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Abstract— Image classification usually requires the availgbif reliable reference data collected for
the considered image to train supervised classifienfortunately when time series of images are
considered, this is seldom possible because afdbis associated with reference data collectiomdsat
of the applications it is realistic to have referemata available for one or few images of a tierges
acquired on the area of interest. In this papempresent a novel system for automatically classifyin
image time series which takes advantage of imagé(e)an associated reference information (i.ee, th
source domain) to classify image(s) for which refee information is not available (i.e., the target
domain). The proposed system exploits the alreadyadle knowledge on the source domain and, when
possible, integrates it with a minimum amount oiviiabeled data for the target domain. Moreoves it i
able to handle possible significant differencesMeen statistical distributions of the source andda
domains. Here the method is presented in the cbwoffeglassification of remote sensing image time
series, where ground reference data collection lsghly critical and demanding task. Experimental
results show the effectiveness of the proposedntgub. The method can work on multimodal (e.g.,
multispectral) images.
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1 INTRODUCTION

Observing time evolution of phenomena is a hotdapi many fields, e.g., economy, ecology,
medical science, geology, etc. The knowledge om@mena evolution has strong spin-off for daily.life
Most of the phenomena in the mentioned fields aeecdbed by 1-dimensional variables [e.g.,
electroencephalogram (EEG) signals; electrocarding(ECG) signals; river water level; temperature,
humidity, economical trend variables, and so on]tHe last decades, another set of multitemporal
signals became relevant in the scientific communitiiich are 2-dimensional signals (i.e., images).
Biomedical images (e.g., images acquired by radiggs, functional Magnetic Resonance Imaging, etc.)
and geoscience and remote sensing images (e.gesna@quired by active and passive sensors on board
of airborne, spaceborne platforms, etc.) fall mainto this group. The possibility to have imagmaei
series (temporal images taken from the same sdedéfexent time periods) drove the interest of the
scientific community to the development of effeetmethods for information extraction from this kind
of data. Analysis of time series in both biomedigatl remote sensing fields by automatic and raiabl
technigues allowed scientists to improve both tldeita comprehension and the accurate detection of
possible anomalies in a short time. These achientsr@e mainly due to the capability of methods
specifically developed for time series analysigxploit temporal correlation. The outputs of suetiad
processing are highly relevant in many anthropnct @nvironmental-related fields.

In biomedicine image time series play an importaft for monitoring the disease evolution. In
[1] time series of chest radiographs have been fmsadonitoring the pneumonia evolution. In [2] RGB
color images have been used for analyzing the diprgaf skin erythema. Breast magnetic resonance
imaging has been exploited in [3] for investigatthg evaluation of small mammographic lesions. Time

series of magnetic resonance imaging has beentasstidy also changes in neuronal activities [4].



Color retinal fundus image sequences has beenzauhiy [5] for the detection of possible lesionsg¥i
of the cited works deals with the detection of democcurred from one acquisition to the next éme.
biomedicine literature only few works approach tiesgies analysis from the classification perspectiv
[1].

The remote sensing literature on the classificatibimage time series is more extended. This is
mainly due to the repeat-pass nature of satellibgtsothat results in intrinsic multitemporal reraot
sensing image sequences. The availability of hugeuats of such data pushed research into the
development of data analysis techniques for imenge series. Time series of remote sensing imagges ar
beneficial for detecting land-cover transitions wced on the ground and updating land-cover maps,
which are very important processes for regularlynitooing the Earth surface. Such information is
highly relevant to support and improve environmkentanagement policies. Because of the increasing
number of images regularly acquired at differemies on the same area, and their possible free
availability (e.g., Landsat Thematic Mapper archiftgure ESA Sentinel mission), it is important to
develop methods to update land-cover maps with higtth accuracy and low cost.

Classification maps can be updated by automaticddigsifying each image in the time series,
which requires the availability of reference sarmspi@ each considered image to train the supervised
classifier. However gathering such data is higlastly in terms of human time and effort, and thise a
in terms of money. Moreover, often it is impossibiem the practical viewpoint to collect reference
training information for a given acquisition in tlseries. As an example, there are remote sensing
applications that require the classification ofnaet series of historical images for which groundtiris
not available and can be not collected in a rewope way. Thus classifying a time series assuming

that a sufficient number of ground reference samgl@vailable for each acquisition is unfeasible.



In order to deal with this issue and generate ssdiaation map for the desired image for which no
prior information is available (target domain), rdaés a need to find out a way to use referencepkem
already available for an image acquired on the saoeme at a different time (source domain). The
simplest solution would be to use the classifieectly trained on the source domain to classify the
target domain. However in most of the cases thesdmt provide reliable classification results,duse
source and target domains may differ from eachratlie to differences in the acquisition conditions
(e.g., acquisition geometry and illumunion differes) [20]. Thus reference samples of the source
domain may not follow the same distribution of #amples in the target domain making the classifier
trained on them unreliable for the target domain.ovVercome this problem, domain adaptation (DA)
methods in transfer learning (TL) have been regentroduced in the literature [6]-[8]. DA methods
aim at classifying the target domain (for which ground information is available) by exploiting the
information available on the source domain, assgntitat the two domains may have different, but
strongly related, distributions. In the literatu2A is known also as partially supervised/unsusadi
learning and is addressed with Semi-Supervisednirggar(SSL) methods [9]-[13] or Active Learning
(AL) methods [14]-[17]. On the one hand, SSL appkeclassifier trained on the source domain to the
target domain after tuning the parameters accordinmlabeled data from the target domain [9]-[13].
other words, the information of reference trainggmples from the source domain is improved by
costless unlabeled samples from the target donsagbtain a reliable classifier for the target domai
On the other hand, AL methods aim at improvingr(frihe target domain point of view) the information
of the source domain reference samples by iteftgtagding samples selected from the target domain
[14]- [17]. Before inclusion in the training setede samples should be manually labeled by a human

expert, thus these methods have associated a letsiSEL techniques do not have. However AL



methods try to reduce it by labeling the smallestsible number of unlabeled samples. This is aekdiev
by selecting for labeling those samples that aeenttost informative for the target domain viewpoint,
thus avoiding the huge cost of collecting large am®f labeled samples. In the literature exampfes
domain adaptation methods based on both SSL andrélavailable. For example in [9] DA problems
are addressed with SSL by updating on the badiseoflistribution of the target domain the paranseter
of a parametric maximume-likelihood (ML) classifigiready trained on the source domain. This method
has been generalized in the context of the Bayedou cascade classification in [10] in order kploit

