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Member, IEEE, Yosio E. Shimabukuro 

 

Abstract – In this paper we present a novel domain adaptation technique aimed at providing reliable 

change detection maps for series of image pairs acquired on the same area at different times. The 

proposed technique exploits the polar change vector analysis method and assumes that reference data 

for characterizing a specific change of interest are available only for a pair of images (source domain). 

Then it exploits the knowledge learned from the source domain and adapts it to other pairs of images 

belonging to the time series (target domains) to be analyzed. The proposed technique is able to handle 

possible radiometric differences among images adapting in an unsupervised way the decision rule 

estimated on the source domain to the target domains through variables estimated directly on the 

target images. The proposed approach has been applied to two data sets made up of time series of 

Landsat Thematic Mapper images. In one case the change of interest is related to evolution of 

deforestation, while in the other case it is related to burned areas detection. Experimental results show 

the effectiveness of the proposed technique. 

 

Index Terms – Recurrent change, domain adaptation, change detection, time series, deforestation, forest 

fires. 

 

I. INTRODUCTION 

The availability of image time series (sequence of images taken from the same area at different 

times) has driven the interest of the scientific community toward the development of effective 

methods for the automatic extraction of information from this kind of data. Image time series are 

especially valuable for detecting changes and/or sequentially updating land-cover maps [1-4]. This 
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kind of information is highly important to improve environmental monitoring and support decision 

makers. In this context, an interesting application is the one related to the identification of changes 

which tend to occur systematically on the ground. These kinds of changes are due to recurrent 

phenomena like deforestation, fires, floods, etc. that periodically affect the Earth. 

These applications are nowadays mainly faced by using standard change detection methods 

[5],[6]. Traditional approaches implicitly treat every new image pair in the time series as a new 

change-detection problem. However, when dealing with recurrent changes, the target change is the 

same for each pair of images and thus it is expected to show similar behaviors, although not 

identical, to those observed in previously analyzed image pairs. In other words, recurrent changes 

generate similar, yet slightly different, effects in different couples of images within the time series. 

Possible differences may arise from noisy components such as radiometric differences due to 

seasonal effects or atmospheric conditions, sub-optimal co-registration, etc. [7],[8]. 

In this context, the decision rule defined to detect a specific kind of change in a given pair of 

images cannot be used on other image pairs in the time series as it is. However, it is reasonable to 

take advantage of similarities and adapt the decision rule in an effective way to determine the 

parameters for each new pair of images. The concept of adaptation in remote sensing image analysis 

has been already investigated in the remote sensing literature for classification problems. As an 

example, transfer learning techniques have been recently proposed aimed to perform domain 

adaptation between domains in supervised classification problems [9]-[13]. These techniques are 

often understood as semi-supervised learning methods that exploits the information on a given 

image (source domain) to obtain effective results on another image as they are able to use only 

spatially or temporally limited information (target domains) [13]. To best reach this goal, it is often 

assumed that the target land cover classes are the same in the source and target domains, and that 

classes follow similar statistical distribution even if characterized by different parameter values 

[7],[14]. Despite domain adaptation techniques can be found in the literature for the classification of 
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multitemporal images [14],[15], only few methods [8],[16] can be found assuming that changes 

might have occurred between acquisitions. However, none of them deals with adaptation in the 

context of change detection. 

An extensive survey of change detection methods in remote sensing images is out the scope of 

this paper. The reader is referred to [17]-[24] for further literature analysis. Here we focus our 

attention on the use of optical images acquired by passive sensors and one of the most common 

unsupervised change detection approaches for such images: the polar Change Vector Analysis 

(CVA) [25]. CVA computes Spectral Change Vectors (SCVs) by subtracting two multitemporal 

multispectral images pixel by pixel and performs the analysis of SCVs for change information 

extraction. SCVs can be expressed in hyperspherical coordinates according to their magnitude and a 

set of direction variables [26]. However, often for the sake of simplicity and visualization purposes, 

CVA is performed in a 2-dimensional space by considering only 2 spectral channels (or relevant 

features). Accordingly, only the magnitude and one direction variable are used for modeling change 

information. The magnitude contains information about the presence/absence of changes [1], [26], 

whereas direction variable(s) carries information about the kind of change [27]. Each kind of 

change is expected to show a preferred direction which is usually different from those of the others 

[28]. The preferred direction is determined by the spectral properties of each specific kind of 

change.  

In this paper, we propose to take advantage of the properties of changes in the SCV feature space 

in order to properly characterize recurrent changes in multiple pairs of multitemporal images based 

on the expectation that recurrent changes show similar preferred direction(s) independently on the 

considered image pair. To this end, we propose an adaptive semi-supervised approach to the 

detection of single recurrent changes in image time series. The proposed approach takes advantage 

of the repetitive nature of recurrent changes to adapt the change detection decision rule computed 

for a given pair of multitemporal images (source domain) to a new multitemporal pair of images 
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(target domain) expected to show the same kind of change, i.e., to show a similar scenario. The 

method is based on three concepts: (i) a 3-dimensional (3D) representation of SCVs; (ii) the 

definition of a decision rule that optimizes the detection of the change of interest in the source 

domain; and (iii) the adaptation of the above-mentioned decision rule to the target domain for the 

automatic detection of the recurrent kind of change in new upcoming image pairs. 

