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ABSTRACT 

The new generation of satellite hyperspectral sensors can acquire very detailed spectral information 

directly related to land surface materials. Thus when multitemporal images are considered, they allow us 

to detect many potential changes in land covers. This paper addresses the change detection problem in 

multitemporal hyperspectral remote sensing images, analyzing the complexity of this task. A novel 

hierarchical change-detection approach is proposed, which is aimed to identify all the possible change 

classes present between the considered images. In greater detail, in order to formalize the change-

detection problem in hyperspectral images, an analysis of the concept of “change” is given from the 

perspective of pixel spectral behaviors. The proposed novel hierarchical scheme is developed by 

considering spectral change information to identify the change classes having discriminable spectral 

behaviors. Due to the fact that in real applications reference samples are often not available, the 

proposed approach is designed in an unsupervised way. Experimental results obtained on both simulated 

and real multitemporal hyperspectral images demonstrate the effectiveness of the proposed change-

detection method. 
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I. INTRODUCTION 

A comprehensive understanding of the global change is necessary for sustainable development of human 

society. As one of the interesting subtopics in global change study, detection of anthropogenic and 

natural impacts on land surface is essential for environmental monitoring. To enable a whole monitoring 

and evaluation of changes occurred on the ground, both long term and short term observations are 

required. Due to the revisit property of polar Earth Observation (EO) satellites, we can acquire remote 

sensing images in a given area at different times. Thus multitemporal remote sensing images are an 

important data source to detect the land surface changes in wide geographical areas, which is gradually 

reducing the need for conventional field investigations. Change Detection (CD) is the process that 

identifies changes occurred between two (or more) images based on the image properties [1]. The 

variation of image properties (e.g., pixel radiance value, texture, shape) can be related to changes on the 

ground at different satellite observation times. However, they may also be affected by some external 

factors (e.g., variation in atmospheric conditions, sensor conditions, illumination difference and seasonal 

effects). Automatic change-detection techniques have been widely used for remote sensing applications 

(e.g., ecosystem monitoring, urban area study, disaster monitoring) [2]-[4]. Nevertheless, in order to 

effectively perform change detection and obtain highly accurate results, it is important to devise 

advanced CD techniques that can automatically identify changes from multitemporal images acquired by 

the new generation of remote sensing satellite systems. 

For decades, images acquired by multispectral (MS) medium resolution sensors have been a stable and 

popular data source in remote sensing change-detection applications [2],[3],[5]-[7]. With the 

development of sensor technology, a new generation of EO satellite sensors has been developed that can 

acquire images with much higher spatial and spectral resolutions. This requires the design of novel CD 

techniques that can address the following problems: 1) analysis of high (or very high) spatial resolution 

multitemporal images [1],[8],[9]; and 2) analysis of high spectral resolution (i.e., hyperspectral (HS)) 
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multitemporal images [10],[11]. Both kinds of images contain richer change information than standard 

multispectral medium spatial resolution images, but also pose great challenges in the CD process. In this 

paper, the second problem is analyzed (refer to [1] for a detailed analysis of the first problem). We aim 

to define an effective approach to change detection in multitemporal hyperspectral images (CD-HS). 

With the launch of HS sensors onboard of satellites (e.g., HYPERION, CHRIS, HJ-1) and the increasing 

use of airborne HS sensors (e.g., AVIRIS, AISA, CASI), multitemporal HS images suitable to address 

CD problems have been acquired. Differently from the traditional MS sensors, HS sensors can measure 

the solar reflected radiation in a wide wavelength spectrum (e.g., from 400 to 2500 nm) at narrow 

spectral intervals (e.g., 10 nm). For each pixel in HS images, a near-continuous spectral signature is 

obtained over the whole range of wavelengths. Therefore, CD-HS can point out small variations in the 

spectral signature and thus in the land surface making it possible to identify changes that are usually not 

detectable with MS data. However, higher spectral resolution and narrow spectral intervals directly lead 

to an increase of the data dimensionality, and to the presence of redundant information. This makes the 

change analysis more complex and challenging, especially when unsupervised methods are considered. 

Therefore, it is important and necessary to investigate the problem of CD-HS in order to define 

techniques that meet requirements of practical CD applications. 

Usually, when dealing with change-detection problems in multispectral images (CD-MS), it is possible 

to identify abrupt land-cover changes. However, it is difficult to detect finer changes or to distinguish 

weaker changes associated to strong change class, due to the fact that the broadband spectral signatures 

do not provide enough spectral change information. The high spectral resolution of HS data allows us to 

address the CD problem by taking advantage of detailed spectral signatures for representing the subtle 

variations in complex scenarios. Let us consider a vegetated area affected by changes. On the one hand, 

MS images can highlight strong changes, which are class transitions that significantly affect the spectral 

signature (e.g., vegetation to land covers like water, built-up areas, soil). Within strong changes, other 
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changes may be observed that correspond to slightly different realizations of the strong change itself. In 

a given vegetation change class there might be more change contributions due to different factors (e.g., 

difference on the vegetation growth, density, water content). These kinds of change show small spectral 

differences with respect to those of the strong change they are associated with. Such differences are 

usually localized in specific parts of the spectrum. Thus it is difficult to detect them from the rough 

spectral representation in MS images. On the other hand, HS images can better separate different kinds 

of change due to the detailed representation of the spectral signatures. Moreover, if calibrated data are 

available, it is possible to obtain the explicit semantic meaning of the class transition (“from-to”) for a 

change by matching each single date spectral signature with the standard reference spectra in spectral 

libraries. However, CD is always limited by the availability of reference samples, since both the field 

work and photointerpretation processes are time expensive. Therefore the design of effective 

unsupervised methods that are independent from ground truth data availability is highly attractive in real 

applications. 

In this framework, we will analyze and give a definition of the CD-HS problem for a better 

understanding. An analysis and discussion of the concept of “change” in HS images is reported. We will 

concentrate on the development of effective unsupervised CD methods that: 1) address the problem of 

multiple-change detection; and 2) make adequate use of the detailed spectral information in HS data. 

Therefore we propose a novel hierarchical unsupervised CD approach that is suitable to identify 

different kinds of change between two HS images. The proposed approach is validated on three data sets. 

One is a simulated bi-temporal data set based on a HS image acquired by a commercial HS camera 

(Nuance FX, CRI Inc) [12]. The other two include satellite HS images acquired by Hyperion sensor (on 

EO-1 satellite). In order to assess the effectiveness of the proposed method for CD-HS, qualitative and 

quantitative assessments are conducted. From the qualitative point of view CD maps obtained with the 

proposed method on the three considered data sets are compared with those obtained by reference 
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techniques based on clustering procedures. From the quantitative point of view, performance 

comparison is performed by analyzing the multi-class separability among changes. Experimental results 

confirm the effectiveness of the proposed method. 

The remainder of this paper is organized as follows. Section II gives an overview of CD techniques 

presented in the literatures for both MS and HS images; moreover, it addresses and formalizes the 

concept of CD-HS. The proposed CD method based on the hierarchical spectral change analysis is 

described in Section III. The HS data used for validation and the design of experiments are introduced in 

Section IV. Experimental results are reported and analyzed in Section V. Finally, Section VI draws the 

conclusion of this work. 

