x  with lower ( )c x  are selected to be forwarded to the diversity step. Note that 

MCLU
jx denotes the selected j-th most uncertain sample based on the MCLU strategy. Fig. 2 shows 

the architecture of the investigated MCLU technique. 

 

 

Fig. 2. Architecture adopted for the MCLU technique. 
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B. Techniques for Implementing the Diversity Criterion 

The main idea of using diversity in AL is to select a batch of samples ( 1h > ) which have 

low confidence values (i.e., the most uncertain ones), and at the same time are diverse from each 

other. In this paper, we consider two diversity methods: 1) the angle based diversity (ABD); and 2) 

the clustering based diversity (CBD). Before considering the multiclass formulation, in the 

following we recall their definitions for two-class problems. 

 

 Angle Based Diversity (ABD) 

A possible way for measuring the diversity of uncertain samples is to consider the cosine 

angle distance. It is a similarity measure between two samples defined in the kernel space by [13] 

 

( )

1

( ) ( ) ( , )
cos ( , )

( ) ( ) ( , ) ( , )

( , )
( , ) cos ( )

( , ) ( , )

i j i j
i j

i j i i j j

i j
i j

i i j j

K

K K

K

K K

φ φ
φ φ

−

⋅
∠ = =

∠ =

x x x x
x x

x x x x x x

x x
x x

x x x x

 (4) 

where ( )φ ⋅  is a nonlinear mapping function and ( , )K ⋅ ⋅  is the kernel function. The cosine angle 

distance in the kernel space can be constructed using only the kernel function without considering 

the direct knowledge of the mapping function ( )φ ⋅ . The angle between two samples is small 

(cosine of angle is high) if these samples are close to each other and vice versa. 

 

Clustering Based Diversity (CBD) 

Clustering techniques evaluate the distribution of the samples in a feature space and group 

the similar samples into the same clusters. In [14], the standard k-means clustering [34] was used 

in the diversity step of binary SVM AL technique. The aim of using clustering in the diversity step 

is to consider and analyze the distribution of uncertain samples. Since the samples within the same 

cluster are correlated and provide similar information, a representative sample is selected for each 

cluster. The advantage of this approach is that cluster prototypes are implicitly sparse in the feature 

space, i.e., distant one another. In [14], the sample that is closest to the corresponding cluster 

center (called medoid sample) is chosen as representative sample. 

 

C. Proposed combination of Uncertainty techniques and Diversity techniques generalized to 

Multiclass Problems  

 In this paper, each uncertainty technique is combined with one of the (binary) diversity 

techniques presented in the previous section. In the uncertainty step, the m most uncertain samples 



15 

are selected using either MCLU or BLU. In the diversity step, the most diverse  h m<  samples are 

chosen based on either ABD or CBD generalized to the multiclass case. Here, four possible 

combinations are investigated: 1) MCLU with ABD (denoted by MCLU-ABD), 2) BLU with 

ABD (denoted by BLU-ABD), 3) MCLU with CBD (denoted by MCLU-CBD), and 4) BLU with 

CBD (denoted by BLU-CBD). 

Combination of Uncertainty techniques with ABD for Multiclass SVMs (MCLU-ABD and BLU-

ABD) 

In the binary AL algorithm presented in [13], the uncertainty and ABD criteria are combined 

based on a weighting parameterλ . On the basis of this combination, a new sample tx  is included 

in the selected batch X according to the following optimization problem: 
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where I  denotes the set of unlabeled examples whose distance to the classification hyperplane is 

less than one, i.e., { }: ( ) 1i iI x U f x= ∈ < , /I X  represents the set of unlabeled samples of I that 

are not contained in the current batch X, and λ  provides the tradeoff between uncertainty and 

diversity. The cosine angle distance between each sample in /I X  and the samples included in X 

is calculated and the maximum value is taken as the diversity value of the corresponding sample. 

Then, the sum of the uncertainty and diversity values weighted by λ  is considered to define the 

combined value. The unlabeled sampletx  that minimizes such value is included in X. This process 

is repeated until the number of samples of the set X ( X ) is equal to h. This technique guarantees 

that the selected unlabeled samples in X are diverse regarding to their angles to all the others in the 

kernel space. Since the initial size of X is zero, the first sample included in X is always the most 

uncertain sample of I  (i.e., the sample closest to the hyperplane). We generalize this technique to 

multiclass architectures presenting the MCLU-ABD and BLU-ABD algorithms (see Algorithms 2 

and 3). 
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Algorithm 2: MCLU-ABD 
Inputs: 
λ  (weighting parameter that tune the tradeoff between uncertainty and diversity) 
m (number of samples selected on the basis of their uncertainty) 
h (batch size) 
Output:  
X (set of unlabeled samples to be included in the training set) 
1. Compute ( )c x for each sample U∈x . 
2. Select the set of m unlabeled samples with lower ( )c x  value (most uncertain) 

1 2{ , ,..., }MCLU MCLU MCLU
mx x x . 

3. Initialize X to the empty set. 
4. Include in X the most uncertain sample (the one that has the lowest ( )c x  value). 
Repeat 
5. Compute the combination of uncertainty and diversity with the following equation formulated 
for the multiclass architecture: 
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where we consider the m most uncertain samples selected at the step 2 and ( )c x  is calculated as 

explained in the MCLU subsection (with min ( )c x  or ( )diffc x  strategy).  

6. Include the unlabeled sampletx in X. 

Until X h=  

7. The supervisor S adds the label to the set of samples 1 2{ , ,..., }MCLU ABD MCLU ABD MCLU ABD
h X− − − ∈x x x  

and these samples are added to the current training set T.  
 
It is worth noting that the main difference between (5) and (6) is that the uncertainty in (6) is 

evaluated considering the confidence function ( )ic x  instead of the functional distance ( )if x  as in 

the binary case. 
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Algorithm 3: BLU-ABD 
Inputs: 
λ (weighting parameter that tune the tradeoff between uncertainty and diversity) 
m (number of samples selected on the basis of their uncertainty) 
h (batch size) 
q (number of unlabeled samples selected for each binary SVM in the BLU technique) 
n (total class number) 
Output:  
X (set of unlabeled samples to be included in the training set) 
1. Select the q most uncertain samples from each of the n binary SVM included in the multiclass 
OAA architecture (totally qnρ = samples are obtained). 