The rest of the paper is organized into five sections. The next section formulates the problem and 

gives an overview of the proposed method. Section III introduces the approach to model the change 

information in a 3D spherical coordinate system. The representation is valid for both source and 

target domains. Section IV presents the proposed adaptation technique for detection of recurrent 

changes in image time series. Section V illustrates the experimental results obtained on a time series 

of TM-Landsat image acquired over an area in Brazil where deforestation and forest fires are 

recurrently destroying vegetation. Finally, Section VI draws the conclusion of this work. 

 

II. BACKGROUND AND PROBLEM FORMULATION 

Let us consider a time series TS = {X1, X2, …, XQ} made up of Q co-registered and 

radiometrically corrected multitemporal images acquired over the same geographical area at times 

1, …, Q, respectively. Each Xq (q = 1, …, Q) can be represented by the image spectral channels 

and/or any possible kind of feature derived from them. Let N be the total number of elements 

composing each of the considered images. An element here may be either a single pixel or an object 

derived according to a segmentation process [29]. Let Ω={ωnc, ωrc, ωic} be the set of classes to be 

detected, where ωnc is the class of non-changed elements, ωrc is the change class relevant for the 

considered application, and ωic is the class grouping all other possible kinds of change (i.e., the ones 

irrelevant to the considered application). In our formulation, ωic shows a small occurrence with 

respect to the recurrent relevant kind of change. Let us assume, without any loss of general validity, 

that a reliable ground truth (GT) is available and models the recurrent change of relevance (rc) 
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occurred on the ground between the source domain multitemporal pair X1 and X2. GT can be entire 

or partially available for the area covered by the images, provided that it properly models the 

change of relevance. If no GT is available, it is reasonable to expect that the user can easily define a 

reliable ground truth map for at least one pair of images to be used for initializing the adaptation 

process. Each image pair in TS with available multitemporal ground truth information can be used 

as source domain pair without any loss of validity. All other image pairs different from the source 

domain are the target domain image pairs. 

The proposed method first computes the multidimensional difference image XD for the source 

domain according to (1): 

2 1.D  X X X  (1) 

XD and the available ground truth information are used to derive in a supervised way a decision 

region (R) for the recurrent change of interest ωrc in the source domain. Once the decision region R 

for ωrc is known in the source domain, the detection of ωrc in the target domain (i.e., in each 

possible pair of images in TS) requires the adaptation of R to the properties of the target image pair. 

To this end, a multispectral difference image t
DX  is computed for the target pair and a new decision 

region Rt is estimated by adapting R to t
DX  for each considered target domain data set. Fig. 1 shows 

the block scheme of the proposed approach. In Fig 1, *
pE  is an optimal set of elementary regions 

which supports the definition of R. 

Fig. 1. Block diagram of the proposed approach. 
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III. 3-DIMENSIONAL REPRESENTATION OF CHANGE INFORMATION 

In this section we first extend the 2D Change Vector Analysis given in [27] to the use in a 3D 

feature space and illustrate how the properties of spectral change vectors XD(n) (n=1,…, N) are 

employed to define the decision region R that properly models the relevant recurrent change rc in 

the source domain. Let us consider 3 features (i.e., M = 3), being either the original spectral 

channels or features extracted from them (e.g., vegetation indices or texture features). Under this 

assumption, each element in XD can be represented in spherical coordinates according to its 

magnitude (), azimuth angle (θ) and elevation angle (φ). The relationship between Cartesian 

coordinates represented by the XD features and spherical coordinates is given by: 

2 2 2
,1 ,2 ,3

,2

,1

,3

arctan

arccos

D D D

D

D

D

X X X

X

X

X









   
       
  
       

 (2) 

where XD,1, XD,2 and XD,3 represent the Cartesian coordinates of spectral change vectors in XD, while 

ρ ϵ [0, +∞[ is the magnitude, θ ϵ [0, 2 π[ is azimuth angle, and φ ϵ [0, π[ is the elevation angle. Fig. 

2 depicts the relation between the two coordinate systems for a generic SCV. 

 

Fig. 2. Spatial correspondence between Cartesian and spherical coordinates systems. 
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In spherical coordinates, the domain of existence of all SCVs in XD (Figure 3a) is defined as: 

 max, , : 0 , 0 2 , 0 ,S               
 (3) 

where ρmax is the largest magnitude value among the elements in XD 

 2 2 2
max ,1 ,2 ,3

1,...,
max ( ) ( ) ( ) .D D D

n N
X n X n X n


  

 (4) 

As known from the literature [25],[27] the value of the magnitude  of SCV carries information 

about the presence/absence of changes, whereas the direction variables carry information about the 

kind of change.  

