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Semi-supervised Kernel Feature Extraction for
Remote Sensing Image Analysis

Emma Izquierdo-Verdiguier, Student Member, IEEE, Luis Gómez-Chova, Member, IEEE,
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Abstract—This paper presents a novel semi-supervised ker-
nel partial least squares (SS-KLPS) algorithm for non-linear
feature extraction to tackle both land cover classification and
biophysical parameter retrieval problems. The proposed method
finds projections of the original input data that align with the
target variable (labels) and incorporates the wealth of unlabeled
information to deal with low-sized or under-represented datasets.
The method relies on combining two kernel functions: the
standard radial basis function (RBF) kernel based on labeled
information, and a generative, i.e. probabilistic, kernel directly
learned by clustering the data many times and at different scales
across the data manifold. The construction of the kernel is very
simple and intuitive: two samples should belong to the same
class if they consistently belong to the same clusters at different
scales. The effectiveness of the proposed method is successfully
illustrated in multi- and hyper-spectral remote sensing image
classification and biophysical parameter estimation problems.
Accuracy improvements in the range between +5 and 15% over
standard PCA, +4 and 15% over kernel PCA, and +3 and
10% over kernel partial least squares (KPLS) are obtained on
several images. Average gain in RMSE of +5% and reductions
in bias estimates of +3% are obtained for biophysical parameter
retrieval compared to standard PCA feature extraction.

Index Terms—Classification, biophysical parameter estimation,
feature extraction, kernel methods, principal component analysis
(PCA), partial least squares (PLS), clustering, semi-supervised
learning, generative kernels

I. INTRODUCTION

FEATURE extraction has become an important topic in
remote sensing data processing mainly due to the high

dimensionality of data, as well as the high redundancy among
spectral bands. The problem is ubiquitous and very com-
mon in remote sensing image analysis. Moreover, the high-
dimensionality of remote sensing data is often increased by
stacking spatial, spectral, temporal and multiangular features
to the spectral channels for modelling additional information
sources. Feature extraction consists of identifying the most
discriminative variables for data classification or regression.
These variables are often associated with the most relevant
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directions in the data distribution. For example, feature ex-
traction is typically conducted for reducing the dimensionality
of hyperspectral images and infrared sounder imagery before
classification and parameter retrieval.

The family of multivariate analysis methods for feature
extraction is commonly used to reduce the data dimensionality
by projecting examples onto the most relevant directions of the
data manifold. Principal component analysis (PCA) [1] and
partial least squares (PLS) [2] are two of the most common lin-
ear feature extraction methods in remote sensing data analysis.
Other methods focus on including information about the noise,
such as the minimum noise fraction (MNF) transform [3] or
the related noise-adjusted principal components (NAPC) [4].

All previous methods assume that there exists a linear rela-
tion between the original data. In many situations, this linearity
assumption does not hold, and a nonlinear feature extraction
is needed to obtain an acceptable performance. Different non-
linear versions of PCA and PLS have been developed, which
can address non-linear problems either by local approaches [5],
neural networks [6], or kernel-based algorithms [7]. In the
last decade, kernel methods have attracted the interest of the
remote sensing community because they allow us to develop
nonlinear models from linear ones in a very easy and intuitive
way, and still require linear algebra [8]. Essentially, kernel
methods map the input data into a high dimensional Hilbert
space, H, and define a linear method therein. The model
results nonlinear with respect to the input space. Interestingly,
there is no need to work explicitly with the mapped data,
but one computes the nonlinear relations between data via a
kernel (similarity) function that reproduces the similarity in H.
Kernel methods have in general good performance in the case
of high dimensional problems with low number of training
examples [7].