2. Remove the redundant samples and consider the set of m ρ≤  patterns 1 2{ , ,..., }BLU BLU BLU
mx x x . 

3. Compute ( )c x for the set of m  samples as follows: if one sample is selected by more than one 

binary SVM, ( )c x  is calculated as explained in the MCLU subsection (with min ( )c x  or ( )diffc x  

strategy); otherwise ( )c x  is assigned to the corresponding functional distance ( )f x . 
4. Initialize X to the empty set. 
5. Include in X the most uncertain sample (the one that has the lowest ( )c x  value). 
Repeat 
6. Compute the combination of uncertainty and diversity with the equation (6). 
7. Include the unlabeled sampletx in X. 

Until X h=  

8. The supervisor S adds the label to the set of patterns 1 2{ , ,..., }BLU ABD BLU ABD BLU ABD
h X− − − ∈x x x  and 

these samples are added to the current training set.  
 

Combination of Uncertainty techniques with CBD for Multiclass SVMs (MCLU-CBD and BLU-

CBD) 

The uncertainty and CBD were combined for binary SVM AL in [14]. The uncertain 

samples are identified according to the MS strategy based on their distance to the hyperplane. 

Then, the standard k-means clustering is applied in the original feature space to the unlabeled 

samples whose distance to the hyperplane (computed in the kernel space) is less than one (i.e., 

those that lie in the margin) and the k=h clusters are obtained. The medoid sample of each cluster 

is added to X (i.e., X h= ), labeled by the supervisor S and moved to the current training set. This 

algorithm evaluates the distribution of the uncertain samples within the margin and selects the 

representative of uncertain samples based on standard k-means clustering. We extend this 

technique to multiclass problems, by defining the MCLU-CBD and BLU-CBD algorithms (see 

Algorithms 4 and 5). 
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Algorithm 4: MCLU-CBD 
Inputs: 
m (number of samples selected on the basis of their uncertainty) 
h (batch size) 
Output:  
X (set of unlabeled samples to be included in the training set) 
1. Compute ( )c x  for each sample U∈x . 

2. Select the set of m unlabeled samples with lowest ( )c x  (with min ( )c x  or ( )diffc x  strategy) value 

(most uncertain) 1 2{ , ,..., }MCLU MCLU MCLU
mx x x . 

3. Apply the k-means clustering (diversity criterion) to the selected m most uncertain samples with 
k=h. 
4. Calculate the h cluster medoid samples 1 2{ , ,..., }MCLU CBD MCLU CBD MCLU CBD

h
− − −x x x , one for each 

cluster. 
5. Initialize X to the empty set and include in X the set of h patterns 

1 2{ , ,..., }MCLU CBD MCLU CBD MCLU CBD
h X− − − ∈x x x  

6. The supervisor S adds the label to the set of h patterns 1 2{ , ,..., }MCLU CBD MCLU CBD MCLU CBD
h X− − − ∈x x x  

and these samples are added to the current training set.  
 
 
Algorithm 5: BLU-CBD 
Inputs: 
m (number of samples selected on the basis of their uncertainty) 
h (batch size) 
q (number of unlabeled samples selected for each binary SVM in the BLU technique) 
n (total class number) 
Output:  
X (set of unlabeled samples to be included in the training set) 
1. Select the q most uncertain samples from each of the n binary SVMs included in the multiclass 
OAA architecture (totally qnρ = samples are obtained). 

2. Remove the redundant samples and consider the set of m ρ≤  patterns 1 2{ , ,..., }BLU BLU BLU
mx x x . 

3. Compute ( )c x  for the set of m  samples as follows: if one sample is selected by more than one 

binary SVM, ( )c x  is calculated as explained in the MCLU subsection (with min ( )c x  or ( )diffc x  

strategy); otherwise ( )c x  is assigned to the corresponding functional distance ( )f x . 
4. Apply the k-means clustering (diversity criterion) to the selected m most uncertain samples 
(k=h). 
5. Calculate the h cluster medoid samples 1 2{ , ,..., }BLU CBD BLU CBD BLU CBD

h
− − −x x x , one for each cluster. 

6. Initialize X to the empty set and include in X the set of h patterns 

1 2{ , ,..., }BLU CBD BLU CBD BLU CBD
h X− − − ∈x x x  

7. The supervisor S adds the label to the set of h patterns 1 2{ , ,..., }BLU CBD BLU CBD BLU CBD
h X− − − ∈x x x  and 

these samples are added to the current training set.  
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IV.  PROPOSED NOVEL QUERY FUNCTION  

Clustering is an effective way to select the most diverse samples considering the distribution 

of uncertain samples in the diversity step of the query function. In the previous section we 

generalized the CBD technique presented in [14] to the multiclass case. However, some other 

limitations can compromise its effectiveness: 1) the standard k-means clustering is applied to the 

original feature space and not in the kernel space where the SVM separating hyperplane operates, 

and 2) the medoid sample of each cluster is selected in the diversity step as the corresponding 

cluster representative sample (but more “informative” samples in that cluster could be selected). 

Indeed, because of the kernel mapping, the set of most diverse sample in the original space may 

not be the most diverse in the kernel space, thus not selecting the most informative samples for the 

classifier. In addition, the selection of the medoid of each cluster does not result in the selection of 

the most uncertain batch of samples. 

To overcome these problems, we propose a novel query function that is based on the 

combination of one of the uncertainty criteria for multiclass problems presented in the previous 

section and a novel Enhanced CBD (ECBD) technique. In the proposed query function, MCLU is 

used with the difference ( )diffc x  strategy in the uncertainty step to select the m most uncertain 

samples. The proposed ECBD technique, unlike the standard CBD, works in the kernel space by 

applying the kernel k-means clustering [35], [36] to the m samples obtained in the uncertainty step 

to select the h m<  most diverse patterns. The kernel k-means clustering iteratively divides the m 

samples into k=h clusters ( 1 2, ,... hC C C ) in the kernel space. At the first iteration, initial clusters 

1 2, ,... hC C C  are constructed assigning initial cluster labels to each sample [35]. In next iterations, a 

pseudo centre is chosen as the cluster center (the cluster centers in the kernel space 

( ) ( ) ( )1 2, ,... hφ µ φ µ φ µ  can not be expressed explicitly). Then the distance of each sample from all 

cluster centers in the kernel space is computed and each sample is assigned to the nearest cluster. 

