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Abstract— Image classification usually requires the availability of reliable reference data collected for 

the considered image to train supervised classifiers. Unfortunately when time series of images are 

considered, this is seldom possible because of the costs associated with reference data collection. In most 

of the applications it is realistic to have reference data available for one or few images of a time series 

acquired on the area of interest. In this paper we present a novel system for automatically classifying 

image time series which takes advantage of image(s) with an associated reference information (i.e., the 

source domain) to classify image(s) for which reference information is not available (i.e., the target 

domain). The proposed system exploits the already available knowledge on the source domain and, when 

possible, integrates it with a minimum amount of new labeled data for the target domain. Moreover it is 

able to handle possible significant differences between statistical distributions of the source and target 

domains. Here the method is presented in the context of classification of remote sensing image time 

series, where ground reference data collection is a highly critical and demanding task. Experimental 

results show the effectiveness of the proposed technique. The method can work on multimodal (e.g., 

multispectral) images. 
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1 INTRODUCTION  

Observing time evolution of phenomena is a hot topic in many fields, e.g., economy, ecology, 

medical science, geology, etc. The knowledge on phenomena evolution has strong spin-off for daily life. 

Most of the phenomena in the mentioned fields are described by 1-dimensional variables [e.g., 

electroencephalogram (EEG) signals; electrocardiogram (ECG) signals; river water level; temperature, 

humidity, economical trend variables, and so on]. In the last decades, another set of multitemporal 

signals became relevant in the scientific community, which are 2-dimensional signals (i.e., images). 

Biomedical images (e.g., images acquired by radiographs, functional Magnetic Resonance Imaging, etc.) 

and geoscience and remote sensing images (e.g., images acquired by active and passive sensors on board 

of airborne, spaceborne platforms, etc.) fall mainly into this group. The possibility to have image time 

series (temporal images taken from the same scene at different time periods) drove the interest of the 

scientific community to the development of effective methods for information extraction from this kind 

of data. Analysis of time series in both biomedical and remote sensing fields by automatic and reliable 

techniques allowed scientists to improve both their data comprehension and the accurate detection of 

possible anomalies in a short time. These achievements are mainly due to the capability of methods 

specifically developed for time series analysis to exploit temporal correlation. The outputs of such data 

processing are highly relevant in many anthropic- and environmental-related fields. 

In biomedicine image time series play an important role for monitoring the disease evolution. In 

[1] time series of chest radiographs have been used for monitoring the pneumonia evolution. In [2] RGB 

color images have been used for analyzing the spreading of skin erythema. Breast magnetic resonance 

imaging has been exploited in [3] for investigating the evaluation of small mammographic lesions. Time 

series of magnetic resonance imaging has been used to study also changes in neuronal activities [4]. 
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Color retinal fundus image sequences has been analyzed in [5] for the detection of possible lesions. Most 

of the cited works deals with the detection of changes occurred from one acquisition to the next one. In 

biomedicine literature only few works approach time series analysis from the classification perspective 

[1]. 

The remote sensing literature on the classification of image time series is more extended. This is 

mainly due to the repeat-pass nature of satellite orbits that results in intrinsic multitemporal remote 

sensing image sequences. The availability of huge amounts of such data pushed research into the 

development of data analysis techniques for image time series. Time series of remote sensing images are 

beneficial for detecting land-cover transitions occurred on the ground and updating land-cover maps, 

which are very important processes for regularly monitoring the Earth surface. Such information is 

highly relevant to support and improve environmental management policies. Because of the increasing 

number of images regularly acquired at different times on the same area, and their possible free 

availability (e.g., Landsat Thematic Mapper archive, future ESA Sentinel mission), it is important to 

develop methods to update land-cover maps with both high accuracy and low cost.  

Classification maps can be updated by automatically classifying each image in the time series, 

which requires the availability of reference samples for each considered image to train the supervised 

classifier. However gathering such data is highly costly in terms of human time and effort, and thus also 

in terms of money. Moreover, often it is impossible from the practical viewpoint to collect reference 

training information for a given acquisition in the series. As an example, there are remote sensing 

applications that require the classification of a time series of historical images for which ground truth is 

not available and can be not collected in a retrospective way. Thus classifying a time series assuming 

that a sufficient number of ground reference samples is available for each acquisition is unfeasible. 
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In order to deal with this issue and generate a classification map for the desired image for which no 

prior information is available (target domain), there is a need to find out a way to use reference samples 

already available for an image acquired on the same scene at a different time (source domain). The 

simplest solution would be to use the classifier directly trained on the source domain to classify the 

target domain. However in most of the cases this does not provide reliable classification results, because 

source and target domains may differ from each other due to differences in the acquisition conditions 

(e.g., acquisition geometry and illumunion differences) [20]. Thus reference samples of the source 

domain may not follow the same distribution of the samples in the target domain making the classifier 

trained on them unreliable for the target domain. To overcome this problem, domain adaptation (DA) 

methods in transfer learning (TL) have been recently introduced in the literature [6]-[8]. DA methods 

aim at classifying the target domain (for which no ground information is available) by exploiting the 

information available on the source domain, assuming that the two domains may have different, but 

strongly related, distributions. In the literature, DA is known also as partially supervised/unsupervised 

learning and is addressed with Semi-Supervised Learning (SSL) methods [9]-[13] or Active Learning 

(AL) methods [14]-[17]. On the one hand, SSL applies a classifier trained on the source domain to the 

target domain after tuning the parameters according to unlabeled data from the target domain [9]-[13]. In 

other words, the information of reference training samples from the source domain is improved by 

costless unlabeled samples from the target domain to obtain a reliable classifier for the target domain. 

On the other hand, AL methods aim at improving (from the target domain point of view) the information 

of the source domain reference samples by iteratively adding samples selected from the target domain 

[14]- [17]. Before inclusion in the training set these samples should be manually labeled by a human 

expert, thus these methods have associated a cost that SSL techniques do not have. However AL 
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methods try to reduce it by labeling the smallest possible number of unlabeled samples. This is achieved 

by selecting for labeling those samples that are the most informative for the target domain viewpoint, 

thus avoiding the huge cost of collecting large amount of labeled samples. In the literature examples of 

domain adaptation methods based on both SSL and AL are available. For example in [9] DA problems 

are addressed with SSL by updating on the basis of the distribution of the target domain the parameters 

of a parametric maximum-likelihood (ML) classifier already trained on the source domain. This method 

has been generalized in the context of the Bayes rule for cascade classification in [10] in order to exploit 

the temporal correlation between domains. Further improvements of this method are presented in [11] 

and [12]. A multiple cascade classifier system is proposed in [11] including ML and neural-network 

classifiers. In [12], the sets of classes of the target and the source domains are automatically analyzed in 

the DA step by the joint use of unsupervised change detection and Jeffreys-Matusita statistical distance 

measure. This process results in the detection of classes that appeared or disappeared between the 

domains. Despite the method presented in [12] can manage possible class differences, the values of the 

statistical parameters modeling classes propagated from the source to the target domain are still biased. 

SSL-DA-based methods have been developed also in the context of Support Vector Machine (SVM) 

classifiers. In [13], the initial discriminant function is estimated on the source domain labeled samples. 