the temporal correlation between domains. Furthmarovements of this method are presented in [11]
and [12]. A multiple cascade classifier system rigsppsed in [11] including ML and neural-network
classifiers. In [12]the sets of classes of the target and the souroaide are automatically analyzed in
the DA step by the joint use of unsupervised chatejection and Jeffreys-Matusita statistical distan
measure. This process results in the detectionlasfses that appeared or disappeared between the
domains. Despite the method presented in [12] canage possible class differences, the values of the
statistical parameters modeling classes propadeiedthe source to the target domain are still dalas
SSL-DA-based methods have been developed alsceirdhtext of Support Vector Machine (SVM)
classifiers. In [13], the initial discriminant futh@n is estimated on the source domain labeled kEsnp
The adaptation to the target domain is achievedtdrgtively including in the training set unlabeled
patterns of the target domain that have a high giitiby to be correctly classified. Simultaneously
labeled samples of the source domain are gradwaathpved. In [14]- [17], DA problems are addressed
with AL and thus, unlike SSL-based methods [9]-[18]small number of labeled training samples is
included in the target domain together with theelal samples of the source one. In [14], the

classification parameters are initialized by thstrdbutions estimated on the labeled samples of the



source domain. Then the unlabeled samples of tigettdomain that have the maximum information
gain (measured by the Kullback—Leibler divergerare)included in the training set of the target doma
after manual labeling. In [15], the statistical graeters of a ML classifier are initialized by expig
the labeled samples of the source domain, and ts¢ imformative samples are iteratively selectednfr
the target domain by AL to be added to the trairsagafter manual labeling. In this method, dutimg
AL process, the source domain samples that doinaith the distribution of the classes in the &trg
domain are removed. In [16], the authors show hdwafplied to the target domain can leverage
information from the source domain. This is achtevased on two steps: i) applying any of the DA
methods from the literature to adapt the source alontabeled samples to target domain, and ii)
exploiting AL in the target domain. In this worket domain separator hypothesis is introduced fer th
selection of target domain samples being querigtdemL step. Accordingly, the target domain saraple
that are not similar to source domain are seletdx queried for better modeling the target domain

All the above mentioned DA methods initialize treggmeters of the classifier to be applied to the
target domain (i.e., the image to be classifieg)l@iing the labeled samples of the source domEne
adaptation to the target domain starts therefooenfibiased estimates. Thus if class statistical
distributions in the target domain differ signifintly from those of the source domain, the adaptatio
step cannot fully compensate for them. In thesesd3A methods presented in the literature will
provide low classification performance on the ta@main. Therefore, it is necessary to develop new
TL methods that are not significantly affected fréime distribution differences in classes between th
domains, thus providing good classification accyr@so in critical conditions. In order to alle\gahe
domain difference risk, in [17] a framework to aety transfer knowledge is presented, which assumes

that the target domain also includes a small sdalméled training samples in addition to the source



domain. In this framework, initially a transfer s&ifier is constructed to be applied to the uniadbel
samples of the target domain. The classifier isnédf by using the training samples of both the @aur
and the target domains [17]. Then, if an unlabselaaiple is assigned to a class with low confideace,
domain expert will assign the correct class labahtit sample. Even if this framework can reduee th
domain difference risk, it has the drawback of asag the availability of an initial training setrfthe
target domain.

To overcome the limitations of the DA methods aaalié in the literature, we present a novel system
for automatically updating classification maps lsyng image time series. The main idea of the pregos
system is to classify the target domain by definenghethod that: i) effectively reuses the available
information on the source domain by mitigating ploiesbias effects; ii) labels the smallest possible
number of unlabeled samples from the target dormainptimizing the classification accuracy; and iii
exploits the temporal correlation between the dosan the classification process. To this end, the
proposed system is defined on the basis of twasstgw-cost definition of a training set for therget
domain with transfer and active learning methodst & target domain classification according te th
Bayesian cascade decision rule. The first stepeplppses the information available on the source
domain to initialize the training set for the targlomain without labeling any new sample. Source
domain training samples with a high probabilityntave the same label also in the target domain are
detected by applying unsupervised change detettidarget and source images. Only class labels of
detected unchanged training samples are propaffatadhe source to the target domain. Thanks ® thi
choice, unlike the DA methods proposed in theditere, the classifier parameters of the target doma
are estimated directly on the target domain santplasinherited a label from the source domain,(i.e

statistics are not computed on samples from theceodomain). Thus the proposed system is not



affected from the distribution differences betwebka domains. Then, if necessary, active learning is
used to expand the initial target-domain trainiaglsy considering the temporal correlation betwien
domains. This is achieved by a novel AL technigeéngd by conditional entropy for the selection of
most informative unlabeled samples in the imageetancluded in the training after manual labeliimg.
the second step, the target domain is classified bgscade classifier defined in the frameworkhef t
Bayesian decision rule. This choice allows us tpla@k the temporal correlation between the images
(domains) also in the classification step.

The paper is organized into five sections. Sediiaefines the considered problem and describes
the proposed system. Section Il illustrates thaswered data sets and the design of experiments.
Section IV shows the experimental results. Fin@lgction V draws the conclusion of this work.

2 A NOVEL SYSTEM TO CLASSIFICATION MAP UPDATING

Let X =[X,,X,,..X ;| be a time series that consists Rfco-registered images acquired at
different times on the same scene. Let us assuateatheast one of the images in the time-serissaha
reliable training set. It does not matter whetlnés is an earlier or older image. The goal of theppsed
method is to classify the desired images in the tsaries even if no reference information is abela
for them. In order to simplify the mathematicalatiraent, we consider only a pair of images from the
series (i.e., one for the source domain and onthéotarget domain). However, the proposed metlaod ¢
be easily applied to long time series by iterativptocessing pairs of images from the series. Let

X, ={Xyy X;2- X} and X, ={X,, X,,....,X,5} be two multimodal (multidimensional) images
extracted from the time serie§ acquired at timed; and t,, respectively. Both images include

channels an® pixels. Let(xlvj,xzyj) be thej-th pair of temporally correlated pixels made umgixel



X, ; acquired at timg, and a spatially corresponding pix&l; acquired at timd, . Let us assume that
the image X, is the source domain for which a reliable trainset T, ={x,;, y, } ?”:1 is available.
X ; U X, is thej-th training sampley, ; 1Q is the associated class label, add< B is the number of
training samples. The imag¥, is the target domain for which a training dgtis not available. Let
Q :{cqa)2 a)R} be the set of classes at tirhie and N ={V1,V2,... ,VN} be the set of classes at time
t,. We assume that different sets of classes mayctaize the domains (i.eQ # N ). The goal of the
proposed system is to provide a classification migthe imageX, by exploiting both the training
samples available on the imagé¢, and the temporal correlation betweef, and X,, and by
minimizing the labeling costs associated to thendtedn of T, (which at the limit can be null). Here this
is achieved by a novel system based on two st@plw-cost definition of T,; and ii) cascade-

classification of the imageX,. The first step takes advantage of both TL andnAd¢thodologies, and

includes a novel AL technique for the selectiorthaf most uncertain samples. The second step osssif

X, by taking into account the temporal correlatiotwsen the images in the considered pair thanks to
the use of cascade classification. As the defmitod T, strictly depends on the selected cascade

classifier, the detailed explanation of the proplosgstem starts from the last step and moves badkwa

Fig. 1 shows the block scheme of the proposedrsyste
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Fig. 1. Block diagram of the proposed system.