The Euclidean distance between ( )iφ x  and ( )vφ µ , 1,2,...,v h= ,  is calculated as [35], [36]: 
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where ( )( ),j vCδ φ x  shows the indicator function. The ( )( ),j vCδ φ x =1 only if jx  is assigned to 

vC , otherwise ( )( ),j vCδ φ x =0. The vC  denotes the total number of samples in vC  and is 

calculated as ( )
1

( ),
m

v j v
j

C Cδ φ
=

=∑ x . As mentioned before, ( )φ ⋅  is a nonlinear mapping function 

from the original feature space to a higher dimensional space and ( , )K ⋅ ⋅  is the kernel function. The 

kernel k-means algorithm can be summarized as follows [35]: 

1. The initial value of ( )( , )i vCδ φ x , 1,2,...,i m= , 1,2,...,v h= , is assigned and h initial clusters  

{ }1 2, ,... hC C C  are obtained. 

2. Then ix  is assigned to the closest cluster. 

 ( )
2 21        if  ( ( ), ( )) ( ( ), ( ))      j

( , )          
0          otherwise
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D D v
C

φ φ µ φ φ µ
δ φ

 < ∀ ≠= 


x x
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3. The sample that is closest tovµ  (the Euclidean distance is calculated in the kernel space by 

equation  (7)) is selected as the pseudo centre vη  of vC . 

 
 ( )

 

2arg min ( , ( ))
i v

v i v
C

Dη φ φ µ
∈

=
x

x  (9) 

4. The algorithm is iterated until converge, which is achieved when samples do not change clusters 

anymore. 

 After 1 2, ,... hC C C  are obtained, unlike in the standard CBD technique, the most informative 

(i.e., uncertain) sample is selected as the representative sample of each cluster. This sample is 

defined as 
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v diff i

C
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−

∈
= =

x
x x  (10) 

where MCLU ECBD
v

−x  represents the v-th sample selected using the proposed query function MCLU-

ECBD and is the most uncertain sample of the v-th cluster (i.e., the sample that has minimum 

( )diffc x  in the v-th cluster). Totally h samples are selected, one for each cluster, using (10).  

In order to better understand the difference in the selection of the representative sample of 

each cluster between the query function of the CBD presented in [14] (which selects the medoid 

sample as cluster representative) and the proposed ECBD query function (which selects the most 

uncertain sample of each cluster), Fig. 3 presents a qualitative example. Note that, for simplicity, 

the example is presented for a binary SVM in order to visualize the confidence value ( )diffc x  as 
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the functional distance (MS is used instead of MCLU). The uncertain samples are firstly selected 

based on MS for both techniques, and then the diversity step is applied. The query function 

presented in [14] selects the medoid sample of each cluster (reported in blue in the figure), which 

however is not in agreement with the idea to chose the most uncertain sample in the cluster. On the 

contrary, the proposed query function considers the most uncertain sample of each cluster 

(reported in red in the figure), which in the binary example is the sample closest to the SVM 

hyperplane. This is a small difference with respect to the algorithmic implementation but a 

relevant difference from a theoretical viewpoint and for possible implications on the results. 

  

(a) (b) 
Fig. 3. Comparison between the samples selected by (a) the CBD technique presented in [14], 

and (b) the proposed ECBD technique. 
 
The proposed MCLU-ECBD algorithm can be summarized as follows: 
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Algorithm 6: Proposed MCLU-ECBD 
Inputs: 
m (the number of samples selected on the basis of their uncertainty) 
h (batch size) 
Output:  
X (set of unlabeled samples to be included in the training set) 
1. Compute ( )c x for each sample U∈x . 
2. Select the set of m unlabeled samples with lower ( )c x  value (most uncertain) 

1 2{ , ,..., }MCLU MCLU MCLU
mx x x . 

3. Apply the kernel k-means clustering (diversity criterion) to the selected m most uncertain 
samples with k=h.  
4. Select the representative sample MCLU ECBD

v
−x , 1,2, ,v h= …  (i.e., the most uncertain sample) of 

each cluster according to (10). 
5. Initialize X to the empty set and include in X  the set of samples MCLU ECBD

v X− ∈x , 1,2, ,v h= … .  

6. The supervisor S adds the label to the set of samples MCLU ECBD
v X− ∈x , 1,2, ,v h= … ,  and these 

samples are added to the current training set.  
 

V. DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS  

A. Data set description 

In our experiments we used one VHR and two hyperspectral data sets. The first data set is a 

hyperspectral image acquired on a forest area on the Mount Bondone in the Italian Alps (near the 

city of Trento) on September 2007. This image consists of 1613 1048×  pixels and 63 bands with a 

spatial resolution of 1 m. The available labeled data (4545 samples) were collected during a 

ground survey in summer 2007. The reader is referred to [37] for greater details on this dataset. 

The samples were randomly divided to derive a validation set V of 455 samples (which is used for 

model selection), a test set TS of 2272 samples (which is used for accuracy assessment), and a pool 

U of 1818 samples. 4% of the samples of each class are randomly chosen from U as initial training 

samples and the rest are considered as unlabeled samples. This choice was done in order to have a 

minimum reasonable number of samples for each class, limiting the number of the samples 

assumed initially available. The land cover classes and the related number of samples used in the 

experiments are shown in Table 1. 

The second data set is a Quickbird multispectral image acquired on the city of Pavia 

(northern Italy) on June 23, 2002. This image includes the four pan-sharpened multispectral bands 

and the panchromatic channel with a spatial resolution of 0.7 m. The image size is 1024 1024×   

pixels. The reader is referred to [38] for greater details on this dataset. The available labeled data 

(6784 samples) were collected by photointerpretation. These samples were randomly divided to 
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derive a validation set V of 457 samples, a test set TS of 4502 samples and a pool U of 1825 

samples. According to [38], Test pixels were collected on both homogeneous areas TS1 and edge 

areas TS2 of each class. 4% of the samples of each class in U are randomly selected as initial 

training samples, and the rest are considered as unlabeled samples. Table 2 shows the land cover 

classes and the related number of samples used in the experiments. 