The adaptation to the target domain is achieved by iteratively including in the training set unlabeled 

patterns of the target domain that have a high probability to be correctly classified. Simultaneously 

labeled samples of the source domain are gradually removed. In [14]- [17], DA problems are addressed 

with AL and thus, unlike SSL-based methods [9]-[13], a small number of labeled training samples is 

included in the target domain together with the labeled samples of the source one. In [14], the 

classification parameters are initialized by the distributions estimated on the labeled samples of the 
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source domain. Then the unlabeled samples of the target domain that have the maximum information 

gain (measured by the Kullback–Leibler divergence) are included in the training set of the target domain 

after manual labeling. In [15], the statistical parameters of a ML classifier are initialized by exploiting 

the labeled samples of the source domain, and the most informative samples are iteratively selected from 

the target domain by AL to be added to the training set after manual labeling. In this method, during the 

AL process, the source domain samples that do not fit with the distribution of the classes in the target 

domain are removed. In [16], the authors show how AL applied to the target domain can leverage 

information from the source domain. This is achieved based on two steps: i) applying any of the DA 

methods from the literature to adapt the source domain labeled samples to target domain, and ii) 

exploiting AL in the target domain. In this work, the domain separator hypothesis is introduced for the 

selection of target domain samples being queried in the AL step. Accordingly, the target domain samples 

that are not similar to source domain are selected to be queried for better modeling the target domain.  

All the above mentioned DA methods initialize the parameters of the classifier to be applied to the 

target domain (i.e., the image to be classified) exploiting the labeled samples of the source domain. The 

adaptation to the target domain starts therefore from biased estimates. Thus if class statistical 

distributions in the target domain differ significantly from those of the source domain, the adaptation 

step cannot fully compensate for them. In these cases DA methods presented in the literature will 

provide low classification performance on the target domain. Therefore, it is necessary to develop new 

TL methods that are not significantly affected from the distribution differences in classes between the 

domains, thus providing good classification accuracy also in critical conditions. In order to alleviate the 

domain difference risk, in [17] a framework to actively transfer knowledge is presented, which assumes 

that the target domain also includes a small set of labeled training samples in addition to the source 
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domain. In this framework, initially a transfer classifier is constructed to be applied to the unlabeled 

samples of the target domain. The classifier is defined by using the training samples of both the source 

and the target domains [17]. Then, if an unlabeled sample is assigned to a class with low confidence, a 

domain expert will assign the correct class label to that sample. Even if this framework can reduce the 

domain difference risk, it has the drawback of assuming the availability of an initial training set for the 

target domain.  

To overcome the limitations of the DA methods available in the literature, we present a novel system 

for automatically updating classification maps by using image time series. The main idea of the proposed 

system is to classify the target domain by defining a method that: i) effectively reuses the available 

information on the source domain by mitigating possible bias effects; ii) labels the smallest possible 

number of unlabeled samples from the target domain for optimizing the classification accuracy; and iii) 

exploits the temporal correlation between the domains in the classification process. To this end, the 

proposed system is defined on the basis of two steps: i) low-cost definition of a training set for the target 

domain with transfer and active learning methods; and ii) target domain classification according to the 

Bayesian cascade decision rule. The first step properly uses the information available on the source 

domain to initialize the training set for the target domain without labeling any new sample. Source 

domain training samples with a high probability to have the same label also in the target domain are 

detected by applying unsupervised change detection to target and source images. Only class labels of 

detected unchanged training samples are propagated from the source to the target domain. Thanks to this 

choice, unlike the DA methods proposed in the literature, the classifier parameters of the target domain 

are estimated directly on the target domain samples that inherited a label from the source domain (i.e., 

statistics are not computed on samples from the source domain). Thus the proposed system is not 
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affected from the distribution differences between the domains. Then, if necessary, active learning is 

used to expand the initial target-domain training set by considering the temporal correlation between the 

domains. This is achieved by a novel AL technique defined by conditional entropy for the selection of 

most informative unlabeled samples in the image to be included in the training after manual labeling. In 

the second step, the target domain is classified by a cascade classifier defined in the framework of the 

Bayesian decision rule. This choice allows us to exploit the temporal correlation between the images 

(domains) also in the classification step.  

The paper is organized into five sections. Section II defines the considered problem and describes 

the proposed system. Section III illustrates the considered data sets and the design of experiments. 

Section IV shows the experimental results. Finally, Section V draws the conclusion of this work. 

2 A NOVEL SYSTEM TO CLASSIFICATION MAP UPDATING  

Let [ ]1 2, ,..., P=X X X X  be a time series that consists of P co-registered images acquired at 

different times on the same scene. Let us assume that at least one of the images in the time-series has a 

reliable training set. It does not matter whether this is an earlier or older image. The goal of the proposed 

method is to classify the desired images in the time series even if no reference information is available 

for them. In order to simplify the mathematical treatment, we consider only a pair of images from the 

series (i.e., one for the source domain and one for the target domain). However, the proposed method can 

be easily applied to long time series by iteratively processing pairs of images from the series. Let 

1 1,1 1,2 1,{ , ,..., }Bx x x=X  and 2 2,1 2,2 2,{ , ,..., }Bx x x=X  be two multimodal (multidimensional) images 

extracted from the time series X  acquired at times 1t  and 2t , respectively. Both images include C 

channels and B pixels. Let ( )1, 2,,j jx x  be the j-th pair of temporally correlated pixels made up of a pixel 
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1, jx  acquired at time 1t  and a spatially corresponding pixel 2, jx  acquired at time 2t . Let us assume that 

the image 1X  is the source domain for which a reliable training set 1 1, 1, 1{ , } M
j j jT x y ==  is available. 

1, 1jx ∈ X  is the j-th training sample, 1, jy ∈Ω  is the associated class label, and M B<  is the number of 

training samples. The image 2X  is the target domain for which a training set 2T  is not available. Let 

{ }1 2, , , Rω ω ωΩ = …  be the set of classes at time 1t , and { }1 2N , , , Nv v v= …  be the set of classes at time 

2t . We assume that different sets of classes may characterize the domains (i.e., Ω ≠ Ν ). The goal of the 

proposed system is to provide a classification map of the image 2X  by exploiting both the training 

samples available on the image 1X  and the temporal correlation between 2X  and 1X , and by 

minimizing the labeling costs associated to the definition of 2T (which at the limit can be null). Here this 

is achieved by a novel system based on two steps: i) low-cost definition of 2T ; and ii) cascade-

classification of the image 2X . The first step takes advantage of both TL and AL methodologies, and 

includes a novel AL technique for the selection of the most uncertain samples. The second step classifies 

2X  by taking into account the temporal correlation between the images in the considered pair thanks to 

the use of cascade classification. As the definition of 2T  strictly depends on the selected cascade 

classifier, the detailed explanation of the proposed system starts from the last step and moves backward. 

Fig. 1 shows the block scheme of the proposed system. 
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Fig. 1. Block diagram of the proposed system. 

