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Abstract

This paper addresses the problem of land-cover classification of remotely sensed image pairs in the context of

domain adaptation. The primary assumption of the proposed method is that the training data are available only for one

of the images (source domain) whereas for other image (target domain), no labeled data are available. No assumption

is made here on the number and the statistical properties of the land cover classes that, in turn, may vary from one

domain to the other. The only constraint is that at least one land-cover class is shared by the two domains. Under

these assumptions, a novel graph theoretic cross-domain cluster mapping algorithm is proposed to detect efficiently

the set of land-cover classes which are common to both the domains as well as the additional or missing classes in the

target domain image. An inter-domain graph is introduced which contains all the class information of both the images

and subsequently an efficient subgraph matching algorithm is proposed to highlight the changes between them. The

proposed cluster mapping algorithm initially clusters the target domain data into an optimal number of groups given

the available source domain training samples. To this end, a method based on information theory and a kernel based

clustering algorithm is proposed. Considering the fact that the spectral signature of land-cover classes may overlap

significantly, a post-processing step is applied to refine the classification map produced by the clustering algorithm.

Two multi-spectral datasets with medium and very high geometrical resolution and one hyper-spectral dataset are

considered to evaluate the robustness of the proposed technique. Two of the datasets consist of multi-temporal image

pairs while the remaining one contains images of spatially disjoint geographical areas. The experiments confirm the

effectiveness of the proposed framework in different complex scenarios.

Index Terms

Domain Adaptation, Graph Matching, Cross-Domain Graph, Clustering.

I. INTRODUCTION

IN supervised classification, one basic assumption is that the labeled training data are generated from the same probability

density function of the test samples on which the trained model will be applied. However in many fields including remote

sensing [1], it may be possible that, due to the cost required to acquire the labeled training data, training and test samples

are associated with related but not identical distributions. In the recent past, researchers have presented methods to tackle the

mismatch between training and test domains, with a vision to build a mechanism that uses the labeled samples from the source
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domain to build the classifier that provides a fairly good performance on the test samples available on the target domain. This

kind of approaches is usually termed as the Domain Adaptation (DA) or the Transfer Learning (TL) [2] [3] [4]. Learning under

DA implies that the unlabeled target patterns are drawn from a domain different from the source domain. A detailed discussion

of TL techniques for remote sensing image analysis is available in [5].

The problem of adapting models to previously unseen but relevant datasets is one of the important challenges in building

a general prediction model for a pair of remote sensing images. It has gained enormous importance with the advent of some

new age satellite systems which are capable of acquiring images of the Earth surface almost on a daily basis. This makes it

impossible to collect enough reference samples for each available image because of the high cost and high time required. Thus

supervised land-cover mapping for each available image is an impossible task. One of the effective solutions considered in such

circumstances relies on the available ground truth data for one of the images (the source domain image) and to propagate this

training information to the rest of the images for which no labeled data are available (the target domain images). However,

usually DA or TL models do not rely only on the available source domain information. This is because, even if the target and the

source domains are similar, differences in the atmospheric conditions, ground reflectance, etc. may impose some local changes

in the probability density functions (PDF) of the corresponding land-cover classes in different images. Moreover, some entirely

new land-cover classes may also be present in the target domain or some of the source domain classes may disappear in the

target domain image. In this context, DA techniques are particularly useful in building an automated monitoring system aimed

at classifying the land-cover classes in the target domain images considering the information from both the domains.

A few DA methods available in the remote sensing literature are primarily based on the assumption that the source and the

target domains contain the same set of land-cover classes. This implies that, only the statistical parameters of the land-cover

classes may vary between the acquisitions of multiple images, but not their number and kind. Under such an assumption, the

authors in [6] proposed an unsupervised retraining technique for a partially supervised Maximum Likelihood (ML) classifier

for the land-cover mapping in the target domain image given the source domain training data. The method allows the classifier

parameters, obtained by exploring the source domain training samples, to be updated in an unsupervised fashion using the

Expectation Maximization (EM) technique on the basis of the class statistical distributions of the target domain image. In [7], an

adaptation technique is proposed which is aimed at finding the correspondence between the data manifolds of both the domains.

A simple and scalable solution has been presented there by focusing on the description of the changes in the manifold by

defining a non-linear transformation based on vector quantization and graph matching. In the recent past, several active learning

based classification techniques have been proposed for domain adaptation in the remote sensing literature for both multi-spectral

and hyper-spectral data [8] [9] [10]. Some adaptation method specific to the hyper-spectral data have been introduced in [11]

[12]. Large margin classifiers like Support Vector Machines (SVM) have been modified for the cross domain data classification

purpose [5]. A Domain Adaptation Support Vector Machine (DASVM) technique has been introduced in [5]. The DASVM

model is initially built based on the source domain training data. The maximum margin hyperplane of the SVM is then modified

iteratively considering only those target domain samples which are very close to the hyperplane or another convergence criterion

is satisfied. The process continues until no target domain samples reside within the SVM margin. In [13], the constraint on the

fixed number of land-cover classes is relaxed in the context of DA for multi-temporal images. A Change Vector Analysis (CVA)

based method has been used to identify the class-wise set of changed/unchanged pixels from the images of both the domains.

The changed pixels are further analyzed to investigate the existence of some new target domain classes based on statistical

divergence measures.

However, to the authors knowledge, very little endeavor has been put up to develop DA approaches that deal with the problem

of identifying the presence of new or disappeared classes when adaptation is required outside the context of multi-temporal

images. When adaptation is to be applied on images acquired over spatially disjoint locations, temporal correlation can not be

employed for the detection of new/disappeared classes in the target domain. In addition the same land-cover class may show

severe differences in statistical properties when observed in source and target domain images acquired over spatially disjoint
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areas.

In view of the above, an efficient and robust DA algorithm is needed which is able to: i) be effective in presence of significant

differences in the statistical and and spatial properties of the underlying land-cover classes of both the images, and ii) detect

new/disappeared classes even when temporal correlation is not considered.

To deal with the above mentioned issues, let us observe that, even if the class statistics change from one domain to the other,

the relative topological structures of the common land-cover classes is preserved in the images. In this context, let us recall that

graphs are an effective and well-established topological tool that has been used extensively to represent the images as a graph of

the underlying land-cover classes in the spectral domain [14]. Accordingly, the identification of common cross domain classes

can now be seen as the problem of finding out the Maximum Common Subgraphs (MCS) [15] given the source and the target

domain graphs followed by identifying the similar matching nodes from both the graphs. The remaining nodes (classes) of the

individual graphs (not a part of the MCS) represent the added/deleted target domain land covers.

According to the above assertion, in this paper, an unsupervised domain adaptation technique for land-cover classification of

a pair of remotely sensed satellite images is proposed. The method considers that any kind of changes can occur between the

source and the target domain images. The proposed method initially clusters the available target domain pixels optimally and

simultaneously estimates the number of land-cover classes present in the target domain image. The well-known Kullback-Leibler

(KL) divergence is used along with a kernel based clustering technique for this purpose. This step is followed by an inter domain

cluster correspondence step which is the main novel contribution of the proposed DA algorithm. Here the common set of the

source and the target domain classes are mapped into pairs. The new or disappeared target domain classes with respect to the

source domain classes are also highlighted. The proposed algorithm is able to handle effectively the data misclassification problem

due to the presence of overlapping samples from different land-cover classes. This is achieved by refining the classification results

produced by the clustering algorithm according to a partially supervised classifier. Here Maximum-Likelihood (ML) classifier

combined with an Expectation-Maximization (EM) based retraining scheme is employed since it demonstrated to be robust when

the statistical distribution of the data points are known or assumed (however any other classifier working under the assumpion

that ΩS and ΩT might include different sets of classes can be adopted) [6]. The initialization of class statistical parameters

required for the refinement step is performed by blending data from both the domains. The adaptation of the statistical parameters

of the classes common to both the domains takes place in this step. The overall system provides a general, unsupervised yet

simple framework for cross domain data classification that can be used in remote sensing data analysis as well as other kind of

images.

The rest of the paper is organized as follows. Section II describes the problem of the land-cover classification of a pair of

remote sensing images in the context of DA. The proposed DA algorithm is detailed in Section III. The experimental results

are presented in Section IV. Section V concludes the paper and discusses relevant possible future research directions.

II. AN INSIGHT TO THE CLASSIFICATION PROBLEM OF A PAIR OF IMAGES IN THE CONTEXT OF DOMAIN

ADAPTATION

Let IS and IT denote the source and the target domain multi-spectral remotely sensed images consisting of B spectral bands

each. Without loss of validity, IS and IT may be acquired from two entirely disjoint locations or represent a multi-temporal pair

of images acquired over the same geographical area at different times. IS and IT may show an identical set of land-cover classes

or may not. Moreover common classes may show significant differences in statistical properties. Let ΩS = {ω1, ω2, . . . ωN}
represent the set of land-cover classes that characterize the geographical area represented by IS . N is the number of land-cover

classes modeled in the training set TRS = {(xSl, ωi)}, (xSl ∈ RB , 1 ≤ i ≤ N) where xSl is the lth source domain image

pixel.

