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A Three-Dimensional Model-Based Approach to the
Estimation of the Tree Top Height by fusing

Low-Density LiDAR data and Very High
Resolution Optical Images

Claudia Paris, Student Member, IEEE, Lorenzo Bruzzone, Fellow, IEEE

Abstract—Light detection and ranging (LiDAR) technology has
been extensively used for estimating forest attributes. Although
high-spatial-density LiDAR data can be used to accurately derive
attributes at single tree level, low-density LiDAR data are usually
acquired for reducing the cost. However, a low density strongly
affects the estimation accuracy due to the underestimation of
the tree top and the possible loss of crowns that are not hit
by any LiDAR point. In this paper, we propose a 3-D model-
based approach to the estimation of the tree top height based on
the fusion between low-density LiDAR data and high-resolution
optical images. In the proposed approach, the integration of the
two remotely sensed data sources is first exploited to accurately
detect and delineate the single tree crowns. Then, the LiDAR
vertical measures are associated to those crowns hit by at least
one LiDAR point and used together to the radius of the crown
and the tree apex location derived from the optical image
for reconstructing the tree top height by a properly defined
parametric model. For the remaining crowns detected only in the
optical image, we reconstruct the tree top height by proposing a
k-nearest neighbor trees technique that estimates the height of the
missed trees as the average of the k reconstructed height values
of the trees having most similar crown properties. The proposed
technique has been tested on a coniferous forest located in the
Italian Alps. The experimental results confirmed the effectiveness
of the proposed method.

Index Terms—Forestry, high-resolution optical images, light
detection and ranging (LiDAR), remote sensing, tree top recon-
struction model.

I. INTRODUCTION

THE estimation of forest attributes has been effectively
improved by the use of the remote sensing technology.

The traditional approach to forest inventories is based on
ground measurements that are collected for some stand plots
usually chosen by randomly sampling the forest area. Then,
these measurements are statistically extended to the entire area
in order to obtain global estimates of the forest parameters
(e.g., average tree volume, average tree height, tree density).
For obtaining reliable estimates, the amount of data collected
should be representative of the entire forest ecosystem consid-
ered. However, field surveys are costly, time consuming, and

Manuscript received December 3, 2013; revised April 3, 2014; accepted
May 7, 2014.

The authors are with the Department of Information Engineering and
Computer Science, University of Trento, 38123 Trento, Italy (e-mail: clau-
dia.paris@unitn.it; lorenzo.bruzzone@ing.unitn.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2014.2324016

constrained by lack of access to remote areas (particularly
in mountainous scenarios). In this context, remote sensing
represents an important tool for monitoring objectively and
accurately large forest areas.

Light detection and ranging (LiDAR) is an active remote
sensing technology widely employed for estimating forest
stem parameters. LiDAR acquires data by hitting the tree
crowns with the laser pulses whose reflections can be used
to reconstruct the 3-D structure of the forest. In particular,
high density sampling LiDAR data (larger than 5 pt/m2) allow
one to accurately measure the tree top height and result in a
precise estimation of forest parameters at single tree level [e.g.,
diameter at breast height (DBH) and tree stem volume] [1]–
[8]. However, high-density LiDAR data have high acquisition
costs, particularly when large areas are considered. This is due
to the fact that for incrementing the density the duration of the
flight should be increased (either by decreasing the altitude
of the airborne platform or its speed). As an example, by
decreasing the interval of the spacing of LiDAR hits from
1.5 m to 0.3 m the acquisition cost per square kilometer may
increase of about three times, i.e. [9]. The reduction of the
spatial density of the LiDAR pulses brings to the following: i)
the underestimation of the height of the trees due to the missed
detection of the tree top positions by the LiDAR points and
ii) the missed detection of trees that are not hit by any laser
pulse. These effects have been studied in the literature [10]–
[13]. In [10], the authors showed that, by increasing the aircraft
altitude, the underestimation of both dominant tree heights
and number of detected trees increases, due to the decrease
in the pulse density and to the increase in the footprint size.
Moreover, when the platform altitude increases over a certain
level (e.g., 1500 m) there is a considerable deterioration of the
height estimation results. This underestimation is more evident
in mountainous scenario because of the error associated to the
generation of the digital terrain model (DTM) [11], [12]. In-
deed, as discussed in [11], by increasing the flight altitude, the
penetration rate decreases, and the ground laser data collected
are no more sufficient for recovery topography information.
In particular, the poor penetration rate of the laser pulses
may miss crests and ridges, resulting in an underestimation
of the DTM. Moreover, due to the slope of the topography,
the elevation obtained at the center of the footprint is higher
than that obtained at the last pulse [12]. Therefore, when the
tree leans towards upper side of slope, the LiDAR height is
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underestimated. In particular, the tree top detection suddenly
declines when the laser sampling density is below 3-5 pt/m2

and thus, the height of the dominant trees is underestimated. In
this context, the joint use of different remotely sensed sources
could be a possible solution for improving the performances
of the low-density LiDAR data.

The fusion of LiDAR data and optical images has been
analyzed in several papers. A detailed analysis of the literature
(see Section II) points out that data fusion approaches between
LiDAR and optical data can lead to more accurate estimation
results. However, only few studies investigated the problem of
estimating forest stem parameters considering the joint use of
low-density LiDAR data instead of using high-density LiDAR
and optical images [14]–[18]. These studies do not report
accurate estimates since none of them focused the attention
on the precise estimation of the tree top height at single tree
level. An alternative solution to the use of LiDAR data for
describing the 3-D structure of the scene is offered by image
matching techniques [19]–[23]. These techniques use aerial
images with stereoscopic coverage to derive Digital Surface
Models (DSMs). The integration of the points cloud derived
from photogrammetric DSM and the LiDAR points cloud can
result in a better description of the 3-D structure of the target
(i.e., photogrammetric dense matching techniques). However,
only few papers addressed the combination of LiDAR data and
photogrammetric surface models for increasing the number of
points collected by the laser scanner. Moreover, potogrammet-
ric methods usually require the availability of a DTM when
dense forest scenario are considered since aerial images are
not able to model properly the ground surface, and therefore,
to estimate the height of the trees.

In this paper we propose a data fusion approach to integrate
low-density LiDAR data and a single optical image for a
precise estimation of the tree top heights at single tree level,
which extends the work presented in [24]. Unlike the methods
described in the literature, the proposed method aims at accu-
rately reconstructing the tree top height employing a 3-D para-
metric model of the tree. Differently from the photogrammetric
dense matching techniques, we aim at exploiting a single
optical image only for describing the horizontal structure of
the forest. Indeed, instead of increasing the number of LiDAR
points collected on the scene by using the DSM generated
with stereo images, we aim at exploiting the geometric shape
of the trees for reconstructing the tree top height information.