 

A. Cascade Classification under Bayesian Decision Framework 

The Bayesian decision rule for cascade classification identifies the class label to be assigned to 

each pixel 2, 2∈jx X  by considering the temporal dependence of 2X  from 1X  [10], i.e.,  

2, j nx v∈
 
if { } { }1, 2, 1, 2,arg max ( , ) arg max ( , ) ( )

k k

n k j j j j k k
v N v N

v P v x x p x x v P v
∈ ∈

= =  (1) 

 

where 1, 2,( , )k j jP v x x  is the probability that the j-th pixel 2, jx  at t2 belongs to class kv , given the two 

observations 1, jx  and 2, jx , and ( )kP v  is the prior probability of having class kv  at t2. 1, 2,( , )j j kp x x v  is a 

mixture density that depends on the distributions of classes at t1, and can not be estimated without 

making this dependence explicit. To overcome this problem, 1, 2,( , )k j jP v x x  can be rewritten by 

highlighting its dependence on the class labels at time t1: 

1, 2,

1, 2,
1, 2,

( , , ) ( , )

( , )
( , , ) ( , )

i

s r

j j i k i k

k j j
j j s r s r

v N

p x x v P v

P v x x
p x x v P v

ω

ω

ω ω

ω ω
∈Ω

∈Ω ∈

=
∑

∑ ∑
 (2) 

X2 

X1 
 2 2, 2,

TL
2,

{ , }

N

j j

j

T x y

y

=

∈CD Based  
Label 

Propagation 

Change 
Detection  

(CD)  

 

Transfer Learning 

 Conditional 
Entropy based 

Active Learning 

T1 

Low-cost definition of T2 

Cascade  
Classification 

of the Target Domain (X2)  

Classification 
Map of X2 

X1 
1 1, 1,

1,

{ , }j j

j

T x y

y

=

∈Ω

X1 X2 

X2 T1 

T2 



11 

where 1, 2,( , , )j j i kp x x vω  is the joint class-conditional density function. The estimation of the statistical 

quantities in (2) is a complex task due to the difficulty in collecting enough training samples for properly 

modeling the multitemporal correlation between all possible temporal combinations of classes [10]. 

Therefore, as often done in practical applications [10]-[11],[18],[19], we assume the conventional class-

conditional independence in the time domain (i.e., 1, 2, 1, 2,( , , ) ( ) ( )j j i k j i j kp x x v p x p x vω ω= ) to simplify 

the estimations process. Under this assumption (1) can be rewritten as  

2, j nx v∈
 
if 

1, 2,

1, 2,

( ) ( ) ( , )

arg max
( ) ( ) ( , )

i

k

s r

j i j k i k

n
v N j s j r s r

v N

p x p x v P v

v
p x p x v P v

ω

ω

ω ω

ω ω
∈Ω

∈
∈Ω ∈

 
 =  
 
 

∑

∑ ∑
 (3) 

where 1,( )j ip x ω  and 2,( )j kp x v  are the single-date class-conditional density functions, and ( , )i kP vω  is 

the joint prior probability of having classes iω  at t1 and kv  at t2. The class parameters at time t1 can be 

estimated using the available training samples in 1T . However class parameters at time t2 and joint prior 

probabilities ( , )i kP vω  cannot be estimated directly due to the unavailability of the training set 2T .  

In the literature, the estimation of these terms has been achieved from the images under 

investigation by an iterative procedure defined on the basis of the Expectation-Maximization (EM) 

algorithm [11]. In the iterative EM algorithm, the values of the parameters for the density functions of 

classes at time t2 are initialized by considering the corresponding values estimated at time t1, whereas 

joint prior probabilities are initialized by assigning equal joint prior probabilities to each pair of classes 

(including possible specific constraints on some transitions according to prior information). However, 

the EM algorithm may not provide accurate estimates when the statistical distributions of classes in the 

source and target domains significantly differ from each other. As mentioned before, this may happen 
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due to the different acquisition conditions. Such differences may cause the initialization values of the 

parameters of the density functions for the classes at time t2 considerably different from the accurate 

values. Therefore EM algorithm may show difficulties in converging. To overcome this drawback, in the 

next section we propose a low-cost approach to the definition of a training set 2T  and thus to the 

estimation of the mentioned statistical terms. 

B. Low-cost Generation of Training Samples for the Target Image 

As mentioned in the previous sub-section there is a need of defining a reliable training set 2T  for 

2X  with a low-cost procedure that takes into account the temporal correlation between 1X  and 2X . Here 

we propose a 2-step procedure which takes advantage of transfer and active learning methods. 

Step 1: Change-Detection-driven Transfer Learning (CDTL) 

The first step aims at defining an initial training set for the image 2X  (target domain) by reusing 

the already available knowledge from 1X  (source domain) (i.e., without the need of a new labeling 

process) and taking advantage of the temporal correlation. This is achieved by adopting the Change-

Detection-driven Transfer Learning (CDTL) approach proposed in [20]. According to this approach, the 

labels of training samples in 1T  are considered reliable for 2X  if the related pixels did not experience 

any change. In such a situation the label 1, jy  associated to the training sample 1, 1∈jx T  is transferred 

from the source domain to the target domain and associated to the sample 2, 2∈jx X  in the corresponding 

spatial position as the unchanged pixel 1, jx . In order to detect changed and unchanged pixels, any 

change-detection method proposed in the literature can be applied [21]-[25]. As an example, assuming 

that multidimensional images are acquired by passive sensors and thus are corrupted by additive 

Gaussian noise, Change Vector Analysis (CVA) technique can be used [21]-[23]. CVA technique 
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applies to 1X  and 2X  by subtracting the feature vectors of temporally correlated pixels 1, jx
 and 2, jx

 

from each other in order to build a multispectral difference image DX . CVA assumes that multitemporal 

images should be co-reregistered to each other. If after co-registration significant residual misregistration 

errors affect multitemporal data, CVA-based change-detection methods robust to this kind of problem 

can be applied [25]. Here, DX  is analyzed according to the theoretical framework for unsupervised 

change detection based on the CVA in polar domain proposed in [21]. According to [21], for simplicity 

two channels out of C are selected such that the most informative features with respect to the specific 

considered problem are isolated excluding noisy and misleading channels from the analysis. It is worth 

noting that, even if the assumption of working with a pair of channels is reasonable in many change-

detection problems [21]-[24] the CVA can be also applied to more than 2 channels. To highlight change 

information the magnitude and the direction of change vectors in DX  is computed. The defined 2-

dimensional feature space is referred in the literature such as the polar representation of the change-

detection problem [21]. In this feature space, unchanged pixels are distributed close to the origin of the 

polar domain and fall within the circle of no-changed pixels (i.e., they show a low magnitude value) 

[21], whereas changed pixels are distributed far from the origin. According to this behavior, a proper 

threshold computed on the magnitude feature allows one to separate changed from unchanged pixels. 

The reader is referred to [24] for a systematic survey on thresholding methodologies. The direction 

feature can be used for distinguishing among different kinds of change [21]. Once unchanged pixels 

have been identified, the labels of unchanged training samples are transferred to the target domain. 