For IT where no training data are available, DA techniques mainly assume that the set of land-cover classes ΩT that

characterizes IT is the same as ΩS , i.e., they assume a high correlation between target and source domain sets of classes.
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Despite this assumption, often the classifier trained on TRS does not exhibit a good generalization performance on IT . This

is because the estimated class-wise parameters of IS do not provide an accurate estimate of the similar terms in IT due to the

reasons raised in the introduction. However, the classifier trained on IS , represent a reasonable rough estimate of the optimal

classifier for IT . The goal of the DA procedure is to adapt the classifier trained on IS to the properties of IT .

In real applications, there is another element that contributes to the possible poor correlation between ΩS and ΩT . This is

the possibility that ΩS and ΩT may include different set of classes. The following cases can be identified in this regard:

• CASE A The source and the target domain contain identical set of land-cover classes, ΩS = ΩT .

• CASE B There are new classes in the target domain, i.e. ΩT = ΩS ∪{ωu} where {ωu} is the set of new unknown classes

detected in IT .

• CASE C There are less target domain classes than source domain classes, i.e. ΩT = ΩS\{ωk}.
• CASE D k source domain classes disappear in the target domain and l new classes appear in that place, ΩT = ΩS ∪
{ωl}\{ωk} with l either equal to or different from k.

The proposed adaptation method handles both the differences in terms of classes (new and disappeared ones) as well as those

in terms of the statistical properties of the common classes. The adaptation procedure is based on EM algorithm and is able to

handle the aforementioned cases. If the classes common to both the images can be identified properly, the adaptation can be

iteratively performed by EM as in [6]. A sophisticated method is employed for analyzing the remaining target domain classes,

for which the corresponding land-cover labels are unknown.

The set of variables used play important roles in formulating the proposed algorithm are listed in Table I.

TABLE I: List of the important variables used in the proposed algorithm

Variable name Significance

IS The source image.

IT The target image.

ΩS The set of source domain land-cover classes.

ΩT The set of target domain land-cover classes.

Ω̂T The set of target domain clusters (estimated land-cover classes).

Q A measure of cluster compactness.

TRS The set of source domain training samples.

ωi ith source domain land-cover class.

αi The ith target domain cluster.

N The number of land-cover classes present in the source domain image.

M The optimal number of clusters in IT .

RankS , RankT Lists for storing the closest source (target) domain classes(clusters) given clusters (classes) from the opposite domain.

RT , RS Temporary lists for storing the source domain classes and the target domain clusters respectively.

XS , XT Random variables representing the observations of source and target domains respectively.

PS(ωi), PT (αj) Class prior probabilities in the source and target domains respectively.

pS(XS |ωi), pT (XT |αj) Class conditional probabilities in both the domains.

i, j, k, l They are used to denote the temporary variables.

III. THE PROPOSED TECHNIQUE

In order to cope with the problem exposed in Section II, a three-step unsupervised DA approach is proposed based on:
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• Generation of an optimal clustering of IT : Given |ΩS | = N source domain land-cover classes and assuming that the

target domain image may contain some additional/disappeared classes as compared to N , the target domain image is

clustered iteratively in a range [N −n,N +n], where n ∈ N is the maximum difference in number of classes between ΩS

and ΩT . Any clustering technique can be used for this purpose. Considering the problem of possible class overlapping, a

kernel based clustering technique is considered here [16]. A KL divergence [17] based optimization mechanism is proposed

to select the optimal number of land-cover classes M ∈ [N − n,N + n] for IT . Clustering can be performed by any

technique.

• Cross domain cluster mapping: This is an important step and the main contribution of the proposed algorithm where

all the matching pairs of the source domain land-cover classes and the target domain clusters are found out by using the

concepts of subgraph matching [18].

• Definition of the domain adaptation classifier for post-processing: Under the specific hypothesis formulated in the above

two steps, this step performs the adaptation of the classifier built primarily for IS to the properties of IT . Here a Maximum-

Likelihood (ML) classifier is used and further retrained by the iterative Expectation-Maximization (EM) algorithm. Any

other classifier working under the assumption that ΩS and ΩT might include different sets of classes can be adopted. A

set of reliable samples from each target domain cluster are also identified in this step. This step can also be considered as

the post-processing step which refines the land-cover map produced by the clustering technique.

The first two steps aims at deducing the hypothesis on the classes present in ΩT and their equivalence with the ones in ΩS .

The cumulative goal of these two steps is to check whether ΩS = ΩT or not. Accordingly the class statistical parameters for

IT are initialized and updated in the last step.

A. Definition of the an optimal number of clusters (M ) for the target domain

The goal of this step is to estimate the number (M) of land-covers present in IT by exploiting the information in the training

set of the source domain (TRS).

Given N source domain classes, the target domain data are clustered in the range [N − n,N + n] iteratively. n is usually a

small integer since it is unlikely that the selected source and target domains involved in the adaptation process are completely

different from each other. The final value of M is estimated by means of a cluster validity measure (F ) involving relative

entropy measure between the domains using KL divergence and the compactness of the newly generated target domain clusters.

Here Kernel k-means [19] [20] is used for the clustering purpose. Kernel k-means is preferred to other available methods

as it has demonstrated to be effective in handling non-linearly separable data. This is achieved by first projecting the data into

some unknown higher dimensional kernel induced feature space and performing linear class separation in the kernel space.

This allows us to deal with possible class overlapping in the feature space, where standard linear clustering techniques fail.

Some fuzzy clustering techniques [21] can also be used with proper parameters setting. However, if it is already known that the

samples from different classes are not heavily overlapped, less complex clustering algorithms may be used as well. Radial Basis

Function (RBF) kernel is used along with Kernel k-means. The kernel hyper-parameter (γ) is selected by grid search technique.

In the current scenario, let pS(XS |ωi) and pT (XT |αj) represent the discrete marginal distributions of the ith source domain

class and the jth target domain cluster, respectively. Both the distributions are usually approximated by histogram based

approaches [22]. Thus, F is defined for a given k ∈ [N − n,N + n] as:

F (k) =
1

1
kN
|
N∑
i=0

k∑
j=0

KL(pS(XS |ωi), pT (XT |αj))−
k∑
j=0

N∑
i=0

KL(pT (XT |αj), pS(XS |ωi))|+ 1

+Q(Ω̂Temp(k)) (1)

where KL(pS(XS |ωi), pT (XT |αj)) is the non-symmetric KL divergence of the discrete PDF’s pS(XS |ωi) from pT (XT |αj)
and Q(Ω̂Temp(k)) is a measure of the quality of the clustering results.

January 6, 2015 DRAFT



IEEE T. ON GEOSCIENCE AND REMOTE SENSING 6

Fig. 1: The flowchart of the proposed method

The KL divergence is computed as

KL(pS(XS |ωi), pT (XT |αj)) = Σ
xS∈XS ,xT∈XT

ln
pS(xS |ωi)
pT (xT |αj)

pS(xS |ωi) (2)

KL(pT (XT |αj), pS(XS |ωi)) represents the divergence of the discrete PDF pT (XT |αj) from pS(XS |ωi) and can be obtained

by reversing the roles of pT (XT |αj) and pS(XS |ωi) in (2). KL(pS(XS |ωi), pT (XT |αj)) is a measure of the amount of the

information loss when pT (XT |αj) is used to approximate pS(XS |ωi). Thus it is a measure of the differential entropy or

the information shared between pS(XS |ωi) and pT (XT |αj). KL(pS(XS |ωi), pT (XT |αj)) 6= KL(pT (XT |αj), pS(XS |ωi)) if

pS(XS |ωi) and pT (XT |αj) are not identical and in the optimal case, i.e., (pS(XS |ωi) = pT (XT |αj)),KL(pS(XS |ωi), pT (XT |αj)) =

KL(pT (XT |αj), pS(XS |ωi)) = 0. It signifies that a small KL divergence indicates better similarity between pS(XS |ωi)
and pT (XT |αj).