The third data set is a hyperspectral image acquired on the Kennedy Space Center (KSC), 

Florida, U.S., on March 23, 1996. This image consists of 512 614×  pixels and 224 bands with a 

spatial resolution of 18 m. The number of bands is initially reduced to 176 by removing water 

absorption and low signal-to noise bands. The available labeled data (5121 samples) were 

collected using land cover maps derived from color infrared photography provided by KSC and 

Landsat Thematic Mapper (TM) imagery. The reader is referred to [40] for greater details on this 

dataset. After the elimination of noisy samples, the labeled samples were randomly divided to 

derive a validation set V of 513 samples, a test set TS of 2556 samples, and a pool U of 2052 

samples. 4% of the samples of each class are randomly chosen from U as initial training samples 

and the rest are considered as unlabeled samples. The land cover classes and the related number of 

samples used in the experiments are shown in Table 3. 

The first two data sets were used for all the experiments, whereas the third data set is not 

used for initial comparisons among investigated techniques and for the sensitivity analysis related 

to different parameter values (which require a huge set of experiments), but for further assessing 

the effectiveness of the proposed novel method and for comparing it only with the most effective 

investigated and literature methods. 

TABLE 1. NUMBER OF SAMPLES OF EACH CLASS IN U, V AND TS FOR THE TRENTO DATA SET. 
Class U  V TS 

Fagus Sylvatica 720 180 900 
Larix Decidua 172 43 215 

Ostrya Carpinifolia 160 40 200 
Pinus Nigra 186 47 232 

Pinus Sylvestris 340 85 425 
Quercus Pubescens 240 60 300 

Total 1818 455 2272 
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TABLE 2. NUMBER OF SAMPLES OF EACH CLASS IN U, V, TS1 AND TS2 FOR THE PAVIA DATA SET. 
Class U V TS1 TS2 
Water 58 14 154 61 

Tree areas 111 28 273 118 
Grass areas 103 26 206 115 

Roads 316 79 402 211 
Shadow 230 57 355 311 

Red buildings 734 184 1040 580 
Gray buildings 191 48 250 177 
White building 82 21 144 105 

Total 1825 457 2824 1678 

TABLE 3. NUMBER OF SAMPLES OF EACH CLASS IN U, V AND TS  FOR THE KSC DATA SET. 
Class U V TS 
Scrub 305 76 380 

Willow swamp 97 24 120 
Cabbage palm hammock  102 26 128 

Cabbage palm/oak hammock 101 25 125 
Slash pine  65 16 80 

Oak/broadleaaf hammock 92 23 114 
Hardwood swamp 42 11 52 
Graminoid  marsh  173 43 215 

Spartina marsh 208 52 260 
Cattail marsh 151 38 188 
Salt marsh  168 42 209 
Mud flats 185 46 231 

Water 363 91 454 
Total 2052 513 2556 

B. Design of Experiments 

In our experiments, without loosing in generality, we adopt an SVM classifier with RBF 

kernel. The values for the regularization parameter C and the spread γ  of the RBF kernel 

parameters are chosen performing a grid-search model selection only at the first iteration of the AL 

process. Indeed, initial experiments revealed that, if a reasonable number of initial training 

samples is considered, performing the model selection at each iteration does not increase 

significantly the classification accuracies at the cost of a much higher computational burden. The 

MCLU step is implemented with different m values defined on the basis of the value of h (i.e., 

4 ,  6 , 10m h h h= ), with h=5,10,40,100. In the BLU technique, the q=h most uncertain samples are 

selected for each binary SVM. Thus the total number of selected samples for all SVMs is qnρ = . 

After removing repetitive patterns, m ρ≤  samples are obtained. The value of λ  used in the 

MCLU-ABD and the BLU-ABD [for computing (6)] is varied as 0.3,0.5,0.6,0.8λ = . The total 

cluster number k for both kernel k-means clustering and standard k-means clustering is fixed to h. 

All the investigated techniques and the proposed MCLU-ECBD technique are compared with the 



25 

EQB and the MS-cSV techniques presented in [31]. The results of EQB are obtained fixing the 

number of EQB predictors to eight and selecting bootstrap samples containing 75 % of initial 

training patterns. These values have been suggested in [31]. Since the MS-cSV technique selects 

diverse uncertain samples according to their distance to the SVs, and its literature formulation can 

consider at most one sample related to each SV [31], it is not possible to define h greater than the 

total number of SVs. For this reason we can provide MS-cSV results for only h=5,10 for Trento 

and Pavia data sets, h=5,10,40 for KSC data set. Also the results obtained by the KL-Max 

technique proposed in [32] are provided for comparison purposes. Since the computational 

complexity of KL-Max implemented with SVM is very high, in our experiments at each iteration 

an unlabeled sample is chosen from a randomly selected subset (made up of 100 samples) of 

unlabeled data. Note that the KL-Max technique can be implemented with any classifier that 

exploits posterior class probabilities for determining the decision boundaries [32]. In order to 

implement KL-Max technique with SVM, we converted the outputs of each binary SVM to 

posterior probabilities exploiting the Platt’s method [39].   

All experimental results are referred to the average accuracies obtained in ten trials 

according to ten initial randomly selected training sets. Results are provided as learning rate 

curves, which show the average classification accuracy versus the number of training samples used 

to train the SVM classifier. In all the experiments, the size of final training set T  is fixed to 473 

for the Trento data set, 472 for the Pavia data set, and 483 for the KSC dataset. The total number 

of iterations is given by the ratio between the number of samples to be added to the initial training 

set and the pre-defined value of h. 

VI.  EXPERIMENTAL RESULTS 

We carried out different kinds of experiments in order to: 1) compare the effectiveness of the 

different investigated techniques that we generalized to the multiclass case in different conditions; 

2) assess the effectiveness of the novel ECBD technique; 3) compare the investigated methods and 

the proposed MCLU-ECBD technique with the techniques used in the RS literature; and 4) 

perform a sensitivity analysis with respect to different parameter settings and strategies. 