These labels will be associated to samples in the target domain that spatially correspond to the training 

sample in the source domain. Labels that do not satisfy this constraint are not transferred. 
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At the end of this step, the set of classes NTL  that are represented in 2T  is a subset of classes at 1t , 

i.e., NTL ⊆ Ω . Let 1 1, 1, 1{ , } ==UC R
j j jT x y  be the set of unchanged training pixels at 1X , where 1, 1

UC
jx T∈  is 

the j-th training sample and R ( R M< ) is the number of detected unchanged training samples. The 

training set 2T  of 2X  is initialized as 2 2, 1, 1 2, 2, 1{ , } { , }R R
j j j j j jT x y x y= == = , where 2, 2jx ∈ X  is the j-th initial 

training sample and 1, 2, NTL
j jy y≡ ∈  is its label transferred from 1

UCT . From the samples in the initial 

training set 2T  unbiased estimates of class statistical parameters for the target domain can be computed. 

Thus, the proposed system becomes robust to the class statistical distribution differences between the 

source and target domains. In other words, this choice avoids the need of adapting the classifier 

parameters of the source domain to the target domain as it is necessary in the TL techniques present in 

the literature [10]-[15]. It is worth noting that this step implicitly handles the situation in which a class 

completely disappears between the two acquisitions with no additional effort: all the samples in 1T  

associated to a disappeared class fall into the set of changed pixels. Therefore their label will not be 

transferred and the associated class will not appear in NTL . 

Step 2: Conditional-Entropy-based Active Learning (CEAL) 

The second step aims at optimizing the training set 2T  (and thus the estimates of class statistical 

parameters) by active learning defined for Bayesian cascade classification. AL methods enrich the initial 

labeled training set by iteratively selecting the most informative samples from a pool of unlabeled 

samples and adding them to the current training set after manual labeling by a supervisor. The most 

informative unlabeled samples can be selected using an uncertainty criterion. This criterion should select 

the unlabeled samples that have the lowest probability to be correctly classified by the considered 

classifier and thus show the maximum uncertainty on their class labels. Such samples result to be the 
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most informative ones for the classifier itself. The supervisor is usually a human expert who gives a 

class label to the selected samples. The main benefit of AL is that it can significantly reduce the need for 

labeling samples, and thus the related cost as a result of avoiding redundant sampling. 

Differently from the AL techniques proposed in the literature that are devoted to single-date image 

classification [26]-[30], here we re-define AL by generalizing its use to the classification of image time 

series in the context of Bayesian cascade decision rule. The proposed AL method models the uncertainty 

of unlabeled samples by taking into account the temporal correlation between X2 and X1, and thus results 

in a conditional uncertainty criterion. To consider temporal dependence in modeling the uncertainty of 

samples, we introduce a novel AL method defined on the basis of conditional entropy. The concept of 

entropy has been already used in the literature for the definition of uncertainty in the context of AL [32]-

[33]. In [32] marginal entropy is applied to select uncertain training samples for single-date image 

classification without considering any temporal information. In [33] the concept of multitemporal 

uncertainty is introduced. Joint entropy is used to select pairs of uncertain multitemporal training 

samples for the joint classification of multitemporal images in the context of compound classification 

[33]. The proposed conditional entropy based AL method significantly differs from [32]-[33] due to the 

fact that it models the uncertainty of unlabeled samples only in the target domain but it also considers the 

temporal correlation between the target and source domains. 

Let ( )2, 1,j jH x x  be the conditional entropy for the pixel 2, jx , given the observation 1, jx , i.e., 

( )2, 1, 1, 2, 1, 2,( , ) log ( , )
k

j j k j j k j j
v

H x x P v x x P v x x
∈Ν

= −∑  (4) 
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As mentioned before, the estimation of 1, 2,( , )k j jP v x x  is a complex task, and therefore we adopt the 

conventional assumption of class-conditional independence in the time domain to simplify the 

estimations as in [10],[11]. Under this assumption we can write:  

( ) ( ) ( )
1, 2,

1, 2,
2, 1,

1, 2, 1, 2,
, ,

( ) ( ) ( , )
( ) ( ) ( , )

log
( ) ( ) ( , ) ( ) ( ) ( , )

i

k

s r s r

j i j k i k
j i j k i k

j j
v N j s j r s r j s j r s r

v N v N

p x p x v P v
p x p x v P v

H x x
p x p x v P v p x p x v P v

ω

ω ω

ω ω
ω ω

ω ω ω ω
∈Ω

∈
∈Ω ∈ ∈Ω ∈

  
 = −  
 

  

∑
∑

∑ ∑
 (5) 

According to (5), ( , )i kP vω  is the only term that models the temporal correlation between the two 

domains. A small value of ( )2, 1,j jH x x  shows that the decision of the cascade classifier on the pixel 2, jx  

is reliable, whereas a high value of ( )2, 1,j jH x x  points out that the decision of the cascade classifier is 

not reliable, and thus the corresponding sample is uncertain (i.e., informative for the classifier).  

At the first iteration of the proposed AL method conditional entropy is estimated according to class 

statistical parameters evaluated on 1T  and on the initial 2T  obtained by transfer learning. Then the 

training set is enlarged by adding a batch of unlabeled samples with maximum conditional entropy (i.e., 

those that have the maximum uncertainty among classes) after manual labeling by a supervisor. Once 2T  

has been enlarged, the class probability density functions associated to the image 2X  and the joint prior 

probability of classes should be updated accordingly. The joint prior probabilities of classes are derived 

from the images under investigation. To this end, each image is classified independently from the others 

by the standard Bayesian maximum posterior probability classifier [31], and then the class transitions are 

calculated. It is worth noting that the class-conditional density functions at time 1t  are estimated from 

the available training set 1T  and thus remain fixed during the AL iterations. Once parameters have been 

updated, the conditional entropy for each unlabeled sample present in the image 2X  is estimated by (5). 
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This process is iterated until convergence, which is achieved when either the values of class parameters 

do not change from an iteration to the next one, or the upper bound of the cost for labeling samples is 

achieved (i.e., the maximum possible number of samples is labeled). Fig. 2 shows the architecture of the 

proposed Conditional-Entropy-based Active Learning (CEAL) method. When the AL process is 

completed, the training set includes a small number of most informative samples for the considered 

classifier. Finally, image 2X  is classified by using the Bayesian decision rule for cascade classification 

given in Section II.A using the estimated parameters for the class-conditional density functions at time 

2t , as well as the joint prior probabilities of classes and the class-conditional density functions at time 1t . 

 

Fig. 2. Architecture of the proposed Conditional-Entropy-based Active Learning (CEAL) method. 
 
 

It is worth noting that labels assigned to uncertain samples during the AL step may not belong to 

the initial set of classes NTL . Due to the expert labeling process, the proposed AL step allows one to 

detect new classes that may be appeared between the acquisition dates of X1 and X2. Let ε  be the 

generic class label associated by the human expert to a specific sample at a given iteration of the AL 
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process. If ε  does not appear in the initial set NTL  (i.e., NTLε ∉ ) at time 2t , the final set N  of classes at 

time 2t  is defined as N=N { }TL ε∪ , whereas if NTLε ∈ , the final set N  is equal to the initial set NTL , 

i.e., N=NTL .  