 

II. CHANGE DETECTION IN HYPERSPECTRAL IMAGES 

A. Overview of CD techniques for MS and HS images 

For decades, CD techniques for optical images have been proposed for addressing the CD-MS problem 

[1]-[3], [5]-[7], [13]. These techniques can be split into two main groups: supervised and unsupervised. 

The supervised techniques are based on supervised classification schemes and assume that prior 

knowledge is available for the training of a classifier. This is the case of post-classification comparison 

(PCC) [14], joint-classification of multi-date images [15], compound classification [16] and 

classification of differential features [17]. Recently, new approaches have been proposed that assume 

that partial prior information is available. These approaches are based on partially unsupervised [18] or 

semisupervised learning [19],[20]. Such methods can be applied to both MS and HS images. However, 

when dealing with HS data, the attention should be devoted to define effective classification systems 

that: i) are suitable to the analysis of high-dimensional data and overcome the Huges phenomenon (i.e., 

with a fixed number of training samples, the predictive power of a classifier reduces as the 

dimensionality increases) [21], and ii) can effectively exploit informative features thus enhancing 
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change detectability. Although supervised CD methods generally outperform the unsupervised ones in 

detecting land-cover transitions with high accuracy, the process of collecting reference data for 

multitemporal images is time consuming and costly, and often unfeasible. Thus unsupervised methods 

are more attractive from the real application point of view.  

Many methods have been developed for addressing the MS-CD problem in an unsupervised way, 

resulting in the definition of families of techniques aimed to: 1) binary change detection, or 2) multiple-

change detection. Binary CD methods aim to only detect the presence/absence of change without giving 

any information about the possible separation of multiple changes. Thus all kinds of changes present on 

the ground are considered as a single general change class. Several methods have been proposed for 

binary CD [22]-[30]. From the methodological point of view, we can categorize them into thresholding-

based and clustering-based techniques. In [24], the problem of binary CD was solved in an automatic 

way by modeling the statistical distribution of classes and incorporating spatial-context information, thus 

improving the previous works based on manual thresholding [22],[23]. Some techniques were designed 

to improve the CD performance by using optimized computation algorithms [25], ensemble learning 

schemes [26], data fusion approaches [27] and multi-feature strategies [28]. Clustering algorithms have 

been used for solving the binary CD problem as well [29],[30]. However, a more challenging goal is to 

distinguish among multiple changes. Some attempts based on transformation, multivariate analysis, etc., 

have been done to address this kind of problem in [31]-[33]. Here we recall the Compressed Change 

Vector Analysis (C
2
VA) method recently proposed in [34], [35], which was developed based on the 

Polar Change Vector Analysis (CVA) approach [36]. In C
2
VA the multiple-change detection problem is 

represented in a magnitude-direction 2-D representation generated by a lossy compression (potentially 

ambiguous) procedure. Despite the effectiveness of the above-mentioned methods on MS images, the 

problem becomes much more complex and challenging (and the efficiency of these methods is reduced) 

when HS images are considered. This depends on the ambiguity that is generated when compressing a 
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very high dimensional feature space into only two components. This is potentially critical when many 

changes are present. 

The relatively few works present in the literature on this topic are based on: 1) transformation methods 

[37]-[40]; 2) spectrum analysis methods [41]-[43], and 3) other techniques [44]-[50]. Covariance 

equalization and cross covariance (chronochrome) are two commonly used linear transformation 

methods [37],[38]. They identify changes in the transformed space by subtracting feature vectors. 

Another class of transform-based methods represents the images in a new feature space, where the 

change information is concentrated into fewer components, thus reducing the high dimensionality of 

data and focusing on the components that are related to the specific changes of interest. Multivariate 

Alteration Detection (MAD) technique, which is based on the Canonical Correlation Analysis (CCA), 

was first introduced in [10] to solve unsupervised vegetation CD problems by using multitemporal HS 

images. Then it was extended to an iterative reweighted procedure (IR-MAD) in [39]. Other attempts 

involving Independent Component Analysis (ICA), and Temporal-PCA (TPCA) can be found in [11], 

[40]. After a given transformation, one (or several) component(s) can be selected for change 

identification. The spectrum analysis based CD method takes advantage of the detailed spectral 

signature in HS images. Both the distance and similarity measurements can be used to detect the 

difference between the considered pixel spectral signatures at two times (e.g., Spectral Angle Measure 

(SAM), Spectral Information Divergence (SID) and Spectral Correlation Measure (SCM) [41]-[43]). 

Other works have been developed to explore the problem from different perspectives: linear unmixing 

techniques [44]; change vector analysis after radiometric normalization [45]; model-based methods by 

formulating the CD as a statistical hypothesis test [46]; CD based on tensor-factorization and PCA [47]. 

Moreover, there are some other works focusing on the external factors that affect the CD performance, 

which include limiting image parallax errors [48], studying vegetation and illumination variation [49], 

and addressing diurnal and seasonal variations [50]. These factors may introduce errors and thus 
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decrease the detection accuracy, and should be limited as much as possible in real applications. 

B. Challenges for change detection on hyperspectral images 

HS sensors gather near-continuous spectra recording fine spectral details of the land covers or of specific 

targets composition. Due to the properties of HS images, the problem of CD-HS is much more 

challenging than that of CD-MS. The main problems associated with HS data are:  

1) High dimensionality. It involves challenges in data handling, including storage volume and computing 

bottle necks, which are actually common problems for all HS data processing tasks (i.e., classification, 

change detection, target recognition). For CD, the main difficulty is to effectively extract changes from a 

high dimensionality feature space. If methods developed for MS images, like CVA or C
2
VA [1], [34]-

[35] are applied to a large set of spectral channels, they may fail to give a proper change representation. 

2) Information redundancy. Continuous spectral coverage with many narrow bands does not necessarily 

mean higher information. Indeed, the spectral information of most of these adjacent bands results in a 

non-negligible redundancy. Moreover, a reduction of the signal-to-noise ratio (SNR) of the spectral 

signal is obtained when the spectral resolution increases from MS to HS data [51]. Therefore, 

information in a single HS band becomes more sparse and implicit, which may reduce the 

discriminability of a detector.  

3) Accurate data pre-processing. HS data require an accurate pre-processing phase (e.g., radiometric 

correction, image co-registration), which may significantly affect the final CD accuracy. 