 

A. Results: Comparison among Investigated Techniques Generalized to the Multiclass Case 

In the first set of trials, we analyze the effectiveness of the investigated techniques 

generalized to multiclass problems. As an example, Fig. 4 compares the overall accuracies versus 

the number of initial training samples obtained by the MCLU-ABD, the MCLU-CBD, the BLU-
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ABD and the BLU-CBD techniques with 5h = , k=5 and 0.6λ = . In the MCLU, m=20 samples are 

selected for both data sets. In the BLU, 30m≤  and 40m≤  samples are chosen for the Trento and 

Pavia data sets, respectively. The confidence value is calculated with the ( )diffc x  strategy for both 

MCLU and BLU, as preliminary tests pointed out that by fixing the query function, the ( )diffc x  

strategy is more effective than the min ( )c x  strategy in case of using MCLU, whether it provides 

similar classification performance to the min ( )c x  strategy when using BLU. Fig. 4 shows that the 

MCLU-ABD technique is the most effective on both Trento and Pavia data sets. Note that similar 

behaviors are obtained by using different values of parameters (i.e., m, h,λ  and k). The 

effectiveness of the MCLU and BLU techniques for uncertainty assessment can be analyzed by 

comparing the results obtained by combining them with the same diversity techniques under the 

same conditions (i.e., same values for parameters). From Fig. 4, one can observe that the MCLU 

technique is more effective than the BLU in the selection of the most uncertain samples on both 

data sets (i.e., the average accuracies provided by the MCLU-ABD are higher than those obtained 

by the BLU-ABD and a similar behavior is obtained with the CBD). This trend is confirmed by 

using different values of parameters (i.e., m, h, λ  and k ). The ABD and CBD techniques can be 

compared by combining them with the same uncertainty technique under the same conditions (i.e., 

same values for parameters). From Fig. 4, one can see that the ABD technique is more effective 

than the CBD technique. The same behavior can also be observed by varying the values of 

parameters (i.e., m, h, λ  and k). 

 

 

(a) 



27 

 

(b) 
Fig. 4. Overall classification accuracy obtained by the MCLU and BLU uncertainty criteria when combined 
with the ABD and CBD diversity techniques in the same conditions for (a) Trento, and b) Pavia data sets. 

The learning curve of Pavia data set is reported starting from 87 samples until 312 in order to better 
highlight the small differences. 

 

B. Results: Proposed MCLU-ECBD Technique 

In the second set of trials, we compare the standard CBD with the proposed novel ECBD 

using the MCLU uncertainty technique with the ( )diffc x  strategy and fixing the same parameter 

values. For discriminating the contributions of the two novel components of the proposed ECBD, 

we report also the classification results obtained with kernel CBD (KCBD), where the clustering is 

performed with kernel k-means but the medoid sample is selected from each cluster, instead of the 

proposed most uncertain sample. 

As an example, Fig. 5 shows the results obtained with 40, 10, 10m h k= = =  for the three 

data sets. From these graphs one can see that the ECBD technique provides the selection of more 

informative samples compared to CBD and KCBD techniques, achieving higher accuracies for the 

same number of samples (or the same accuracy with less samples). Moreover, we can observe that 

performing the clustering in the kernel space can improve the results with respect to standard 

CBD, while the selection of the most uncertain sample from each cluster (in the kernel space) 

allows one to further slightly improve the classification accuracies. Tables 4, 5 and 6 report the 

mean and standard deviation of classification accuracies obtained on ten trials versus different 

iteration numbers and different training data size T  for the three considered data sets. From these 

tables we can observe that the classification accuracies obtained with the proposed MCLU-ECBD 

are generally higher and also more stable (i.e., with lower standard deviation over the ten trials) 
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with respect to both the CBD and KCBD. These results are also confirmed in other experiments 

with different values of parameters (not reported for space constraints). 

 

(a) 

 

(b) 

 
(c) 

Fig. 5. Overall classification  accuracy obtained by the MCLU uncertainty criterion when combined with 
the standard CBD, KCBD and the proposed ECBD diversity techniques for (a) Trento,  (b) Pavia and (c) 
KSC data sets. The line “All training samples” reported in (b) and (c) shows the accuracy obtained using 

the full pool as training set. 
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TABLE 4. AVERAGE CLASSIFICATION ACCURACY (CA) AND STANDARD DEVIATION (STD) OBTAINED ON TEN 

TRIALS FOR DIFFERENT TRAINING DATA SIZE ( )T  AND ITERATION NUMBERS (ITER. NUM) (TRENTO DATA 

SET) 

Technique 
T = 163 

(Iter.Num. 9) 

T = 193 

(Iter. Num. 12) 

T = 333 

(Iter. Num. 26) 
CA std CA Std CA std 

Proposed MCLU-ECBD 72.67 0.91 73.73 1.26 78.12 0.83 
MCLU-KCBD 72.28 1.25 73.44 1.51 77.83 1.00 
MCLU-CBD 71.39 1.60 72.81 1.30 76.39 1.22 

 
TABLE 5. AVERAGE CLASSIFICATION ACCURACY (CA) AND STANDARD DEVIATION (STD) OBTAINED ON TEN 

TRIALS FOR DIFFERENT TRAINING DATA SIZE ( )T  AND ITERATION NUMBERS (ITER. NUM) (PAVIA DATA 

SET)  

Technique 
T = 102 

(Iter.Num. 3) 

T = 142 

(Iter. Num. 7) 

T = 172 

(Iter. Num. 10) 
CA std CA std CA std 

Proposed MCLU-ECBD 84.10 1.66 85.66 1.29 86.23 1.09 
MCLU-KCBD 83.58 1.78 85.32 1.44 85.34 1.17 
MCLU-CBD 81.32 1.77 83.65 1.62 85.35 1.39 

TABLE 6. AVERAGE CLASSIFICATION ACCURACY (CA) AND STANDARD DEVIATION (STD) OBTAINED ON TEN 

TRIALS FOR DIFFERENT TRAINING DATA SIZE ( )T  AND ITERATION NUMBERS (ITER. NUM) (KSC DATA SET)  

Technique 
T = 173 

(Iter.Num. 9) 

T = 203 

(Iter. Num. 12) 

T = 243 

(Iter. Num. 16) 
CA std CA std CA std 

Proposed MCLU-ECBD 90.18 1.69 91.33 1.37 92.82 0.46 
MCLU-KCBD 89.46 1.65 90.77 1.29 92.33 0.82 
MCLU-CBD 89.06 1.94 90.25 1.04 91.26 1.20 