According to this observation, and following [26], sub-regions of relevance are identified in S 

(Figure 3a). A first sub-region Snc is associated to unchanged elements. These elements are expected 

to assume small magnitude values along directions [27]. This is considered to be independent of the 

dimensionality of the spherical space, given that images are radiometrically corrected. Therefore 

they are expected to cluster within a sphere concentric to S. The Snc sphere is defined as 

 , , : 0 , 0 2 , 0 ,nc TS                 (5) 

where ρT is a threshold separating the unchanged (near the origin) from the changed elements (far 

from the origin) along the magnitude variable. Snc is depicted as the small gray sphere in Figure 3b. 

The region Sc complementary to Snc with respect to S is defined as  

 

 

Sc is characterized by high magnitude values and includes elements of all kinds of change. Inside 

this volume, changed elements cluster along a specific direction (θk, φk) depending on the kind of 

change (Figure 3c). The regions in Sc including each kind of change can be represented by a solid 

angle which is geometrically modeled as a truncated cone R with square basis. The cone has the 

vertex in the origin of S and two spherical bases. The major base lays on the external surface of S 

and the minor one on the external surface of Snc. Geometrically speaking, the cone is a 3- 

 

 max, , : , 0 2 , 0 .c TS                  (6) 
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Fig.3. Regions of interest for the CVA technique in spherical coordinates: (a) domain S of existence of all SCVs 
in XD, (b) sphere Snc of no-changed elements, (c) spherical shell Sc including changed elements, and (d) solid 
truncated cone Rk associated to a generic change k. 

 

dimensional shape which tapers smoothly from a flat base (usually, but not necessarily, circular) to 

a point called vertex [30]. The rationale for choosing this solid lays on the ability to properly model 

the slight variations in θ and φ along different magnitude values ρ. The region Rk associated to a 

generic change k (either relevant or irrelevant) is defined as 

 

whe

(a) (b) 

(c) (d) 

 
1 2 1 2max, , : , ,k T k k k kR                    (7) 
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re 
1 2 1 2
, , ,k k k k     identify the upper and lower bound along elevation and azimuth variables, 

respectively. For each Rk, the ranges along the magnitude Δρk = ρmax – ρT, the azimuth Δθk = 

2 1k k  , and the elevation Δφk = 
2 1k k   is defined as depicted in Figure 3d. 

The illustrated framework is general and can be used to detect multiple kinds of change in the 3D 

feature space, i.e. to solve change detection problems showing an arbitrary number K of changes. 

However, in this work we consider that only one single change is mostly affecting the area of 

interest; this is the relevant recurrent change ωrc.  Therefore, in the following we consider only one 

truncated cone needs to be identified in the source domain R and adapted to obtain the truncated 

cone Rt in the target domain(s) by an unsupervised technique. Accordingly, in the following the 

subscript k is omitted to simplify the notation and ease readability. Thus, R represents the decision 

region associated to the recurrent change rc and is fully described by its upper and lower bounds 

along the magnitude, azimuth and elevation: ρmax, ρT, 2 , 1 , 2  and 1 , respectively. The specific 

direction along which changed elements cluster becomes (θR, φR).  

 

IV. MODELLING OF THE RECURRENT CHANGE IN THE SOURCE DOMAIN 

In this section, the procedure for selecting the optimal decision region R for the detection of the 

recurrent changes of relevance in the source domain is presented. 

As mentioned above, changed patterns show statistical behavior significantly different from the 

unchanged ones and they cluster along a specific direction (θR, φR). Therefore, it is expected that 

data maximum variance occurs along the direction (θR, φR) after filtering unchanged elements. 

Accordingly, it is reasonable to expect that the directions of the first and second eigenvectors 

derived from Principal Component Analysis (PCA) applied to XD (in the Cartesian feature space) 

are naturally associated with the dispersion of the recurrent change rc. In this work we apply the 

methodology in [1] to obtain, in an unsupervised way, the threshold value ρT (i.e., the radius of 



 

 

10 

sphere Snc), that separates changed from unchanged elements (Fig. 3b). Following [1], the 

Expectation Maximization (EM) algorithm can be used to estimate statistical parameters (i.e., mean 

and variance) of change and unchanged patterns along  variable. As done in [1] the statistical 

distribution of both classes is modeled as Gaussian. Once the parameters are set (here EM algorithm 

is used for parameter estimation, initialized by taking advantage of the ground truth information), a 

Bayesian decision rule is applied to identify unchanged elements and remove them from the 

analysis. Therefore, only elements within Sc. (i.e., the ones with high magnitude value) remain. The 

new dataset without unchanged elements is named here as XDf and includes by definition all the 

elements such that XD(n) ϵ Sc. Given the expected similarity between source and target domains, the 

initial EM values for the target domain are extended to the source domain. In order to identify the 

region R associated with ωrc the proposed method quantizes Sc in a set of elementary volumes Vp 

(p=1, …, NV) with pre-defined 3D size ΔθV, ΔφV and ΔρV. For a specific change detection problem, 

the total number of elementary volumes (NV) necessary to cover Sc depends on the pre-defined size 

of Vp, as well as on the values of ρT and ρmax. The number NV is computed as 

2
max2 ( )