Other problems arise from the methodological point of view. In greater detail we can observe that: 

a) Most of the existing unsupervised CD methods directly compare and analyze the difference of pixel 

radiance values, ignoring the near-continuous spectrum information that is the peculiar property of HS 

data. The high-dimensionality and redundant information in HS data increase the noise level (with 

respect to MS images) thus making the change information more implicit and difficult to be identified: 

changes become more overlapped and less separable. Thus the identification of the number of changes 
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and their separation become a critical problem. 

b) Most of CD-HS approaches present in the literature focus on either binary CD (i.e., detection between 

presence/absence of change) [43],[44] or the detection of specific changes (e.g., [10],[11], 

[39],[45],[47]). There is no method that addresses the challenging problem of detecting all possible 

kinds of change simultaneously (which can be very important especially when unexpected changes 

occur on the ground). Moreover, some methods still rely solely on change magnitude information 

[10],[11],[39], neglecting the whole spectrum information for discriminating different changes. 

c) Although the transformation-based methods (e.g., MAD, IR-MAD, TPCA) allow us to detect multiple 

changes [10],[11],[39],[40], the application of transformation to high-dimensionality data results in a 

high computation cost, in a difficult interpretation of all components and in a qualitative and ambiguous 

description of change classes, especially for subtle changes. 

d) Definition and description of the detected changes are still rough and unclear. Although the 

unsupervised approaches are not capable to provide the “from-to” transition information, it is necessary 

to define methods that are able to differentiate the detected changes related to different land-cover 

transitions. 

e) The existing methods try to extract all change classes directly from the original data space or from a 

transformed feature space relying only on a single operation (e.g., transformation, differencing), which 

increases the difficulty of separating multiple change classes and thus affects the detection accuracy. 

C. Analysis of the change concept in multitemporal HS images 

The aim of this work is to propose a method that is able to identify all class transitions having 

discriminable spectral behaviors either globally or locally in the spectrum of multitemporal HS images. 

These class transitions are defined here as change endmembers. 

In order to conduct an effective CD-HS, it is important to understand and model the concept of “change” 

in multitemporal HS images and its relationship with the concept of endmember. The very high spectral 
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resolution makes it possible to detect many differences in the spectral signatures of pixels acquired in a 

scene of interest. Such differences may occur at different spectral resolution levels.  

Let us consider two HS images X1 and X2 with size P×Q, acquired on the same geographical area at 

times t1 and t2, respectively. To analyze the behaviors of spectral differences between the two images, let 

us compute the HS difference image XD by subtracting multitemporal images from each other pixel by 

pixel [34].  

2 1-
D

X X X  (1) 

Let xi be a Spectral Change Vector (SCV) with spatial position i (i =1,…, P×Q) in XD, xi XD. In such 

image each pixel is characterized by a SCV that shows as many elements as the spectral channels in the 

original HS images. Each element assumes values that depend on whether a change occurred or not for a 

specific wavelength, and on the kind of change. Therefore, we use SCV signatures that are related to the 

land-cover class transitions, to formalize the considered problem. 

Generally speaking, a pixel can belong to the class of changed pixels c or the one of unchanged pixels 

n according to the magnitude of its SCV [36]. Fig.1 (a) gives a qualitative example of the expected 

behavior of the magnitude of XD. Unchanged pixels show a SCV magnitude close to zero (blue mode in 

Fig.1.a). The SCV signatures of such pixels have all spectral components close to 0 (see the blue 

signature in Fig.1.b). Changed pixels show high magnitude values (red mode in Fig.1.a), and their SCV 

signature shows one or more components that are far from 0. It is worth noting that in the 1-D 

magnitude domain usually all changes contribute to a single class c, since different kinds of change 

cannot be separated in the magnitude domain (see Fig.1.a). A finer analysis of SCV behaviors points out 

that c may include contributions from several change classes (see red and green signatures associated 

in Fig.1.b) depending on how the specific kind of change impacted on the spectral signature. SCVs can 

be preliminary separated into major changes. Major changes mainly depend on the land-cover class 
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transitions and have a large spectral difference with respect to no-change class and among each other. 

Usually, major changes can be easily and directly identified as they significantly affect a large portion of 

the spectrum of HS images. In many cases they can be also detected from MS images. As shown in 

Fig.1 (c), each major change (i.e., 
1C  and 2C ) produces statistically significant different spectra 

compared with each other and with the class of unchanged pixels. Within each major change, depending 

on the data, it is possible to detect other clusters of pixels having significant statistical differences in 

some parts of the spectrum. Such clusters are defined here as subtle changes. Subtle changes have SCVs 

similar to a major change, but differ from it in small portions of the spectrum. In Fig.1 (c), subtle 

changes 
1-1C  (in purple) and 

1-2C  (in orange) belong to the same major change 
1C  (in red), whereas 

2-1C  (in magenta) and 
2-2C  (in sea green) belong to 

2
C

 (in green). In other words subtle changes 

shows SCVs statistically different each other in some component of the spectrum, but quite similar to 

those of the associated major change. Subtle changes can be therefore detected only if a fine sampling of 

the spectral signature is available as it happens in HS images. If the sampling is poor as in the case of 

MS images, they cannot be detected. 

  
(a) (b) (c) 

Fig.1 Qualitative illustration of (a) the statistical distribution of the magnitude of SCVs (h()); the sample spectra on 

SCVs of major and subtle change classes that defined in multitemporal HS images: (b) major changes; (c) subtle 

changes (solid line) within the given major changes (dotted line). 

 

According to the above discussion  
1 2c C C, ,...    is the set of major changes, i.e., changes that affect 

a large part of the spectrum and that have statistical properties significantly different from each other. 
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Each major change may include subtle changes (i.e.,  
1 1-1 1 2C C C, ,...  


  and  

2 2-1 2 2C C C, ,...  


 ) 

whereas others may not (i.e., 
3C  ). By iterating the process it is possible to state that each subtle 

change can be further split until it is not possible to detect statistical inhomogeneity. Each major or 

subtle change that cannot be split anymore is defined as change endmember
1
. Accordingly, all pixels 

associated with a specific change endmember have the same (or very similar) spectral behaviors in the 

SCV domain and thus can be clustered into the same group. Let e = {e1, e2,…,eE} be the set of E 

possible change endmembers. Let en be the endmember associated to no-changed pixels. Thus the 

problem that we need to address is related to the identification and separation of change endmembers 

from each other and from unchanged pixels. We assume that the considered images are all radiometric 

corrected, thus change endmembers are only related to the application and the end-user. Note that the 

external factors (e.g., illumination conditions, seasonal effects) might have impacts on the detected 

change endmembers (causing differences) but will not be identified as one of them due to its low change 

magnitude. 

 

III. PROPOSED HIERARCHICAL APPROACH TO THE DETECTION OF MULTIPLE 

CHANGES IN HYPERSPECTRAL IMAGES 

Based on the discussion, definitions and assumptions presented in the previous section, we propose a 

novel hierarchical CD method for detecting changes in HS images and separating them into different 

change endmembers. The proposed method mainly consists of three steps: a) pseudo-binary change 

detection to initialize the process and extract general changes; b) change endmember detection based on 

hierarchical spectral change analysis; and c) generation of the CD map by merging endmember clusters. 

The block scheme of the proposed approach is illustrated in Fig.2.  

                                                           
1
 Note that the definition of change endmember is in concept different from the definition of endmembers in spectral 

unmixing. In the latter case, endmembers are the spectral signatures of pure classes that result combined in mixed pixels due 

to the limited spatial resolution of the acquisition sensor. 
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Fig.2 Block scheme of the proposed change-detection approach to multitemporal hyperspectral images. 