A.  Cascade Classification under Bayesian Decision Framework

The Bayesian decision rule for cascade classifinaitientifies the class label to be assigned to

each pixelx, ; X, by considering the temporal dependencXoffrom X, [10],i.e,

X, OV, if v, =ar9kDrL1a>{P (IK‘XL,- X2, }: agk%Nma%p X Xai[Vie BV }} 1)

where P(vk‘xlyj,xz'j) is the probability that thgth pixel x,; att, belongs to class, , given the two

observationsx ; and x, ;, and P(v,) is the prior probability of having clasg att,. p(x;,X,; |vk) Is a
mixture density that depends on the distributiohslasses at;, and can not be estimated without

making this dependence explicit. To overcome thisblem, P(vk‘xlyl.,lej) can be rewritten by
highlighting its dependence on the class labelsrett;:

Z P(X, ;1 X |Cq VIP(@, v, )

@Q

Z Z p(xlj ! X2,i |C!)S ’Vr )P(a)s'vr)

w00 v,ON

P(v, ‘Xl,j ; X2,j) = (2)
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where p(x;;,X,; |cq ,V, ) is the joint class-conditional density functiorhelTestimation of the statistical

guantities in (2) is a complex task due to theicifty in collecting enough training samples fooperly
modeling the multitemporal correlation between dkssible temporal combinations of classes [10].
Therefore, as often done in practical applicatid®-[11],[18],[19], we assume the conventionalssa

conditional independence in the time domaig.,( p(X ;,X,; |& Vi) = P(Xy; |@) P(X,; [V, )) to simplify

the estimations process. Under this assumptiongi e rewritten as

2 P04 @) p(x,; M) P(@,v,)
%, v, if v, =argmax <<=

Vi ON z Z p(xlj |a)s) p(XZ,j |Vr)P(a)s’Vr)

@0Q v,ON

(3)

where p(x, | |cq) and p(x, ; |vk) are the single-date class-conditional densitytfons, andP(«,V,) is
the joint prior probability of having classeg att; and v, att,. The class parameters at titpean be
estimated using the available training sample§, ilHowever class parameters at tithand joint prior
probabilitiesP(«,Vv,) cannot be estimated directly due to the unavditalof the training sefr, .

In the literature, the estimation of these terms ha&en achieved from the images under
investigation by an iterative procedure definedtbe basis of the Expectation-Maximization (EM)
algorithm [11]. In the iterative EM algorithm, tivalues of the parameters for the density functimins
classes at timé& are initialized by considering the correspondintuea estimated at timi, whereas
joint prior probabilities are initialized by assigg equal joint prior probabilities to each pairabfsses
(including possible specific constraints on sonamditions according to prior information). However,
the EM algorithm may not provide accurate estimatkesn the statistical distributions of classeshia t

source and target domains significantly differ freach other. As mentioned before, this may happen

11



due to the different acquisition conditions. Sudffiedences may cause the initialization valueshaf t
parameters of the density functions for the clasgedmet, considerably different from the accurate
values. Therefore EM algorithm may show difficudtia converging. To overcome this drawback, in the
next section we propose a low-cost approach toddfeition of a training sefl, and thus to the
estimation of the mentioned statistical terms.
B. Low-cost Generation of Training Samples for the Target Image

As mentioned in the previous sub-section therenged of defining a reliable training sEt for

X, with a low-cost procedure that takes into accoli@temporal correlation betweeq) and X, . Here

we propose a 2-step procedure which takes advaofdgansfer and active learning methods.
Sep 1. Change-Detection-driven Transfer Learning (CDTL)

The first step aims at defining an initial trainiagt for the imageX, (target domain) by reusing
the already available knowledge fro, (source domain) (i.e., without the need of a nebeling

process) and taking advantage of the temporal letioe. This is achieved by adopting the Change-
Detection-driven Transfer Learning (CDTL) approg@ecbposed in [20]. According to this approach, the

labels of training samples i, are considered reliable fof, if the related pixels did not experience
any change. In such a situation the lalyg| associated to the training samplg UT, is transferred
from the source domain to the target domain andcésed to the sample, ; [ X, in the corresponding
spatial position as the unchanged pix¢|. In order to detect changed and unchanged pizeig,

change-detection method proposed in the literatarebe applied [21]-[25]. As an example, assuming
that multidimensional images are acquired by passensors and thus are corrupted by additive

Gaussian noise, Change Vector Analysis (CVA) temimican be used [21]-[23]. CVA technique

12



applies toX,; and X, by subtracting the feature vectors of temporatlyrelated pixelsx,; and X; ;
from each other in order to build a multispectiéfiedence imageX ,. CVA assumes that multitemporal

images should be co-reregistered to each othaftelf co-registration significant residual misrégison
errors affect multitemporal data, CVA-based chadegection methods robust to this kind of problem

can be applied [25]. HereX, is analyzed according to the theoretical framewlorkunsupervised

change detection based on the CVA in polar domaipgsed in [21]. According to [21], for simplicity
two channels out of are selected such that the most informative featwith respect to the specific
considered problem are isolated excluding noisyrargleading channels from the analysis. It is worth
noting that, even if the assumption of working wéttpair of channels is reasonable in many change-
detection problems [21]-[24] the CVA can be alsplegal to more than 2 channels. To highlight change

information the magnitude and the direction of dewectors inX, is computed. The defined 2-

dimensional feature space is referred in the liteasuch as the polar representation of the change
detection problem [21]. In this feature space, anged pixels are distributed close to the origithef
polar domain and fall within the circle of no-chadgpixels (i.e., they show a low magnitude value)
[21], whereas changed pixels are distributed famfthe origin. According to this behavior, a proper
threshold computed on the magnitude feature allomesto separate changed from unchanged pixels.
The reader is referred to [24] for a systematioveyiron thresholding methodologies. The direction
feature can be used for distinguishing among diffekinds of change [21]. Once unchanged pixels
have been identified, the labels of unchanged itrgisamples are transferred to the target domain.
These labels will be associated to samples inatget domain that spatially correspond to the imgin

sample in the source domain. Labels that do nafgahis constraint are not transferred.

13



At the end of this step, the set of classés that are represented W) is a subset of classestat
e, NTOQ. Let T ={x.;, y;} %, be the set of unchanged training pixelsXat where x, ; 0T, is

the j-th training sample an® (R< M ) is the number of detected unchanged training fsnghe

training setT, of X, is initialized asT, ={x,, y; } ., <{ X, Y3 =, wherex, 01X, is thej-th initial
training sample andy,; =y, ; U N™ is its label transferred from,” . From the samples in the initial

training setT, unbiased estimates of class statistical paramfgethe target domain can be computed.