The kernel framework has been exploited not only for
classification and regression but lately for nonlinear feature
extraction. Note that while nonlinear classification or regres-
sion methods lead to black-box models, the idea underlying
feature extraction is to find an appropriate data representation
(typically via projection operators). This different perspective
of addressing a problem leads to some interesting properties.
The most important is that nonlinear features extracted with
kernel methods can be used directly for general tasks including
classification, regression, clustering, ranking, compression, or
data visualization. Therefore, kernel methods have recently
captured the interest of the scientific community for feature
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extraction. For example, this is the approach used in kernel
principal component analysis (KPCA) [7] and kernel partial
least squares (KPLS) [9]. The main difference between KPCA
and KPLS is that while KPCA finds the projections that
maximize the variance of the input data in the feature space,
KPLS extracts projections that account for both the projected
input and target data (labels). A set of multivariate kernel
feature extraction methods, such as kernel PCA (KPCA),
kernel PLS, and kernel orthonormalized PLS (KOPLS), were
proposed as a preprocessing step for hyperspectral image clas-
sification and canopy parameter retrieval [10]. In [11], KPCA
was also used for target and anomaly detection, while the
kernel nonparametric weighted feature extraction (KNWFE)
was introduced for hyperspectral image classification in [12].
Recently, a kernel version of the maximum autocorrelation
function (MAF) has been successfully presented for change
detection [13], and further extended in [14] to define the
signal-to-noise ratio explicitly in the kernel feature space.
In [15], the kernel entropy component analysis (KECA) was
presented for remote sensing: The method generates nonlinear
features that reveal structure related to the Rényi entropy of the
input space data set rather than the variance of the projections.

Each of the previous kernel methods focuses on extracting
features that optimize a given criterion, e.g. directions that
account for the maximum variance (jointly or not with those
minimally affected by noise), the maximum entropy, the
maximum Fisher’s discriminant criterion, etc. In this paper, we
focus on the KPLS feature extraction method, which proved
to be effective for remote sensing data processing, extracting
nonlinear features maximally aligned with the target variables
(see e.g. [10], [16]). Data projected onto these features can be
directly used in canonical linear classification or regression.

Extracting nonlinear features by KPLS is a very complex
problem when relatively few labeled data points are available,
which is a common situation in remote sensing data analysis
problems. Including the information conveyed by unlabeled
data via semi-supervised learning can potentially improve the
feature extraction task. The semi-supervised framework has
recently attracted a considerable amount of theoretical [17] as
well as remote sensing applied research [8]. In this paper, we
present a new semi-supervised KPLS method for nonlinear
feature extraction. The features extracted with this method
can be used as input for both classification and regression
techniques. Our approach considers to modify the kernel sim-
ilarity function via a kernel defined on the basis of clustering
the analyzed image. Specifically, we propose to combine a
standard radial basis function (RBF) kernel with a kernel
constructed via clustering the data with the Expectation Max-
imization algorithm assuming a multiscale Gaussian mixture
model (GMM). The RBF kernel is a universal kernel that has
a stable behaviour and only incorporates one free parameter
to be tuned. In this work, we built the RBF kernel only with
the labeled samples. The second probabilistic kernel, denoted
as cluster kernel focuses on the combination of labeled and
unlabeled information of the data manifold. It is a parameter-

free kernel and captures different (local-to-global) scales of
data relations across the manifold.

The novel contributions of this paper consist in: 1) the
cluster kernel accounts for the local-to-global structure of
the data manifold as it captures similarity between labeled
pixels, using unlabeled pixels information at different scales;
and 2) as a consequence of the combination between the two
kernels considered here, the proposed semi-supervised KPLS
(SS-KPLS) method improves results in both very high spatial
resolution and hyperspectral image classification scenarios and
in biophysical parameter retrieval experiments.

The rest of the paper is outlined as follows. Section 2
reviews the standard formulation of KPLS and highlights the
problems encountered when dealing with very few labeled
samples. This motivates the introduction of the proposed
method in Section 3. Section 4 presents the datasets used and
the experimental results in both classification and regression
problems. Finally, Section 5 concludes this paper.

II. A REVIEW OF MULTIVARIATE KERNEL METHODS

This section reviews classical multivariate analysis tech-
niques for both linear and nonlinear feature extraction. A
family of methods which has been successful in remote
sensing data processing, and has recently gathered increasing
interest in the remote sensing community, consists of the
kernel extensions of multivariate techniques such as PCA and
PLS. In this section we pay special attention to kernel partial
least squares (KPLS), since it will be the core algorithm of
the proposed semi-supervised method.