∑
i

∑
j KL(pS(XS |ωi), pT (XT |αj)) represents the sum of the KL-divergence from each of the source

domain classes to each of the target domain clusters.
∑
j

∑
iKL(pT (XT |αj), pS(XS |ωi)) represents the same but in the

reverse direction. This information theoretic aspect of KL divergence is the prime driving force behind selecting it over the

symmetric divergence measures. The asymmetric property of KL divergence allows us to evaluate the amount of information

that a source domain class shares with the target domain clusters and vice versa independently. Thus it also allows a way to

handle the cases of highly overlapping data where the clusters are detected only partially by the clustering algorithms. The

cluster validity measure F takes into account the contribution of both asymmetric divergences. In the ideal situation when
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the target domain clusters are highly similar to the source domain training classes,
∑
i

∑
j KL(pS(XS |ωi), pT (XT |αj)) −∑

j

∑
iKL(pT (XT |αj), pS(XS |ωi))→ 0. F is maximized when the target domain clustering result matches the best with the

structure of TRS . In that case the difference between the entropy of pT (XT |αj) from pS(XS |ωi) and vice-versa will attain the

minimum value indicating higher similarity between them. This is important as the aim here is to assess the similarity among

the classes and clusters in term of the information content shared between them.

The Q(Ω̂Temp(k)) term measures the quality of the clustering results in terms of the sum of inter-cluster variance and the

inverse of intra-cluster variance. Thus F is a trade-off between the degree of similarity between the domains and the goodness

of the target domain clustering. The optimal number of clusters M is obtained when the information shared between the source

domain classes and target domain clusters and the cluster compactness for the target domain clusters are maximized over k.

The output of this step are the M clusters Ω̂T = {α1, α2, . . . , αM} of IT . The cluster map obtained in this step gives a

rough estimate of the land-cover map of IT (See Algorithm 1).

Algorithm 1 Input: ΩS , TRS , IT , k ∈ [N − n,N + n]

Output: The optimal cluster assignments Ω̂T for the pixels of IT
1: for k = N − n to N + n do

2: Cluster the pixels of IT into k number of clusters using kernel k-means. Let ΩTemp(k) = {α1, α2, . . . , αk}

be the clusters obtained.

3: MeanS→T = the mean KL divergence from all the classes in TRS to the clusters in ΩTemp.

4: MeanT→S = the mean KL divergence from all the clusters in ΩTemp to the classes in TRS .

5: F (k) = 1
|MeanS→T−MeanT→S |+1 +Q(Ω̂Temp(k)) (Alternatively Equation 1)

6: end for

7: M = argmax
k∈[N−n,N+n]

F (k)

8: Ω̂T = ΩTemp(M) = {α1, α2, . . . , αM}

B. Cross domain cluster mapping

This is the most important step and the main contribution of the proposed DA technique where the unique one-to-one mapping

between all the matching source domain classes and the target domain clusters is performed and the new land-covers in the

target domain are identified. Four possible cases to model the changes between IS and IT are mentioned in Section II. In order

to handle a special situation of CASE D, where a set of k land-cover classes of IS are replaced by k new classes in IT , a

post-processing check is included in the cluster mapping algorithm to identify all the non-equivalent pairs of the source domain

classes and the target domain clusters.

A graph theoretic approach is proposed here for the cross domain cluster mapping purpose. A graph is a set composed

of nodes connected by edges. The edges are weighted and the weight of a given edge connecting two nodes is a measure of

similarity between the adjoining nodes. Graphs have been used extensively in the domain of transfer learning [23]. Cross domain

graphs are a special kind of undirected bipartite graph topology where the nodes are from different domains and edges only exist

between the nodes from one domain to the other. The edge weights in this case measure the degree of similarity between the

inter-domain nodes. The cross domain graph (G(V,E)) topology is used here to establish the correspondence between classes

and clusters of ΩS and Ω̂T respectively. {ωi}Ni=1 and {αj}Mj=1 represent the source and the target domain nodes of G i.e.

V = {{ωi}Ni=1 ∪ {αj}Mj=1}. There are (N ×M) edges present in G which connect all the ωi’s to the αj’s and vice versa.

Figure 2 depicts a cross-domain graph with 3 source domain classes, 4 target domain clusters and 12 edges.
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Fig. 2: An example of a cross-domain graph

In this respect, two kinds of (ωi, αj) pairs are defined:

• A (ωi, αj) pair is called a certain pair if αj is the unique best matched target domain cluster for ωi, i.e., there is an

injective mapping between ωi and αj . The first part of the cluster mapping algorithm identifies the presence of the these

pairs in G.

• A (ωi, αj) pair is called an uncertain pair if there is no injective correspondence between ωi and αj . A new round of

analysis is needed to handle the uncertain cases. It defines two intra-domain graphs first and then tries to find the maximum

common subgraph (MCS) of them. A subtractive iterative algorithm is followed to find the matching pairs from the MCS.

The edge weights (EW ) of G are defined using a symmetric divergence measure depending on the KL-divergence, i.e.

EW (αj , ωi) = EW (ωi, αj) =
√

(Min(KL(pT (XT |αj), pST (Xαj∪ωi)),KL(pS(XS |ωi), pST (Xαj∪ωi)))) where Xωi∪αj is

the observations related to the samples of ωi ∪ αj . |EW |2 is called the Jensen-Shannon (JS) divergence [24]. As the square

root of the JS divergence is a metric, it is selected for defining the statistical distance between a given ωi and a given αj . A

small EW (αj , ωi) indicates high similarity between ωi and αj . G is represented efficiently by a symmetric weighted adjacency

matrix AG. Each row of AG is considered as the array of edge weights from a given source domain class to each of the target

domain clusters. The columns of AG are the arrays of edge weights from a given target cluster to each source domain classes.

Two lists RankS and RankT are maintained in all the iterations of the cluster mapping algorithm. RankS is a N × 1 matrix

which defines the closest target domain nodes for each of the N source domain nodes based on the EW measures whereas

RankT is a M × 1 matrix which denotes the same as of RankS but from the target to the source domain.

All the corresponding pairs of source classes and target clusters are identified in two steps. The first step focuses on the

mapping of the certain pairs of classes. The second step analyzes the more uncertain correspondences and identifies new target

domain classes. A flowchart of the cluster mapping algorithm is depicted in Figure 3. These steps are detailed below.

The identification of the certain pairs of source domain classes and the target domain clusters from G requires to

calculate the unique one-to-one mapping between the source domain classes and the target domain clusters from G. Two functions

are defined to this end based on RankS and RankT :

∇S 7→T (ωi) = argmin
αj′∈{α1,α2,...αM}

EW (ωi, αj′) = αj (3)

∇T 7→S(αk) = argmin
ωl′∈{ω1,ω2,...ωN}

EW (ωl′ , αk) = ωl (4)
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Fig. 3: Flowchart of the cluster mapping algorithm

∇S 7→T is a mapping function from a source class to a target cluster and according to 3, α′j is the best matched target domain

cluster of the source domain class ωi. ∇T 7→S is a mapping function from a target cluster to a source class and according to 4,

the target domain cluster αk maps to ω′l.

If ∇S 7→T (ωi) = αj and ∇T 7→S(αj) = ωi and |∇S 7→T (ωi)| = |∇T 7→S(αj)| = 1 (where |.| denotes the cardinality of a set)
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then it is expected that ωi and αj represent the same class in both the domains. |∇S 7→T (ωi)| = 1 means that only one target

domain node has ωi as its best matched source domain counterpart. |∇T 7→S(αj)| = 1 signifies that only one source class is

the best unique match for the target cluster αj . If there exists a one-to-one mapping between a given pair of source and target

domain nodes and none of the remaining nodes has any of these two particular nodes as its best match, that source-target pair

of nodes are considered to represent the identical land-cover class on the ground. It is also possible to find no pairs in this step

in some cases if the classes undergo severe changes between the considered images. The set of all the certain pairs of (ωi, αj)

and the JS divergence between the corresponding ωi and αj of such pairs are stored to check further for the non-equivalence

of a given pair.

The source and the target domain nodes (classes/clusters) which are left unused after this step are considered to be the

uncertain cases. Let RS and RT represent the set of all such classes and clusters of both the domains separately. The next part

of the proposed cluster mapping algorithm investigates the possible correspondences of these nodes. The new target domain

specific nodes (CASE B,D, Section II) are also identified in that step.

The Identification of the uncertain pairs of source domain classes and the target domain clusters from G is based

on an iterative subgraph matching algorithm. It aims at uniquely mapping the uncertain nodes reported by step 1 of the cluster

mapping algorithm. It first builds two complete graphs one for each domain excluding the already correctly detected classes and

the clusters. The MCS of these two graphs defines the possible set of the common source domain classes and the target domain

clusters. If some source domain nodes (classes) remain unused in the MCS, they are considered to be disappeared in IT (CASE

C, Section II). If it is the case with the target domain subgraph, they represent the new classes appeared in IT (CASE B).