 
 
C) Results: Comparison Among the Proposed AL Techniques and Literature Methods 

In the third set of trials, we compare the investigated and proposed techniques with AL 

techniques proposed in the RS literature. We compare the MCLU-ECBD and the MCLU-ABD 

techniques with the MS-cSV [31], the EQB [31] and the KL-Max [32] methods. According to the 

accuracies reported in section V.A, we present the results obtained with the MCLU, which is more 

effective than the BLU. Fig. 6 shows the average accuracies versus the number of training samples 

obtained in the case of 5h =  (h=1 only for KL-Max) for the three data sets. In the figure we report 

the highest average accuracy (obtained with the best values of the parameters λ  and m) of each 

technique. Note that, since the MCLU-CBD proved less accurate than the MCLU-ECBD (see 

section V. B), its results are no more reported here. For the Trento and KSC data sets, the highest 

accuracies for MCLU-ECBD are obtained with 30m=  (while k=5), whereas the best results for 
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MCLU-ABD are obtained with λ =0.6 and 20m= . For the Pavia data set, the highest accuracies 

for MCLU-ECBD are obtained with 20m=  (while k=5), whereas the best results for MCLU-

ABD are obtained with λ =0.6 and 20m= . 

By analyzing Fig. 6a (Trento data set) one can observe that MCLU-ECBD and MCLU-ABD 

results are in general better than MS-cSV and significantly better than EQB and KL-Max results. 

The KL-Max accuracies are similar to the MS-cSV accuracies at early iterations but significantly 

decrease with bigger sizes of the training set with respect to MCLU-ECBD, MCLU-ABD, and 

MS-cSV. The accuracy at the final size of the training set (473 samples) obtained with the EQB is 

significantly smaller than those obtained with the other techniques. This accuracy could be 

improved by re-estimating the SVM model, but in our experiments, in order to have a fair 

comparison, we decided not to perform model re-estimation for any of the considered AL 

methods. On this data set, the classification accuracy obtained with the final training size does not 

reach the convergence with none of the considered AL methods; i.e., using the full pool for 

training the SVM classifier (i.e., 1818 samples) the obtained accuracy is 84.24%, while the 

maximum accuracy reached with AL methods with 473 samples does not reach 81% of accuracy. 

The results obtained on the Pavia data set (see Fig. 6b) show that the proposed MCLU-ECBD 

technique leads to the highest accuracies in most of the iterations; furthermore, it achieves 

convergence in less iterations (and thus with a smaller number of labeled samples) than the other 

techniques. The MCLU-ECBD technique yield an accuracy of 86.77% with only 232 samples, 

while using the full pool as training set (1825 samples) we obtain an accuracy of 86.82%. The 

MCLU-ABD method provides in general slightly lower accuracy than MCLU-ECBD and higher 

accuracies than MS-cSV. The EQB method provides significantly lower accuracies with respect to 

MCLU-ECBD, MCLU-ABD and MS-cSV in the first iterations and reaches the convergence 

around 250 samples. The KL-Max technique accuracies are in general significantly smaller than 

those achieved with other techniques for the same numbers of labeled samples. The results 

obtained on the KSC data set (Fig. 6c) show that the proposed MCLU-ECBD provides similar 

results compared to MCLU-ABD, and both of them significantly outperforms the rest of the other 

considered methods. The MCLU-ECBD technique reaches an accuracy of 94.64% with only 413 

samples, while using the full pool as training set (2052 samples) we obtain an accuracy of 94.68%. 

As opposed to the other data sets, with KSC the EQB method provides in general better accuracies 

than the MS-cSV technique. This is in agreement with what is reported in [31]. 

For a more detailed comparison, additional experiments were carried out on varying the 

values of the parameters (numerical results are not reported for space constraints). In all cases, we 

observed that MCLU-ECBD and MCLU-ABD techniques yield higher classification accuracies 
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than the other AL techniques when small h values are considered. Thus, the values for the 

parameter m andλ , which should be defined by the user, are not critical for the accuracies of both 

the MCLU-ECBD and MCLU-ABD techniques. Moreover, we observed that the EQB technique is 

not effective when selecting a small number h of samples, but when relatively high h values are 

considered it can lead to accuracies close to those of MCLU-ECBD and MCLU-ABD. MS-cSV 

can not be used for high h values when small initial training set are available since the maximum 

number of h is equal to the total number of SVs. KL-Max results can only be provided for h=1 and 

the related accuracies are smaller than those obtained with both MCLU-ECBD and MCLU-ABD 

methods. In order to assess the statistical significance of the difference between the proposed 

method and state-of-the-art methods we computed the McNemar test [41] for five different 

training set sizes for all data sets. We found that the accuracies obtained by the MCLU-ECBD 

technique are statistically different from those obtained by MS-cSV and EQB with a confidence 

greater than 95%. 

Table 7 reports the computational time (in seconds) required (for one trial) by MCLU-

ECBD, MCLU-ABD, MS-cSV, and EQB for different h values, and the computational time taken 

from KL-Max (related to h=1). In this case, the value of m for MCLU-ECBD and MCLU-ABD is 

fixed to 4h . It can be noted that MCLU-ECBD and MCLU-ABD are fast both for small and high 

values of h. The computational time of MS-cSV and EQB is very high in the case of small h 

values, whereas it decreases by increasing the h value. The largest computational time is obtained 

with KL-Max that with an SVM classifier requires the use of the Platt algorithm for computing the 

class posterior probabilities. The results obtained on the three data sets confirm that both the 

proposed MCLU-ECBD and the investigated MCLU-ABD are very effective in terms of both 

classification accuracy and computation complexity, and they outperforms state-of-the-art methods 

in most of the cases. 