Thus, the proposed system becomes robust to tee statistical distribution differences between the
source and target domains. In other words, thiscehavoids the need of adapting the classifier
parameters of the source domain to the target doamit is necessary in the TL techniques present i
the literature [10]-[15]. It is worth noting thati$ step implicitly handles the situation in whialclass
completely disappears between the two acquisitisit no additional effort: all the samples
associated to a disappeared class fall into thefsehanged pixels. Therefore their label will riost
transferred and the associated class will not agpes™ .

Sep 2: Conditional-Entropy-based Active Learning (CEAL)

The second step aims at optimizing the trainingTsetand thus the estimates of class statistical
parameters) by active learning defined for Bayesastade classification. AL methods enrich theahit
labeled training set by iteratively selecting thestminformative samples from a pool of unlabeled
samples and adding them to the current trainingatet manual labeling by a supervisor. The most
informative unlabeled samples can be selected wsingncertainty criterion. This criterion shouldese
the unlabeled samples that have the lowest protyabd be correctly classified by the considered

classifier and thus show the maximum uncertaintytheir class labels. Such samples result to be the

14



most informative ones for the classifier itself.eThupervisor is usually a human expert who gives a
class label to the selected samples. The main ib@f&L is that it can significantly reduce theatefor
labeling samples, and thus the related cost asudt i avoiding redundant sampling.

Differently from the AL techniques proposed in therature that are devoted to single-date image
classification [26]-[30], here we re-define AL bgreralizing its use to the classification of imaigee
series in the context of Bayesian cascade decisien The proposed AL method models the uncertainty
of unlabeled samples by taking into account theptaad correlation betweeX, andX, and thus results
in a conditional uncertainty criterion. To considemporal dependence in modeling the uncertainty of
samples, we introduce a novel AL method definedhenbasis of conditional entropy. The concept of
entropy has been already used in the literaturéntodefinition of uncertainty in the context of A22]-
[33]. In [32] marginal entropy is applied to selagicertain training samples for single-date image
classification without considering any temporalomhation. In [33] the concept of multitemporal
uncertainty is introduced. Joint entropy is usedsétect pairs of uncertain multitemporal training
samples for the joint classification of multitemalbimages in the context of compound classification
[33]. The proposed conditional entropy based ALhudtsignificantly differs from [32]-[33] due to the
fact that it models the uncertainty of unlabelechgles only in the target domain but it also consdee

temporal correlation between the target and sadwoaains.

Let H (xz,j ‘Xl,j) be the conditional entropy for the pixeJ, given the observatiow, ;, i.e.,

H (xzyj ‘xlyj) =-> P(vk‘xl'j,xzj)log P(vk‘x1j Xy 4)

v ON
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As mentioned before, the estimation B(vk‘xlyj,xzyj) is a complex task, and therefore we adopt the

conventional assumption of class-conditional indeleace in the time domain to simplify the

estimations as in [10],[11]. Under this assumpti@can write:

> p(x ;@) p(%,; M) P(@, Vi)

= (%, |@) p(X,,; V) P(@,V,)
H %)= “ | § J 5
() ;N > (P ]@) pxy V)P, V,)) s (POx; |@) p(xy; V) P(@.V,)) ©)

According to (5), P(«w,v,) is the only term that models the temporal corretatbetween the two

domains. A small value off (xz,j ‘xl,j) shows that the decision of the cascade classifiehe pixelx; ;

is reliable, whereas a high value Idf(xzyl. ‘xlyj) points out that the decision of the cascade ¢iasss

not reliable, and thus the corresponding samplecdertain (i.e., informative for the classifier).
At the first iteration of the proposed AL methodhddional entropy is estimated according to class

statistical parameters evaluated @nand on the initialT, obtained by transfer learning. Then the

training set is enlarged by adding a batch of wkdb samples with maximum conditional entropg. (

those that have the maximum uncertainty amongesasdter manual labeling by a supervisor. Onhge
has been enlarged, the class probability densitgtions associated to the imade and the joint prior

probability of classes should be updated accorginigte joint prior probabilities of classes areided
from the images under investigation. To this ermthemage is classified independently from the rsthe

by the standard Bayesian maximum posterior proibablassifier [31], and then the class transitians

calculated. It is worth noting that the class-ctindal density functions at timg are estimated from
the available training sél, and thus remain fixed during the AL iterations. ©parameters have been

updated, the conditional entropy for each unlabsktple present in the image, is estimated by (5).

16



This process is iterated until convergence, whichchieved when either the values of class parasnete
do not change from an iteration to the next ongherupper bound of the cost for labeling sampdes i
achieved (i.e., the maximum possible number of $asnp labeled). Fig. 2 shows the architecturénef t
proposed Conditional-Entropy-based Active Learn@EAL) method. When the AL process is
completed, the training set includes a small nunddemost informative samples for the considered

classifier. Finally, imageX, is classified by using the Bayesian decision fatecascade classification

given in Section Il.A using the estimated parangefer the class-conditional density functions ateti

t,, as well as the joint prior probabilities of classind the class-conditional density functionsae t, .

X, Xi
l l P(% ). P(X, ;%)
N " H Xy .
Ty Parameter P(@.vi) | Conditional (X2’| b )‘ Uncertain Sample_’ Manual
T Estimatior "|  Entropy - Selection Labeling
(initial) A
Tz

No

Convergence? . Update
Training sefl,

Yes

Final Training
SetT,

Fig. 2. Architecture of the proposed Conditional-Entromsed Active Learning (CEAL) method.

It is worth noting that labels assigned to uncersamples during the AL step may not belong to
the initial set of classedl™. Due to the expert labeling process, the propddedtep allows one to
detect new classes that may be appeared betweescdogsition dates oK; and X,. Let £ be the

generic class label associated by the human eipertspecific sample at a given iteration of the AL
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process. Ife does not appear in the initial et (i.e., sON™) at timet,, the final setN of classes at
time t, is defined asN=N™ 0{& , whereas ifcON™, the final setN is equal to the initial seN™,
i.e., N=N™.
3 DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS

A. Data Set Description

Experiments were carried out by exploiting two tisexies of remote sensing images aiming at
land-cover maps updating. However the propose@sysan be effectively employed in other domains
that require the analysis of image time series,(bigmedicine). The first time series is made tifhcee
co-registered multispectral images acquired orsthieounding of the city of Trento, Italy, in Septaen
1999, July 2003 and July 2007. The selected téstisia section of 470x351 pixels with a spatial
resolution of 30 m. True color composites of theges are shown in Fig. 3. The July 2003 and July
2007 images were acquired by the Thematic Mappel) Eensor of the Landsat-5 satellite, whereas the
September 1999 image was acquired by the Enhanlgethdtic Mapper Plus (ETM+) sensor of the
Landsat-7 satellite. Both multispectral scannemguaie images in the same seven spectral channels.
However, only sixC = 6) were used in the experiments. The thermehtiafl band was neglected due to
its lower geometrical resolution. Several land-cogkasses were considered for experiments: water,
forest, fields, urban area and industrial areawBeh the acquisitions no additional land-coversgas
are observed. In the experiments, two scenarios w@mnsidered that share the same source domajn, i.e

the September 1999 imag¥, . However they differ because of the consideregetaomainite., X,).