 

A. Pseudo-binary change detection 

This step is based on the analysis of the magnitude of SCVs according to traditional binary CD 

techniques. However it is referred as pseudo-binary because the output has three classes. After 

separating the change (c) and no-change (n) classes (thus no-change endmember en is 

straightforward), an uncertainty buffer class (u) is defined. The class of changes (c) is used to 

initialize the root node of a tree structure for change representation. 

From XD the magnitude and the direction of SCVs can be extracted. In the first step of the proposed 

method we are only interested in distinguishing c from n. Thus only the magnitude  is considered: 

2

1

( )
B

b

D

b=

X    (2) 

where B denotes the number of spectral channels of the HS images (i.e., the dimensionality of SCVs), 

and b

DX  is the b-th spectral difference in XD. Thus the whole B-D change information is compressed into 

a 1-D feature. The rationale behind this choice is: 1) to simplify and avoid any feature selection 

procedure; 2) to exploit the contribution of all portions of the spectrum. If noisy bands are detected in 

the pre-processing (e.g., due to atmosphere absorption) they can be neglected. 

Changed and unchanged pixels are separated into two groups according to a threshold value T 

computed on the magnitude variable. The Bayesian decision theory is applied to find this threshold [24]. 

 , ,c u n 

c

u

ne
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Change endmember 

e={e1, e2,…,eE} 
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angle distance 
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The Expectation Maximization (EM) algorithm is used for estimating the class statistical parameters (i.e., 

the class prior probabilities, the mean values and variances) in an unsupervised way [24], [52]. Note that 

change and no-change classes are assumed to be Gaussian distributed, and multiple changes are 

approximated as one single change class (c) in the magnitude domain to focus only on the general 

change information. This approach has been widely used in binary CD with MS images and 

demonstrated to be a good approximation in HS images [1], [34]-[36]. The approximation is acceptable 

as this is only a preliminary step. 

In order to reduce the effect of possible thresholding errors and obtain conservative results that do not 

propagate significant errors in the next steps, a margin  is set on the threshold computed on the 

histogram h() of the magnitude  (see Fig.3) and three classes are defined. The three classes are: 1) 

class of uncertain pixels (u), on which it is not possible to take a reliable decision at this level of the 

processing. These pixels will be analyzed and reclassified according to the generated endmembers; 2) 

class of changed pixels (c), which includes pixels having a high probability to be changed, but without 

any information on their kind. The problem of the multiple changes identification will be addressed in 

the next step by the proposed hierarchical spectral change analysis method; 3) class of no-changed pixels 

(n), which only contains pixels having a high probability to be unchanged. These pixels are treated as a 

pure no-change class endmember due to their low magnitude. Thus for a given SCV xi in XD, a label is 

assigned according to the following rule: 

,

,

,

c i

u i

n i

if T

if T T

if T

i
x



 





 

  

 


    
  

 (3) 

where i is the SCV magnitude of the considered xi. Fig.3 illustrates the flowchart of the pseudo-binary 

CD step. 
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Fig.3 Block scheme of the pseudo-binary change-detection step used for initializing the tree structure. 

 

B. Endmember detection based on hierarchical spectral change vector analysis (HSCVA) 

Let us focus on the classes of changed (i.e., c) and uncertain (i.e., u) pixels obtained in the previous 

step for identifying the change endmembers. The problem can be addressed by using clustering methods 

to automatically find the different change classes. However, the problem of multiple-class separation in 

HS images is much more difficult than in MS images. This is due to the following issues: 1) the high 

spectral resolution makes the spectrum more sensitive to changes, thus a high number of changes might 

be detected; and 2) subtle changes within major changes are always difficult to be identified directly 

from c. These problems decrease the detectability of all the hierarchy of changes directly from the data 

in one shot, and limit the effectiveness of clustering methods. 

To overcome the mentioned problems, we propose a solution based on the idea of decomposing the 

original complex problem into sub-problems by a Hierarchical Spectral Change Vector Analysis 

(HSCVA) (see Fig.4 for a qualitative example of hierarchy). The hierarchical structure is modeled by a 

tree of changes defined to drive the analysis. Let Ld be a generic level in the tree structure with d = 0, 

1,…, D-1. The depth of the tree is D (e.g., D=4 in Fig.4). The main idea is to start from the root node in 

the top level (i.e., L0 that represents the general change class c identified in the pseudo-binary CD step) 

and gradually separate different kinds of change into child nodes by selectively exploiting the spectral 
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information. At the first level (i.e., L1) of the tree the priority is given to identify the major changes that 

according to the definition of Section.II.C have significant spectral difference from each other. Within 

each child node, subtle changes (if any) are detected and separated. This process is iterated until all 

change endmembers (i.e., leaves of the tree) are found.  

 

Fig.4 Example of the proposed hierarchical tree for the detection of change endmembers with tree depth D=4 and 8 

identified leaves. 

 

Let us consider the root node that contains all the changed pixels without any distinction about their kind. 

To model the spectral homogeneity of c, a similarity measure based on the Spectral Angle Distance 

(SAD) [53] is used. The SAD  is computed between each xi in c, and a reference spectral signature 

Sc
 calculated as the average of all the xi in c, i.e., 

 
2

2

( , ) arccos

( )

ci

x S

x S

x S

 

 
 
 
 
  
 



 

c

c

B
b b

i Ω

b=1

B B
b b

i Ω

b=1 b=1

= , ci
x   (4) 

b

ix  and 
c

b

ΩS  are the b-th component in xi and Sc
, respectively. For each xi, the smaller ( , )

cix S 
, the 

higher the similarity with the reference spectrum and vice versa. For a pure change endmember we 

expect that all SCVs have very similar spectral behaviors, thus resulting in a small standard deviation of 

the similarity measure. Thus to verify the homogeneity of c we compare the standard deviation value 
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 c

 of ( , )
cix S 

 with a threshold value T If  c

 is smaller than T, the change class is considered 

as being homogeneous and a change endmember is detected. Accordingly, the process is in convergence 

and the tree only has a single node. Otherwise the change class is considered as being inhomogeneous 

and likely to contain more than one kind of change. Therefore the hierarchical decomposition starts.  

To distinguish major changes in c Principal Component Analysis (PCA) and clustering algorithm are 

used. However, any other transformation technique can be considered. Note that PCA is applied only to 

the xi belonging to c. In this way we optimize the representation of the changes. Then the clustering 

algorithm is applied to the subset of transformed Principal Components (PCs) that includes more than 95% 

of change information to reject the noise and redundant information. This choice also reduces the 

computational complexity. Let P be the image with selected M (M < B) PCs and let Pi be the vector 

characterizing spatial position i (i =1,…, P×Q) in P, Pi  P. An effective clustering technique should be 

used to correctly identify the major change classes inside c. The following issues need to be addressed: 

1) identification of the number of major changes; 2) definition of a strategy for modeling and clustering 

the change information. 

In order to address the above two issues, the adaptive x-means algorithm is used to automatically find an 

optimal number of major changes and generate reliable clustering results in an unsupervised framework 

[54],[55]. Differently from the popular k-means method, x-means adaptively searches on a range of k 

values and finds the best clustering model according to the Bayesian Information Criterion (BIC) [54]. 