A. Linear multivariate methods

Notationally, we are given a set of n training data pairs
{xi, yi}ni=1, with xi ∈ Rd where d is the number of di-
mensions. For classification problems, yi are labels which are
converted into vectors via 1-of-M standard encoding, where
M is the number of classes, yi ∈ RM , yij = 1 if sample
xi belongs to class j and yij = 0 otherwise. For regression
problems involving a continuous dependent variable, such
encoding is not possible and we use directly yi ∈ R. By
using matrix notation we can write, X = [x1, . . . ,xn]

> and
Y = [y1, . . . ,yn]

>, where superscript > denotes matrix or
vector transposition. We denote by X̃ and Ỹ the centered
versions of X and Y, respectively. Note that, the operation
of centering removes the mean of every variable in the cor-
responding matrix. Multivariate methods seek for projections
of the input data X optimizing a particular criterion. For
instance, PCA looks for projections preserving the maximum
variance, while PLS searches for projections of the input data
that maximally align with the output data (labels).

1) Principal component analysis (PCA): PCA is a
widespread method for dimensionality reduction. It consists
in projecting the input data set onto the directions of largest
input variance. Thus, PCA only considers the input data and
does not take into account any target data set, i.e. it is
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an unsupervised feature extraction method. The criterion is
expressed compactly as:

PCA: U = arg max
U

Tr{U>CxxU}

subject to: U>U = I,
(1)

where I is the identity matrix of size df (number of extracted
features), Cxx = X̃>X̃ is the sample covariance matrix of
input data, and U is the projection matrix to be estimated.

The main limitation of PCA is that it does not consider the
target variables Y for the input vectors but simply performs
a coordinate rotation that aligns the transformed axes with
the directions of maximum variance of the original data
distribution. Thus, there is no guarantee that the directions
of maximum variance will contain good features for discrim-
ination or regression.

2) Partial least squares (PLS): The PLS algorithm, devel-
oped by Herman Wold [18], is probably one of the simplest
methods for supervised feature extraction, since only considers
the input data and the target data sets. The central idea of PLS
is to find the projection vectors that maximize the covariance
between the projected input and output data, whose problem
is expressed as:

PLS: U,V = arg max
U,V

Tr{U>CxyV}

subject to: U>U = V>V = I,
(2)

where Cxy is the covariance matrix of input and output data,
and V is the projection matrix to be estimated for the output
data set. In the literature, there are several variants of the
PLS standard formulation (see [2] for a detailed overview).
In this work, the singular-value decomposition (SVD) of Cxy

has been used in order to solve the problem [19].

B. Kernel multivariate methods

All previous methods assume that there exists a linear
relation between the original data matrices, X̃ and Ỹ, and
the extracted projections, X̃′ and Ỹ′, respectively. However,
in many situations this linearity assumption does not hold,
and nonlinear feature extraction is needed to obtain acceptable
performance. In this context, kernel methods are promising
approaches.

1) Kernel mappings, functions and projections: Notation-
ally, consider we are given a set of pairs {φ(xi),yi}ni=1, with
φ(x) : Rd → H a function that maps the input data into some
feature space of very large or even infinite dimension. Data
matrices for performing the linear feature extraction (e.g. PCA
or PLS) in H are now given by Φ = [φ(x1), . . . ,φ(xn)]

> and
Y = [y1, . . . ,yn]

>. As before, the centered versions of these
matrices are denoted by Φ̃ and Ỹ.

Importantly, the projections of the input and output data will
be given by Φ̃

′
= Φ̃U and Ỹ′ = ỸV, respectively, where the

projection matrix U is now of size dim(H)×df . Note, that the
input covariance matrix in H, which is usually needed by the
different MVA methods, becomes of size dim(H) × dim(H)
and cannot be directly computed. However, making use of the

representer’s theorem [7], we can introduce U = Φ̃
>

A into the
formulation, where A = [α1, . . . ,αdf

] and αi is an n-length
column vector containing the coefficients for the ith projection
vector, and the maximization problem can be reformulated in
terms of the kernel matrix, which is defined by the dot product
of mapped samples K(xi,xj) = 〈φ(xi),φ(xj)〉.