.T
V

V V V

N
  
  




  
 (8) 

It is worth noting that the size of Vp must be chosen in order to result in an integer number NV. Each 

elementary volume Vp is a subset of Sc, and Sc can be expressed as the union of all Vp as 

1

.
VN

c p
p

S V


  (9) 

In order to properly characterize the relevant recurrent change ωrc in the source domain taking 

advantage of the 3-dimensional CVA framework, Vp should be identified that contains a high 

number of ωrc elements. To this end, we use the available GT information by selecting only Vp 

having correct detections larger than false alarms by applying the following rule: 
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 
( )

0.5 1, , 1,..., ,
( ) { }

D p rc

V

D p rc nc

X V
p N n N

X V



 


  

 
   (10) 

where |.| returns the cardinality of the corresponding set. 0.5 ensures an acceptable trade-off 

between the selection of volumes Vp properly capturing the specific characteristics of ωrc. The goal 

is to exclude regions containing few correct detections and the avoid a too restrictive 

characterization resulting in poor performance of the next adaptation to the target domain(s) step. In 

addition, this threshold allows one to take into account possible outliers in the reference map. The 

threshold value 0.5 can be changed according to the user needs. The selected set of volumes *
pV  

might not be spatially adjacent in Sc, but they are expected to distribute along a preferred direction. 

A qualitative representation of the set of volumes *
pV  and their relation to R is depicted in Fig. 4. 

The subset of the elements of XDf included in the identified *
pV  is defined as 

* *

1

( ).
VN

D Df p
p

V


X X  (11) 

The elements in *
DX  are used to define the position of the region R describing the behaviors of ωrc. 

 

Fig. 4. Representation of Vp volumes (dark gray shaded volumes) and their relation to R (light gray shaded 
volume). 
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The procedure for defining R exploits the dispersion of *
DX  to approximate the size and direction 

of R in a vector basis and does not make any assumption on their statistical model. It only considers 

that the elements of rc are clustered along a preferred direction. Therefore PCA is applied only to 

*
DX . According to PC properties, the 1st eigenvector of * *

1( )DX   is associated with the main direction 

of rc (i.e., the direction of the maximum dispersion). Thus, *
1  approximates the direction of axis 

of the cone R and is expressed in azimuth and elevation coordinates as: 

 
1

1

*
1,2

*
1,1

*
1,3

arctan

arccos

R

R

 

 

  
      

   





,
 (12) 

where 
1

 , 
1

  are the spherical coordinates of the first eigenvector, υ1,1, υ1,2 and υ1,3 are the three 

components of the 1st eigenvector computed with *
DX  in the Cartesian feature space. 

Since PC’s are orthogonal to each other, the second and third PC’s are used to quantify the 2-

dimensional dispersion of *
DX  around the axis of R (Fig. 4a) orthogonal to the maximum dispersion 

one. In other words, the angular dimension of R defined by φR and θR is modeled based on the 2nd 

and 3rd eigenvalues *
2  and *

3  of *
DX . The two R small edges are estimated with respect of these 

last eigenvalues as *
2  and *

3  (Fig. 5). For convenience, R edges were approximate as linear in their 

angles computation. According to the scheme of Fig. 5b and 5c, the aperture angles φR and θR are 

written by means of ρT, *
2 , *

3  and basic trigonometric relations: 

*
2

*
3

2 arctan
2

2 arctan
2

R
T

R
T







  
    
  


       

,
 (13) 

Accordingly the complete 3D boundaries of R are defined as: 
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1 2

1 2

1 2 max

2 2

and ,
2 2

R R
R R

R R
R R

T
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    

   

      
 

      
 

  
  

 (14) 

The labeling of elements XD, resulting in the change detection map M of the recurrent change, is 

obtained by applying the following decision rule: 

 
( )

( ) 1, .c D

ci c

r

n

if X n R
n n N

otherwise


   

M

 

 (15) 

 

 

(b) 

(a) (c) 
Fig. 5. Scheme related to the estimation of the decision region R in the PC feature space computed for X*

D(n): (a) 
spatial representation of the decision region R, (b) diagram for estimation of φR from *

2 , and (c) diagram for 

estimation of θR from *
3 . 

 

Despite R is a decision region that detects the recurrent change of relevance with a given margin 

in the source domain, when applied to the target domain it is expected to result in poor 

performance. As mentioned in Sec. I, this is due to the fact that a recurrent change may show small 

differences in the statistical behavior (and thus direction and dispersion in Sc) because of several 

factors not strictly related to the kind of change itself and despite radiometric corrections have been 

applied. Therefore, depending on the domain-to-domain variations of the change of interest, the size 

and direction of R may need to be adapted. The next step of the proposed methodology aims to 
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drive the adaptation of the previously defined region R, which was defined by using GT, to a new 

realization of the same kind of change when no reference data are available for the considered pair 

of images (target domain). 