The proposed method first identifies the crowns of the trees
present in the scene by applying a segmentation algorithm to
the optical image with the integration of the height information
provided by the LiDAR data. After the crown detection, it re-
constructs the tree top height of each identified crown by using
measures derived from the low-density LiDAR data integrated
via a properly defined parametric model. In greater detail
the proposed method is based on three steps: i) multisensor
segmentation of the crowns by using optical and LiDAR data;
ii) reconstruction of the tree top height for those crowns hit
by laser points employing a 3-D parametric model of the tree
based on the LiDAR height and the crown radius information;
iii) estimation of the height of those trees missed by any
LiDAR points by using a similarity crown area criterion based

on a k-nearest neighbor (k-NN) trees algorithm.
The main novelties of the proposed technique are: i) the

use of a 3-D parametric model for the reconstruction of the
tree top height of those crowns hit by LiDAR points and
ii) the estimation of the tree top height for those crowns
that are missed by any LiDAR pulse with a k-NN trees
technique. It is worth noting that, in this study, we concentrate
our attention on coniferous forests in the Alpine scenario. In
the experiments, we considered four LiDAR datasets of low
laser sampling density (i.e., 1, 0.75, 0.5, and 0.25 pt/m2) and
very high-resolution optical images (0.20 m). First, we tested
the technique on three circular stand plots of area 400-m2

where we have ground reference data. Second, we applied the
proposed technique to a wide forest area of 1.9 Ha, where
we compared the tree top height estimates obtained with the
height derived from the high-density LiDAR data (5 pt/m2).
The results obtained confirm the effectiveness of the proposed
technique.

The rest of this paper is organized into six sections. The
next section presents the analysis of the state of the art.
Section III describes the proposed method illustrating in detail
each single step of the proposed architecture. Section IV
presents the dataset used in the experimental analysis. Section
V describes the experimental results. Finally, section VI draws
the conclusion.

II. STATE OF THE ART

The joint use of LiDAR data and optical images has been
widely addressed in the literature. The fusion between high
laser sampling density LiDAR data and optical images is
very useful for better describing the structure of the target.
Indeed, since the laser measurements are not homogeneously
distributed, the gaps among the laser pulses do not always
allow a precise reconstruction of the 3-D shape of the target
(e.g., building corner missing), while optical images can
provide a better description of the horizontal structure of the
scene [25]. In the framework of forest parameters estimation,
this effect has been encountered in the delineation of the
single tree crowns. In [26] and [27], the complementary
of LiDAR and optical sources for automatic individual tree
delineation is demonstrated. In [26], the authors compared the
results obtained by applying a segmentation algorithm to high-
resolution multispectral image and to high-density LiDAR
data. Although both data achieved accurate crown extraction,
the joint use of the two sources allowed an improvement of
segmentation results. LiDAR data avoid identifying false trees
isolated in open stands, whereas the optical image segmenta-
tion results are strongly affected from these errors because
of the high radiance value of the bare soil in open field.
In contrast, the multispectral image better delineates the tree
crowns where the forest is dense. In order to face the problem
of commission error (false tree isolated) in the multispectral
image segmentation, the authors imposed a minimum crown
dimension and a height filtering criterion based on the LiDAR
information by deleting the crowns with height smaller than
2 m. Due to the synergistic use of the data, the number of the
false tree detected on the multispectral image was strongly



3

Table I
LEGEND OF NOTATION USED IN THIS PAPER

Symbol Description

I LiDAR image

I(x, y) Height value of the CHM image at the position x-line and y-column

Msk LiDAR derived mask image

G Green band of the optical image

G(x, y) Radiance value of the green band of the optical image at the position x-line and y-column

thHeight Height threshold chosen for discriminating between forest and non-forest area

Gm Green band of the optical image masked by the LiDAR derived mask image Mask

Q the structural element chosen for dilating the image I

DQ the domain of the structuring element Q

DI the image domain

S = {s1, .., st, .., sT } Set of seeds identified on the optical image, which correspond to the tree top location

C = {c1, .., ct, .., cT } Set of tree crowns, where ct is the tree crown delineated around the st seed

P = {p1, .., pt, .., pT } Number of LiDAR pulses associated to the tree crowns, where pt is the number of LiDAR pulses associated with
the crown ct

A = {a1, .., ah, .., aH} Set of tree crowns hit by 1 LiDAR point, A = {ct ∈ C|pt = 1, t ∈ [1, T ]}

W = {w1, .., wd, .., wD} Set of tree crowns hit by more than 1 LiDAR points, W = {ct ∈ C|pt > 1, t ∈ [1, T ]}

M = {m1, ..,ml, ..,mL} Set of tree crowns missed by LiDAR points, M = {ct ∈ C|pt = 0, t ∈ [1, T ]}

C = W ∪A ∪M where W ⊂ C, A ⊂ C, M ⊂ C and D +H + L = T

reduced. In [27], an approach that aims at mapping the single
tree location both on LiDAR data and high-resolution aerial
photo is presented. The results confirm that optical images are
suited for describing dense forest, whereas LiDAR data allow
higher accuracy on lower tree density areas.

The importance of integrating the laser scanner information
with the optical images is even more evident in the estimation
of forest parameters mainly related to the vertical dimension.
In [28], the authors compared the volume estimation results
obtained by using only aerial images or integrating them
with high-density LiDAR data. By associating to each crown
detected in the aerial images the height information derived by
the LiDAR data, the volume estimation results significantly
improved (R2 from 0.14 to 0.54). Moreover, the analysis
pointed out that, for properly estimating forest stem volume
at single tree level, the height of individual trees was the most
important geometrical parameter. In the framework of forest
species classification, the integration between LiDAR and
optical images (e.g., multispectral or hyperspectral images) can
be effective for better discriminating species having similar
spectral signature but different height values [29]–[32].