3 DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS  

A. Data Set Description 

Experiments were carried out by exploiting two time series of remote sensing images aiming at 

land-cover maps updating. However the proposed system can be effectively employed in other domains 

that require the analysis of image time series (e.g., biomedicine). The first time series is made up of three 

co-registered multispectral images acquired on the surrounding of the city of Trento, Italy, in September 

1999, July 2003 and July 2007. The selected test site is a section of 470×351 pixels with a spatial 

resolution of 30 m. True color composites of the images are shown in Fig. 3. The July 2003 and July 

2007 images were acquired by the Thematic Mapper (TM) sensor of the Landsat-5 satellite, whereas the 

September 1999 image was acquired by the Enhanced Thematic Mapper Plus (ETM+) sensor of the 

Landsat-7 satellite. Both multispectral scanners acquire images in the same seven spectral channels. 

However, only six (C = 6) were used in the experiments. The thermal infrared band was neglected due to 

its lower geometrical resolution. Several land-cover classes were considered for experiments: water, 

forest, fields, urban area and industrial area. Between the acquisitions no additional land-cover classes 

are observed. In the experiments, two scenarios were considered that share the same source domain, i.e., 

the September 1999 image, 1X . However they differ because of the considered target domain (i.e., 2X ). 

In the first scenario (Scenario 1) the target domain is represented by the July 2003 image, whereas in the 

second one (Scenario 2), it is represented by the July 2007 image (see TABLE I). The considered scenarios 
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simulate challenging conditions, due to the fact that: i) different sensors were used for the data 

acquisition, and ii) class statistical distributions in the target domain differ  

TABLE I. SCENARIOS CONSIDERED IN THE EXPERIMENTS. 

Scenario 1X  2X  

1 
September 1999 

(Landsat-7 ETM+) 
July 2003  

(Landsat-5 TM) 

2 
September 1999 

(Landsat-7 ETM+) 
July 2007 

(Landsat-5 TM) 

 

  
(a) (b) 

 
(c) 

Fig. 3. True color composite of the Trento Landsat data set: (a) image acquired in September 1999 by Landsat-7 ETM+ 
( 1X );(b) image acquired in July 2003 by Landsat-5 TM (2X ); and (c) image acquired in July 2007 by Landsat-5 TM ( 2X ) 

courtesy of the U.S. Geological Survey. 
 
significantly from those of the source domain. The latter condition was quantitatively assessed by 

computing the class similarity according to the pairwise Jeffreys-Matusita (JM) statistical distance [12]. 

JM values between the source and the target distributions are high for all land-cover classes (i.e., all the 
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pairwise JM distances are close to the saturation value 2 ). Therefore standard DA methods proposed 

in the literature can not work properly on these scenarios, i.e., they fail in effectively classifying the 

target domain due to the significantly different behaviors of the land-cover class statistical distributions. 

This is further confirmed by the overall accuracy achieved by a Bayesian classifier trained on 1T  and 

applied to 2X , which is very poor (around 12%) for both scenarios. 

The second time series is made up of two co-registered multispectral images acquired by the 

QuickBird satellite on the south part of the city of Trento (Italy), in October 2005 and July 2006, 

respectively (see Fig. 4). The 4 QuickBird spectral bands were considered in the experiments. The 

selected test site is a section of 1520×1504 pixels with a spatial resolution of 0.7 m after pansharpening. 

The October 2005 image is considered as the source domain (i.e., 1X ) and the July 2006 image is 

considered as target domain (i.e., 2X ). The images share five land-cover classes (i.e., water, red roof, 

asphalt, fields, and bare soil). One additional class is present in the July 2006 image, thus between the 

two acquisitions the appearance of a new class (i.e., plastic-mulched fields) is observed. Also for this 

data set, the considered scenario models challenging conditions, due to the fact that: i) a new class is 

present in the target domain (i.e., in the July 2006 image) and, ii) class statistical distributions in the 

target domain differ significantly from those of the source domain. This was quantitatively assessed by 

computing the class similarity according to the pairwise JM statistical distance [12]. JM values between 

the source and the target distributions are high (i.e., close to the saturation value) for all land-cover 

classes. As a further confirmation the overall accuracy achieved by a Bayesian classifier trained on 1T  

and applied to 2X  is very poor (around 40%). 
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(a) (b) 

Fig. 4. True color composite of the Trento Quickbird data set: (a) image acquired in October 2005 (1X );(b) image acquired in 

July 2006 ( 2X ). 

 
 
B. Design of Experiments 

In the experiments 2 batch size values for the AL technique were selected, namely h=5 and 10h = . 

Experimental results are reported as the average accuracy on ten trials defined according to ten initial 

randomly selected training sets for 1T . For each trial the Trento Landsat data set includes a training set 

1T  of 338 samples selected randomly among 1224 available labeled samples in the image 1X , whereas  

the Trento Quickbird data set includes a training set 1T  of 574 samples selected randomly among 3850 

available labeled samples in the image 1X . A training set 2T  is assumed initially not available for the 

target domain 2X  for both data sets. In order to build the initial training set 2T , CDTL is applied. To 

select the unchanged samples whose class labels will be transferred to 2X , a conservative criterion is 

employed such that only those training samples with a high probability of being unchanged are selected. 

Therefore the risk of propagating the class labels of uncertain samples (i.e., training samples that 

changed their label) is reduced as much as possible. For sake of consistency among the 10 trials the same 
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number of labels is transferred. The available ground reference samples of 2X  are used to derive a pool 

set and a test set. The pool set includes samples that will be queried during the AL iterations, whereas 

the test set consists of samples that are only used for accuracy assessment. Note that the samples of the 

pool set are different from those of the test set. The class-conditional density functions required for the 

estimation of the Bayesian cascade decision rule [see (3)] and the conditional entropy [see (5)] are 

assumed to follow a parametric Gaussian distribution. As we are considering multispectral images 

acquired by optical passive sensor, this is a reasonable and common assumption [10]-[11],[18],[19]. 

We applied the proposed system which is based on: i) Change-Detection-driven Transfer Learning 

(CDTL) and Conditional-Entropy-based Active Learning (CEAL) for the generation of the target domain 

training set; and ii) the Bayes decision rule for cascade classification. In the all experiments the proposed 

system, which takes advantage of temporal correlation between target and source domain in both steps, 

is denoted as CDTL-CEAL. Thus, in order to assess its effectiveness, the results obtained by it were 

compared with those achieved by two methods that neglect or only partially consider the temporal 

correlation. 

The first method is based on single-date classification. Thus temporal correlation is ignored both in 

the training set definition as well as in the classification step. The goal is to classify the target domain 

(i.e., 2X ) without considering the existence of the source domain 1X . In this experiment the training set 

for 2X  is built according to the standard Marginal-Entropy-based Active Learning (MEAL) technique 

[32], whereas classification is performed by applying the single date Bayesian maximum posterior 

probability classifier [31]. The MEAL technique selects the most uncertain unlabeled samples from a 

single-date image on the basis of the standard marginal entropy (i.e., ignoring the temporal dependence 
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between images) [32]. As for applying the Bayesian decision rule an initial training set 2T  for 2X  is 

required (otherwise it is not possible to estimate the parameters of the class distributions), there is a need 

to build an initial training set including enough labeled samples to train the classifier before starting with 

AL iterations. To this end, Random Sampling (RS) is applied to the samples in 2X . Selected samples are 

labeled to define the initial 2T . The number of samples being labeled depends on the data sets and on the 

number of image features given as input to the classifier. Here, in order to make the comparison with the 

proposed system reliable, the number of randomly selected samples is set equal to that of samples 

transferred from source to target domain according to the CDTL step of the proposed system. It is worth 

noting that the initial estimates might be obtained even with a slightly smaller number of samples. 