 

V. ADAPTATION OF THE CHANGE DETECTION DECISION RULE TO THE TARGET DOMAIN 

The adaptation strategy involves the adjustment of R parameters θR, φR, ρT, ΔρR, ΔθR, ΔφR to the 

properties of ωrc in the target domain. Let t
DX  be the difference image computed by applying (1) in 

the target domain, and let t
cS  be the region associated to changed elements in the target domain. t

cS  

computed in an unsupervised way by following the same procedure described for the source 

domain. t
cS  satisfies the definition (6) in the target domain. The updating of R, which results in Rt, 

starts by defining the main direction of Rt. This parameter is computed as the direction of the 1st 

eigenvector 1
t  associated to the elements t

DfX  ( t
DfX  corresponds to t

DX  without unchanged 

elements). It is important to note that, as no GT is available to target domains, the main direction of 

Rt is computed on t
DfX , instead of *t

DX . This is reasonable since we are working with only one 

relevant change occurred and t
cS  mostly contains this relevant change. Therefore, it is expected that 

the ratio between the second and third eigenvalues for elements in Sc and *
pV , respectively, 

computed in the source domains is preserved for the same quantities in the target domain(s). This 

observation is used to estimate the real dispersion presented by the elements of recurrent change in 

the target domain, updating the size of R. Thus, the coefficients of adaptation is obtained by 

following ratios: 

**
32

2 3
2 3

, ,
f f

r r


 
   (16) 

where r2 and r3 refer to the proportionality between the second and third dispersions of patterns in 

XDf and *
DX  for the source domain, *

2  and 
*
3  are eigenvalues for *

DX  and  2
f  and 3

f  are 



 

 

15 

eigenvalues for XDf. A point to be highlighted is the independency of the eigenvalues from the 

number of patterns. This ensures that, even though the amount of patterns associated with the 

considered specific change increases or decreases in the target domain the coefficients of adaptation 

can still be effectively applied. By now, we empirically assume that the adaptation coefficients r2 

and r3 being stable over a given time-series. 

At this point we can estimate eigenvalues related to the patterns standing for the change of 

relevance in the target domain *
2

t  and *
3

t , which are the edges of the cone Rt adapted to the target 

domain(s) by using coefficients r2 and r3, and eigenvalues 2
t  and 3

t  computed on t
cS : 

*
2 2 2

*
3 3 3

.
t t

t t

r

r

 

 

  


 
 (17) 

Equation (17) exploits knowledge about the specific change of relevance in the source domain 

through coefficients r2 and r3. These estimations are based on the established relationship between 

the whole spread of the data after removing the unchanged patterns and the one related only to the 

patterns of the specific change made in Equation (15). The aperture angles tR
 , tR

  as well as, 

the spatial limits of Rt is computed in a similar manner to that used to define R with the equations 

(13) and (14). The decision region Rt for the change of interest is finally defined as 

 max 1 2 1 2R , , : , , ,t t t t t t t
T                   (18) 

and the generalized decision rule resulting in the change detection map Mt of the recurrent change 

in the target domain becomes: 

 ( )
( ) 1, .

t t
t rc D

ic nc

if X n R
n n N

otherwise


 
 

  


M  (19) 

The steps performed to define Rt as defined in (19) need to be recomputed for every new pair of 

images representing the target domain. 
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VI. EXPERIMENTS AND RESULTS 

A. Data Set Description and Design of Experiments 

The proposed methodology has been tested on two multitemporal data sets made up of time 

series acquired by the Thematic Mapper (TM) multispectral sensor onboard of Landsat-5 satellite. 

The first data set refers to a 1500×1500 pixels subset showing many deforestation activities in 

Brazilian Amazon. This is the main kind of change observed at regular intervals of time on the 

study area and occurs as small fragments of deforestation. The official methodology adopted to 

detect deforestation in the Brazilian Amazon region at spatial resolution of 30m is PRODES. 

PRODES is mainly based on photointerpretation carried out by experts [35]. The reason for using 

this approach is the difficulty to find a single method effective for every scenario. Other systems 

such as DETER and FORMA are also used for mapping deforestation, but they do not represent a 

meaningful comparison since they provide results at a lower spatial resolution (250 m and 1000 m, 

respectively). The time series used in this experiment is made up of five co-registered multispectral 

images acquired each September (dry season) from 2006 to 2011. A false color composition of the 

images is shown in Fig. 6. As PRODES is based on an object oriented visual interpretation, in order 

to maintain the same referential of analysis, we segmented the images and used the regions as 

elements. Segmentation obtained on the second image (target domain) in the multitemporal pair is 

applied to the first image (source domain) as well. The resulting elements are used to compute 

attributes for both images, avoiding misalignment among objects. The three attributes selected for 

the Amazon data set were: i) TM channel 5 (0.85-0.88μm), ii) NDVI computed from TM channels 

3 (0.53-0.59μm) and 4 (0.64-0.67μm), and iii) the entropy of the first PC derived from channels 3, 4 

and 5, which models the texture. These attributes were defined taking into account the properties of 

change of interest: deforestation. The first image pair (2007-2008) was used as the source domain 

and the remaining ones (2008-2009, 2009-2010, 2010-2011) as target domains. To avoid double 

detection, in each pair, the previously detected deforestation were masked, and removed from the 
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subsequent pair analysis (i.e., there cannot be again deforestation on the same area over a short 

period). In this data set, instrumental and atmospheric variations, and short scale wheatear 

conditions just before image acquisitions (which may strongly affect vegetation) cause radiometric 

differences among the images. 