Note that in these kernel feature extraction methods, the
projection matrix U in H might not be explicitly calculated,
but the projections of the input data can be obtained implicitly
via kernel functions. Therefore, the extracted features for a
new input pattern x∗ are given by:

φ̃
′
(x∗) = φ̃(x∗)U = φ̃(x∗)Φ̃

>
A =

 K̃(x1,x∗)
...

K̃(xn,x∗)

A,

(3)
and one can compute the inner products in the feature space
K̃(xi,x∗) = φ̃(xi)Φ̃

>
that contains the inner products

between the test point x∗ and all training points {xi}ni=1 in
the feature space, K̃(xi,x∗) = 〈φ̃(xi), φ̃(x∗)〉.

2) Kernel principal component analysis (KPCA): The goal
of KPCA is to find the projections that maximize the variance
of the input data in the feature space. By simply replacing X̃
by Φ̃ in (1), KPCA can be formulated in the following way:

KPCA: U = arg max
U

Tr{U>Φ̃>Φ̃U}

subject to: U>U = I,
(4)

where matrix Φ̃> contains the mapped data centered in the
Hilbert space. Making use of the representer’s theorem one
can introduce U = Φ̃

>
A into the previous formulation, and

the maximization problem can be reformulated as follows:

KPCA: A = argmax
A

Tr{A>K̃xK̃xA}

subject to: A>K̃xA = I
(5)

The solution to the above problem can be obtained from
the eigendecomposition of K̃xK̃x represented by K̃xK̃xα =
λK̃xα, which has the same solution as K̃xα = λα.

Note that centering in feature space can be done implicitly
via the simple kernel matrix operation K ← HKH, where
Hij = δij − 1

n , δ represents the Kronecker delta δi,j = 1 if
i = j and zero otherwise. Recently, the centering operation
has been questioned in the field of kernel methods and the
community has witnessed, for instance, versions of KPCA
with uncentered data in kernel feature space. In this paper,
however, we stick to the standard kernelization of the methods
and do consider centering.

3) Kernel Partial least squares (KPLS): KPLS is the non-
linear kernel-based extension of PLS [10], which is based on
maximizing the variance between the projected data into a
proper Hilbert space H and the target data matrix Ỹ (i.e. the
labels):

KPLS: U,V = arg max
U,V

Tr{(Φ̃U)>ỸV}

subject to: U>U = V>V = I,
(6)
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TABLE I
PROPERTIES OF LINEAR AND NONLINEAR METHODS USED IN THIS PAPER.

PCA PLS KPCA (SS-)KPLS

Max.
Problem u>Cxxu u>Cxyv α>K̃xK̃xα α>K̃xỸv

Constraints u>u = 1
u>u = 1
v>v = 1

α>K̃xα = 1
α>K̃xα = 1
v>v = 1

Max. df rank(X̃) rank(Cxy) rank(K̃x) rank(K̃xỸ)

By using again the representer’s theorem, the maximization
problem becomes:

KPLS (2): A,V = arg max
A,V

Tr{A>K̃xỸV}

subject to: A>K̃xA = V>V = I,
(7)

The solution to this problem can be obtained from the sin-
gular value decomposition of K̃xỸ. Alternatively, the problem
can be efficiently solved using the following two-steps iterative
procedure (see [7, Sec. 6.7] for more details):

1) Find the largest singular value of K̃xỸ, and the associ-
ated vector directions: {αi,vi}.

2) Deflate the kernel matrix and labeled vector using:

K̃x ←

[
I− K̃xαiα

>
i K̃x

α>i K̃xK̃xαi

]
K̃x

[
I− K̃xαiα

>
i K̃x

α>i K̃xK̃xαi

]
(8)

Y = Y − K̃xαiY
K̃xαi

‖K̃xα‖22
(9)

This deflation procedure allows us to extract more features
than classes. For a more detailed description as well as
implementation details, the reader is referred to [7], [8].