Despite the interesting results of the data fusion techniques,
only few papers considered the possibility of exploiting optical
images as ancillary data for improving the forest attributes
estimation obtained by using low-density LiDAR data [14]–
[18]. In [14], the authors presented a technique that aims
at generalizing the vertical information contained in limited
acquisitions of LiDAR transects data by using an optical
Quickbird image acquired on the entire scene in order to

estimate forest stem volume at stand level. The main idea is
to exploit the wide area coverage guaranteed by the optical
image in order to train a Support Vector Regression (SVR)
model being able to estimate the tree height values derived
from LiDAR data. The optical image provided the information
about the horizontal structure, whereas LiDAR allowed the
vertical reconstruction of the forest. Although the use of the
SVR increased the accuracy compared to the results obtained
with multiple regression models, the errors on the tree top and
on volume estimation are still high. The technique proposed
in [15] combines optical data acquired by the SPOT5 satellite
with tree height information provided by a laser scanner. A
multiple linear regression analysis is developed for both each
data source and the combination of the two data sources in
order to perform volume estimation at stand level. The joint
use of the two sources improved the volume estimation of
49% compared to the use of the only optical image, reducing
the RMSE on the average volume from 31% to 16%. In [16],
the authors demonstrated the importance of having a precise
tree height estimation for accurately estimating tree volume.
They compared the results obtained by extracting the tree top
height from high-density and low-density LiDAR data from
the same segmentation map obtained on a high-resolution
optical image. After having calculated the volume at single
tree level by means of an allometric equation, they computed
the error metrics of the entire stand. In the high-density case
the root mean square error (RMSE) ranges from 156.0 m3/ha
to 163.6 m3/ha, whereas in the low-density case the RMSE
ranges from 205.4 m3/ha to 209.0 m3/ha. In [17] the authors



4

proposed an approach to estimate plot-level tree height by
using multispectral images and low-density LiDAR data. First,
they classified the multispectral image in order to distinguish
among deciduous and coniferous forest. Then, they derived
from the field inventories non-linear regression models being
able to estimate the crown width from the tree height. These
models were calculated either differentiating deciduous and
coniferous forest or considering the two species combined. In
order to detect the location of the trees inside the plot they
applied a local maxima filtering process to the LiDAR data by
calibrating the window filter dimension considering the species
and the tree height of the pixel. By comparing the results
obtained with and without considering the species information,
there is an improvement of the average plot height estimates
only for the coniferous forest. In [18], the authors exploited
the combination of an aerial photo and low-density LiDAR
data in order to delineate the tree crowns and estimate the
tree height. The optical image corresponding to the studied
area was segmented for deriving the canopy shape of the
trees (coconuts plantation), whereas LiDAR data were used
to derive the tree height of each individual tree identified.
In order to delineate the tree crowns a contouring technique
was applied to the green band. For each detected polygon the
height information was extracted by overlapping the LiDAR
data. Although the segmentation algorithm applied to the aerial
photo successfully detected the crowns, the LiDAR derived
height was underestimated due to the low-density LiDAR data
acquisition. In [33], an approach to the estimation of forest
structural parameters based on aerial images and low-density
LiDAR data is presented. In particular, the authors proposed an
algorithm based on the RGB intensity value of the LiDAR data
for coregistering the aerial images. The crown delineation was
derived from the aerial images, whereas LiDAR data provided
the height information. Although the coregistration properly
integrates the two data, due to the low laser sampling density,
the height is not accurately estimated.

Several papers have investigated the possibility of gener-
ating DSM by using optical images as an alternative to the
laser scanner [23] or as additional information to combine
with LiDAR data [19]–[22]. In [23] the authors proposed a
novel image matching technique for the reconstruction of the
3-D structure of the forest using pairs of stereo images. In
the first experiment, the DSM derived from high-resolution
aerial images allowed a better description of the 3-dimensional
structure of the forest with respect to the DSM obtained by us-
ing low-density LiDAR data (i.e. 0.5 pt/m2). In particular, the
authors compared the results obtained with manually measured
reference points directly derived from the stereo images. In the
second experiment, the best DSM is derived from a LiDAR
characterized by 1.5 pt/m2 compared to the result obtained
using multitemporal satellite images. Similar results have been
presented in [19], where the authors compared the estimation
of plot forest variables derived from the DSM generated by
using high-density LiDAR data (7 pt/m2) and high-resolution
aerial images. LiDAR data achieved the best accuracy in
the estimation of mean height, mean diameter and volume.
In [20], a photogrammetric dense matching technique has
been proposed for improving the forest structure estimation

provided by low-density LiDAR data. The main idea is to
improve the density of the laser point clouds by using the
DSM derived from the overlapping aerial images. The authors
proposed automatic, semi-automatic and manual methods to
increase the density of the laser points. In [21] the authors
proposed a hybrid technique that combines photogrammetric
Canopy Height Model (CHM) obtained by pairs of stereo
aerial images and LiDAR data. LiDAR has been employed
both for selecting the absolute orientation parameters of the
stereo model and for deriving the ground elevation data.
Results pointed out that the quality of the CHM was strongly
affected by the dissimilarities of stereo images caused by
the combination of view and sun angles, as well as by the
complexity of the forest canopy surface. Indeed, in order to
accurately match the two optical images, reference points (or
edges) should be detected, which results to be difficulties due
to the different point of views of the images [23]. Moreover,
the complex surface of the canopy could create occlusions that
increase image matching uncertainty [34]. Results presented
in the paper showed an average RMSE between the DSMs
generated by using satellite images and that produced by
LiDAR data of 2.7 m, which increased to 5.3 m in the forest
area. Note that the stereo matching requires the availability of
more than one optical image on the same area. Thus, when
multitemporal acquisition are considered, different illumina-
tion and atmospheric conditions or different image orientations
could result to be very critical.

III. PROPOSED TREE TOP HEIGHT ESTIMATION APPROACH

The aim of the proposed approach is to improve the ac-
curacy of the tree top height estimates at single tree level
obtained with low-density LiDAR data, by fusing these data
with a single optical image. Fig. 1 shows the architecture of
the proposed method. It is divided into two main parts, i.e.,
the preprocessing phase and the proposed technique.