The BIC identifies an adequate tradeoff between simplicity of the model (number of parameters) and 

quality of fit. It analyzes the maximum likelihood-based models of a given data distribution. We adopt 

the algorithm proposed in [55], which is an expansion of the original x-means, and modified it in order 

to satisfy our requirements. A given range U = [k0, k0+t] is first defined to initialize the x-means. This is 

the only input parameter to the algorithm. k0 denotes the lower bound for the number of major changes k, 
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and t is a constant value to control the upper bound. Then M-dimensional PCs of c are given as input to 

the x-means clustering and the method is initialized by applying conventional k-means with k = k0. We 

assume that all kinds of change approximately follow the Gaussian distribution. The BIC value of each 

generated cluster is then compared with the joint BIC value of its split into two clusters, and the clusters 

associated with the smaller value are selected (the smaller BIC value the better fitting is) [54]. An 

additional merging operation is applied if necessary to ensure that the final output number of clusters is 

within the defined range U [55]. After applying the x-means clustering, the final output includes: 1) the 

optimal number k of major changes; 2) the detected major changes in c (i.e., the level L1 of the 

hierarchical tree structure). Note that BIC is just one of the choices for the optimal model selection. 

However, it is a reliable criterion especially for normal distributions. Other test criteria, such as Akaike 

Information Criterion (AIC) and Minimum Description Length (MDL) may also be used [56], [57]. 

To define a reliable range U for the clustering process, the initial number of classes should be identified, 

which is the lower bound k0 (k0 2) in the x-means. k0 should be small enough to include the minimum 

number of change classes that can be directly recognized. To perform a reliable choice of this parameter, 

we applied a method based on the analysis of the compressed change direction representation proposed 

in [34]. Instead of directly computing the angular distance in the original feature space, we computed it 

on the selected M-dimensional PCs of c as follows: 
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where ( )
i

P  is the compressed change direction of Pi, and m

iP  is the m-th component of vector Pi. In 

this way we emphasize in the direction variable only the possible changes associated with c. The first 

PCs can properly model the changes that we are looking for. Thus the modes of the obtained distribution 

on the compressed change direction ( )
i

P  can be recognized as the initial number k0 of major changes 



19 

existing in c (see Fig.5). The upper bound of the range U is defined by adding a small integer value t to 

k0. t is in the order of few units and takes into account the intrinsic uncertainty of defining k0 by 

analyzing ( )
i

P . 

 

Fig.5 Example of definition of the initial cluster number (k0) based on analyzing of the compressed change direction. 

 

Once the major change classes in c have been recognized and separated by using the adopted clustering 

algorithm, the root node splits into different child nodes at L1 in the tree. Each node corresponds to one 

major change class (i.e., 
1 2C C, ,...  ). For each major change 

1 2C C, ,...   the spectral homogeneity of 

SCVs is tested according to (4). As an example let us consider the first child node associated to class 

1C . The SAD of 
1C  is computed as 

1

( , )
ci

x S  for each xi  
1C . If for a given node convergence is 

not reached (e.g., in our example it means that the standard deviation of 
1

( , )
ci

x S is larger than a given 

threshold) then all the above operations (i.e., PCA, x-means, stop criterion evaluation) are iterated by 

considering only the SCVs of pixels xi in the considered node (e.g., 
1C  in our example). Once all the 

nodes at L1 are processed, the algorithm moves to the next level. The hierarchical decomposition is 

applied to each node in every level of the tree until the convergence is reached for all of them (see Fig.6). 

This happens when all the nodes satisfy the homogeneous condition in (4). The last node of each branch 

is a leaf node and corresponds to one change endmember in e={e1, e2,…,eE}. Note that at convergence 

change endmembers can appear at different levels of the tree. The block scheme of this step is shown in 
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Fig.6. 

 

 

Fig.6 Block scheme of the HSCVA step in the proposed change-detection approach. 

 

C. Generation of the change-detection map by endmember clusters merging 

After identifying E change endmembers e ={e1, e2,…,eE}, the pixels in the uncertain class u derived 

in the first step of pseudo-binary CD are considered. These pixels are assigned to one of the change 

endmembers or to the no-change class on the basis of spectral similarity. SAD (see (4)) is computed 

between the SCV xi (xi  u) and the reference spectra 
je

S  (i.e., the average spectrum of each detected 

change endmember in e and of the no-change endmember en). Then xi is assigned to the class with the 

minimum distance value, i.e., 
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The final CD map is generated by merging the results obtained in the three sets of changed, uncertain 

and unchanged pixels (see in Fig.2). 

 

IV. DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS 

A. Description of Data sets 

1) Simulated hyperspectral data set: the first data set is taken from a real-world database of HS images 

presented in [58], which includes images acquired by a commercial HS camera (Nuance FX, CRI Inc.) 

[12]. With an integrated liquid crystal tunable filter, the camera acquires HS images by sequentially 

tuning the filter through a series of 31 narrow wavelength bands. The bandwidth is approximately 10nm 

in a wavelength range from 420nm to 720nm, covering mainly the visible spectrum region. The selected 

image is an outdoor scene in the Harvard University with a size of 1392×1040 pixels (see Fig.7.a). In 

order to simulate the change targets and build the synthetic dataset, eight tiles were extracted from the 

original image (X1) over all the spectral bands (see colored rectangles in Fig.7.a). They correspond either 

to different materials of the wall in the scene or to the same material, but under different illumination 

conditions. Tiles were inserted into disjoint areas on a copy of the original image to generate a simulated 

image (X2) showing changes associated either to the material transitions or to the same material 

transitions but affected by different illumination conditions. By doing this, we simulated the subtle 

changes and increased the complexity of the considered problem. The same simulation setup was 

conducted three times by varying the position of tiles, thus generating three simulated multitemporal 

datasets. Each one is composed of X1 and one among the three simulated X2. Fig.7 (b) shows one of the 

simulated images, and Fig.7 (c) presents the corresponding change reference map, which includes 10 

change endmembers. The performance indices for this data will be presented as the average values over 

the three simulated data sets. 
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(a) (b) (c)  

Fig.7 False color composite (R: 710nm; G: 620nm; B: 510nm) of (a) the HS image acquired by the Nuance FX HS 

camera (X1); (b) one of the simulated image (X2) with changes; (c) Reference map (10 changes in different colors, no-

change class in white color). 