In the first scenario (Scenario 1) the target donmirepresented by the July 2003 image, wheretsein

second one (Scenario 2), it is represented byulye?2007 image (seeasLE 1). The considered scenarios
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simulate challenging conditions, due to the facdt:th) different sensors were used for the data

acquisition, and ii) class statistical distributsan the target domain differ

TABLE |. SCENARIOSCONSIDERED IN THEEXPERIMENTS

Scenario X, X,

September 1999 July 2003
(Landsa-7 ETM+) | (Landsa5TM)
September 1999 July 2007
(Landsa-7 ETM+) | (Landsa5TM)

(©)
Fig. 3. True color composite of the Trento Landsat data (s¢ image acquired in September 1999 by Landdat+M+
(X,);(b) image acquired in July 2003 by Landsat-5 TK}, ); and (c) image acquired in July 2007 by Landsatb ( X,)

courtesy of the U.S. Geological Survey.

significantly from those of the source domain. Tla#er condition was quantitatively assessed by
computing the class similarity according to thenpae Jeffreys-Matusita (JM) statistical distant2][

JM values between the source and the target diiis are high for all land-cover classes (i.k the
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pairwise JM distances are close to the saturata'xb\usew/i). Therefore standard DA methods proposed
in the literature can not work properly on thesenstios,i.e, they fail in effectively classifying the
target domain due to the significantly differenhaeiors of the land-cover class statistical distidns.
This is further confirmed by the overall accurachiaved by a Bayesian classifier trained Gnand
applied toX,, which is very poor (around 12%) for both scersrio

The second time series is made up of two co-regdtenultispectral images acquired by the
QuickBird satellite on the south part of the city Trento (Italy), in October 2005 and July 2006,
respectively (see Fig. 4). The 4 QuickBird specbhahds were considered in the experiments. The
selected test site is a section of 1520x1504 piwxéls a spatial resolution of 0.7 m after panshanpg.

The October 2005 image is considered as the saloo®in (i.e., X;) and the July 2006 image is
considered as target domdire., X,). The images share five land-cover classes (vater, red roof,

asphalt, fields, and bare soil). One additionas<ls present in the July 2006 image, thus betilezn
two acquisitions the appearance of a new class plastic-mulched fields) is observed. Also forsthi
data set, the considered scenario models challgraginditions, due to the fact that: i) a new cligss
present in the target domain (i.e., in the July&0fage) and, ii) class statistical distributionstie
target domain differ significantly from those oftsource domain. This was quantitatively assesged b
computing the class similarity according to thenpae JM statistical distance [12]. JM values betwe
the source and the target distributions are high, (close to the saturation value) for all langezo

classes. As a further confirmation the overall amcy achieved by a Bayesian classifier trainedTpn

and applied toX, is very poor (around 40%).
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Fig. 4. True color composite of the Trento Quickbird dse# (a) image acquired in October 200§ )(b) image acquired in
July 2006 (X,).

B. Design of Experiments
In the experiments 2 batch size values for the édhhique were selected, namisfyp andh =10.
Experimental results are reported as the averaggraxy on ten trials defined according to ten ahiti

randomly selected training sets fér. For each trial the Trento Landsat data set iredual training set

T, of 338 samples selected randomly among 1224 alailabeled samples in the imagg, whereas
the Trento Quickbird data set includes a trainiegTs of 574 samples selected randomly among 3850
available labeled samples in the image. A training setT, is assumed initially not available for the
target domainX, for both data sets. In order to build the initi@ining setT,, CDTL is applied. To
select the unchanged samples whose class labélbenitansferred toX,, a conservative criterion is

employed such that only those training samples wittigh probability of being unchanged are selected
Therefore the risk of propagating the class lalw#lsincertain samples (i.e., training samples that

changed their label) is reduced as much as possibiesake of consistency among the 10 trials dinees
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number of labels is transferred. The available gdoteference samples of, are used to derive a pool

set and a test set. The pool set includes sampdésvill be queried during the AL iterations, whase
the test set consists of samples that are only laseatcuracy assessment. Note that the sampln of
pool set are different from those of the test $ht class-conditional density functions requiredtfee
estimation of the Bayesian cascade decision ride [8)] and the conditional entropy [see (5)] are
assumed to follow a parametric Gaussian distrilbutids we are considering multispectral images

acquired by optical passive sensor, this is a redde and common assumption [10]-[11],[18],[19].

We applied the proposed system which is based) @hange-Detection-driven Transfer Learning
(CDTL) and Conditional-Entropy-based Active Leagn(CEAL) for the generation of the target domain
training set; and ii) the Bayes decision rule fas@ade classification. In the all experiments tioppsed
system, which takes advantage of temporal corogldietween target and source domain in both steps,
is denoted as CDTL-CEAL. Thus, in order to asses®ffectiveness, the results obtained by it were
compared with those achieved by two methods thgtene or only partially consider the temporal

correlation.

The first method is based on single-date classifinaThus temporal correlation is ignored both in
the training set definition as well as in the cifisstion step. The goal is to classify the targemain
(i.e., X,) without considering the existence of the sourmaain X, . In this experiment the training set

for X, is built according to the standard Marginal-Enjrtyased Active Learning (MEAL) technique

[32], whereas classification is performed by applyithe single date Bayesian maximum posterior
probability classifier [31]. The MEAL technique sets the most uncertain unlabeled samples from a

single-date image on the basis of the standardinargntropy (.e., ignoring the temporal dependence
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between images) [32]. As for applying the Bayesiacision rule an initial training sét, for X, is

required (otherwise it is not possible to estintheparameters of the class distributions), treeeneed
to build an initial training set including enougibkled samples to train the classifier beforeistawith

AL iterations. To this end, Random Sampling (RS)pglied to the samples X, . Selected samples are
labeled to define the initial,. The number of samples being labeled dependseodata sets and on the

number of image features given as input to thesiflas Here, in order to make the comparison i
proposed system reliable, the number of randomlgctsd samples is set equal to that of samples
transferred from source to target domain accortbripe CDTL step of the proposed system. It is vort
noting that the initial estimates might be obtairean with a slightly smaller number of samples.
However, the RS step requires anyway an additioostl of samples for the initialization of the tiaop

setT,, whereas the proposed system does not. This melugshoted in the following as RS-MEAL.

The second method selected for comparison purpaosegtecting the temporal correlation only in
the active learning step for the cascade classitaThus a system similar to the proposed one is
considered where Conditional-Entropy-based Actiearhing (CEAL) is replaced by RS, i.e., after the

CDTL step, unlabeled samples to be added to thialifi, are randomly selected. In this way temporal

correlation is neglected as RS is performed withaublving the source domain. This choice allowg on
to assess the usefulness of the CEAL step of thpoged system. After performing RS, the source

domain is classified by a cascade classifier. ethod is denoted in the following as CDTL-RS.