A. Preprocessing Phase

The preprocessing phase is made up of three steps for the
LiDAR data and one step for the optical image. The goals of
the LiDAR data preprocessing are as follows: i) the correction
of the height measures from the topography of the scene and
ii) the use of the derived height information for generating a
binary mask image Msk that identifies the forest area. First,
the DTM is subtracted to each point of the raw LiDAR data
in order to determine the elevation information with respect
to the ground. Second, we generate an image having the same
spatial resolution of the optical image, where we assign at
each pixel the height measured by the LiDAR pulses in the
area correspondent to the pixel. In order to propagate the
height information to the neighbouring pixels we apply to
the LiDAR image a dilation algorithm (e.g., see [35]). The
structural element employed is a disk whose size depends
on the tree crowns dimension. This procedure allows us to
identify the presence of trees by using the LiDAR-derived
height information in order to distinguish the forest area from
the ground area. The accuracy of the result obtained depends
on a tradeoff between the laser sampling density of the LiDAR
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Figure 1. Architecture of the proposed tree top height estimation approach.

data and the density of the forest. However, since we aim at
identifying flat ground areas or shrub vegetation, the sparse
LiDAR information is sufficient to cope this purpose. Let I be
the LiDAR processed image and I(x, y) the height value of the
pixel at the position (x, y). For the complete definition of the
notation used in this paper see Table I. Let Q be the structural
element chosen for dilating the image I , and Q(x′, y′) the
value of the structural element at the position (x′, y′). Let DI

and DQ be the domain of the image I and the domain of the
structuring element Q, respectively. The dilation algorithm for
the image I by Q is described by the following equation:

(I ⊕Q)(x, y) = max{I(x− x
′
,y − y

′
) | (x

′
, y

′
) ∈ DQ,

(x− x
′
, y − y

′
) ∈ DI}.

(1)
Let thHeight be the height threshold value chosen in order to
distinguish between forest and flat ground areas. The mask
image Msk is obtained by deleting all the pixels of the LiDAR
image I having value before the height threshold thHeight, [26].
We can write as follows:

Msk(x, y) =

{
1 if I(x, y) ≥ thHeight

0 otherwise
with (x, y) ∈ DI

(2)
In the optical image preprocessing, the tree apex and the

crown boundaries are emphasized in order to allow a better
detection and delineation of the single tree crowns during the
multisensor segmentation phase. Let G be the green band
of the optical image and G(x, y) the radiance value of the
pixel at the location (x, y). An n × n median convolution
filter is applied to I for reducing the noise in the image.
Then, the image is smoothed by means of a n × n Gaussian
convolution filter in order to emphasize the local maxima and
the crown contours. The filters dimension depends on the
spatial resolution of the image and the average size of the
tree crowns.

At the end of the preprocessing phase, the proposed tree
top height estimation approach can be applied to the remotely
sensed data. The proposed technique is made up of three main
steps: i) multisensor segmentation that exploits the optical
image and the LiDAR data; ii) tree top height reconstruction
method for the tree crowns hit by LiDAR pulses; iii) tree top
height estimation (k-NN trees) for those crowns that are not
hit by any LiDAR pulse. These steps are described in greater
detail in the following.

B. Multisensor Segmentation

The segmentation phase aims at identifying and delineating
the tree crowns present in the scene. Due to the low laser
sampling density, the extraction of the tree crowns is not
sufficiently accurate when implemented on LiDAR data. For
this reason, the segmentation algorithm is applied to the optical
image, which represents the entire horizontal structure of the
forest. In particular, we consider the green band of the optical
image since it is the most correlated band to the radiation
intensity of the image [36]. Indeed, the radiance of the optical
image, under nadir condition acquisition, can be considered
a topographic surface which represents the structure of the
forest (see Fig. 2). However, where the forest is less dense,
the discrimination between bare soil and trees is a critical issue
for the crown recognition in optical images. For this reason,
we apply to the optical image the binary mask image Msk

generated by using LiDAR data. Let G be the green band of
the optical image. Since the G image has the same dimension
of the Msk image, the masking procedure is accomplished as
follows:

Gm(x, y) = Msk(x, y) ·G(x, y), with (x, y) ∈ DI . (3)

The obtained masked image Gm is analyzed in order to extract
the position of the center of the crown which corresponds to
each tree apex. Similarly to the valley following approach [37],
we assume that on optical imagery, the highest values of the
radiation intensity are concentrated on the uppermost part of
the tree, which is surrounded by lower intensity pixels (valleys)
(e.g., see [26], [36]). The local peaks of the image are detected
by using a set level method (which was used in [38] on very
high-density LiDAR data), whereas the crown boundaries are
detected by the crown delineation method presented in [39].
By assuming the crown surrounded by shadows, we search
the local minima along the four main directions (0◦, 45◦,
90◦, and 135◦). Then, the boundaries detected are processed
in order to close possible gaps of the border and to remove
the pixels that have less than two minimum neighbors. This
step provides a minima network, which identifies the regions
correspondent to the crown areas. The regions with less than
p pixels are deleted from the image, assuming that they are
too small for being a tree crown. The value of p depends
on the resolution of the image. For each labeled region we
analyze the correspondence with the seed image. If the labeled
region includes just one seed st, then this means that the region
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(a) (b)

Figure 2. (a) RGB representation of the original ortophoto. (b) Three-dimensional representation of the radiance value of the green band.

describes the tree crown belonging to that specific seed, and
thus, it is associated with the tree crown ct. If the region
includes more than one seed, then this means that two or
more crowns are fused in a single connected region and should
be separated. The remaining connected regions that include
more seeds are usually partially separated by the minimum
network. For this reason, in order to separate them completely,
we just follow the direction of the enclosure and split the
remaining crowns. At the end of this process, we obtain the
set of T detected crowns C = {c1, .., cT }, where ct identifies
the region delineated around the seed st.

C. Tree Top Height Reconstruction Method

The main idea of this step is to define a procedure that
can accurately reconstruct the tree top height exploiting the
LiDAR elevation information related to the crown. This is
done starting from the assumption that: 1) the density of
the considered LiDAR data is not sufficient for detecting
the top of each tree, and 2) only trees with at least one
LiDAR measure are considered. The case in which some
crowns are missed by laser pulses is addressed in the next
section. Let P = {p1, .., pT } be the number of LiDAR
pulses associated to tree crowns, where pt is the number of
LiDAR pulses associated to the crown ct. The T detected
crowns can be split into three sets: i) the H crowns hit
by just one laser point, ii) the D crowns hit by more than
one laser point, and iii) the L crowns missed by the laser
scanner. Let us define the tree crowns hit by one laser point
as A = {ct ∈ C|pt = 1, t ∈ [1, T ]}, the crowns hit by more
than one laser point as W = {ct ∈ C|pt > 1, t ∈ [1, T ]}
and the missed crowns as M = {ct ∈ C|pt = 0, t ∈ [1, T ]},
with C = W ∪ A ∪M and T = D + H + L. In Fig. 4, an
example of the classification of the tree crowns is reported. The
D crowns hit by more than one laser pulse are represented in
white, the H crowns hit by just one laser pulse are represented
in blue, whereas the L crowns missed by the laser scanner are
represented in red.