Generally speaking, MVA methods look for projections of
the input data that are “maximally aligned” with the targets,
and the different methods are characterized by the particular
objectives they maximize. Table I compares some of the
most important properties of the methods described in this
section. An interesting property of linear methods is that
they are based on first and second order moments, and that
their solutions can be formulated in terms of (generalized)
eigenvalue problems. Thus, standard linear algebra methods
can be readily applied. This property is shared by kernel
methods as well. The table shows the problem to be solved,
the constraints involved, and the maximum number of features
that each method can extract. Note that the proposed semi-
supervised KPLS method (introduced in the next section) has
exactly the same characteristics as the standard KPLS.

III. PROPOSED SEMI-SUPERVISED KPLS

This section presents the proposed feature extraction
method. The underlying idea of the proposed Semi-supervised
KPLS (SS-KPLS) is to construct a kernel function K(xi,xj)
measuring the similarity among labeled samples, taking into
account the distribution of all available pixels, i.e. labeled `
and unlabeled u. The constructed kernel has two contributions,

one using all available `+ u samples and the other computed
with the ` labeled samples. The summation of the kernels
is a valid kernel, and can be used in any kernel method
for classification or regression, such as the standard support
vector machine (SVM). Nevertheless, in this paper we plug
this kernel into KPLS to extract a desired number of nonlinear
features, which are then used for linear classification and
regression. The method is simple to apply and relies on
our recent developments which are summarized in the next
subsections.

A. Bagged Kernel Support Vector Machine

In [20] we exploited the general idea of developing a kernel
directly learned from data. The bagged kernel [17] was defined
by counting the occurrences of two pixels in the same cluster
over several runs of an unsupervised algorithm. The algorithm
consists of different steps. First compute the standard RBF
kernel Ks. Second run t times the k-means algorithm [21] with
different initializations but with the same number of clusters
k, which results in p = 1, . . . , t cluster assignments cp(xi)
for each sample xi. Third, we build a bagged kernel Kbag

based upon the fraction of number of times that xi and xj are
assigned to the same cluster:

Kbag(xi,xj) =
1

t

t∑
p=1

[cp(xi) = cp(xj)] (10)

where i, j = 1, . . . , (` + u) and operator [cp(xi) = cp(xj)]
returns ‘1’ if samples xi and xj belong to the same cluster
according to the pth realization of the clustering, cp(·), and ‘0’
otherwise. Finally, train a SVM with the sum (or the product)
between the standard and the bagged kernels [17]:

K(xi,xj) = βKs(xi,xj) + (1− β)Kbag(xi,xj), (11)

where i, j = 1, . . . , ` and the weighting parameter β ∈ [0, 1]
provides a trade-off between the supervised and the unsuper-
vised information.

B. Multiscale bagged kernel Support Vector Machine

The previous kernel implements the cluster assumption in
the sense that samples that repeatedly fall in the same cluster
should belong to the same class. However, this quite intuitive
idea should hold independently of the scale of the relations
we look at. Noting that the notion of similarity can be par-
ticularly distinctive at different scales, we developed in [22] a
multiscale bagged kernel for urban very high resolution (VHR)
images. The kernel of Eq. (10) was replaced by a kernel using
m clusters of t runs of the standard k-means with different
values of k (scales). This new averaged kernel accounts for
similarities at different scales across the manifold between
the pixels. The final kernel is the averaging of the q single-k
bagged kernels and encodes multiscale (MS) similarities:

KMS
bag (xi,xj) =

1

q

q∑
m=1

Km
bag(xi,xj). (12)
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This kernel was then linearly combined to the standard super-
vised kernel Ks [17], as in [20]:

KMS
C (xi,xj)← βKs(xi,xj) + (1− β)KMS

bag (xi,xj). (13)

C. Proposed Cluster Kernel Feature Extraction

The two previous developments share in common the use
of the k-means to decide whether two pixels fall into the
same cluster. The k-means clustering algorithm is fast and
efficient [21]. Nevertheless, it leads to generating too blocky
and sparse kernels as it only gives us hard-decisions. A nice
possibility of the framework of bag/cluster kernels is that any
kind of clustering algorithm can be used.