4 EXPERIMENTAL RESULTS
A. Resultsfor Trento Landsat Data Set: Scenario 1

In order to use the proposed system, the CVA teglmmhas been applied to imaggs (i.e., the
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September 1999 image) and, (i.e., the July 2003 image). Here the thresholamehod presented in
[34] is applied; however other methods can be u$kd.class labels of training pixels ¥ detected as
unchanged are transferred Xg . For each of the ten trial, is built by transferring the class labels of
95 unchanged training samples frotm to X,. The number of samples for each clas3,ns given in

Table II. The effectiveness of this step is vakahtby the fact that JM distances between the
distributions in the target domain and the onesmated on the initial training samples (i.e., after
CDTL) are smaller than the distances between dstsibutions in the target domain and source
domain. Once label propagation is completed, thest&lp is applied to enrich the initial training bgt
selecting the most informative samples from a $eindabeled samples (i.e., the pool set). Table I
together with the numbers of initial training sasgpbbtained by the CDTL, reports unlabeled samples
in the pool set, and of test samples (which arel dise accuracy assessment) available for each land-

cover class inX,.

TABLE Il. INITIAL TRAINING, POOL AND TESTSETS FOR IMAGE(SCENARIO 1).

Land-cover l.n'.t'al Pool Set Test Set
classes Training Set
Water 21 16¢€ 42C
Forest 25 20C 402
Fields 15 11t 207
Industrial Area 17 13E 15¢
Urban Area 17 13€ 172
Total 95 754 136(

In the first set of trials, we compare the effeetiess of the proposed system (defined for the dasca
classifier) with the RS-MEAL method (defined foetetandard Bayesian maximum posterior probability

classifier). Fig. 5 shows the average (on 10 {rielassification accuracies of, versus the number of

new labeled samples obtained by the proposed syateinthe RS-MEAL method. The new labeled
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samples are the patterns labeled from the expemglthe considered iteration of AL process. The
reason of obtaining a good accuracy with the pregas/stem in case of labeling no samples (i.e., the
number of new labeled samples is zero) is due¢oQBTL step. In other words, training set without
labeling any sample is not empty in the case ofptloposed system, whereas it is empty in caseeof th
RS-MEAL method (thus the related accuracy is zef@).implement RS-MEAL, 95 samples (that

corresponds to the number of samples included, infter the CDTL step of the proposed system) are

randomly selected and labeled to initialize thentrgy set. From Fig. 5, one can observe that the
accuracies obtained by the proposed system ardicignly higher than those yielded by the RS-MEAL
method for both values ¢f As an example (see Fig. 5.a that refers=6), the proposed system yields
an accuracy of 98.33% by labeling 100 unlabeledpt@snfrom the pool, whereas the RS-MEAL
provides an accuracy of 92.06% with the same amaiulabeled samples. Table Il shows the confusion
matrices resulted by using the proposed CDTL-CEAd RS-MEAL when 100 new samples are labeled
in the case oh=5. From the table one can see that the most aritiasses are “Fields” and “Urban
Area” that are confused mainly with “Forest” anddustrial area” in the case of the RS-MEAL. CDTL-
CEAL effectively reduces misclassified sampleshea mentioned critical situations and solves algo th
minor problems related to “Forest” and “Water” glas. The results reported in Fig. 5 demonstrate tha
due to t ihe CDTL step, the proposed system samifly reduces the labeling cost with respect & th

initial definition of T,. It is worth noting that the effectiveness of pyepd system compared to the RS-
MEAL is due to its ability in: i) defining the in&l training setT, without any labeling cost (i.e., the
CDTL step), ii) expanding it according to the noydl method that exploits the temporal correlation

between the images (i.e., the CEAL step), andclagsifying the image by considering the temporal

correlation between the images. The results clesrbw the importance of information conveyed by
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temporal correlation between multitemporal imagedbth optimizing the definition of the trainingts
and classifying the image. By analyzing figure, caa observe that the proposed system providest a fa
improvement on the accuracy at early iterationsreas at the late iterations a small reductionhen t
accuracy is observed. This is due to the factafiat a number of iterations the few outliers imgd in

the pool that do not properly model the distribotaf test samples are added to the training seés. i$h
not the case for early iterations where outliees rast selected due to their certain (wrong) clasell
[33]. As the number of labeled samples increades,GDTL-CEAL method (as well as other AL
methods) definitely converges to the accuracyithabtained when all the unlabeled samples aredadde

to the training set.
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(a) (b)
Fig. 5. Average (on 10 trials) overall classification a@ay versus the number of new labeled sampldsaiitained by the
proposed CDTL-CEAL and the RS-MEAL methods wherh&j and (b)h=10 (Scenario 1).
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TABLE Illl. THE CONFUSIONMATRICESOBTAINED AT THE SECOND ITERATION OF(A) THE PROPOSEICDTL-CEAL
AND (B) THERS-MEAL WHENH =5

Referggtcé Water Forest Fields Industrial |~ Urban
Classified Date Area Area
Water 41¢ - R _ -
Forest - 399 34 - -
Fields - 2 169 - -
Industrial Area 1 1 4 157 67
Urban Area - - - 2 105

(a)

Referggfé Water Forest Fields Industrial | Urban
Classified Data Area Area
Water 420 - R R
Forest - 402 3 -
Fields - - 204 -
Industrial Area - - - 15¢€ 17
Urban Area - - - 1 155

(b)

The second set of experiments, aims at asses@&refféctiveness of the AL step for the proposed
system. This is done by comparing the proposeesystith the CDTL-RS technique. Fig. 6 shows the

average (on 10 trials) classification accuracieX piversus the number of new labeled samples obtained

by both the proposed system and the CDTL-RS metieiihed in the framework of cascade
classification for two values df. Due to the CDTL step, both methods result in adgaccuracy when

the number of new labeled samples is zero. From@rigne can see that the proposed system provides
always higher accuracies than the CDTL-RS and esacbnvergence with a smaller number of new
labeled samples. As an example, by analyzing Fly.(Which refers td=10) the accuracy of CDTL-
CEAL is 94.64% with only 10 new labeled sampleserelas the accuracy of CDTL-RS is only 91.41 %.
These results confirm the importance of temporgleddence information conveyed by the proposed

Conditional-Entropy-based Active Learning in opimg the training seT, for cascade classification.