It is worth nothing that the low laser sampling density limits
the number of pulses acquired inside each crown to few sparse

(a) (b)

Figure 3. (a) Representation of the tree crown parameters of the
defined 3-D reconstruction model. (b) Example of 3-D model of the
tree.

measures (at the limit of one point per crown). Moreover, when
low-density LiDAR signals are acquired with a narrow laser
beam, there is a systematic underestimation of the height due
to the missed tree top location. In order to solve these prob-
lems, the proposed technique defines a proper 3-D parametric
model of the crown surface for reconstructing the real height
of the tree by using the altitude information of the LiDAR
points associated with the tree crown and the segmentation
results from the optical image. In this paper, we address the
issue of reconstructing the tree apex for coniferous forests.
Indeed, the broad-leaves forests are usually characterized by
a round canopy almost flat on the uppermost part. Thus, due
to this umbrella-shaped crown morphology, the tree height is
not heavily underestimated when the LiDAR pulses do not
center the tree apex. In contrast, the steep morphology of
the crown surface of the conifer strongly affects the height
estimates depending on the distance of the laser pulse from
the tree top. The geometric parametrization of the tree that
we use in this paper is derived from the synthetic template
presented in [40], which was employed to describe the crown
envelope of conifers for delineating the single tree crown on
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(a) (b) (c)

Figure 4. Example of classification of the detected trees based on the number of LiDAR pulses associated to the crown. (a) LiDAR pulses
are shown in white and are overlapped on the ortophoto. (b) Both LiDAR pulses (represented in white) and border of the detected trees
(represented in white) are overlapped on the ortophoto. (c) Classification of the detected trees in crowns hit by more than one laser pulse
(white), the crowns hit by just one laser pulse (blue) and the crowns missed by the laser scanner (red).

high-resolution optical images. In greater detail, the authors
proposed a generalized ellipsoid described by the tree top
coordinates (X top,Y top,Z top), the adjusting coefficient of the
crown surface curvature cc, the crown depth ch and the crown
radius cr (see Fig. 3). The same mathematical representation
has been adopted in [4] for delineating the single tree crowns
on LiDAR images, and in [41] for reconstructing the structure
of the scene after having estimated all the forest attributes by
using a high-density LiDAR data (average point density larger
than 10 pt/m2). The mathematical representation of the crown
envelope is as follows:

(Z + ch− Z top)
cc

chcc +
[(X −X top)

2 + (Y − Y top)
2]cc/2

crcc = 1

(4)
where

Z top − ch < Z < Z top (5)

In our technique we use the segmentation results to identify
the tree top location (X top,Y top) and the crown radius cr. Then,
after having associated each tree with the related laser pulses,
the coordinates of the LiDAR points (X,Y, Z) are known.
Therefore, fixed the parameters cc and ch, Z top represents the
only unknown variable to retrieve by employing the height
information Z provided by the LiDAR data. Z is constrained
among Z top−ch and Z top for ensuring that the considered
LiDAR measure is inside the vertical structure of the crown.

If we consider the case of having pt > 1 we have
one equation per point and a single unknown variable Z top.
Therefore, once the value of the parameters ch and cc are
defined in order to find the Z top we should solve the estimation

problem with a least square method, i.e.,

Z top =argmin
Z′

top

∥∥∥Z ′

top

∥∥∥2
2

=min
Z′

top

[
r1(Z

′

top)
2 + ..+ rj(Z

′

top)
2 + ..+ rpt(Z

′

top)
2
]

(6)

where rj(Z
′
top) is the residual of the jth LiDAR point de-

scribed by the ground coordinates (Xj , Yj , Zj) and calculated
as follows:

rj(Z
′

top) =
(Zj + ch− Z

′
top)

cc

chcc

+
[(Xj −X top)

2 + (Yj − Y top)
2]cc/2

crcc − 1

(7)

Under the assumption that pt > 1, instead of imposing a cou-
ple of parameters cc and ch for all the trees, we automatically
determine the optimal tree model representation for each tree.
In particular, we aim to fit as close as possible the 3-D structure
of the tree to the LiDAR points acquired inside the crown.
The residual metric can be used to identify the combination
of parameters that minimizes the distance between the 3-D
parametric model and the LiDAR points. The lower is the
sum of the residual values the better the crown surface fits the
LiDAR points. Examples of the considered 3-D parametric
model are represented in Fig. 5. This method cannot be
applied to the H crown hit by just one LiDAR point since the
residual metric remains zero for all the possible crown surfaces
(i.e., combination of parameters). For this reason, for each
crown ah we refine the search of the optimal tree model among
n possible models. Afterwards, we select the model that
returns the Z top equal to the median value of the n different
Z top obtained. Since the single LiDAR point associated to the
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(a) (b)

(c) (d)

Figure 5. Examples of the considered 3-D parametric model: (a)
real scene; (b) LiDAR points cloud of the trees; (c) 3-D parametric
models of the trees automatically detected by the proposed method
superimposed on the real scene, (d) 3-D parametric models of the
trees automatically detected by the proposed method superimposed
on the LiDAR points cloud.

Figure 6. Example of the tree top reconstruction method for those
crowns hit by just one LiDAR point, with n = 3. For the generic
tree ah, the three trees having similar point distances (d1,d2 and d3)
and, thus, the three associated models (i.e., (cc1,ch1), (cc2,ch2) and
(cc3,ch3)) are tested. The chosen model is the one that returns the
Z top equal to the median value of the three resulting Z top.

crown is described by the height value Z and the distance from
the center of the tree given by

√
(X −X top)2 + (Y − Y top)2,

(later defined as dref ), in order to choose the n combinations
of parameters cc and ch to analyze, we consider the distance
from the center. We compute the absolute difference between
dref and the distance from the center of the LiDAR points
associated to the D crowns hit by more than one laser point.
Finally, we select the models of the n crowns having the

minimum absolute difference. Fig. 6 shows an example of the
described procedure with n = 3.