 

2) Hyperion satellite images of an irrigated agricultural area: The second data set is made of a pair of 

real bi-temporal HS remote sensing images having a size of 211×396 pixels. These images were 

acquired by the Hyperion sensor mounted onboard the Earth Observing-1 (EO-1) satellite on May 1st, 

2004 (X1) and May 8th, 2007 (X2). The images were downloaded from the U.S. Geological Survey 

(USGS) website [59] using the EarthExplorer GUI. Fig.8 (a) and (b) shows a false color composite of 

the two images. The study area covers an irrigated agricultural land of Hermiston city in Umatilla 

County, Oregon, United States. Land-cover changes include the transitions among the crops, soil, water 

and other land-cover types. The changes occurred in the crop land are mainly due to the vegetation water 

content that affected the irrigation condition in the field (see the circles on the image, which correspond 

to the radius of the irrigation system), and to the difference of the crop growth situation. The original 

Hyperion images contain 242 spectral bands, ranging from 350nm to 2580nm (i.e., visible, near infrared, 

short-wave infrared), with a spectral resolution of 10nm and a spatial resolution of 30m. Pre-processing 

was applied to the images, including bad stripes repairing, atmospheric corrections, and image co-

registration with a residual error of 0.5 pixels. Radiometric correction was conducted to mitigate 

differences in illumination conditions and their impact on the CD step, thus reducing changes that are 

mainly irrelevant to the application and the end-users. In addition, we removed the uncalibrated bands 
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(according to the prior knowledge on the Hyperion sensor), the overlapped redundant bands and the 

noisiest bands due to low SNR values [60]. It should be noted that even if we removed the noisiest bands 

and uncalibrated bands, the selected channels include both clean and partially noisy bands, which still 

maintain the complexity of the data. Finally, 159 pre-processed bands (i.e., 8-57, 82-119, 131-164, 182-

184, 187-220) were selected for performing the CD task. However, no ground truth samples are 

available for this data set. Thus the validation of results is done mainly in a qualitative way. Fig.8 (c) 

represents a false color composite of spectral channels in XD. Different colors indicate possible kinds of 

change classes, whereas gray areas represent the unchanged pixels. The same change class can be 

described differently in different wavelengths (e.g., see Fig.8 (d) and (e) where the same kind of change 

is highlighted in orange and green circles and has different behaviors in bands 30 and 40 of XD). 

Accordingly the two examples given in Fig.8 do not fully describe the complexity of the problem.  

     
(a) (b) (c) (d) (e) 

Fig.8 Hyperion images acquired on an irrigated agricultural area. False color composite (R: 650.67nm, G: 548.92nm, 

B: 447.17nm) of the original images acquired in (a) 2004 (X1) and (b) 2007 (X2); (c) composite three SCVs channels (R: 

1729.70nm, G: 1023.40nm, B: 752.43nm); single SCVs channel of (d) band 30 (650.67nm) and (e) band 40 (752.43nm). 

 

3) Hyperion images of wetland agricultural area: Another pair of bi-temporal Hyperion HS images with 

a size of 252×526 pixels, acquired on May 3, 2006 (X1) and April 23, 2007 (X2) in a wetland agricultural 

area in Yancheng, Jiangsu province, China, was used in the experiments. These images were also 
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downloaded from U.S. Geological Survey (USGS) website [59]. After applying the same pre-processing 

used for the previous data set, 132 bands were selected: 13-53, 83-96, 101-118, 135-164, 188-199 and 

202-218. Also for this dataset we do not have any available ground truth. False color composite images 

of the bi-temporal data are shown in Fig.9 (a) and (b). In this scenario, the land-cover classes mainly 

include the agricultural cropland, seafood farm ponds, and offshore shoals vegetation (e.g., spartina 

alterniflora, suaeda and reed). During the study period, the actual land-cover changes included 

transitions among vegetation (most were in the crop field), water area, seafood farm ponds and some 

buildings. Fig.9 (c) shows a false color composite image of XD, and Fig.9 (d) and (e) present some 

selected channels of XD. Similarly as before, the false color composition does not fully describe the 

complex CD problem. However, it gives an idea about where the changes occurred. 

     
(a) (b) (c) (d) (e) 

Fig.9 Hyperion images acquired on a wetland area in China. False color composite (R: 752.43nm, G: 650.67nm, B: 

548.92nm) of the original images acquired in (a) 2006 (X1) and (b) 2007 (X2); (c) composite of SCVs channels (RGB: 

1729.70nm, 752.43nm, 650.67nm); selected SCVs channels: (d) band 52 (874.52nm) and (e) band 158 (1729.70nm). 

 

B. Design of Experiments 

The proposed CD approach has been applied to the three HS data sets. For the synthetic bi-temporal HS 

images, the same procedure was conducted on three simulated data sets (see Section.III.A). In this case, 

the first step of pseudo-binary CD was neglected as the general change class c is explicitly defined by 

the change simulation step. Thus we directly focused on the pixels in c and tried to identify different 
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change endmembers inside it. Performance is assessed quantitatively on the three reference maps. The 

final performance indices are given as the average accuracy over the three simulated datasets. For the 

two Hyperion HS remote sensing data sets, the proposed method was applied starting from the pseudo-

binary CD step and the three clusters (c, u and n) where generated. The value  was set such that the 

u class includes 25% of the pixels in n. After obtaining the general change class c, T was set to 

drive the decomposition of the root node and to build the hierarchical tree for change endmember 

detection. T is a user dependent parameter and controls the level of spectral homogeneity of the 

detected change endmembers. The smaller the threshold value T, the higher the homogeneity level is 

and thus the number of change endmembers, and viceversa. In practical applications, the threshold 

should be selected taking into account the desired sensitivity to subtle changes. In our experiments trials 

were carried out with different values of T, achieving different trade-offs in terms of endmember 

homogeneity. 

After the initialization of c (i.e., root node of the tree), the identification of multiple change 

endmembers was done by using the proposed HSCVA step. The initial number of k0 was defined based 

on the compressed change direction method described in Section III, and t was set equal to 3 to define 

the upper bound of U. The final CD map was obtained when all change endmembers were generated and 

the pixels in u were assigned to one of them or to the unchanged endmember. The results obtained by 

the proposed method were compared with the ones obtained by the popular unsupervised k-means and 

fuzzy C-means (FCM) clustering methods. The two reference methods were applied to the subset of PCs 

selected by the proposed method for the root node, i.e., the ones that contain most of the information for 

c. The class number k of k-means and FCM was fixed on the basis of the proposed method outcome. In 

this way, we give clear advantage to the reference techniques that have not the intrinsic capability to 

estimate the number of expected change endmembers. This choice implicitly penalizes the proposed 
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method. To reduce the uncertainty due to the random initialization in the reference methods, we ran 

them 200 times. The final accuracy was calculated as the average over 200 trials.  

To evaluate the CD results both quantitative and qualitative assessments were carried out for each of the 

three considered datasets. For the synthetic data set, the quantitative assessment was based on the CD 

accuracy (i.e., endmember accuracy and kappa accuracy) and error indices obtained according to the 

reference maps. In addition, the average endmember distance has been computed to assess the average 

endmember separability. To this end, pair-wise Bhattacharyya distance was computed among all the 

pairs of change endmembers. For two generic detected change endmembers e and e (,  [1,E] and 

   ), the Bhattacharyya distance B,  is calculated as follows: 
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where  and   denote the mean vectors,  and   represent the covariance matrices of change 

endmembers  and , respectively. The higher distance the better the class separability, and viceversa. 

The average pairwise Bhattacharyya distance computed on all pairs of change endmembers gives 

indication of the overall class separability. In the following we will refer to it as multi-class 

Bhattacharyya distance.  