Note that also in this case the reason of the smdilction on the accuracy with the proposed system
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the late iterations is related to the addition @Sy samples to the training set during the adeagning

process.
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Fig. 6. Average (on 10 trials) overall classification a@ay versus the number of new labeled sampldgaiitained by the
proposed CDTL-CEAL and the CDTL-RS methods wherh&d) and (bh=10 (Scenario 1).
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B. Resultsfor Trento Landsat Data Set: Scenario 2

Similarly as before, the CVA has been applied tagesX, (i.e., the September 1999 image) and
X, (i.e., the July 2007 image). The class labels ahanged pixels inX, are propagated tX,. For
each of the ten trialsT, is built by transferring the class labels of 94 hareged training samples from
X, to X,. The number of samples for each clasSjns given in Table IV. The effectiveness of this

step is confirmed by the fact that JM distancesvbenh the distributions in the target domain and the
ones estimated on the initial training samples, (aier CDTL) are smaller than the distances betwe
class distributions in the target and source domahkfterward, the initial training set is expandad
applying the AL step. Table IV together with thewher of initial training samples obtained on theiba

of the CDTL, shows unlabeled samples in the popla®d test samples (which are used for accuracy

assessment) available for each land-cover cla¥s, in
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TABLE IV. INITIAL TRAINING, POOL AND TESTSETS FOR IMAGE(SCENARIO 2).

Land-cover I.m.tlal Pool Set Test Set
classes Training Set
Water 32 38¢ 217
Forest 31 371 252
Fields 8 97 154
Industrial Area 12 147 172
Urban Area 11 127 15E
Total 94 113C 95(C

Fig. 7 shows the behavior of the average (on Hbs)rioverall accuracies obtained by the CDTL-CEAL
and the RS-MEAL (which ignores the CDTL step aneréfiore assumes that an initial training set is
populated by selecting and labeling samples rangotathniques in the cases lof5 (Fig. 7.a) and

h=10 (Fig. 7.b). To implement RS-MEAL, 94 samples)ich correspond to the number of samples

included in T, after the CDTL step of the proposed system, arelaiey selected and labeled to

initialize the training set. By analyzing Fig. heocan observe that the proposed system resulke in
highest accuracies at all the iterations for batlues ofh. Moreover, it again reaches convergence with
a smaller number of new labeled samples, due tbei)CDTL (which provides initial training samples
without any labeling cost), ii) the AL step (whiekploits the temporal correlation between imagas)l,

iii) the cascade classification (which also uses tbmporal dependence information between the
images). As an example, the proposed system yaidsccuracy of 95.12% with only 10 new labeled
samples at,, whereas the RS-MEAL reaches a similar accuratly #10 samples (see Fig. 7.a). Table
V shows the confusion matrices obtained by usirgy gltoposed CDTL-CEAL and RS-MEAL when
almost 100 new samples are labeled in the cakemfFrom the table one can see that the mostalritic
classes are “Fields” and “Urban Area” that are aeatl mainly with “Forest” and “Industrial area” in
the case of the RS-MEAL. CDTL-CEAL effectively rexis misclassified samples in the mentioned

critical situations. Note that the classificatidhntloe imageX, using the classifier directly trained with
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the training sefl, provides an accuracy of only 21.34%. This provesdomplexity of the considered

problem.

TABLE V. THE CONFUSIONMATRICES OBTAINED AT THE SECOND ITERATION OFA) THE PROPOSEICDTL-CEAL
AND (B) THERS-MEAL WHENH =5

Referggt%: Water Forest Fields Industrial |~ Urban
Classified Datz Area Area
Water 21€ - - - -
Forest 1 25C 41 - -
Fields - 2 105 - -
Industrial Area - - - 169 33
Urban Area - - 8 3 122
@
Referggtcg Water Forest Fields Industrial | - Urban
Classified Datz Area Area
Water 217 - - -
Forest - 252 1 -
Fields - - 152 -
Industrial Area - - 1 17C 2
Urban Area - - - 2 152
(b)
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Fig. 7. Average (on 10 trials) overall classification a@ay versus the number of new labeled sampldgaiitained by the
proposed CDTL-CEAL and the RS-MEAL methods wherh&f and (b)h=10 (Scenario 2).

Fig. 8 shows the comparison of the average ovacallracy obtained by the proposed system with

and CDTL-RS for both values & From these plots, one can see that the propgstens provides
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again the selection of more informative samples tih@ CDTL-RS, and achieves higher accuracies for
the same number of labeled samples. As an exarmplihe case oh=10 the accuracy yielded by

proposed system is 95.11% with only 10 labeled $esnhereas it is 90.39% with the same number of
labeled samples if the CDTL-RS is used. These tesohfirm the effectiveness of the proposed CEAL

method.
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Fig. 8. Average (on 10 trials) overall classification a@ay versus the number of new labeled sampldsaiitained by the
proposed CDTL-CEAL and the CDTL-RS methods wherh&h) and (bh=10 (Scenario 2).

[o ]

o
o

C. Resultsfor Trento Quickbird Data Set
In order to run the proposed system also on thatdr®uickbird data set, the CVA technique has been

applied to image, (i.e., the October 2005 image) aKd (i.e., the July 2006 image). Also in this case
the thresholding method presented in [34] is agdplelass labels of training pixels i, detected as
unchanged are transferred ¥, providing 112 initial training samples fof,. The JM statistical

distances between the distributions in the targetain and the ones obtained from the initial tragni
samples (obtained by CDTL) are significantly snratlean the distances between distributions in the

target domain and the ones in the source domaine Gabel propagation is completed, the AL step is
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applied to enrich the initial training s&f. In the labeling process of AL, the human expetedts a new

land-cover class “Plastic-mulched fields”. TablesWiows the number of initial training samples (vhic
are obtained on the basis of the CDTL) and unlabsémnples in the pool set available for each land-

cover class inX, . In addition, the number of test samples thauaesl for accuracy assessment is given.

TABLE VI. INITIAL TRAINING, POOL AND TESTSETS FORX,, IMAGE (TRENTOQUICKBIRD DATA SET).

Land-cover I.n'.t'al Pool Set Test Set
classes Training Set
Water 34 1004 1032
Red Roof 15 434 469
Asphalt 22 650 474
Fields 21 626 534
Bare soil 20 670 483
Plastic-mulched field - 354 290
Total 11z 373¢ 328:
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Fig. 9. Average (on 10 trials) overall classification agay versus the number of new labeled sampldgdditained by the
CDTL-CEAL system and the RS-MEAL method whenlfab and (bh=10 (Trento Quickbird data set).

Fig. 9 shows the average (on 10 trials) classiboaaccuracies oX, versus the number of new

labeled samples obtained by the proposed CDTL-CaBAd. RS-MEAL in the cases b5 (see Fig. 9.a)
andh=10 (see Fig. 9.b). To implement RS-MEAL, 112 saspiwhich correspond to the number of

samples included iff, after the CDTL step of the proposed system) ardaanly selected and labeled
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to initialize the training set. From the figuresieocan observe that the CDTL-CEAL, again, provides
significantly higher accuracies for both valueshpfind reaches convergence with a smaller number of
new labeled samples. Also for this data set, thalt® show the importance of information conveygd b
temporal correlation between multitemporal imagesbth optimizing the definition of the trainingts
and the classification accuracy. As an exampleCib&L-CEAL yields an accuracy of 95.82% with 130

new labeled samples d&j, whereas the RS-MEAL provides an accuracy of @b.98ith a similar

number of new labeled samples (see Fig. 9.a). Nbkhows the confusion matrices obtained by using
the proposed CDTL-CEAL and RS-MEAL when almost h2v samples are labeled in the cask=&.