D. Tree Top Height estimation method (k-NN Trees)

Low-density LiDAR measures affect not only the accuracy
of the tree top height estimates, but also the capability to
detect some of the tree crowns present in the scene. Indeed,
although we are dealing with dense forest, by decreasing the
laser sampling density the number of crowns hit by laser
points decreases as well. As the tree top reconstruction method
described in the previous subsection requires at least one
LiDAR measure for estimating the tree top height, we need
to define a strategy for estimating the tree top heights of the
L missed crowns. To this purpose we define a k-NN trees
algorithm. Note that due to the segmentation, we are in the
condition of detecting crown areas missed by the laser scanner.
Assuming that the tree properties can be considered in average
homogeneous at local level in the studied area, we define a
k-NN trees estimation method based on the correlation among
crown area and tree top height. Accordingly, it is reasonable to
exploit the crown area information in order to detect trees with
similar tree top height by considering the same forest scenario.
For this reason, we identify the k trees that: 1) belong to a
predefined sparse neighborhood of the forest of the missed tree
ml; 2) are hit by at least 1 LiDAR pulse; and 3) are the most
similar in terms of crown area. The similarity measure defined
is the absolute difference between the lth missed crown area
ml and the generic crown area cj hit by the LiDAR pulses,
where J = H + D. For each ml, we calculate d(ml, cj) as
follows,

d(ml, cj) = |cj −ml|
l = 1, .., L

j = 1, .., J

(8)

Then, we estimate the tree-height Z top as the average of the
tree top reconstructed heights Zj of the k trees having the
minimum distance measure d(ml, cj) to the ml crown. We
can write:

Z top =
1

k

k∑
j=1

Zj (9)

It is worth noting that here we considered all the trees
belonging to the same coniferous forest to detect the k-NN
trees. However, one can define more refined rules restricting
the search to trees belonging to areas having similar terrain
properties (e.g., same slope and/or same aspect of the terrain).

IV. DATASET DESCRIPTION

The study area is a coniferous forest located in the Southern
Italian Alps at Parco Naturale Paneveggio-Pale di San Martino
in the Trentino region (see Fig. 7). The predominant specie is
the Norway Spruce (Picea Abies) with a small presence of
Silver Fir (Abies Alba). For the quantitative evaluation we
considered three circular stands plot of radius 20 m and area
400 m2 [see Fig. 7(a)-(c)], where field data were collected
during the summer 2007. Within each stand plot, all the



9

(a) (b) (c)

(d)

Figure 7. Ortophoto of the investigated area. (a) Stand plot 1. (b)
Stand plot 2. (c) Stand plot 3. (d) Extended test area.

trees having Diameter at Breast Height (DBH) > 3 cm were
surveyed. For each tree the parameters measured were the tree
position with respect to the center of the sample plot, the tree
height, the species, the crown diameter and the DBH. In order
to test the method in different conditions we selected sample
plots characterized by different topography and different forest
densities (see Table II). Moreover, we considered a wide area
(for which ground data are not available) located in the same
coniferous forest [see Fig. 7d] characterized by an extension
of approximately 1.9 ha and an altitude that ranges between
1565 m and 1604 m on the sea level. The coordinates of the
central point of this area are 46◦18′15,24′′ N, 11◦44′52,04′′

E.
The optical image and the LiDAR data considered in the

experiments were simultaneously acquired on September 4,
2007. The optical images employed in this study are or-
tophotos. The images consist of red, green and blue bands
acquired with a geometrical resolution of 20 cm. LiDAR data
have been acquired by an Optech ALTM 3100EA sensor. For
each laser pulse four returns were recorded, with an average
point density > 5 pt/m2. The laser scanner is characterized
by a pulse wavelength of 1064 nm and a pulse repetition
frequency of 100 Khz. In order to assess the effectiveness of
the proposed technique, we undersampled the original LiDAR
data for generating four low-density LiDAR data sets. The
undersampling process has been realized by overlapping a
uniform grid over the high-density LiDAR data and randomly
selecting just one LiDAR point belonging to the first return
within each grid cell. In greater details, we generated datasets
having 1, 0.75, 0.5, and 0.25 pt/m2. Although the sensors
were mounted on the same airborne platform during the
simultaneous acquisition, we coregistered the data by using
ground control points. In particular, the warped image has
been obtained with a polynomial transformation of first order
and a nearest neighbor resampling of the pixels. The RMSE
resulting after the coregistration phase was 0.92 for Stand 1,

0.97 for Stand 2, 1.13 for Stand 3 and 1.22 for the wide area.

V. EXPERIMENTAL RESULTS

In order to assess the effectiveness of the proposed method,
we defined two experiments. In the first experiment, we
considered the 3 circular stand plots where we have ground
reference data. In particular, we analyze the quantitative results
in terms of single-tree height estimates obtained considering: i)
the overall method; ii) the 3-D reconstruction model for those
crowns hit by more than one LiDAR pulse; and iii) the k-
NN trees technique. In the second experiment, we applied the
proposed technique to a wide forest area. In this case, since we
do not have any ground reference measure, we compared the
results obtained with the height derived from the high-density
LiDAR data. For both the experiments, the proposed method
was tested on the low-density LiDAR data sets generated
by undersampling the original high-density LiDAR data. For
each data set, the tree crowns are automatically detected by
means of the multisensor segmentation algorithm. Then the
tree heights are estimated by the proposed approach on the
basis of the number of hits associated to the crown.

The Gaussian and the Median convolution filters applied to
the ortophoto in the preprocessing phase have window size of
5×5. The Gaussian convolutional filter is characterized by a
standard deviation equal to 10. In the segmentation phase the
minimum number of pixels of each region has been set to 5.
The choice of the parameters is based on the spatial resolution
of the optical image and the expected minimum dimension of
the tree crowns. Regarding the tree top reconstruction model,
the ranges of parameters tested are as follows:

1) The crown curvature cc ∈ [1.7, 1.9] with a step of 0.1.
2) The crown height ch ∈ [10, 25] with a step of 1.

We tested a wide set of combinations of parameter values
in order to model trees whose height ranges between 15.2
and 35.9 m (see Table II). Indeed, the proposed technique
aims at automatically identifying the best model for each tree
considering the LiDAR points information.

For those crown hit by one LiDAR point, we set the number
of models to test n to 3. Similarly, the value of the k trees
selected for reconstructing the tree top height of the missed
crowns has been set to 3 in order to evaluate just the most
similar crowns. In the following subsections we first present
the results obtained on the 3 Stand Plots where we have ground
reference data available (first experiment). Then, we report the
analysis of the performance of the proposed technique on a
wide area of coniferous forest (second experiment).