 
September/2007 September/2008 September/2009 

September/2010 September/2011 
Fig. 6. False color composition of images in the multitemporal TM-Landsat-5 image time series (2007-2011) used 
for the Amazon data set [5(R), 4(G), 3(B)]. Magenta color highlights bare soil areas and areas associated to 
deforestation processes. 
 

The second data set refers to a 500×500 pixels area of the Brazilian Pantanal marked by several 

recursive fires. The data set is made up by three co-registered images acquired in May 2006, July 

2006 and July 2007. Among the acquisitions, no additional land-cover classes were observed, but 

burned areas. False color composites of the images are shown in Fig. 7. For the Pantanal data set we 

used the channels 3, 4 and 5 as input features. SWIR Landsat channel 5 is known to be efficient for 

burned areas detection. As for the first data set, we considered the two first images as source 

domain, whereas the second and third images were considered as target domain. Unlike the forested 

Amazon environment, the vegetation present at Pantanal is shallow and sparse, and thus is affected 

by strong variations. Natural vegetation variations occur on the ground in addition to the application 
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relevant change which is associated to effects of forest fires, thus the experiment becomes highly 

challenging. 

 
May/2006 July/2006 July/2007 

Fig. 7. False color composition Multitemporal TM-Landsat-5 image time series used in the Pantanal data set 
[5(R), 4(G), 3(B)]. Dark brown highlights bare soil area due to fire events. 
 

For both data sets, radiometric normalization was performed by atmospheric correction of the 

individual images in the time series. In addition, by considering that the amount of changes is 

smaller than the amount of unchanged elements, a further normalization was made by subtracting 

from the t1 images the mean value computed for its corresponding difference image. Thus the mean 

value for each feature of the difference image resulted to be zero. GT was built for each subsequent 

pair of images. The one of the source domain is required for applying the proposed method. The 

ones for target domains are used only for accuracy assessment and are not involved in the 

adaptation process which is performed in a semi-supervised fashion. The Rt estimated for the target 

domains by automatic domain adaptation were compared with the best possible Rt computed in a 

supervised way according to available GT. For the first data set only, the results were compared to 

PRODES data concerning the same area and acquisition date. In the following subsections, we 

present the experimental details and the results obtained on the considered data sets. 

B. Results for Deforestation in Amazon Rainforest 

After segmentation and attribute extraction on single date images, feature extraction in the 

source domain is carried out at region level. Fig. 8a depicts the scatterplot in spherical coordinates 
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of the attributes of the source domain multitemporal difference image XD. According to the 

proposed approach the threshold ρT is computed in the source domain which is equal to 8.3. The 

suppression of elements with magnitude lower than ρT was performed resulting in XDf (see Fig. 8b). 

The resulting Sc was subdivided into Ep. In the following, results are reported by using Δθ=Δφ=5o, 

Δρ=5. However, results demonstrated to be stable with Δθ and Δφ in ]0,5], which is a reasonable 

wide range if considering the spread of rc along θ and φ, respectively. The algorithm is less 

sensitive to the value of Δρ. It is worth noting that the selection of small values may result in a 

significant increase of the computational time. The steps leading to the definition of elementary 

volumes Ep having correct detections larger than false alarm rate (Fig. 8c) were computed. The 

selection of elements inside the set of elementary volumes *
pV  was derived according to (11), 

resulting in the elements *
DX  depicted in Fig. 8d. The next step involves the definition of R for the 

source domain by applying PCA to XDf and *
DX . Fig. 8b and 8d show the directions of the three PCs 

computed for XDf and *
DX , which have a large similarity in terms of directions of the PCs. This fact 

corroborates our assumption on the correlation between XDf and *
DX  dispersion. The direction of the 

first eigenvector of XDf is the estimated main direction of R. The size ΔφR and ΔθR of R is predicted 

by applying (13) and (14). We finally have the conditions to define the generalized decision rule for 

the source domain, which is based on the size and direction of R. 

The next step is the adaptation of R to the target domain(s). First unchanged patterns are 

identified and removed by estimating t
T  on t according to [1]. Resulting scatterplots of t

DfX  for 

each target domain are shown in Fig. 9. Adaptation parameters r2 and r3 are computed with support 

of reference data in the source domain through (16) and the size and direction of Rt is defined for 

each target domain. In Table 1 the magnitude thresholds t
T  as well as the angular size of Rt 

computed for each target domain are summarized. 
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(a) XD (b) XDf 

(c) *
pE  (d) *

DX  

Fig. 8. Scatterplot of (a) XD, (b) XDf, (c) optimal regions *
pE  computed with GT support, and (d), patterns in *

DX . 

The black lines in (b) and (d) are the first PC (1PC) direction for the respective scatterplot. (Amazon Data Set). 
 