From the table one can see that RS-MEAL resultsistlassifications for most of the classes. CDTL-
CEAL effectively reduces misclassified samples he tritical situations and shows only few minor

problems between “Fields” and “Bare soil” classes.

TABLE VII. THE CONFUSIONMATRICESOBTAINED AT THE SECOND ITERATION OF(A) THE PROPOSEICDTL-CEAL
AND (B) THERS-MEAL WHENH =5

Refer[t)egtca: Water Red Asphalt | Fields Bare soil | Plastic-mulched
Classified Date Roof field
Water 1032 - - - - -
Red Roof - 443 5 3 91 2
Asphalt - - 40¢8 - - 5
Fields - - - 524 4 -
Bare soil - 26 52 1 386 59
Plastic-mulched field - - 9 6 2 22¢E

(a)

Referggtce: Water Red Asphalt Fields Bare soil Plastiq-mulched
Classified Date Roof field
Water 1032 - - - - -
Red Roof - 468 2 1 5 -
Asphalt - 1 471 - - -
Fields - - - 505 - -
Bare sail - - - - 36¢ -
Plastic-mulched field - - 1 28 10 29C
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Fig. 10 shows the average (on 10 trials) classiiosaccuracies oK, versus the number of new

labeled samples obtained by the CDTL-CEAL and CIRI%4n the cases &f=5 (Fig. 10.a) andh=10
(Fig. 10.b). From the figures one can observe that CDTL-CEAL provides significantly higher
accuracies than the CDTL-RS for both values ahd leads to a fast improvement of the classifoat

accuracy. This is due to the fact t¥y includes a new class (namely “Plastic-mulched f)leaind thus

the role of the AL step is crucial to identify aladbel the new class at the early iterations. Asxample
(see Fig. 10.a that refers Ie5), the CDTL-CEAL yields an accuracy of 96.19%lalgeling only 20
samples from the pool, whereas the CDTL-RS provateaccuracy of 91.68% with the same amount of
labeled samples. These results show the effectgeokthe proposed CEAL method in the framework

of Bayesian rule for cascade classification.
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Fig. 10. Average (on 10 trials) overall classification a@my versus the number of new labeled samplésaditained by the
CDTL-CEAL and the CDTL-RS approaches whenh@} and (b)h=10 (Trento Quickbird data set).

5 DiscussioN AND CONCLUSION
In this paper a novel system for updating classifosy maps by classifying image time series has

been presented. The proposed system aims at glagsdn image for which no reference data are
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available (target domain) by exploiting another gmacquired on the same area at a different time fo
which reference data are available. This is dona Bystep procedure. The first step is devotedheo t
low-cost definition of a training set for the targ®mmain with transfer and active learning methdds.
this end, firstly a Change-Detection-driven Tran&fearning method, which propagates the class $abel
of unchanged samples from the source domain tettalgmain, is applied to define an initial training
set for the target domain. This step offers twomadvantages: i) the sample labeling cost in otaler
populate the initial training set is zero due tansferring the class labels of the unchanged source
training patterns, and ii) the dissimilarity betwehe class distributions of source and target dosna
does not affect the proposed method since thenatigamples of the target domain are directly used
estimate the related classifier parameters (heretis no need to adapt the classification pareineif

the source domain to target domain, as only thel labsamples is transferred). After defining thitial
training set, active learning is applied to optienthe training set of the target domain by labebng
small number of most informative unlabeled samples.this end, we have presented a novel active
learning method in the framework of Bayes ruledascade classification. The proposed active legrnin
method is based on the conditional entropy asstmith the cascade-classification decision rubel, a
evaluates the uncertainty of samples taking intmat the temporal dependence modeled by the joint
prior probabilities of classes. The proposed adiéaening method significantly reduces the numbder o
new labeled samples to be collected at the targetach for optimizing the classification resultsdan
therefore minimizes the related sample labelingt.ch®reover accurate classification accuracy is
obtained due to improved class models on the lohdlee cascade classification. The second stepeof t
proposed system is devoted to the classificationthef target domain. This is done by cascade

classification exploiting the temporal correlatioetween the domains.
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Experiments carried out on 2 multitemporal dats sétremote sensing images show that: i) the
proposed system is robust to the class statidistdibution differences between the source angetar
domains, due to the Change-Detection-driven Trank&arning step, ii) exploiting the temporal
dependence in the definition of active learning ¢ascade classification problems results in higher
accuracies for land-cover map updating than thero#thgorithms when the same number of labeled
samples is considered, and iii) the use of cascéaksifier for multitemporal images improves the
classification performance with respect to standangle date Bayesian maximum posterior classifier.
These results are very important as obtained oatardgeneous area working on images acquired in
different seasons (i.e., September and July as age{Dctober and July) and by different sensors (i.e
Landsat-5 TM and Landsat-7 ETM+). The achievemgmst out the flexibility of the proposed
technique that can obtain high accuracy with felselad samples for the target domain also in ctitica
conditions.

It is worth noting that the proposed system dodshage any limitation on the set of land-cover
classes that characterize the two domains. Thigasto the fact that the initial training set foe target
domain (which only contains land-cover classeseshéry the target and source domains due to class-
label propagation of unchanged samples in the CBt&p) is enriched with possible new classes during
the AL step. We can state that from the AL viewpaire unlabeled samples associated to new classes
that may appear in the target domain are expeotbd highly informative, as they are not represeirie
the training set of the target domain yet. Thus, ilew class appears in the target domain, thetéy.is
very likely to select samples that belong to ittla first iterations. These samples will be thus
represented in the training set after manual labdlly the supervisor. The case of class disappeaian

the target domain is implicitly managed in the CD3lep by not transferring labels associated to
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changed training samples. In other words, if amigkss in source domain is no longer presenten th
target domain, all of its pixels will be changedldheir labels will not be represented in the tragrset
of the target domain.

It is worth emphasizing that updating classificatioaps in a cost-effective way is becoming more
and more important in real applications. This is tluthe increased number of time series of imagds
their possible free availability. In this contei#te proposed system is very promising as it geegrat
classification map for a generic image in the tisegies for which no prior information is available,
decreasing significantly the cost and effort reegirfor reference data collectiols a future
development of this work, we plan to extend the téghe proposed system to longer time series of
images and to data acquired by different sensooseder, we also plan to consider the modelingnef t
spatial context information in the process of actiwarning. As a final remark, we would like to mioi
out that the proposed system in general and caadbpted for different application domains in the
framework of analysis of image time-series.
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