A. First Experiment: Results on the Stand Plots

Fig. 8 shows the comparison between the segmentation
results obtained by using only the optical image and the results
obtained integrating the lowest laser sampling density LiDAR
data (i.e., 0.25 pt/m2, which represents the worst case for
the considered data sets). While in a dense forest scenario
the shadows that surround the trees help in distinguish the
forest from the ground, in open field areas, it is difficult
to obtain accurate discrimination by using only the optical
image. The additional information conveyed by the LiDAR
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Table II
NUMBER OF TREES, AVERAGE VALUE OF ALTITUDE, SLOPE AND ASPECT, MEAN AND RANGE OF THE TREE HEIGHTS FOR EACH

SAMPLE PLOT

Plot N. Central Point Altitude Slope Aspect Height(m)

Trees Coordinate N Coordinate E Mean Range

Stand 1 71 46◦18′4,16′′ 11◦45′13,80′′ 1401 m 6◦ 264◦ 23.3 19.3 - 29.2

Stand 2 32 46◦18′26,79′′ 11◦45′20,77′′ 1550 m 13◦ 131◦ 26.6 15.4 - 35.9

Stand 3 48 46◦18′8,95′′ 11◦45′34,55′′ 1554 m 9◦ 253◦ 26.9 15.2 - 34.2

(a) (b) (c)

(d) (e) (f)

Figure 8. Masking procedure process. (a) Ortophoto of Stand 2. (b)
Tree crown delineation result obtained by applying the segmentation
algorithm directly to the ortophoto. (c) Circular representation of the
detected crowns based on the median crowns radius derived from the
segmentation result. (d) Masking process result by using the lowest
laser sampling density dataset (i.e., 0.25 pt/m2); (e) multisensor
segmentation result. (f) Circular representation of the detected crowns
based on the median crowns radius derived from the multisensor
segmentation result.

Table III
NUMBER OF TREES DETECTED BY THE MULTISENSOR

SEGMENTATION ALGORITHM COMPARED TO THE NUMBER OF
DOMINANT TREES ASSOCIATED TO GROUND DATA AND ME,

MAE AND MSE OF THE ESTIMATED CROWN RADIUS

Plot N. Dominant N.Detected Percentage of Estimated Crown radius
Trees Trees Detected Trees ME MAE MSE

Stand 1 72 71 99 % -0.36 0.57 0.74

Stand 2 33 32 97 % -1.04 1.10 1.44

Stand 3 50 48 96 % -0.82 -0.89 1.09

All Stands 155 151 97 % -0.65 0.78 1.04

data in the masking procedure [see Fig. 8d] allowed a better
discrimination between trees and bare soil. Indeed, as one
can notice from the segmentation results, the fusion between
the LiDAR derived height information and the optical image
increased the crown delineation accuracy by avoiding that
ground pixels were merged inside the tree crowns. The quality
of the crown delineation results affects the accuracy of the
height estimation, since the derived crown radius and area
are employed in tree top reconstruction step and in the k-

Table IV
ME, MAE AND MSE OF THE ESTIMATED TREE TOP AND THE
MEASURED TREE TOP. THE AVERAGE HEIGHT ESTIMATION

RESULTS OF ALL THE STAND PLOT IS PRESENTED DIVIDED PER
LASER SAMPLING DENSITY

LiDAR

All Stands Plot

Measured tree top Estimated tree top

ME MAE MSE ME MAE MSE

1 pt/m2 1.61 1.61 3.70 0.90 1.17 2.45

0.75 pt/m2 1.74 1.74 4.78 0.75 1.31 3.32

0.50 pt/m2 2.95 2.95 17.89 0.94 1.57 4.03

0.25 pt/m2 8.20 8.20 134.23 0.27 2.48 11.77

NN trees criterion, respectively. In order to evaluate the seg-
mentation accuracy of individual tree level, we compared the
crown radius derived from the segmentation phase with crown
radius measured in situ (see Tab. III). The results obtained
demonstrate that the multisensor segmentation algorithm is
able to detect the dominant trees present in the scene and
to properly estimate the crown radius with a Mean Absolute
Error (MAE) of 0.78 m.

Let us now consider the tree top height estimation results.
Table IV presents the comparison between the measured tree
top derived from the LiDAR data and the estimated tree top
obtained by applying the entire method. The results confirm
the effectiveness of the proposed technique, which always
reduced the error with respect to the low-density LiDAR data.
Considering all the stand plots, for the LiDAR datasets having
1 pt/m2 the Mean Error (ME) was reduced of 0.71 m and
the MAE of 0.44 m, whereas for dataset having 0.75 pt/m2

there was an improvement of the ME of 0.99 m and of the
MAE of 0.43 m. By decreasing the laser sampling density the
difference increases. In the case of 0.5 pt/m2 the ME decreased
of 2.01 m and the MAE of 1.38 m, whereas with 0.25 pt/m2

the ME decreased of 7.93 m and the MAE of 5.72 m. It is
worth noting that we obtained a small MAE as it ranges from
1.17 m (datasets of 1 pt/m2) to 2.48 m (datasets of 0.25 pt/m2)
on an average height value of 25 m (approximately the 10% of
average tree height value). These results contain all the sources
of errors (included the segmentation errors).
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(a) (b)

(c) (d)

Figure 9. Reconstructed versus observed tree top height for the trees hit by more than 1 LiDAR point. The height estimation results of all
the stand plots is presented for (a) the dataset having density of 1 pt/m2, the (b) dataset having density of 0.75 pt/m2, the (c) dataset having
density of 0.5 pt/m2, and the (d) dataset having density of 0.25 pt/m2.

By analyzing the MAE of the measured tree top, one can
observe that, as expected, it is equal to the ME since the
LiDAR data systematically underestimate the tree top Height.
In contrast, the ME obtained with the proposed method was
closed to zero (almost unbiased estimate) for all the stands
(i.e., 0.90 for the datasets of 1 pt/m2, 0.75 for the datasets of
0.75 pt/m2, 0.94 for the datasets of 0.5 pt/m2 and 0.27 for
the datasets of 0.25 pt/m2). Furthermore, while the Measured
tree top estimates were strongly affected by the decreasing of
laser sampling density, the proposed method achieved similar
accuracies for all the LiDAR density considered. Indeed, by
halving the laser sampling density the error metrics of the
Measured tree top were almost doubled, whereas the proposed
method slightly increased the error metrics.

Fig. 9 depicts the scatterplots of the measured versus the
reconstructed tree top height for the trees hit by more than
one laser pulse, divided per laser sampling density. The results
shows that the geometric representation of the shape of the
crown effectively reconstruct the real height of the trees. By
decreasing the laser sampling density the number of laser
pulses associated to each crown decreases. However, for all the
datasets the coefficient of variation (Adj −R2) ranges between
0.77 to 0.88.

Table V
ME, MAE AND MSE OF THE ESTIMATED TREE TOP AND THE
MEASURED TREE TOP. THE AVERAGE HEIGHT ESTIMATION
RESULTS ARE PRESENTED DIVIDED PER NUMBER OF HITS

ASSOCIATED TO THE CROWNS.