Two individual intra-domain complete graphs GS(VS , ES) and GT (VT , ET ) are built using the remaining classes and the

clusters in RS and RT , independently. The square root of the JS distance between a pair of classes (clusters) is used to define

the edge weights in both the graphs. The MCS are found from GS and GT according to the following analysis. If |VS | <= |VT |
then the MCS’s contain |VS | nodes else they contain |VT | nodes as both the GS and GT are complete graphs. Several subgraphs

of GS and GT can be isomorphic to each other. The particular pair of the subgraphs of GS and GT for which the sum of

• The absolute difference between the cumulative edge weights of the subgraphs and

• The sum of the absolute difference between the corresponding maximum Eigenvalues of the graph adjacency matrix of

both the subgraphs along with the mean edge weight (or the representative maximum Eigenvalue) of the cross-domain

graph considering the nodes of the MCS, [25]

is minimized, is processed further. Since these subgraphs of GS and GT exhibit highest similarity in term of the graph edge

properties, they are considered to contain the identical set of underlying nodes (classes/clusters). A proper matching strategy is

needed to map the equivalent nodes from both the subgraphs. The remaining source domain or the target domain nodes, which

are not part of the MCS, represent CASE B-C. RS and RT are updated further only with the nodes in the MCS.

A cross domain graph (GST ) is built again considering the nodes in the updated RS and RT and using the same topology

as of G, i.e., only cross domain nodes are connected by edges. The edge weights are defined using the square root of the JS

divergence measure as also used in G, GT and GS and are stored in the weighted adjacency matrix AST .

An iterative algorithm is proposed to obtain all the unique one-to-one mappings of the cross domain nodes from (GST ). It

is considered that, at any iteration of the method, the specific source and the target domain nodes associated with the minimum

JS distance from AST are identified to be matching. Once such a pair is found, the related row and column are deleted from

the AST along with their entries in RS and RT . The successive iterations of the algorithm follows the same set of steps until

RS and RT become empty (see Algorithm 2).

Once all the cross domain node pairs (classes and clusters) are obtained, CASE D (Section II) is analyzed. An analysis is

carried out to verify if a given source domain class and a target domain cluster form a pair yet they are not highlighting the

same land-cover class. If they are not equivalent, their JS distance is much higher than that of the actual equivalent set of pairs.

Those nodes are also not referenced together frequently in RankS and RankT as their closest neighbors from opposite domains
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Algorithm 2 Input: RS , RT and AST , the weighted adjacency matrix of the cross domain graph built with the

nodes from RS and RT

Output: The unique one-to-one mapping between the nodes in RS , RT

1: while RS 6= ∅ or RT 6= ∅ do

2: The minimum value of AST is identified. Let i and j represent the related row and column indices.

3: RS(i) and RT (j) are declared to be a matching pair and the corresponding entries are removed from both

the sets along with their entries in AST .

4: A new round of the processing takes place with the updated RS , RT and AST .

5: end while

6: All the matching pairs and the corresponding JS divergence between the members of each pair obtained in this

step are stored for future references.

tend to change at every iteration of the cluster mapping algorithm. These two properties are combined to check whether a pair

is non-equivalent, i.e., though the corresponding nodes have been mapped by the proposed cluster mapping algorithm, they

represent two different land-cover classes (see Algorithm 3).

According to Algorithm 3, it is checked for each class and cluster, which is a part of the set of matching pairs produced by the

cross domain cluster mapping algorithm, whether the aforementioned conditions are satisfied. If the conditions are satisfied for

a class (cluster), the corresponding pair of the source domain class and the target domain cluster is declared to be non-matching.

The set of common land-cover classes which have undergone minimum or no changes between the acquisitions tend to have

small JS divergence measures between them. It is comparatively easy to obtain a one-to-one mapping for these class-cluster pairs

in the first stage of the proposed cluster mapping strategy. However, if some different classes get shifted largely and overlap

with them, then correct mapping for the stable classes would be difficult to obtain in the first stage. This is due to the possible

presence of many-to-many correspondences between the classes and clusters in term of the smallest divergence measure. In order

to resolve this issue, the second stage of the cluster mapping method breaks the many-to-many correspondences by mapping

the class-cluster pair which is closest and subsequently removing both of them from the lists. In this way it is ensured that,

at each iteration of cluster mapping, the source domain class and the target domain cluster which have maximum similarity in

the spectral domain till that moment are mapped together. A false matching can occur for a given class (cluster) if some other

classes (clusters) entirely overlap with the considered class (cluster) making it impossible to distinguish them in the spectral

domain. This issue can be resolved by selecting multiple robust pixel level features along with the spectral properties of the

same to ensure that different classes do not overlap entirely in the feature space. However, inconsistent matching can only take

place during the latter iterations of the cluster mapping algorithm which is detected by the post-processing stage whereas during

the initial iterations, only very similar classes and clusters are mapped.

After this step, all the target domain clusters for which there are equivalent source domain classes are declared.

C. Cluster refinement to obtain the final target domain land-cover classification

This step consists of updating the target domain classification result by exploring data from both the domains. The main goals

of this steps are:

• Define a set of training samples per cluster of IT . For all the matching pairs, an algorithm is proposed to highlight a

set of target specific training samples from the information of both the domains. For the new target domain classes, the

corresponding cluster information is used.
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Algorithm 3 Input: Set of all the matching pairs produced by the cluster mapping stage, the JS divergence of the

candidates of each pair and the lists of all the RankS and RankT

Output: The inconsistent pairs which do not point to the same underlying land-cover classes

1: For each pair of (ωi, αj) produced by the cluster mapping algorithm, the following conditions are checked.

2: Condition 1: JS(ωi, αj) >= υ ×m {m is the minimum JS divergence of the pairs produced by the cluster

mapping algorithm. υ is an user-defined constant value used to establish how much the distance between classes

can be larger than m prior to concluding that the considered pair is a non-matching one. It is dependent on

m and is directly proportional to the absolute difference between the average divergence of all the pairs found

and m.}

3: If k denotes the number of times (ωi, αj) pair has appeared in RankS and RankT during the cluster mapping

process, another condition is checked.

4: Condition 2: k ≤ C where C is the total number of matching pairs produced by the cluster mapping algorithm.

5: If Condition (1) and (2) are satisfied simultaneously, (ωi, αj) is declared to be a inconsistent pair and hence,

removed.

• The adaptation of source domain properties to IT ones is achieved in this step through the iterative EM algorithm.

• The final land-cover map of IT is generated by a ML classifier with the updated parameter set.

Algorithm 4 describes the steps for defining the set of training samples for all the target domain clusters for which matching

source domain classes are present. Considering the fact that, the data of some of the classes may be overlapped, the proposed

training samples selection algorithm over-clusters both the ωi and αj of a given matching pair of (ωi, αj). The particular sub-

cluster of αj which is closest to ωi in term of the JS divergence is merged with ωi and this updated set of samples αTr
j is used

as the training data for the class represented by αj . For the remaining new target domain clusters, for which the actual class

labels are unknown, the entire cluster information is used to define the training set considering random labels for the underlying

unknown land-covers.

Here classification is conducted in the context of Bayes decision theory by maximizing the posterior probability of a sample

xTl for a class αk [26] according to:

xTl ∈ αk ⇔ argmax
αj∈IT

{PT (αj)pT (xTl|αj)} (5)

where PT (αj) is an estimate of the prior probability of the class αj in the target domain image. pT (xTl|αj) is the conditional

probability estimated for pT (XT |αj) for the feature vector xTl given αj in IT . XT is the random variable associate with IT . It

is worth noting that the subscript T has been used here to stress the dependencies of both the statistical terms on the considered

target image IT . According to (5), the training phase of the ML classifier requires the estimation of the prior probability PT (αj)

and the conditional probability pT (XT |αj) for each class αj ∈ IT . Such estimates can be obtained by exploiting the information

in αTr. It is usually assumed in the remote sensing community that natural classes present in the images acquired by passive

sensors are Gaussian distributed [6], i.e., the conditional probability term in (5) can be modeled as a Gaussian function. Under

such an assumption, the marginal probability pT (XT ) of the pixel values in IT can be approximated by a mixture of Gaussians.

Hence, the solution of the ML classifier relies on the estimations of the set of parameters θTj = {µTj ,ΣTj , PT (αj)} where

µTj and ΣTj define the mean vector and the covariance matrix for class αj and PT (αj) is the prior probability of class αi

calculated as the relative frequency. Despite in this work classes are assumed to be Gaussian distributed, the same logic can be
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applied for any other model.

Considering the initial class statistical parameter estimates obtained from the newly defined training set (including information

from both source and target domain) and under the assumption of the Gaussian distributed classes, the iterative EM equations

to be applied for adaptation of the statistical parameters. The true statistical terms θTj = {µTj ,ΣTj , PT (αj)} associated with

each cluster αj of IT are computed as follows

P k+1
T (αj) =

1

|IT |
∑

xTl∈XT

P kT (αj)pT (xTl|αj)
P kT (xTl)

(6)

µk+1
Tj =

∑
xTl∈XT

Pk
T (αj)pT (xTl|αj)

Pk
T
(xTl)

xTl∑
xTl∈XT

Pk
T
(αj)pT (xTl|αj)

Pk
T
(xTl)

(7)

Σk+1
Tj =

∑
xTl∈XT

Pk
T (αj)pT (xTl|αj)

Pk
T
(xTl)

(xTl − µk+1
Tj )2∑

xTl∈XT

Pk
T
(αj)pT (xTl|αj)

Pk
T
(xTl)

(8)

The superscripts k and k + 1 refer to the values of the parameters at two consecutive iterations respectively. The iterative

process terminates when a local maximum of the negative log-likelihood function L(θT ) is achieved.