However, the RS step requires anyway an additional cost of samples for the initialization of the training 

set 2T , whereas the proposed system does not. This method is denoted in the following as RS-MEAL. 

The second method selected for comparison purposes, neglecting the temporal correlation only in 

the active learning step for the cascade classification. Thus a system similar to the proposed one is 

considered where Conditional-Entropy-based Active Learning (CEAL) is replaced by RS, i.e., after the 

CDTL step, unlabeled samples to be added to the initial 2T  are randomly selected. In this way temporal 

correlation is neglected as RS is performed without involving the source domain. This choice allows one 

to assess the usefulness of the CEAL step of the proposed system. After performing RS, the source 

domain is classified by a cascade classifier. This method is denoted in the following as CDTL-RS. 

4 EXPERIMENTAL RESULTS 

A. Results for Trento Landsat Data Set: Scenario 1 

In order to use the proposed system, the CVA technique has been applied to images 1X  (i.e., the 
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September 1999 image) and 2X  (i.e., the July 2003 image). Here the thresholding method presented in 

[34] is applied; however other methods can be used. The class labels of training pixels in 1X  detected as 

unchanged are transferred to 2X . For each of the ten trials, 2T  is built by transferring the class labels of 

95 unchanged training samples from 1X  to 2X . The number of samples for each class in 2T  is given in 

Table II. The effectiveness of this step is validated by the fact that JM distances between the 

distributions in the target domain and the ones estimated on the initial training samples (i.e., after 

CDTL) are smaller than the distances between class distributions in the target domain and source 

domain. Once label propagation is completed, the AL step is applied to enrich the initial training set by 

selecting the most informative samples from a set of unlabeled samples (i.e., the pool set). Table II 

together with the numbers of initial training samples obtained by the CDTL, reports unlabeled samples 

in the pool set, and of test samples (which are used for accuracy assessment) available for each land-

cover class in 2X . 

TABLE II.  INITIAL TRAINING, POOL AND TEST SETS FOR IMAGE (SCENARIO 1). 

Land-cover 
classes 

Initial 
Training Set 

Pool Set Test Set 

Water 21 168 420 
Forest 25 200 402 
Fields 15 115 207 
Industrial Area  17 135 159 
Urban Area 17 136 172 
Total 95 754 1360 

 
In the first set of trials, we compare the effectiveness of the proposed system (defined for the cascade 

classifier) with the RS-MEAL method (defined for the standard Bayesian maximum posterior probability 

classifier). Fig. 5 shows the average (on 10 trials) classification accuracies of 2X  versus the number of 

new labeled samples obtained by the proposed system and the RS-MEAL method. The new labeled 
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samples are the patterns labeled from the expert during the considered iteration of AL process. The 

reason of obtaining a good accuracy with the proposed system in case of labeling no samples (i.e., the 

number of new labeled samples is zero) is due to the CDTL step. In other words, training set without 

labeling any sample is not empty in the case of the proposed system, whereas it is empty in case of the 

RS-MEAL method (thus the related accuracy is zero). To implement RS-MEAL, 95 samples (that 

corresponds to the number of samples included in 2T  after the CDTL step of the proposed system) are 

randomly selected and labeled to initialize the training set. From Fig. 5, one can observe that the 

accuracies obtained by the proposed system are significantly higher than those yielded by the RS-MEAL 

method for both values of h. As an example (see Fig. 5.a that refers to h=5), the proposed system yields 

an accuracy of 98.33% by labeling 100 unlabeled samples from the pool, whereas the RS-MEAL 

provides an accuracy of 92.06% with the same amount of labeled samples. Table III shows the confusion 

matrices resulted by using the proposed CDTL-CEAL and RS-MEAL when 100 new samples are labeled 

in the case of h=5. From the table one can see that the most critical classes are “Fields” and “Urban 

Area” that are confused mainly with “Forest” and “Industrial area” in the case of the RS-MEAL. CDTL-

CEAL effectively reduces misclassified samples in the mentioned critical situations and solves also the 

minor problems related to “Forest” and “Water” classes. The results reported in Fig. 5 demonstrate that, 

due to t ìhe CDTL step, the proposed system significantly reduces the labeling cost with respect to the 

initial definition of 2T . It is worth noting that the effectiveness of proposed system compared to the RS-

MEAL is due to its ability in: i) defining the initial training set 2T  without any labeling cost (i.e., the 

CDTL step), ii) expanding it according to the novel AL method that exploits the temporal correlation 

between the images (i.e., the CEAL step), and iii) classifying the image by considering the temporal 

correlation between the images. The results clearly show the importance of information conveyed by 
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temporal correlation between multitemporal images for both optimizing the definition of the training sets 

and classifying the image. By analyzing figure, one can observe that the proposed system provides a fast 

improvement on the accuracy at early iterations, whereas at the late iterations a small reduction on the 

accuracy is observed. This is due to the fact that after a number of iterations the few outliers included in 

the pool that do not properly model the distribution of test samples are added to the training set. This is 

not the case for early iterations where outliers are not selected due to their certain (wrong) class label 

[33]. As the number of labeled samples increases, the CDTL-CEAL method (as well as other AL 

methods) definitely converges to the accuracy that is obtained when all the unlabeled samples are added 

to the training set. 

  

(a) (b) 

Fig. 5. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained by the 

proposed CDTL-CEAL and the RS-MEAL methods when (a) h=5 and (b) h=10 (Scenario 1). 
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TABLE III.  THE CONFUSION MATRICES OBTAINED AT THE SECOND ITERATION OF (A) THE PROPOSED CDTL-CEAL 

AND (B) THE RS-MEAL WHEN H =5  
Reference 

Data 
Classified Data 

Water Forest Fields 
Industrial  

Area 
Urban 
Area 

Water 419 - - - - 
Forest - 399 34 - - 
Fields - 2 169 - - 
Industrial Area 1 1 4 157 67 
Urban Area - - - 2 105 

(a) 

Reference 
Data 

Classified Data 
Water Forest Fields 

Industrial 
Area 

Urban 
Area 

Water 420 - - -  
Forest - 402 3 -  
Fields - - 204 -  
Industrial Area - - - 158 17 
Urban Area - - - 1 155 

(b) 

The second set of experiments, aims at assessing the effectiveness of the AL step for the proposed 

system. This is done by comparing the proposed system with the CDTL-RS technique. Fig. 6 shows the 

average (on 10 trials) classification accuracies of 2X  versus the number of new labeled samples obtained 

by both the proposed system and the CDTL-RS method defined in the framework of cascade 

classification for two values of h. Due to the CDTL step, both methods result in a good accuracy when 

the number of new labeled samples is zero. From Fig. 6, one can see that the proposed  system provides 

always higher accuracies than the CDTL-RS and reaches convergence with a smaller number of new 

labeled samples. As an example, by analyzing Fig. 6.b (which refers to h=10) the accuracy of CDTL-

CEAL is 94.64% with only 10 new labeled samples, whereas the accuracy of CDTL-RS is only 91.41 %. 

These results confirm the importance of temporal dependence information conveyed by the proposed 

Conditional-Entropy-based Active Learning in optimizing the training set 2T  for cascade classification. 