The CD results were also analyzed qualitatively by comparing: 1) the obtained CD maps; 2) the 2-D 

scatterplots of change endmembers in the feature space (i.e., the first PC versus the second PC on c); 3) 

the spectral signatures of all the detected change endmembers in XD with the ones obtained with 

reference techniques. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Simulated hyperspectral data set 

For the simulated data, experimental results were obtained by fixing the value of T to 0.05 for all the 
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three image pairs. The average kappa accuracy () and the average multi-class Bhattacharyya distance 

obtained by the three considered methods are shown in TABLE I. As one can see, the proposed method 

obtained both the highest kappa accuracy and the highest average Bhattacharyya distance.  

TABLE I 

AVERAGE KAPPA ACCURACY AND MULTI-CLASS BHATTACHARYYA DISTANCE OBTAINED BY THE 

THREE CONSIDERED METHODS ON THE SIMULATED DATA SETS. 

Method Average  
Average multi-class 

Bhattacharyya distance 

PCA k-means 0.9772±0.0007 5.28 

PCA FCM 0.9002±0.0012 5.03 

Proposed method 0.9930±0.0009 5.91 

 

    

    

    

    
(a) (b) (c) (d) 

Fig.10 CD results obtained on the simulated HS data set. Results provided by: (a) the proposed method, (b) k-means, 

and (c) FCM, (d) ground truth. From up to down, each row represents: (1) CD maps (or reference map); (2) 2-D 

scatterplots of change classes in the feature space; (3) SCV signatures of detected changes; (4) a subset from results in 

(1). 
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Let us now analyze one of the three simulated cases in greater detail (see Section IV Fig.7). In this case, 

the complete tree has a structure with 3 levels and 14 nodes, where 10 of them are leaf nodes identified 

as change endmembers. The CD maps obtained by the proposed method and the reference ones are 

shown in the first row of Fig.10. Fig.10 (a)-(c) reports the results of the proposed method, the reference 

k-means and FCM, respectively. Fig.10 (d) shows the reference map. Each color corresponds to a 

specific detected change endmember, whereas the unchanged pixels are in white. In the second row, 2-D 

scatterplots of the detected change classes are shown in the feature space of first two PCs extracted from 

pixels in c. The spectral behaviors of the change endmembers in the SCV domain are presented in row 

3. Tiles extracted from the whole CD maps are illustrated and further compared in row 4. Accuracies 

and error indices obtained according to the reference data are summarized in TABLE II. 

 
TABLE II 

ENDMEMBER AND KAPPA ACCURACY, NUMBER OF DETECTION ERRORS AND MULTI-CLASS 

BHATTACHARYYA DISTANCE OBTAINED BY THREE CONSIDERED METHODS ON ONE OF THE 

SIMULATED DATA SETS. 

Method 

Endmember accuracy (%) 

 
Tot. errors 

(pixel) 

Multi-class 

Bhattacharyya 

distance 
e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 

PCA k-means 100.00 99.97 88.56 100.00 99.99 91.37 39.34 98.15 100.00 97.42 0.9770 1367 5.49 

PCA FCM 99.77 57.30 0.00 100.00 97.10 97.20 0.00 97.92 100.00 94.30 0.9007 2218 4.93 

Proposed 

method 
100.00 99.93 92.10 100.00 100.00 99.94 86.60 99.46 100.00 99.07 0.9933 650 6.22 

 

As we can see from Fig.10, the proposed method detected the expected changes on this simulated data 

set accurately. In particular, it identified properly the change classes in a hierarchical way, and it was not 

affected by the problem on minority classes. The subtle changes with small amount of pixels (e.g., 

change of letters and their edges) were also detected in a precise way (see row 4 in Fig.10). On the 

contrary, despite the conventional k-means and FCM received as input the true number of change 

endmembers, their results were less accurate. This demonstrates the advantages of using the hierarchical 

analysis structure. A visual comparison of scatterplots confirms the better results produced by the 
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proposed method with respect to the other techniques. The two reference methods obtained in overall 

good performances, but showed a higher error rate for some change endmembers (e.g., e6 is confused 

with e7 in k-means; and e3 with e4 in FCM). By comparing the SCV signatures of changes detected by 

the three methods (Fig.10 row 3 (a)-(c)) with the one of reference change map (Fig.10 row 3 (d)), we 

can observe: 1) higher similarity between results of the proposed method and the reference spectra; and 

2) different kinds of change (i.e., change endmembers) have discriminable spectral behaviors in the SCV 

domain (see row 3 (a) in Fig.10), thus indicating the effectiveness of the proposed method in separating 

change information. The reference techniques detected some wrong change endmembers. For example, 

in the result of the FCM there are two couples of change endmembers with very similar spectral 

signatures. The first couple is represented by red and purple signatures, and the second is given by green 

and sienna signatures in Fig.10 (c) row 3. These changes were wrongly detected by the FCM method 

even by fixing the correct number of input classes. 

The above analysis is confirmed by the numerical results in TABLE II. We can observe that: 1) the 

proposed hierarchical method outperformed reference approaches in terms of kappa accuracy and 

number of errors. The kappa accuracy is the highest among the three (i.e., 0.9933 compared to 0.9770 

for k-means and 0.9007 for FCM). The total error of the proposed method (i.e., 650 pixels) is 

significantly smaller than the ones of reference methods (i.e., 1367 pixels for k-means and 2218 pixels 

for FCM); 2) on each single change endmember, the two reference approaches resulted in significant 

errors (both omission and commission), whereas the proposed method exhibits the highest accuracy. 

This further confirms the difficulty of the reference methods to directly identify endmembers; 3) the 

multi-class Bhattacharyya distance values indicate that the proposed approach achieves the highest class 

separability (i.e., 6.22) with respect to the two clustering methods (i.e., 5.49 in k-means and 4.93 in FCM, 

respectively). 

B. Hyperion satellite images of an irrigated agricultural area 
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In this case the threshold T was set to 0.13. The proposed method detected 15 change endmembers as 

leaf nodes in the hierarchical tree, which includes 4 levels and 20 nodes. Fig.11 illustrates CD results 

obtained by (a) the proposed hierarchical method, (b) the k-means, and (c) the FCM. From row 1 to row 

3 the figure shows the CD maps, the 2-D scatterplots in the two-dimensional feature space (i.e., the first 

two PCs extracted from pixels in c), and the SCV signatures of all the detected changes, respectively. 

For the proposed hierarchical approach the 15 change endmembers are represented with different colors, 

whereas the no-change pixels are in white. For the two reference methods, the change clusters are also 

shown in different colors, but it is not possible to establish a direct correspondence among the legend 

given for the proposed method in Fig.11, and the colors used for the reference methods. Also in this case 

the number of clusters for the k-means and the FCM was fixed on the basis of the result produced by the 

proposed technique.  

The proposed hierarchical CD approach obtained satisfactory results detecting change endmembers 

(validated by the detailed photointerpretation) and separating them according to the defined spectral 

homogeneity level. In greater detail, we can observe that: 1) The proposed method detected change 

endmembers due to the hierarchical analysis. On the contrary, the other two reference methods (that 

identify all the changes in a single step) ignore the intrinsic hierarchy of the change information in HS 

images. This increased the errors in the detection of change classes. (see also Fig.11 row 1, where the 

proposed method detects changes with a higher homogeneity than the two reference methods). 2) All the 

considered methods are able to discriminate multiple changes, but with different performance on the 

change separability of change endmembers. The multi-class Bhattacharyya distance values were 4.12 

(proposed method), 3.78 (k-means) and 3.65 (FCM). The proposed method obtained the highest 

separability among all the detected change endmembers. 3) The generated spectra of change 

endmembers point out the spectral differences in the SCV domain, which illustrate the change 
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separability of the different considered methods. 