Algorithm 4 Input: The set of matching pairs, IS , IT

Output: A set of reliable training samples for each classes in IT
1: for Each pair of matching (ωi, αj) do

2: Vector quantize (Cluster) the points in ωi and αj into same number of clusters l using any clustering algorithm.

3: ωi = {ωi1, ωi2, . . . , ωil}.

4: αj = {αi1, αi2, . . . , αjl}.

5: Mat is a l × l matrix which stores the pairwise JS divergence of all the clusters of ωi and αj . {ω’s are in

rows and α’s are in columns}

6: Obtain the indices of the minimum value of Mat, (Min(Mat)), i.e. (k,m), which corresponds to the cluster

pair of ωi and αj which are closest to each other in term of the JS distance measure.

7: The training set for the jth target domain class is defined as αTr
j = (ωi ∪ αjm).

8: end for

For each of the four cases mentioned in Section II, an adequate initialization of the retraining process should be defined.

• CASE A: ΩS = Ω̂T : In this case, no change other than only a spatial shift of the classes has been detected in both the

domains. In this situation, the initialization of the statistical terms are based on the training set obtained by Algorithm 4.

Let θNewT denotes the initial estimates of the class statistical parameters obtained from the newly defined training set for

the common classes of ΩS and Ω̂T . The iterative EM retraining is followed hence after.

• CASE B: Ω̂T = ΩS ∪ {αu}: This is the case where new classes have been detected in IT . For all the classes common

to IS and IT , the same initialization approach as in CASE A can be adopted whereas this is not possible for classes in

{αu}. The statistical terms for those classes are calculated from the corresponding clusters obtained in IT . The initial set

of class statistical parameters to be used in the iterative adaptation process is defined as

θ0T = θNew
T ∪ {µ0

u,Σ
0
u, P

0
T (αu)} (9)
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The prior probabilities are scaled based on the newly defined training set for IT .

• CASE C: Ω̂T = ΩS\{ωu}: This is the case where some classes are disappeared between between IS and IT . For all the

classes common to IS and IT , the same initialization approach as in CASE A is followed. As the classes in {ωu} are no

longer present in IT , the statistical terms related to those classes are not needed for the updating process. Therefore θ0T ,

in this case is defined as

θ0T = θNew
T \{µ0

u,Σ
0
u, P

0
T (ωu)} (10)

• CASE D: Ω̂T = ΩS ∪{αk}\{ωu}: This case is a combination of CASE B and C. Accordingly, θ0T , in this case is defined

as

θ0T = θNew
T ∪ {µ0

k,Σ
0
k, P

0
T (αk)}\{µ0

u,Σ
0
u, P

0
T (ωu)} (11)

From these initial estimates, the iterative EM algorithm provides an estimate of the true class statistical parameters in IT . The

Baysian classifier in (5) is used to generate the final land-cover map of IT . Any other classifier working under the assumption

that ΩS and ΩT might include different sets of classes can be adopted.

IV. EXPERIMENTAL RESULTS

A. Design of the experiments

In order to assess the performance of the proposed DA algorithm, different experiments on two multi-spectral and one

hyper-spectral datasets were conducted. Experiments have been designed at three different levels of the proposed framework as

follows:

• The target domain data are required to be clustered optimally in order to create provision for perfect cross-domain cluster

mapping. In order to validate the outcome of the initial clustering stage (Section III A), the well-known Silhouette cluster

validity [27] measure has been used. It ranges in [−1,+1] and a large value of this index indicates a stable clustering

result. We opted for this particular index measure as it has been reported to provide a better measure on the quality of

clustering than other validity indices [28].

The kernel parameter γ has been selected for k = N − n by grid search strategy. For the given k, different values of

γ have been considered in the range (0, 1] with a step of 5 × 10−4. The particular clustering result which maximizes

the Silhouette index has been declared to be the optimal clustering result with k clusters. Furthermore, M is selected to

be the k which produces clusters with maximum Silhouette measure within [N − n,N + n]. The γ value obtained for

k = N −n has been used for the remaining cases. n = dN
2
e has been considered for all the datasets. It has been observed

that kernel k-means along with the γ found in this way has produced good clustering results for all the cases. However,

as previously mentioned, different ranges of the same are equally plausible. The kernel k-means algorithm has been used

using the median centroids.

• The cross-domain cluster mapping step outputs pairs of the similar classes shared by both the domains. The proposed

cluster mapping technique has been compared with a recent cross-domain cluster mapping strategy used for DA [29]. The

cluster mapping is achieved in [29] by means of a transformation matrix based on the Geometric Means of the Co-Variances

(GMCV), estimated from the covariance matrices of the data from both the domains. It further assumes that the domains

share the same set of classes. Hence, the comparison performed in this case has been based on checking how well the

proposed method captures the correspondences between the common set of classes shared by the domains without any

assumption.

• Two different strategies have been followed to evaluate the performance of the proposed EM+ML based classifier system

in producing reliable land-cover map the target domain data.
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1) For the common set of classes, the class-by-class classification accuracies of the proposed algorithm in producing

the land-cover map for the target domain image have been compared with three well-studied techniques from the

literature, e.g. the clustering result of kernel k-means, an ML classifier trained solely on the source domain data and

a EM+ML technique with class statistical parameters initialized from the available source domain training samples

[6]. In the latter two cases, the trained classifier is used in the target domain for testing. It is worth noting that, the

proposed framework automatically selects a set of reliable target domain samples per cluster to be used in the EM

based retraining step along with the available labeled source domain samples from the similar class. However, this

analysis is not possible for the additional target domain classes.

2) The overall classification accuracy of the proposed technique has been compared with the one of a supervised ML

classifier trained using the reliable target domain specific training samples and Kernel k-means.

To carry out the experiments, it has been assumed that for each of the image pairs only training set associated with the

image considered as the source were available, whereas, the reference ground data associated with the image considered as

the target were used only to evaluate the performance of the proposed technique. It is to be noted that, the proposed method

considers single image in both the domains. If multiple images are to be used for the domains, it must be assured that classes are

well-distributed among the images to prevent redundancy in data. Furthermore, for multi-temporal images, the spatial correlation

between the images is of no use for the proposed technique considering that the algorithm works only with spectral features. 5

independent realizations of all the experiments have been conducted and the average results are reported here.

Parameter υ (Algorithm 3) is user specified. For all the data-sets the best value for υ has been found to lie between 2 and 4.

B. Medium resolution Sardinia dataset

The first study area consists of two co-registered multi-spectral images acquired by the Thematic Mapper (TM) sensor of the

Landsat-5 satellite. The images consist of 6 bands (1-5 and 7) and band 6 is neglected due to its lower geometrical resolution.

The selected test site is a section of 412 × 493 pixels of a scene including the area surrounding the Lake Mulargia on the

Island of Sardinia (Italy). The images were acquired in September 1995 (Y ) and July 1996 (Z), respectively. Figure 4(a-b)

depicts band 4 of both the images. The images share 5 land-cover classes, i.e. Pasture, Forest, Water, Vineyard and Urban. The

September 1995 image contains an additional simulated land-cover class named Burned area. Figure 4(c) shows the band 4 of

September, 1995 image with the Burned area class (Y ′). Table II lists the class-wise distributions of training and test samples

of all the images used for experimental purposes. All the images have been used alternatively as source and target domain.

Figure 5 and 6 depict the scatter plot of the test sets of (Z) and (Y ′) of band 2 and 5 respectively. It can be observed from

the scatter plots that Pasture and the Vineyard classes have highly similar spectral signatures, i.e. these two classes are highly

overlapped. The JS divergence measures between the training samples of Z and Y indicate that Pasture (1.32) and Water (1.70)

have undergone significant shift while remaining classes are stable in terms of the statistical properties.

TABLE II: Cardinality (|.|) of training (Tr) and test (Ts) sets per class available for Sardinia dataset

Z (July ’96) Y ′ (September ’95) Y (September ’95)

Land Cover |Tr| |Ts| |Tr| |Ts| |Tr| |Ts|

Pasture 554 589 554 170 554 170

Forest 304 274 128 159 304 274

Urban 408 418 408 418 408 418

Water 1120 551 804 551 804 551

Vineyard 179 117 179 117 179 117

Burned Area - - 176 115 - -
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(a) (b) (c)

Fig. 4: The band 4 of the (a) July 96 image (Z) (b) September 95 image (Y ) (c) The simulated September 95

image with Burned area (Y ′)

Fig. 5: The scatter plots of the bands 2 and 5 of the July 96 image (Z)

9 experimental cases have been considered for the Sardinia dataset with Z and Y or Y ′ representing the source or target

domain alternatively. In the current setup, the experimental case Sardinia Z5Y 5− 1 indicates that the Z and Y are the source

and target domain images and they contain 5 classes each with one common class shared between them.