Note that also in this case the reason of the small reduction on the accuracy with the proposed system at 
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the late iterations is related to the addition of noisy samples to the training set during the active-learning 

process. 

  

(a) (b) 

Fig. 6. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained by the 

proposed CDTL-CEAL and the CDTL-RS methods when (a) h=5 and (b) h=10 (Scenario 1). 

 

 

B. Results for Trento Landsat Data Set: Scenario 2 

Similarly as before, the CVA has been applied to images 1X  (i.e., the September 1999 image) and 

2X (i.e., the July 2007 image). The class labels of unchanged pixels in 1X  are propagated to 2X . For 

each of the ten trials, 2T  is built by transferring the class labels of 94 unchanged training samples from 

1X  to 2X . The number of samples for each class in 2T  is given in Table IV. The effectiveness of this 

step is confirmed by the fact that JM distances between the distributions in the target domain and the 

ones estimated on the initial training samples (i.e., after CDTL) are smaller than the distances between 

class distributions in the target and source domains. Afterward, the initial training set is expanded by 

applying the AL step. Table IV together with the number of initial training samples obtained on the basis 

of the CDTL, shows unlabeled samples in the pool set, and test samples (which are used for accuracy 

assessment) available for each land-cover class in 2X . 
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TABLE IV.  INITIAL TRAINING, POOL AND TEST SETS FOR IMAGE (SCENARIO 2). 

Land-cover 
classes 

Initial 
Training Set 

Pool Set Test Set 

Water 32 388 217 
Forest 31 371 252 
Fields 8 97 154 
Industrial Area  12 147 172 
Urban Area 11 127 155 
Total 94 1130 950 

 
Fig. 7 shows the behavior of the average (on 10 trials) overall accuracies obtained by the CDTL-CEAL 

and the RS-MEAL (which ignores the CDTL step and therefore assumes that an initial training set is 

populated by selecting and labeling samples randomly) techniques in the cases of h=5 (Fig. 7.a) and 

h=10 (Fig. 7.b). To implement RS-MEAL, 94 samples, which correspond to the number of samples 

included in 2T  after the CDTL step of the proposed system, are randomly selected and labeled to 

initialize the training set. By analyzing Fig. 7, one can observe that the proposed system results in the 

highest accuracies at all the iterations for both values of h. Moreover, it again reaches convergence with 

a smaller number of new labeled samples, due to: i) the CDTL (which provides initial training samples 

without any labeling cost), ii) the AL step (which exploits the temporal correlation between images), and 

iii) the cascade classification (which also uses the temporal dependence information between the 

images). As an example, the proposed system yields an accuracy of 95.12% with only 10 new labeled 

samples at 2t , whereas the RS-MEAL reaches a similar accuracy with 110 samples (see Fig. 7.a). Table 

V shows the confusion matrices obtained by using the proposed CDTL-CEAL and RS-MEAL when 

almost 100 new samples are labeled in the case of h=5. From the table one can see that the most critical 

classes are “Fields” and “Urban Area” that are confused mainly with “Forest” and “Industrial area” in 

the case of the RS-MEAL. CDTL-CEAL effectively reduces misclassified samples in the mentioned 

critical situations. Note that the classification of the image 2X  using the classifier directly trained with 
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the training set 1T  provides an accuracy of only 21.34%. This proves the complexity of the considered 

problem. 

TABLE V. THE CONFUSION MATRICES OBTAINED AT THE SECOND ITERATION OF (A) THE PROPOSED CDTL-CEAL 

AND (B) THE RS-MEAL WHEN H =5  
Reference 

Data 
Classified Data 

Water Forest Fields 
Industrial  

Area 
Urban 
Area 

Water 216 - - - - 
Forest 1 250 41 - - 
Fields - 2 105 - - 
Industrial Area - - - 169 33 
Urban Area - - 8 3 122 

(a) 

Reference 
Data 

Classified Data 
Water Forest Fields 

Industrial 
Area 

Urban 
Area 

Water 217 - - -  
Forest - 252 1 -  
Fields - - 152 -  
Industrial Area - - 1 170 2 
Urban Area - - - 2 153 

(b) 

  

(a) (b) 

Fig. 7. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained by the 

proposed CDTL-CEAL and the RS-MEAL methods when (a) h=5 and (b) h=10 (Scenario 2). 

 

Fig. 8 shows the comparison of the average overall accuracy obtained by the proposed system with 

and CDTL-RS for both values of h. From these plots, one can see that the proposed system provides 
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again the selection of more informative samples than the CDTL-RS, and achieves higher accuracies for 

the same number of labeled samples. As an example, in the case of h=10 the accuracy yielded by 

proposed system is 95.11% with only 10 labeled samples, whereas it is 90.39% with the same number of 

labeled samples if the CDTL-RS is used. These results confirm the effectiveness of the proposed CEAL 

method. 

  
(a) (b) 

Fig. 8. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained by the 

proposed CDTL-CEAL and the CDTL-RS methods when (a) h=5 and (b) h=10 (Scenario 2). 

 

 

C. Results for Trento Quickbird Data Set 

In order to run the proposed system also on the Trento Quickbird data set, the CVA technique has been 

applied to images 1X  (i.e., the October 2005 image) and 2X  (i.e., the July 2006 image). Also in this case 

the thresholding method presented in [34] is applied. Class labels of training pixels in 1X  detected as 

unchanged are transferred to 2X  providing 112 initial training samples for 2T . The JM statistical 

distances between the distributions in the target domain and the ones obtained from the initial training 

samples (obtained by CDTL) are significantly smaller than the distances between distributions in the 

target domain and the ones in the source domain. Once label propagation is completed, the AL step is 
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applied to enrich the initial training set 2T . In the labeling process of AL, the human expert detects a new 

land-cover class “Plastic-mulched fields”. Table VI shows the number of initial training samples (which 

are obtained on the basis of the CDTL) and unlabeled samples in the pool set available for each land-

cover class in 2X . In addition, the number of test samples that are used for accuracy assessment is given. 

TABLE VI.  INITIAL TRAINING, POOL AND TEST SETS FOR 2X  IMAGE (TRENTO QUICKBIRD DATA SET). 

Land-cover 
classes 

Initial 
Training Set 

Pool Set Test Set 

Water 34 1004 1032 
Red Roof 15 434 469 
Asphalt 22 650 474 
Fields 21 626 534 
Bare soil  20 670 483 
Plastic-mulched field - 354 290 
Total 112 3738 3282 

 

  
(a) (b) 

Fig. 9. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained by the 

CDTL-CEAL system and the RS-MEAL method when (a) h=5 and (b) h=10 (Trento Quickbird data set). 