 

   

   

   
(a) (b) (c) 

Fig.11 CD results obtained on the real Hyperion HS images on an agricultural area. Results provided by (a) the 

proposed method, (b) the k-means, and (c) the FCM. From row 1 to row 3: (1) change-detection maps; (2) 2-D 

scatterplots of all change classes in the feature space by using the first two PCs computed on pixels in c; (3) spectra 

of the detected changes in the SCV domain. The legend only applies to the proposed method results. 

 

C. Hyperion images of a wetland agricultural area 

On the third data set we carried out the same experiments as for the previous one. The threshold T was 

set to 0.15. The hierarchical tree structure consisted of 5 levels with 27 nodes, where 17 change 

endmembers were detected according to 17 leaf nodes. As we can see from the CD results, in this case 

the proposed method also obtained satisfactory results. A qualitative analysis points out that the change 

endmembers were properly detected (see Fig.12). The multi-class Bhattacharyya distances for the three 
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methods were 3.89 (proposed method), 3.49 (k-means) and 3.30 (FCM). Also in this case, the proposed 

hierarchical method achieved the highest multi-class separability, whereas the k-means and FCM 

resulted in a lower separability, despite the two reference methods are driven by the number of 

endmembers automatically detected by the proposed method.  

 

   

 

   

 

 
 

 
 

 
 

 (a) (b) (c) 

Fig.12 CD results obtained on the real Hyperion images on a coastal wetland agricultural area in China. Results 

provided by (a) the proposed method, (b) the k-means, and (c) the FCM. From row 1 to row 3: (1) CD maps; (2) 2-D 

scatterplots of all change classes in feature space by using first two PCs computed on pixels in c; (3) SCV spectra of 

the detected changes (17 changes in different colors, no-change class in white). The legend only applies to the proposed 

method results. 

 

VI. DISCUSSION AND CONCLUSION 
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This paper analyzed and discussed the change-detection problem in multitemporal hyperspectral images. 

By taking into account the intrinsic complexity of the HS data, a proper definition of the concept of 

“change” in HS images is given and the concept of change endmembers is introduced. A novel 

hierarchical spectral change analysis approach has been proposed to detect and identify multiple-change 

information in an unsupervised way. Accordingly, the change endmembers are detected hierarchically 

by analyzing the spectral properties in the SCV domain. Moreover, the proposed hierarchical analysis 

can identify the discriminable spectral change endmembers from coarse to fine level leading to a better 

model, whereas the reference methods are based on a single step of processing only. Since in the CD-HS 

case, the number of change endmembers is usually high, those methods are generally not able to 

correctly identify all of them. Satisfactory results obtained on both the simulated and real multitemporal 

HS remote sensing images confirmed the effectiveness of the proposed CD method. 

The main contributions of this work are as follows: 1) Analysis and definition of the concept of changes 

in HS images, proposal of a technique for addressing the challenging multiple-change detection problem 

in HS images, by considering the difference of spectral change behaviors in the SCV domain at different 

spectral detail scales; and 2) proposal of an approach that models the detection of multiple changes in a 

hierarchical way, to identify the change information and separate different kinds of changes (major 

change, subtle change and finally change endmembers) according to their spectral difference. In this 

way, we progressively decompose the complex problem into several specific sub-problems, focusing on 

each single portion of the multiple-change information. This makes it possible to discover the difference 

among similar changes by decreasing the difficulty of detection. Moreover, the proposed approach is 

designed in an unsupervised way, thus it fits most of actual applications, for which often the ground 

truth is not available. 

A minor limitation of the proposed method consists in the use of CVA for the pseudo binary CD step. 

By computing the magnitude of SCVs, small portions of the change information might be lost after 
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compression, thus causing missed alarms in the final CD map. Although a proper setting of margin  

may limit this problem, the high dimensionality of HS data may still produce errors. Another issue to 

consider is the tuning of the threshold value (i.e., T), which impacts on the final number of the output 

change endmembers. T should be fixed in order to tune the sensitivity of the method according to the 

end-user requirements. This can be done considering the fact that T has a clear physical meaning with 

respect to the sensitivity of the method. Although additional investigations should be done to define a 

possible automatic technique for the detection of the optimal threshold, we point out that the selection of 

T is more simple and reliable than the selection of the number of endmembers in standard clustering 

methods. 

As future development of this work, the robustness of the proposed method will be tested on the 

available multitemporal HS images showing differences in illumination conditions and no real change. 

Moreover, we plan to: i) consider in the proposed technique also the spatial information in order to 

increase the robustness and the accuracy of the CD results; ii) define a reliable automatic technique for 

the detection of the above mentioned threshold; iii) define alternative methods for the identification of 

change endmembers; iv) investigate the CD-HS problem on data sets for which an exhaustive ground 

truth is available. 

 

ACKNOWLEDGEMENTS 

This work was carried out in the framework of the project “Very high spatial and spectral resolution 

remote sensing: a novel integrated data analysis system”, funded by the Italian Ministry of Education, 

University and Research (Ministero dell'Istruzione, dell'Università e della Ricerca - MIUR) as a research 

program of relevant national interest (Programmi di Ricerca di Rilevante Interesse Nazionale – PRIN 

2012).  



35 

APPENDIX 

The notation used in the paper is listed in TABLE III. 

TABLE III 

NOTATION USED IN THE PAPER. 

Symbol Description Symbol Description 

Xt HS images acquired at time t i SCV magnitude of xi 

P Length of image Xt Ld d-th level of the hierarchy tree structure 

Q Width of image Xt D Depth of the tree 

XD Spectral change vectors (SCVs) 
c

S  Reference spectrum calculated by 

averaging all xi  c 

xi SCV with spatial position i in XD ( , ) ci
x S  Spectral angle distance between xi and 

c
S  

c Set of change classes  c

 Standard deviation value of ( , ) ci
x S  

KC  K-th detected major change in c P Image with selected M (M < B) PCs 

e Set of change endmembers Pi Vector with spatial position i in P 

eE E-th change endmember M Number of selected PCs 

E Number of change endmembers k Number of major changes in c 

en Endmember of no-change class U Range of number k 

n Class of no-change k0 
Initial number of k (i.e., lower bound of U) 

 Magnitude of SCVs t
 

A constant value to control the upper bound 

of U 

B 
Number of the spectral channels (bands) of 

the considered images 
( )

i
P  Compressed change direction of Pi 

T 
Magnitude threshold for separating the c 

and n 
jeS  Reference spectrum of endmember ej 

{e, en} 

 A margin value on the threshold B, Bhattacharyya distance between e and e 

h() The histogram of   Mean vector of e 

u Set of uncertain pixels  Covariance matrix of e 
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