 

(a) 
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(b) 

 
(c) 

Fig. 6. Overall classification accuracy obtained by the MCLU-ECBD, MCLU-ABD, MS-cSV, 
EQB and KL-Max techniques for (a) Trento, (b) Pavia, and (c) KSC data sets. The learning curves 
are reported starting from 178 samples for Trento, 92 samples for Pavia, and 142 samples for KSC 
data sets in order to better highlight the differences. The line “All training samples” reported in (b) 

and (c) shows the accuracy obtained using the full pool as training set. 
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Table 7. Examples of computational time (in seconds) taken from the MCLU-ECBD, MCLU-
ABD, MS-cSV, EQB and KL-Max techniques  

Data Set Technique 
h 

1 5 10 40 100 

Trento 

Proposed MCLU-ECBD - 10 6 8 12 
MCLU-ABD - 10 6 7 10 

MS-cSV - 584 452 - - 
EQB - 300 148 34 12 

KL-Max 72401 - - - - 

Pavia 

Proposed MCLU-ECBD - 10 6 7 11 
MCLU-ABD - 10 5 6 10 

MS-cSV - 384 193 - - 
EQB - 138 68 16 6 

KL-Max 71380 - - - - 

KSC 

Proposed MCLU-ECBD - 17 14 15 19 
MCLU-ABD - 18 13 15 19 

MS-cSV - 977 614 134 - 
EQB - 652 312 95 21 

KL-Max 97309 - - - - 
 
D. Results: Sensitivity Analysis with Respect to Different Parameter Settings and Strategies   

The aim of the fourth set of trials is to analyze the considered AL techniques under different 

parameter settings and strategies. 

 

Analysis of the effect of different batch size values 

 We carried out an analysis of the performances of different AL techniques varying the value 

of the batch size h by fixing the query function. As an example, Fig. 7 shows the accuracies versus 

the number of training samples obtained on Trento and Pavia data sets adopting the proposed 

MCLU-ECBD query function. The results are obtained with 4m h=  and k h= . The 

computational time taken from the MCLU-ECBD (related to one trial) for different h values is 

given in Table 8. From the table one can observe that the largest learning time corresponds to the 

case where one sample is selected at each iteration. The computational time decreases by 

increasing the h value. From Fig. 7, one can see that for both data sets selecting small h values 

results in similar (or better) classification accuracies compared to those obtained selecting only one 

sample at each iteration. On the contrary, high h values decrease the classification accuracy 

without decreasing the computational time if compared to small h values. Another interesting 

observation is that on the Pavia data set, when using small h values, convergence is achieved with 

less samples than when using large values. Note that similar behaviors are obtained with the other 

query functions. 

 



34 

 

(a) 

 

(b) 
Fig. 7. Overall classification accuracy versus the number of training samples obtained by the MCLU-ECBD 

technique with different h values for a) Trento and b) Pavia data sets 

TABLE 8. EXAMPLES OF COMPUTATIONAL TIME (IN SECONDS) TAKEN FROM THE MCLU-ECBD TECHNIQUE 

WITH RESPECT TO DIFFERENT H VALUES 

Data Set 
MCLU  MCLU-ECBD  

h h 
1 10 40 100 

Trento 47 6 8 12 
Pavia 46 6 7 11 

 

Analysis of the effect of different batch size values h on the diversity criteria 

 Finally, we analyze the accuracy obtained by using only uncertainty criteria and the 

combination of uncertainty with diversity criteria for different h values. As an example, Fig. 8 

shows the average accuracy versus the number of training samples obtained by MCLU (m is fixed 

equal to h for a fair comparison) and MCLU-ECBD with 4m h= , 5,100h =  and k h= . One can 

observe that, as expected, using only the uncertainty criterion provides poor accuracies when h is 

small, whereas the classification performances are significantly improved by using both 
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uncertainty and diversity criteria. On the contrary, the choice of complex query functions is not 

justified when a large batch of samples is added to the training set at each iteration (i.e., similar 

results can be obtained with and without considering diversity). This mainly depends on the 

intrinsic capability of a large number of samples h to represent patterns in different positions of the 

feature space. Similar behaviors are observed with the other query functions. 

 

(a) 

 

(b) 
Fig. 8. Overall classification accuracy versus the number of training samples for the uncertainty criterion 

and the combination of uncertainty and diversity criteria with different h values: a) Trento and b) Pavia data 
sets 

VII.  DISCUSSION AND CONCLUSION  

In this paper, AL in RS classification problems has been addressed. The use of AL 

techniques for the classification of RS images reduces the computational time and the number of 

labeled samples used for training the supervised algorithm (which is associated to cost and time 

for defining the training set) and increases the classification accuracy with respect to traditional 

passive techniques. Query functions based on MCLU and BLU in the uncertainty step, and ABD 

and CBD in the diversity step have been generalized to multiclass problems and experimentally 
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compared on different RS data sets. Furthermore, a novel MCLU-ECBD query function has been 

proposed. This query function is based on MCLU in the uncertainty step and on the analysis of the 

distribution of most uncertain samples by means of k-means clustering in the kernel space. 

Moreover, it selects the batch of samples at each iteration according to the identification of the 

most uncertain sample of each cluster. 

In the experimental analysis we compared the investigated and the proposed techniques with 

state-of-the-art AL methods adopted in RS applications for the classification of both VHR 

multispectral and hyperspectral images. By this comparison we observed that the proposed 

MCLU-ECBD method and the investigated MCLU-ABD method resulted in higher accuracy with 

respect to other state-of-the-art methods on the three considered data sets for the same number of 

labeled samples. In addition they can reach convergence with a smaller number of labeled samples 

than the other techniques. We underline that this is a very important advantage, because the main 

goal of AL is to perform an effective learning of a classifier with the minimum possible number of 

labeled samples. It was also shown that MCLU-ECBD and MCLU-ABD techniques are generally 

more effective than the other considered techniques also in terms of computational time (especially 

for small values of h). Thus, they are actually well-suited for applications in which sample labeling 

is carried out with both ground survey and image photointerpretation. Moreover, we showed that: 

1) the MCLU technique is more effective in the selection of the most uncertain samples for 

multiclass problems than the BLU technique; 2) the ( )diffc x  strategy is more precise than the 

min ( )c x strategy to assess the confidence value in the MCLU technique; 3) it is possible to have 

similar (sometimes better) classification accuracies with lower computational complexity when 

selecting small batches of h samples rather than selecting only one sample at each iteration; 4) the 

use of both uncertainty and diversity criteria is necessary when h is small, whereas high h values 

do not require the use of complex query functions; 5) the performance of the standard CBD 

technique can be significantly improved by adopting the ECBD technique, thanks to both the 

kernel k-means clustering and the selection of the most uncertain sample of each cluster instead of 

the medoid sample. 