LiDAR
All Datasets

points Measured tree top Estimated tree top

N. Trees ME MAE MSE ME MAE MSE

> 1 Point 510 2.15 2.15 7.12 1.02 1.41 3.47

1 Point 59 4.98 4.98 33.53 -0.08 2.25 9.28

k-NN Trees 35 22.83 22.83 532.59 -2.32 3.79 26.86

Table V shows the tree top height estimates versus the
number of hits associated to the crowns. As expected the
most accurate results are obtained when the tree crowns are
hit by more than one LiDAR point. For those crowns, we
obtained a MAE error of 1.41 m. By reducing the number
of points associated to the crown to one, the error values
slightly increased. This is due to the suboptimal choice of
the parameters ch and cc, which affected the performance of
the tree top height estimation. Indeed, with more than one
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Figure 10. Segmentation result obtained on the wide coniferous forest.
The border of the segmented regions are shown in white and are
overlapped on the ortophoto.

Table VI
ME, MAE AND MSE OF THE ESTIMATED TREE TOP AND THE

MEASURED TREE TOP PRESENTED DIVIDED PER LASER
SAMPLING DENSITY

Datasets
Measured tree top Estimated tree top

ME MAE MSE ME MAE MSE

1 pt/m2 1.15 1.15 2.50 0.31 0.97 2.13

0.75 pt/m2 1.46 1.46 3.92 0.33 1.19 3.13

0.50 pt/m2 2.79 2.79 16.16 1.20 1.96 7.08

0.25 pt/m2 4.33 4.33 41.22 1.36 2.39 9.86

LiDAR point per crown it was possible to choose the model
parameters more suited to the real shape of the considered tree
crown. In contrast, with just one LiDAR point the model was
selected only on the basis of the distance of the LiDAR point
from the crown center and thus the accuracy of the height
estimation decreased. Regarding those crowns that were not
hit by any LiDAR point, the MAE is 3.79 m, while the low-
density LiDAR could not obtain any measure for these trees.

B. Second Experiment: Results on All the Considered Forest
Areas

The purpose of this experiment was to test the proposed
technique on all the considered test forest. The considered
image extends across an area of 1.9 Ha, where the multisensor
segmentation identified 740 trees. Fig. 10 shows in white the
border of the obtained segmented regions overlapped on the
ortophoto. A qualitative visual analysis of the results confirms
that the multisensor segmentation algorithm obtained a reliable
delineation of the tree crowns. Similarly to the previous
experiment we considered the four low-density LiDAR data.
In this experiments since we do not have any ground measure,
we used as reference the tree heights measured by the high-
density LiDAR data.

Table VI presents the comparisons between the Measured
tree top Height and the Estimated tree top height. The height

estimates confirmed the results obtained in the first experiment.
The proposed technique reduced all the error metrics with
respect to the low-density LiDAR measures for all the consid-
ered data sets, also in this case. Moreover, we can observe that
by decreasing the laser sampling density, the accuracy of the
height estimation of the low-density LiDAR data decreases,
whereas the accuracy of the proposed technique is not heavily
affected. In greater detail, the ME of the Estimated tree top
ranged from 0.31 m to 1.36 m and the MAE ranged from 0.97
m to 2.39 m for all the low-density LiDAR datasets, whereas
the ME and the MAE of the Measured tree top ranged from
1.15 m to 4.33 m. Furthermore, we can again observe that the
proposed method mitigated the systematic underestimation of
the tree height.

VI. DISCUSSION AND CONCLUSION

In this paper, we a have presented a novel approach to the
estimation of the tree top height at single tree level based on
the fusion of low-density LiDAR data and very high-resolution
optical images. This approach can be employed in coniferous
forest scenarios when the density of the LiDAR data available
is not sufficient for an accurate estimation of the height of
each single tree.

The proposed technique exploits the synergistic use of the
two data sources in order to obtain accurate height estimates
at single tree level. In order to identify all tree crowns
present in the scene, a multisensor segmentation algorithm
is applied to the optical image by integrating the height
information provided by the LiDAR data. Starting from the
segmentation result, the proposed technique classifies the tree
crowns between those hit by at least one LiDAR pulse and
those that are not hit by any LiDAR pulse. For those crowns
hit by more than one LiDAR pulse, a 3-D parametric model
of the tree is applied to reconstruct the real height value
starting from the height information provided by the LiDAR
measures. The model is adapted to the shape of the tree both in
the horizontal and vertical directions. The crown radius and
the tree top position in the horizontal plan adopted by the
parametric model are derived from the segmentation results,
while the vertical structure of the crowns is modelled by
fitting the LiDAR points associated to the crown. For those
crowns missed by the laser scanner, a k-NN trees technique
is defined for estimating the tree height as the average of the
k reconstructed height of the trees having similar crown area
and belonging to a sparse neighbourhood.

The experimental results obtained on the considered datasets
made up of an ortophoto and low-density LiDAR data hav-
ing laser sampling density of 1, 0.75, 0.5, and 0.25 pt/m2

demonstrate the effectiveness of the proposed technique. In
particular, the quantitative results obtained on the three sample
plot confirm that the 3-D parametric model is able to correctly
reconstruct the structure of the tree. Indeed, the higher is the
number of LiDAR points associated to the tree crowns the
better is the choice of the parametric model and thus, the tree
top height estimation. This is confirmed by the fact that reduc-
ing the number of points associated to the tree crown to one,
the accuracy of the height estimation decreases. Regarding
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the results obtained on those crowns that are not hit by any
LiDAR point, the error metrics only slightly increased with
respect to those obtained by applying the reconstruction model.
However, the k-NN trees technique allows the estimation of
the height for those crowns which are not measured by LiDAR.
Accordingly, the height estimate of the entire stand plot is
strongly improved by the introduction of the proposed method.

The robustness of the proposed technique is confirmed by
the results obtained on the dataset characterized by a wide
area coverage. The significant reduction of the estimation
errors becomes more evident when we deal with very low-
density LiDAR data (i.e., 0.5 and 0.25 pt/m2). Moreover, the
height estimation results are almost unbiased and thus do not
systematically underestimate or overestimate the tree height.
On the contrary the laser sampling density results in strongly
underestimated height values due to both the missed tree top
by the laser pulses and the missed detection of tree crowns.

As future developments of this work, we will investigate
other strategies for selecting the 3-D parametric model for
those crowns hit by just one LiDAR point, in order to better
adapt the model to the real shape of each considered tree.
Moreover, we plan to analyze the performance of the k-NN
trees technique by using in the search of similar trees also
terrain properties such as slope and aspect.
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