1) Sardinia 1 Z3Y 4 − 1: Z and Y have considered to be the source and the target domain images respectively. Pasture,

Vineyard and Water classes have been considered for Z while Water, Forest, Burned area, Urban have been selected for

Y .

2) Sardinia 2 Z5Y 5− 5: Z and Y have been considered to be the source and the target domain images respectively. The

same set of 5 classes have been considered for the images. ΩS = ΩT .

3) Sardinia 3 Z5Y ′6 − 5: We have considered Z and Y ′ to be the source and the target domain images in this case. Y ′

contains an additional class of Burned area other then the 5 common classes . ΩT = ΩS ∪ {Burned− area}.
4) Sardinia 4 Z5Y ′5−4: Z and Y ′ have been considered to be the source and the target domain images. In Y ′, the Burned

area class has been added while the Vineyard class has not been considered. Hence, though same number of land-cover

classes are present in both the domains, but one of the pairs is non-equivalent. ΩT = ΩS∪{Burned− area}\{Vineyard}.
5) Sardinia 5 Z4Y ′6 − 4: Z and Y ′ have been used as the source and the target domain images. 4 classes have been

considered in Z excluding the Urban class. In Y ′, 6 classes have been considered. In addition to the 4 classes of Z,

Burned area and Urban have been included in Y ′, i.e., ΩT = ΩS ∪ {Burned− area,Urban}.
6) Sardinia 6 Y 3Z3− 1: Y and Z have been selected to be the source and the target domain images respectively. Pasture,
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Fig. 6: The scatter plots of the bands 2 and 5 of the simulated September 95 image with Burned area (Y ′)

Vineyard and Water classes have been considered for Y while selecting Water, Forest and Urban for Z.

7) Sardinia 7 Y 5Z5 − 5: We have used Y and Z as the source and the target domain images respectively. The same set

of 5 classes have been considered for both the images. ΩS = ΩT .

8) Sardinia 8 Y ′6Z5− 5: Y ′ and Z have been considered to be the source and the target domain images respectively. Y ′

contains an additional class of Burned area other then the 5 common classes . i.e., ΩT = ΩS\{Burned− area}. This is

the same as Experiment 2 but inverting the roles of the source and the target domains.

9) Sardinia 9 Y ′6Z4 − 4: Y ′ and Z are used in the source and the target domains. 4 classes have been considered in Z

excluding the Urban class. In Y ′, 6 classes have been considered, in addition to the 4 classes of Z, Burned area and

Urban have been included in Y ′, i.e., ΩT = ΩS\{Burned− area,Urban}.

Sardinia 1-5 consider Z and Y (Y ′) as the source and the target domain images respectively whereas their roles are reverted

in Experiment 6-9. Experiment 1 and 6 consider the case where only one common class exists in both the domains. Similarly,

Experiment 2 and 7 consider the cases where both the domains contain the same set of classes. The remaining experiments

consider different combinations of classes in both the domains.

The initial clustering step of the proposed method correctly found out the optimal target domain clustering in all the cases.

The result has also been validated by the maximization of the Silhouette index for the number of clusters M found corresponding

to the minimum values of F (Equation 1) in all the cases. A typical γ value obtained for Sardinia 1 was 0.00075 which has

further been used for all the remaining experimental cases. υ has been set to an average value of 3.75 to compensate for the

high variability of the divergence measures for all the matching pairs of the source domain classes and target domain clusters

found in the cross-domain cluster mapping stage for all the experiments conducted.

In the cross domain cluster mapping stage, the Water and Forest classes are easy to map as one-to-one mapping exist in both

the cases with respect to the JS divergence. Unique injective mappings are difficult to obtain for the Pasture, Vineyard and the

Urban classes due to high overlapping. The inter-domain cluster mapping strategy of [29] fails to obtain the correct mappings for

the common set of classes particularly for experiments concerning the aforementioned three classes even if a sample point per

class is shared between the domains for those classes. In [29], data from both the domains are aligned in the same dimensions

using a rotation matrix involving their covariance matrices. This causes data from the overlapping classes difficult to distinguish

from each other.

Table III and IV show the comparisons of classification accuracy of the proposed method for the experimental cases mentioned

above for the common set of classes and the entire target domain respectively. The Water class is well-separated from the

remaining land-cover classes but it has undergone substantial spectral shift from one domain to the other. Kernel k-means is
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able to detect the Water class properly (100%). For the ML classifier trained on the source domain samples, the Water class is

heavily misclassified due to the shift in the spectral domain between the acquisition of the respective images. It is reflected in

the classification accuracy of the Water class in Sardinia 1 and 6 (36.56% and 41.39%). The application of the EM algorithm

enhances the classification accuracy of the Water class successfully to 100% for the EM+ML classifier. It is observed from

Table III that kernel k-means clustering is affected by the problem due to data overlapping to some extent (73.98% to 90.11%

for Sardinia 2-5 and 7-9). The ML classifier trained on the source domain performs poorly in all the Experimental cases with a

best performance of 67.06% for Sardinia 7-8 in classifying the common set of land-cover classes shared between the domains.

A sharp enhancement in term of the classification accuracy is observed when EM retraining is used along with ML classifier

(79.52% to 97.89% excluding Sardinia 1 and 6 where only Water class is highlighted). The ML+EM classifier is able to adopt

to the target domain better with the proposed mixed set of training samples and shows superior performance than the ML+EM

classifier initialized on the source domain training data with an enhancement of 1.5 − 6% in generalization accuracy for the

common set of classes. The overall generalization performance of the proposed classifier (84.14% to 99.19%) is far better than

the Kernel k-means based classification results (73.98% to 98.47%) and is very close to the results of a supervised ML classifier

trained on the reliable target domain training samples (92.66% to 99.43%).

TABLE III: Average overall classification accuracies (in %) computed on the target domain for the common set of

classes over 5 iterations, Sardinia experiments 1-9

Experiment Kernel k-means ML trained on source domain EM+ML classifier of [6] Proposed method

Sardinia 1 Z3Y 4− 1 100.00 36.56 100.00 100.00

Sardinia 2 Z5Y 5− 5 83.39 55.47 86.71 94.34

Sardinia 3 Z5Y ′6− 5 83.49 55.47 86.71 94.34

Sardinia 4 Z5Y ′5− 4 90.11 60.09 92.06 98.22

Sardinia 5 Z4Y ′6− 4 89.95 54.76 97.89 98.49

Sardinia 6 Y 3Z3− 1 100.00 41.39 100.00 100.00

Sardinia 7 Y 5Z5− 5 73.98 67.06 79.52 84.14

Sardinia 8 Y ′6Z5− 5 73.98 67.06 79.52 84.14

Sardinia 9 Y ′6Z4− 4 75.63 64.01 90.65 91.70

TABLE IV: Average overall classification accuracies (in %) computed on all the target domain classes over 5

iterations, Sardinia experiments 1-9

Experiment Kernel k-means Proposed method Supervised ML trained on target domain

Sardinia 1 Z3Y 4− 1 98.06 99.19 99.43

Sardinia 2 Z5Y 5− 5 83.39 94.34 94.41

Sardinia 3 Z5Y ′6− 5 84.24 92.94 94.77

Sardinia 4 Z5Y ′5− 4 91.86 98.51 98.58

Sardinia 5 Z4Y ′6− 4 84.24 93.65 94.77

Sardinia 6 Y 3Z3− 1 98.47 98.71 99.03

Sardinia 7 Y 5Z5− 5 73.98 84.14 92.66

Sardinia 8 Y ′6Z5− 5 73.98 84.14 92.66

Sardinia 9 Y ′6Z4− 4 75.63 91.70 94.05

In order to exhibit the working of the proposed cross-domain cluster mapping algorithm, a special case of the Sardinia data
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has been considered. In the source domain, Pasture, Forest, Urban and Water (Source class 1-4) classes have been selected

whereas Pasture, Forest, Burned area and Water (Target class 1-4) have been used in the target domain. Table V shows the

adjacency matrix of the cross-domain graph built using these classes of both the domains.