 

Fig. 9 shows the average (on 10 trials) classification accuracies of 2X  versus the number of new 

labeled samples obtained by the proposed CDTL-CEAL and RS-MEAL in the cases of h=5 (see Fig. 9.a) 

and h=10 (see Fig. 9.b). To implement RS-MEAL, 112 samples (which correspond to the number of 

samples included in 2T  after the CDTL step of the proposed system) are randomly selected and labeled 
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to initialize the training set. From the figures, one can observe that the CDTL-CEAL, again, provides 

significantly higher accuracies for both values of h, and reaches convergence with a smaller number of 

new labeled samples. Also for this data set, the results show the importance of information conveyed by 

temporal correlation between multitemporal images for both optimizing the definition of the training set 

and the classification accuracy. As an example, the CDTL-CEAL yields an accuracy of 95.82% with 130 

new labeled samples at 2t , whereas the RS-MEAL provides an accuracy of 91.98% with a similar 

number of new labeled samples (see Fig. 9.a). Table VII shows the confusion matrices obtained by using 

the proposed CDTL-CEAL and RS-MEAL when almost 120 new samples are labeled in the case of h=5. 

From the table one can see that RS-MEAL results in misclassifications for most of the classes. CDTL-

CEAL effectively reduces misclassified samples in the critical situations and shows only few minor 

problems between “Fields” and “Bare soil” classes. 

 
TABLE VII.  THE CONFUSION MATRICES OBTAINED AT THE SECOND ITERATION OF (A) THE PROPOSED CDTL-CEAL 

AND (B) THE RS-MEAL WHEN H =5  
Reference 

Data 
Classified Data 

Water 
Red 
Roof 

Asphalt Fields 
Bare soil 

 
Plastic-mulched 

field 

Water 1032 - - - - - 
Red Roof - 443 5 3 91 2 
Asphalt - - 408 - - 5 
Fields - - - 524 4 - 
Bare soil - 26 52 1 386 59 
Plastic-mulched field - - 9 6 2 225 

(a) 

Reference 
Data 

Classified Data 
Water Red 

Roof 
Asphalt Fields Bare soil 

 
Plastic-mulched 

field 

Water 1032 - - - - - 
Red Roof - 468 2 1 5 - 
Asphalt - 1 471 - - - 
Fields - - - 505 - - 
Bare soil  - - - - 368 - 
Plastic-mulched field - - 1 28 10 290 

(b) 
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Fig. 10 shows the average (on 10 trials) classification accuracies of 2X  versus the number of new 

labeled samples obtained by the CDTL-CEAL and CDTL-RS in the cases of h=5 (Fig. 10.a) and h=10 

(Fig. 10.b). From the figures one can observe that the CDTL-CEAL provides significantly higher 

accuracies than the CDTL-RS for both values of h and leads to a fast improvement of the classification 

accuracy. This is due to the fact that 2X  includes a new class (namely “Plastic-mulched filed”), and thus 

the role of the AL step is crucial to identify and label the new class at the early iterations. As an example 

(see Fig. 10.a that refers to h=5), the CDTL-CEAL yields an accuracy of 96.19% by labeling only 20 

samples from the pool, whereas the CDTL-RS provides an accuracy of 91.68% with the same amount of 

labeled samples. These results show the effectiveness of the proposed CEAL method in the framework 

of Bayesian rule for cascade classification.  

  
(a) (b) 

Fig. 10. Average (on 10 trials) overall classification accuracy versus the number of new labeled samples at 2t obtained by the 

CDTL-CEAL and the CDTL-RS approaches when (a) h=5 and (b) h=10 (Trento Quickbird data set). 

 

 

5 DISCUSSION AND CONCLUSION  

In this paper a novel system for updating classification maps by classifying image time series has 

been presented. The proposed system aims at classifying an image for which no reference data are 
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available (target domain) by exploiting another image acquired on the same area at a different time for 

which reference data are available. This is done by a 2-step procedure. The first step is devoted to the 

low-cost definition of a training set for the target domain with transfer and active learning methods. To 

this end, firstly a Change-Detection-driven Transfer Learning method, which propagates the class labels 

of unchanged samples from the source domain to target domain, is applied to define an initial training 

set for the target domain. This step offers two main advantages: i) the sample labeling cost in order to 

populate the initial training set is zero due to transferring the class labels of the unchanged source 

training patterns, and ii) the dissimilarity between the class distributions of source and target domains 

does not affect the proposed method since the original samples of the target domain are directly used to 

estimate the related classifier parameters (i.e., there is no need to adapt the classification parameters of 

the source domain to target domain, as only the label of samples is transferred). After defining the initial 

training set, active learning is applied to optimize the training set of the target domain by labeling a 

small number of most informative unlabeled samples. To this end, we have presented a novel active 

learning method in the framework of Bayes rule for cascade classification. The proposed active learning 

method is based on the conditional entropy associated with the cascade-classification decision rule, and 

evaluates the uncertainty of samples taking into account the temporal dependence modeled by the joint 

prior probabilities of classes. The proposed active learning method significantly reduces the number of 

new labeled samples to be collected at the target domain for optimizing the classification results, and 

therefore minimizes the related sample labeling cost. Moreover accurate classification accuracy is 

obtained due to improved class models on the basis of the cascade classification. The second step of the 

proposed system is devoted to the classification of the target domain. This is done by cascade 

classification exploiting the temporal correlation between the domains.  
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Experiments carried out on 2 multitemporal data sets of remote sensing images show that: i) the 

proposed system is robust to the class statistical distribution differences between the source and target 

domains, due to the Change-Detection-driven Transfer Learning step, ii) exploiting the temporal 

dependence in the definition of active learning for cascade classification problems results in higher 

accuracies for land-cover map updating than the other algorithms when the same number of labeled 

samples is considered, and iii) the use of cascade classifier for multitemporal images improves the 

classification performance with respect to standard single date Bayesian maximum posterior classifier. 

These results are very important as obtained on a heterogeneous area working on images acquired in 

different seasons (i.e., September and July as well as October and July) and by different sensors (i.e., 

Landsat-5 TM and Landsat-7 ETM+). The achievements point out the flexibility of the proposed 

technique that can obtain high accuracy with few labeled samples for the target domain also in critical 

conditions.  

It is worth noting that the proposed system does not have any limitation on the set of land-cover 

classes that characterize the two domains. This is due to the fact that the initial training set for the target 

domain (which only contains land-cover classes shared by the target and source domains due to class-

label propagation of unchanged samples in the CDTL step) is enriched with possible new classes during 

the AL step. We can state that from the AL viewpoint the unlabeled samples associated to new classes 

that may appear in the target domain are expected to be highly informative, as they are not represented in 

the training set of the target domain yet. Thus, if a new class appears in the target domain, the AL step is 

very likely to select samples that belong to it at the first iterations. These samples will be thus 

represented in the training set after manual labeling by the supervisor. The case of class disappearance in 

the target domain is implicitly managed in the CDTL step by not transferring labels associated to 
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changed training samples. In other words, if a given class in source domain is no longer present in the 

target domain, all of its pixels will be changed and their labels will not be represented in the training set 

of the target domain. 

It is worth emphasizing that updating classification maps in a cost-effective way is becoming more 

and more important in real applications. This is due to the increased number of time series of images and 

their possible free availability. In this context, the proposed system is very promising as it generates a 

classification map for a generic image in the time series for which no prior information is available, 

decreasing significantly the cost and effort required for reference data collection. As a future 

development of this work, we plan to extend the test of the proposed system to longer time series of 

images and to data acquired by different sensors. Moreover, we also plan to consider the modeling of the 

spatial context information in the process of active learning. As a final remark, we would like to point 

out that the proposed system in general and can be adopted for different application domains in the 

framework of analysis of image time-series. 
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