Due to the small size of deforestation fragments, a visual analysis of the resulting change maps is 

not enough to have a reliable validation of the method. The results were thus analyzed in terms of 

number of correct detections and false alarm rates (see Table 2). Table 2 also compares the results 

obtained with the proposed methodology to those achieved by PRODES for the same area and 

periods. The proposed methodology shows largely improved detection rates when compared to 

PRODES. The same improvement was observed for false alarm rates; with the only exception of the 

2009-2010 image pair (see Table 2).   For 2008-2009, both PRODES and the proposed method 

reached poor results compared to the other scenarios. This can be explained by the large amount of 

forest fires occurred during this period (easily noticeable in the images of Fig. 6). In such a situation 

the working hypothesis that only one kind of change is prevailing, is not fully satisfied. Thus the 

proposed method is penalized. However, despite the critical situation, the proposed method 
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achieves in a partially supervised and fast way performance comparable to the ones achieved by 

PRODES in a time consuming a non-automatic manner. Thus the proposed method resulted to be a 

valuable tool. It is important to note that, due to variations inherent to PRODES, some of the false 

alarms in a year are related to missed alarms in the previous period. Thus, the cumulative amount of 

deforestation estimated in the time series is expected to be accurate, despite possible accuracy 

variations in the years in which it was detected. 

XD  XDf 

2008-2009 2008-2009 

2009-2010 2009-2010 

2010-2011 2010-2011 
Fig. 9. First column scatterplots depicting *t

DfX , Second column, scatter plots depicting *t
DX  when analyzing each 

image pair according to the GT. The black lines in the scatterplots are the first PC (1PC) direction. (Amazon Data 
Set). 
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TABLE 1. COMPUTED RT
 PARAMETERS FOR THE TARGET DOMAIN (AMAZON DATA SET). 

Period t
T  t

R  t
R  

2008-2009 10.8 140º 82º 
2009-2010 7.0 144º 55º 
2010-2011 10.0 140º 36º 

 
TABLE 2. ACCURACY (%) IN TERMS OF DETECTED CHANGES AND FALSE ALARMS (DETECTED / FALSE), (AMAZON 

DATA SET). 
Technique 2007-2008 2008-2009 2009-2010 2010-2011 
PRODES 56 / 56 43 / 64 32 / 43 41 / 50 
Proposed Methodology 67 / 39 45 / 37 72 / 62 77 / 31 

 
C. Experimental Results for Fires in Pantanal 

In order to further validate the proposed method a second data set was considered. The same 

steps as for the first data set were applied. The change of interest is in this case related to areas 

affected by fires, which are expected to show negative values for channels 2 and 3 in the difference 

image XD. Thus the positive values for channels 2 and 3 present in the difference image XD (Fig. 

10a) were neglected. This choice was made in order to avoid the influence of other kinds of change 

related to natural vegetation variations, which are not the focus of our analysis for this data set. The 

result of this pre-processing and of the removal of elements with magnitude smaller than ρT = 13 is 

XDf (Fig. 10b). As for the Amazon data set, the size of each Vp was chosen as Δθ=Δφ=5o, Δρ=5 

(also in this case results resulted to be stable for Δθ and Δφ in ]0,5] and a wide range of Δρ). The set 

of *
pV  elementary volumes resulting for this experiment is shown in Fig. 10c, while *

DX  is shown in 

Fig. 10d. From the main direction and size of R based on *
DX , the adaptation parameters r2 and r3 

are computed and Rt for the target domain is estimated. The similarity between the directions of the 

first PCs in Fig. 11a and Fig. 11b indicates the soundness of the proposed approach for the 

estimation of the main direction of Rt. The magnitude threshold t
T  as well as the angular 

dimension of Rt computed for each target domain are summarized in Table 3. In Fig. 12b and Fig. 

12d show the fire change maps for both the source domain images (computed with R) and the target 

domain images (computed with Rt). The accuracy assessment points out a 91.5% of correct 
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detections and 7.5% of false alarms on the source domain, and the proposed method resulted in 

93.4% correct change detections and 14.1% false alarms on the target domain (Table 3).  

 

TABLE 3. ACCURACY (%) IN TERMS OF DETECTED CHANGES AND FALSE ALARMS (DETECTED / FALSE), (PANTANAL 

DATA SET). 
Technique May/2006-July/2006 July/2006-July/2007 
Proposed Methodology 91.5 / 7.5 93.4 / 14.1 

 

(a) XD (b) XDf 

(c) *
pE  (d) *

DX  

Fig. 10. Scatterplots depicting (a) XD, (b) XDf after suppression of positive values for channels 2 and 3, (c) optimal 
regions *

pV  computed with GT support, and (d), patterns *
DX . The black lines in (b) and (d) represents the first 

PC (1PC) direction for the respective scatterplots. (Pantanal data set). 
 

TABLE 4. COMPUTED RT
 PARAMETERS FOR THE TARGET DOMAIN (PANTANAL DATA SET). 