TABLE V: Adjacency matrix of the cross domain graph

Target Class 1 Target Class 2 Target Class 3 Target Class 4

Source Class 1 1.48 1.51 2.57 4.24

Source Class 2 2.01 0.72 2.49 4.19

Source Class 3 1.86 1.79 3.09 4.49

Source Class 4 4.24 3.86 4.35 1.50

The cluster mapping for the certain cases has indicated unique one-to-one mappings for (Source Class 1, Target Class 1) and

(Source Class 4, Target Class 4) pairs. The remaining source and target domain classes (Source Class 2, Source Class 3, Target

Class 2, Target Class 3) have been processed further in the second stage of the cluster mapping algorithm as unique one-to-one

mappings have not been found for them. Two complete graphs have been constructed in both the domains using the remaining

classes independently and the MCS of both the domains have two nodes each. The analysis of the uncertain cases has indicated

two more pairs (Source Class 2, Target Class 2) and (Source Class 3, Target Class 3). The JS divergence between the Class 2

of both the domains is 0.72 which is also the minimum JS divergence between all the pairs. On the other hand, the distance is

3.09 between Class 3 of both the domains which is greater than 3.75× 0.72 (Algorithm 3). It indicates that Class 3 of both the

domains are not pointing towards the same land-cover class and these classes reside far apart in the spectral domain. Hence,

(Source Class 3, Target Class 3) is not a matching pair according to the post-processing step.

C. Very High Resolution QuickBird dataset

The second data set is made up of two co-registered and pan-sharpened multi-spectral Very High geometrical Resolution

(VHR) images acquired by the QuickBird satellite. All the 4 spectral bands of QuickBird have considered in the experiments.

The selected test site is a section of 992 × 992 pixels of a scene including an area on the southern part of the city of Trento

(Italy). The two images were acquired in October 2005 (Y ) and July 2006 (Z), respectively. The available prior information

about the considered area have been used to build a training set and a test set for each image. Four main land-cover classes

common to both the dates were identified, i.e. Water, Red-roof, Asphalt and Field. For the image acquired in July 2006 one

additional class has been detected, i.e., plastic-mulched fields. The Band 1 of both the images are shown in Figure 7. Table

VI lists the class-wise number of training and test samples for both the images used for the experiments along with the JS

divergences between the pairs of common training classes. It is evident from the class-wise JS divergences of the training

samples of both the images that all the classes have undergone significant spectral shift thus making the cross-domain cluster

mapping process more complex. Considering the seasonal change that has been reflected in the classwise divergence measures

for both the images, the minimum divergence (m) is comparatively higher while the absolute difference between the average

and the minimum divergence of the matching pairs is lesser in comparison to the Sardinia dataset. Accordingly, υ has been set

to an average value of 2.

The classes have undergone considerable shift between acquisitions. However, the classes are well-separated in the feature

space, thus making it possible to properly detect them. Two experimental cases have been considered here as follows with the

same naming convention as of the experimental cases of the Sardinia dataset being followed here.

1) VHR 1 Y 4Z3−3: Y and Z have been considered to be the source and the target domain images respectively. Y contains

an additional class of Field in addition to the 3 land-cover classes common to them, i.e. Water-body, Red-roof and Asphalt.

ΩS = |ΩT | ∪ {Field}.
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(a) (b)

Fig. 7: The band 4 of the (a) July 2006 image (Z) (b) October 2005 image (Y )

TABLE VI: Cardinality (|.|) of training (Tr) and test (Ts) sets per class available for QuickBird dataset

Oct. 2005’ image (Y ) July 2006’ image (Z)

Land Cover |Tr| |Ts| |Tr| |Ts| JS divergence between training samples

Water 1099 1104 1099 1104 4.07

Red-roof 449 469 449 469 2.62

Asphalt 673 474 673 474 1.87

Field 647 534 647 534 2.14

2) VHR 2 Z4Y 3 − 3: Z and Y are selected as the source and the target domain images in this case. Z contains an

additional class of Field. The remaining three land-cover classes, i.e., Water-body, Red-roof and Asphalt are present in

both the images, i.e. ΩS = |ΩT | ∪ {Field}.

The clustering step has easily been performed in this case as the clusters are well-defined as well as well-separated from one

another. This notion has also helped in performing injective mapping between the common set of classes and clusters without

much confusion.

Table VII and VIII report the classification accuracies of the proposed method for the common set of classes and the overall

generalization accuracies for the different experimental cases respectively. All the classes are almost properly detected by all

the techniques (classification accuracy ≥ 99%) except the ML classifier trained on the source domain samples (49% to 50%).

The Water-body class has undergone extensive shift in the spectral domain and it is entirely undetected in the target domain

image. The application of the EM algorithm is also unable to alleviate the situation. The abrupt spectral shift is responsible for

the misclassification caused by the ML classifier on the target domain data with the training set defined on the source domain.

The proposed algorithm tackles such situation by incorporating the target domain samples in the classification process.

TABLE VII: Average overall classification accuracies (in %) computed on the common set of target domain classes

over 5 iterations, QuickBird experiments 1-2

Experiment Kernel k-means ML trained on source domain EM+ML classifier of [6] Proposed method

VHR 1 Y 4Z3− 3 99.90 49.41 49.41 100.00

VHR 2 Z4Y 3− 3 100.00 50.02 50.02 100.00
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TABLE VIII: Average overall classification accuracies (in %) computed on all the target domain classes over 5

iterations, QuickBird experiments 1-2

Experiment Kernel k-means Proposed method Supervised ML trained on target domain

VHR 1 Y 4Z3− 3 99.90 100.00 100.00

VHR 2 Z4Y 3− 3 100.00 100.00 100.00

D. Hyper-spectral dataset

The third study area considered is represented by a pair of hyper-spectral images that is used as a benchmark in the remote-

sensing literature and consists of data acquired by the Hyperion sensor of the EO-1 satellite over a 1476 × 256 pixel study

area located in the Okavango Delta, Botswana on May 31, 2001. The considered image has a spatial resolution of 30m thus

it covers a large strip of 7.7 × 44.3km2 with 145 out of 242 original spectral bands. The bands affected by noise and the

water absorption bands are neglected. A detailed description of the dataset can be obtained in [30]. 14 land-cover classes are

identified for two different spatially disjoint areas, denoted by Y and Z respectively. Many of the classes from the identified

set of 14 have highly similar spectral signatures which even a kernel based clustering technique fails to distinguish. The goal

of the proposed framework is not to optimize the clustering step, but to demonstrate the effectiveness of the cross-domain

cluster matching technique and the further post-processing for land-cover map refinement. Thus a subset of 9 classes have been

considered such that the clustering works at least to a certain extent. These 9 classes have initially been divided between the

domains with each domain containing 5 classes, with one common class shared between the domains. However most of the

classes considered are shifted substantially in the feature space and are largely overlapped with each other. The distributions of

the training and test samples extracted from both the images are mentioned in Table IX. From the set of 145 spectral bands, 10

bands that maximizes the discrimination capability among the classes have been selected according to the method proposed in

[31]. This step ensures the removal of the redundant and non-discriminant bands and maintains the recommended ratio between

the number of feature dimensions and the available number of samples. The JS divergence for the common pair of classes of the

training set of both the areas are also reported in Table IX. It is clear from the divergence measures that the classes Floodplain

grass-1, Island interior, Acacia grasslands and Exposed soil are associated with a significant shift (JS divergence of 1.59, 1.60

and 1.52 and 1.60 respectively), while the remaining classes are more stable.

TABLE IX: Cardinality (|.|) of training (Tr) and test (Ts) sets per class available for Hyper-spectral dataset

Area 1 (Y ) Area 2 (Z)

Land Cover |Tr| |Ts| |Tr| |Ts| JS div. for training data

Water 69 57 213 57 0.68

Floodplain grass-1 83 75 199 52 1.59

Reeds1 80 88 219 50 0.78

Firescar2 93 83 215 44 1.23

Island interior 77 77 166 37 1.60

Acacia woodland 84 67 253 61 1.07

Acacia grasslands 184 174 243 62 1.52

Mixed mopane 68 85 154 27 1.30

Exposed soil 41 48 81 14 1.60

Two distinct sets of experiments totaling 12 have been performed for the hyper-spectral dataset considering Y and Z
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alternatively the as source and target domains. Initially, 5 land-cover classes have been selected for each domain with one

common class shared between them, i.e., Water, Floodplain grass-1, Reeds1, Firescar2 and Island interior classes have been

selected to represent Y while Water, Acacia woodland, Acacia grassland, Mixed mopane and Exposed soil have been picked to

characterize Z. In the first set of experiments, Y and Z have been considered to be the source and the target domain respectively

(Hyper 1−6). Their roles have been reverted for the remaining set of experiments (Hyper 7−12). Hyper 1 and Hyper 7 denote

the cases where only one land-cover class is shared between Y and Z. Subsequently, similar source domain classes have been

added to the target domain iteratively with the addition of a random class to the target domain in each iteration (Hyper 2− 5

and Hyper 8− 11). In addition, a special experimental case has been considered where both the domain share a common set of

9 aforementioned land-cover classes (Hyper 7 and 12).