In greater detail, on the basis of our experiments we can state that: 

1) The proposed novel MCLU-ECBD technique shows excellent performance in terms of 

classification accuracy and computational complexity, improving the performance of the standard 

CBD method. It is important to note that this technique has a computational complexity suitable to 

the selection of batch of samples made up of any desired number of patterns, thus it is compatible 

with both photointerpretation and ground-survey based labeling of unlabeled data. 
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2) The MCLU-ABD technique provides slightly lower or similar classification accuracies 

than the MCLU-ECBD method in most of the cases, with a similar computational time. It can be 

used for selecting a batch made up of any desired number of h samples. Thus, also the MCLU-

ABD technique is suitable for both photointerpretation and ground-survey based labeling of 

unlabeled data. 

3) The MS-cSV technique provides quite good classification accuracies. However, the 

maximum value of h that can be used is equal to the total number of SVs SVs  (i.e., SVsh ≤  and 

therefore it can not be implemented for any h value). Nevertheless, the original algorithm 

presented in [31] could be modified in order to avoid this issue. In the case of small h values, the 

computational complexity of this technique is much higher than that of the other investigated and 

proposed techniques. This complexity decreases when h increases. 

4) The EQB technique results in poorer classification accuracies with respect to the other 

techniques with small values of h and comparable classification accuracies with high values of h. 

The computational complexity of this technique is very high in case of selecting few samples, and 

decreases while h increases. Although it is possible to select any desired number of h samples with 

the EQB, it is not properly suitable when few labeled samples are included by photointerpretation 

at each iteration due to its high computational complexity and poor classification performance with 

small h values. 

5) The KL-Max technique is different from the above mentioned methods since it is only 

able to select one sample at each iteration and can be implemented with any classifier that 

estimates a posteriori class probabilities. In our experiments we converted the SVM results into 

probabilities and results showed that this technique is not effective with SVM classifiers and 

requires very high computational complexity. 

We assessed the compatibility of the considered AL techniques with the strategies to label 

unlabeled samples by image photointerpretation or ground data collection in order to provide some 

guidelines to the users under different conditions. As mentioned before, in the case of VHR 

images, in many applications the labeling of unlabeled samples can be achieved by 

photointerpretation, which is compatible with several iterations of the AL process in which a small 

value h of samples are included in the training set at each step according to an interactive 

procedure of labeling carried out by an expert operator. On our VHR data set, we observed that 

batches of 5h =  or 10 samples can result in the best tradeoff between accuracy and number of 

considered labeled samples. In the case of hyperspectral or medium/low resolution multispectral 

data, expensive and time consuming ground surveys are usually necessary for the labeling process. 
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Under this last condition, only very few iterations of the AL process are realistic. Thus, it is 

reasonable to collect large batches (of e.g., hundreds of samples) for each iteration. In this case, we 

observed that sophisticated query functions are not necessary, as with many samples often the 

uncertainty criterion alone is sufficient for obtaining good accuracies. As a final remark, we point 

out that in real applications, some geographical areas may be not accessible for ground survey (or 

the process might be too expensive). Thus, the definition of the pool U should be carried out 

carefully, in order to avoid these areas.  

As a future development, we consider to extend the proposed method by including a 

spatially-dependent labeling costs, which takes into account that traveling to a certain area 

involves some type of costs that should be taken into account in the selection of batch of unlabeled 

samples [27]. In addition, we plan to define hybrid approaches that integrate semisupervised and 

AL methods in the classification of RS images. 

APPENDIX 

TABLE 9.  TABLE OF SYMBOLS 
Symbol Description  Symbol Description  

n Total class number MCLU ECBD
v

−x  v-th sample selected using 
ECBD 

m 
Number of unlabeled samples selected at 
the uncertainty step I  

Set of indices of m most 
uncertain samples 

h 
Total number of unlabeled samples added 
to the training set at each iteration (batch 
size) 

X 
Set of h samples selected by a 
query function 

q  
Number of unlabeled samples selected 
for each binary SVM in the BLU 
technique 

/I X  
Indices of unlabeled samples of 
I that are not contained in X 

ρ  Number of total samples selected in the 
BLU technique (i.e., qnρ = ) X  Cardinality of set X 

u Total number of unlabeled samples  t 
Index of an unlabeled sample 
that will be included in X 

,
BLU
j ix  Selected  j-th sample from the i-th SVM  

based on the BLU technique λ  
Weighting parameter for the 
ABD technique 

BLU
jx  Selected  j-th sample based on the BLU 

technique 
S Supervisor 

MCLU
jx  Selected  j-th sample based on the MCLU 

technique 
Q Query function  

( )c x  Confidence value of pattern x  T Training set 

min ( )c x  Minimum distance function of pattern x  U Unlabeled sample pool 

( )diffc x  Difference  function of pattern x  G Classifier 

1maxr  Index of the binary SVM with highest 
output score 

TS Test set 

2maxr  Index of the binary SVM with the second  
highest output score 

V Validation set 
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( )if x  Functional distance of pattern x  to the i-
th hyperplane 

k 
Number of Clusters for the 
CBD or ECBD techniques 

( , )K ⋅ ⋅  Kernel function vC  v-th cluster 

( )φ ⋅  Nonlinear mapping function vµ  v-th cluster center 

γ  Spread of the RBF kernel function ( )δ ⋅  Indicator function 

C SVM penalty parameter vη  Pseudo centre of v-th cluster 

TABLE 10. TABLE OF ACRONYMS 
Acronyms Description  Acronyms Description  

RS Remote Sensing KCBD Kernel CBD 
AL  Active Learning ECBD  Enhanced CBD 

SVM Support Vector Machine BLU-ABD BLU with ABD 
SV Support Vector BLU-CBD BLU with CBD 

RBF Radial Basis Function  MCLU-ABD MCLU with ABD 
OAA One Against All MCLU-CBD MCLU with CBD 
MS Margin Sampling  MCLU-ECBD MCLU with ECBD 

BLU Binary-Level Uncertainty MS-cSV MS by closest Support Vector 
MCLU Multiclass-Level Uncertainty EQB Entropy Query-by Bagging 
ABD Angle Based Diversity KL-Max Kullback–Leibler-Max technique 
CBD Clustering Based Diversity   
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