Period t
T  t

R  t
R  

May/2006 - July/2006 12 145º 254º 
July/2006 - July/2007 20 153º 255º 

 
By analyzing both change maps we can observe that most of the false alarms are concentrated in 

well-defined regions. Visual interpretation of the multispectral images shows us some small 
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changes in these locations due to vegetation variations. Thus, even if these changes are not 

associated with fires, they are real changes occurred on the ground. 

 

(a) (b) 
Fig. 11. Adaptation results to the target domain and comparison with GT. Scatterplot depicting (a) t

DfX , (b) *
DX  when 

analyzing the target domain according to the GT. The black lines in the scatterplots represent the first PC (1PC) 
direction for the respective data set. (Pantanal data set). 
 

(a) (b) 
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(c) (d) 
Fig. 12. (a) Reference image for the source domain, (b) change detection maps obtained with the proposed 
technique, (c) reference image for the target domain, and (d) change detection map obtained with the proposed 
approach on the target domain. Changes are depicted in black. (Pantanal data set). 
 

VII. CONCLUSIONS 

In this paper a novel approach to the detection of recurrent changes in pairs of images extracted 

from time series has been presented. The proposed approach aims at defining a decision rule 

supported by reference data available for only one image pair of the time series (source domain), 

and to adapt it the decision rule to other image pairs (target domains). The method is made up of 

two steps. The first step selects the most meaningful elementary volumes in a spherical CVA space 

in order to model the change of interest. These elementary volumes are derived considering a trade-

off between correctly detected changes and false alarms according to the reference data GT. At the 

end of this step, a decision region R is defined for the source domain. The second step is aimed at 

estimating adaptation parameters in order to extend the solution previously found for the source 

domain R to other image pairs belonging to the same time series (target domains) Rt. Thus, we 

obtain an adaptation of the decision regions which is flexible and can be used to recognize the 

specific change of interest for the whole time series without any additional reference data. This 

semi-supervised approach represents a valuable tool for many environmental monitoring problems 

since it requires limited user interaction and information. 

Quantitative analysis obtained on two data sets made up of Landsat-5 thematic mapper image 

time series confirmed the effectiveness of the proposed adaptive technique in detecting specific 

changes with CVA in spherical coordinates. Unsupervised automatic adaptation compared with 

results obtained by using reference data for the target domains proved that adaptation results were 

effective and could be properly used to recognize the change of relevance in other scenarios. 

Furthermore, results pointed out good capabilities in automatically detecting Amazon deforestation 

when compared to the time-demanding currently adopted PRODES methodology. It is also 

important to emphasize that environments with presence of recurrent changes are quite common 
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and the availability of automatic techniques for updating CD maps in unsupervised way is very 

important.  

As final remarks, it is worth noting that the technique is intended to be applied in stabilized 

scenarios where the expected changes from time to time are not varying strongly. It is important to 

note that the technique is designed to only one kind of change. Thus, ensuring the best fitting of the 

decision rule to the change of relevance in all the involved domains. If there are several kinds of 

change and they are not stationary among the time series the proposed method may reduce its 

effectiveness. Moreover, some strategies can be applied to reduce the contribution of changes that 

may not be of interest. One of them is based on neglecting the portions of the CVA domains that are 

far from the change of interest (as made here in the second data set). This is done on the basis of the 

information provided by the prior information on the source domain. 

As future developments of this work, we plan to extend the test to other kinds of real 

applications and large scale environmental problems by also considering the presence of multiple 

changes of interest. In addition we plan to increase its level of automation. 

 

APPENDIX I 

The notation used in the paper is listed in Table 4. It is worth noting that the same variable 

names has been used for both source and target domains. The table below lists the ones for the 

source domain. All variables for target domain are obtained by adding a superscript t. 

TABLE 4 NOTATION USED IN THE PAPER. 
TS = {X1, X2, …, XQ} Time series (image spectral channels or features derived from it) 

Q co-registered multispectral images 
N the total number of patterns (pixels/regions) 

Ω={ωnc, ωrc, ωic} set of classes to be detected 
GT Ground Truth 
XD difference image for the source domain 
XDf difference image for the source domain after non changed patterns filtering 

*
DX  XD elements inside *

pE  

R decision region of the source domain 
XD(n) Spectral Change Vector 
ρ magnitude 
θ azimuth angle 
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φ elevation angle 
Snc spherical sub-region with unchanged patterns 
Sc sub-region with changed elements 

θR, φR the main direction of R 
ρT magnitude threshold for the source domain 

2
f  and 3

f  eigenvalues for XDf 
*
2  and *

3  second and third eigenvalues computed for *
DX  

ρmax, ρT, 2 , 1 , 2  and 1  upper and lower bound along magnitude, azimuth and elevation variables for R 
ΔρR, ΔθR, ΔφR R ranges 

Vp set of NV elementary volumes quantizing Sc

ΔθV, ΔφV and ΔρV size of Vp 
*
pV  selected Vp obeying the best trade-off 
*
1  first eigenvector for elements in *

DX  
*
1,1 , *

1,2  and *
1,3  three components of the first eigenvector for elements *

DX  

r2 and r3 coefficients of adaptation 
M map of recurrent change ωrc 
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