For Hyper 1, the target domain data has been found to be clustered into 5 classes while maximizing F (Equation 1) for

γ = 0.0000085. The clustering result has further been validated by calculating the Silhouette index for each clustering result in

the given range. The index measure is maximum (0.87) for the optimal case, i.e. when the target domain data has been clustered

into 5 groups. The same value of γ has been used for the remaining experiments (Hyper 2-12).

The proposed cross-domain cluster mapping step has been performed henceforth. υ has been set to a mean value of 3.75

similar to the Sardinia dataset. Only a valid one-to-one mapping has been obtained for the Water class which has also been

represented by the pair with smallest JS divergence (0.76) between all the corresponding source domain classes and the target

domain clusters. For the remaining set of pairs, high JS divergence between the corresponding members (> 2.80) has confirmed

the absence of any further matching pairs. For Hyper 1, [29] has performed correct cluster mapping for the Water class as

indicated by the small JS divergence (0.73) between the members of the corresponding class-cluster pair. It is to be noted that,

the parallel clustering technique of [29] produces a minor degraded result compared to kernel k-mean used in the proposed setup

as indicated by the JS divergence measures in both the cases.

Hyper 2-5 have been carried out in similar fashion. The target domain clustering result has been validated in the same way

of Hyper 1 using the Silhouette index measure. The cluster mapping step, in each of the cases was able to produce the correct

number of matching pairs. It is interesting to see that, [29] was unable to produce well-defined clusters when new classes

were added to the target domain with high degree over-lapping with the existing classes. In particular, [29] failed to detect the

Floodplain grass-1, Island interior and Firescar2 properly given that these classes are very much overlapping in the spectral

domain. However, the rest of the classes are not affected by such amount of severe cluster overlapping and were detected with

high confidence. Likewise, for Hyper 7-12, the proposed technique have successfully performed optimal target domain clustering

followed the cross-domain cluster mapping without any false matching.

Once the common set of classes and clusters are identified, the final target domain land-cover classification is performed

using the proposed EM+ML based classification method. The proposed classification method uses a mixture of training samples

selected from both the domains, thus, allowing the classifier to be adopted to the target domain data significantly with more

direct target domain oriented training samples. Table X and XI mention the overall classification accuracy of the proposed

classification system for the common set of land-cover classes shared by both the domains and the Overall target domain

classification performance as given by the proposed EM+ML classifier scheme for Hyper 1-6.

Kernel k-means has been able to detect all the clusters in each of the experiments (Hyper 1-12). However, the generalization

performance of kernel k-means is not so impressive in distinguishing the overlapping data points (overall accuracy ranges

between 67.43% to 93.82% according to Table XI). ML classifier trained on the training samples of Y consistently exhibits

poor generalization accuracy (72.11% to 60.85% for Experiment 12-16) for classifying the common set of classes which is quite

expected given that the statistical properties of the classes of Y and Z differ substantially. Application of the EM algorithm

enhances the performance of the ML classifier by 1-15% for Hyper 4-6. However, For Hyper 2 and 3, EM algorithm degrades

the performance of the ML classifier by 0.08% to .51%. One possible reason for such reduction in performance may be that

EM gets stuck in some local optima in the feature space and thus is unable to enhance the classifier performance substantially.
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For Hyper 5 and 6, the target domain contains 9 land-cover classes. In Hyper 5, the source domain contains 5 classes whereas

it contains 9 classes in Hyper 6. The performance of kernel k-means is almost identical in both the cases (72.45% and (72.62%)

in classifying the common set of classes which signifies that kernel k-means detects the 4 target domain classes of Hyper 6

with high accuracy. However, the proposed classifier shows extremely impressive performance in both the cases (97.34% and

98.41%) in classifying the common set of classes present in the target domain which is superior than the other classifiers

considered for comparative study.

It can be observed from Table XI that the performance of the proposed classifier (97.53% to 99.22%) is very close to the

performance of an ML classifier trained solely based on the reliable training samples from Z (99.25% to 100%) for classifying

the entire target domain image.

The performances of the classifier for Hyper 7-12 are depicted in Table XII and XIII respectively. Similar trends of Hyper 1-6

are also followed here. The proposed classifier system (91.53% to 94.90% for Hyper 9-12) outperforms the ML classifier trained

on the the training samples of Z (75.28% to 86.01%) and the ML classifier with EM based re-training (76.66% to 84.17%) for

the common set of land-cover classes. The overall target domain generalization performance of the proposed classifier system

(87.71% to 93.94%) is consistent and is comparable to the performance of a supervised ML classifier training in Y (96.39%

to 100%).

TABLE X: Average overall classification accuracies (in %) computed on the common set of target domain classes

over 5 iterations, Hyper-spectral experiments 1-6

Experiment Kernel k-means ML trained on the source domain EM+ML classifier of [Bruzzone et. al.] Proposed method

Hyper 1 Y 5Z5− 1 100.00 100.00 100.00 100.00

Hyper 2 Y 5Z6− 2 95.80 72.11 70.19 100.00

Hyper 3 Y 5Z7− 3 88.52 75.81 75.30 96.56

Hyper 4 Y 5Z8− 4 76.37 80.80 81.80 96.67

Hyper 5 Y 5Z9− 5 72.45 73.83 76.25 97.34

Hyper 6 Y 9Z9− 9 72.62 60.85 75.33 98.41

TABLE XI: Average overall classification accuracies (in %) computed on all the target domain classes over 5

iterations, Hyper-spectral experiments 1-6

Experiment Kernel k-means Proposed method Supervised ML of target domain

Hyper 1 Y 5Z5− 1 93.82 99.22 100.00

Hyper 2 Y 5Z6− 2 91.63 99.03 100.00

Hyper 3 Y 5Z7− 3 87.53 97.50 99.44

Hyper 4 Y 5Z8− 4 81.72 97.53 99.25

Hyper 5 Y 5Z9− 5 72.62 97.96 99.32

Hyper 6 Y 9Z9− 9 72.62 98.41 99.32

V. CONCLUSION

A novel unsupervised domain adaptation technique for the land-cover map updating of remote sensing image pairs has been

proposed here. The proposed technique first clusters the target domain image optimally by exploiting the available source

domain training data. A graph theoretic technique has been proposed next which can efficiently identify all the target domain
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TABLE XII: Average overall classification accuracies (in %) computed on the common set of target domain classes

over 5 iterations, Hyper-spectral experiments 7-12

Experiment Kernel k-means ML with source domain based training EM+ML classifier of [6] Proposed method

Hyper 7 Z5Y 5− 1 98.24 100.00 100.00 100.00

Hyper 8 Z5Y 6− 2 93.14 100.00 100.00 100.00

Hyper 9 Z5Y 7− 3 91.75 86.01 84.17 94.90

Hyper 10 Z5Y 8− 4 85.86 78.85 79.30 88.54

Hyper 11 Z5Y 9− 5 87.24 82.85 83.44 92.98

Hyper 12 Z9Y 9− 9 74.40 75.28 76.66 91.53

TABLE XIII: Average overall classification accuracies (in %) computed on all the target domain classes over 5

iterations, Hyper-spectral experiments 7-12

Experiment Kernel k-means Proposed method Supervised ML of target domain

Hyper 7 Z5Y 5− 1 86.05 93.94 100.00

Hyper 8 Z5Y 6− 2 81.43 93.73 98.21

Hyper 9 Z5Y 7− 3 77.29 90.01 98.06

Hyper 10 Z5Y 8− 4 73.83 87.71 96.39

Hyper 11 Z5Y 9− 5 74.40 90.58 96.48

Hyper 12 Z9Y 9− 9 74.40 91.53 96.48

clusters having correspondences to the identical source domain classes. The proposed cluster mapping method is non parametric

and demonstrated to be effective in highlighting new classes appeared in the target domain image as well as the disappeared

classes from the source domain. The proposed method is robust as it does not have assumptions regarding the number and the

properties of the target domain land-cover classes. A post processing method to refine further the classification map produced

by the clustering algorithm based on the ML classifier and the EM retraining has been followed henceforth. The classifier has

been selected since a DA paradigm has been developed for it able to handle the situation in which target and source domain

do not share all the classes. However any other classifier designed to deal with such a situation can be used. Experimental

results demonstrate the robustness of the proposed framework in addition/deletion of maximum of two classes. The algorithm

demonstrated to be scalable, i.e., able to handle more complex situations involving simultaneous addition/deletion of classes.

Despite testing has been carried out on multi-temporal data, the method can be applied without any restriction to any domain

adaptation problem. The current mode of research is to explore the possibility of over-clustering as a measure which can further

simplify the proposed framework. The properties of some gradient based non-parametric kernel clustering techniques like Mean-

Shift (MS) are being studied now for the same. Furthermore, it is expected that, inclusion of some other pixel level features like

texture, contextual information etc. in addition to the spectral values may enhance the performance of each step of the proposed

framework considerably.
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