In this paper, we propose two modifications of the previous
algorithms:

1) The Expectation-Maximization clustering assuming a
Gaussian mixture model (GMM) [23] replaces the k-
means clustering. The EM-GMM is a probabilistic
model to group the data in different subgroups focused
on mixture Gaussian densities. Using the general Bayes’
rule, it is possible to obtain the posterior probabilities,
πi,q , of the sample xi belonging to cluster q as:

πi,q =
p(xi|q)p(q)
p(xi)

, (14)

where p(q) is the prior probability and p(xi|q) is the
conditional probability of sample xi given the cluster q.
In the case of GMM, p(xi|q) is a linear combination of
Gaussian probability functions. The mixture parameters
are estimated by the classical expectation-maximization
method, and the maximum posterior probability is com-
puted. The GMM clustering is almost as fast as k-
means, but it also provides posterior membership prob-
abilities. By using these probabilities instead of the hard
memberships in k-means, smoother kernels are obtained.
Including GMM in the construction of cluster kernels
leads to the interesting notion of probabilistic kernel
functions that account for the local structure of the data
manifold.

2) We replace the standard SVM with the KPLS plus linear
classification or regression. This has several benefits: i)
KPLS allows us to extract nonlinear features maximally
aligned with the target variables, ii) KPLS allows us
to control the number of features easily, which has a
direct effect on the compactness of the solution, and iii)
in turn KPLS allows us to describe the data complexity
indirectly with the number of needed features to achieve
a given level of classification or regression error.

With these two modifications in mind, the proposed cluster
kernel will consist of the combination of a kernel on labeled
data and a kernel computed from clustering unlabeled data
with GMM. The multiscale probabilistic cluster kernel is
obtained as follows:

1) Compute the kernel function using labeled samples:

Ks(xi,xj) = 〈φs(xi),φs(xj)〉 i, j = 1, . . . , ` (15)

Distribution m=2 m=4 m=9

Fig. 1. Illustration of the construction of the probabilistic cluster kernel.
The method clusters data with EM-GMM clustering for m = {2, 4, 9}, the
posterior probability vectors are used to compute the dot products leading to
the cluster kernel explicitly, and after repeating the process for a number of
clusters, it accumulates the similarities in a multi-scale way. Samples with
similar probabilities of membership to a grouped should belong to the same
class. The multiscale cluster kernel (right kernel) is a better estimation of the
optimal ideal kernel Kideal = YY> (left kernel).

2) Run t times the GMM clustering algorithm with differ-
ent initializations and with different number of clusters.
This results in q · t cluster assignments where each
sample xi has its corresponding posterior probability
vector πi ∈ Rm being m the number of clusters.

3) Build a cluster kernel Kc based upon the fraction of
times that xi and xj are assigned to the same cluster:

Kc(xi,xj) =
1

Z

t∑
p=1

q∑
m=2

(πm
i
>πm

j )p, (16)

where i, j = 1, . . . , (`+u) and Z is the maximum value
of Kc. An illustrative toy example of the multiscale
cluster kernel construction is shown in Fig. 1.

4) Define the final kernel function K as the weighted sum
[24] of the standard and the cluster kernels:

K(xi,xj) = βKs(xi,xj) + (1− β)Kc(xi,xj), (17)

where i, j = 1, . . . , ` and β ∈ [0, 1] is a scalar parameter.
5) Plug K into the standard KPLS solver (see Section II).

KPLS returns the requested number of features df ,
which are used to project data onto them. These (non-
linear) projected data (scores) are then used as inputs to
a linear classifier or regression method. The application
of a linear model to the projected data is not incidental:
note that all the features are extracted with a nonlinear
method so this is the proper scheme to evaluate the
effectiveness of the extracted variables.

The new cluster kernel accounts for probabilistic similarities
at small and large scales between all labeled samples along the
data manifold. Note that finding a proper kernel is equivalent
to learn metric relations in the manifold which are defined
here through a generative model learned from the data. The
proposed kernel generalizes previous approaches based on
multiscale cluster kernels. For example, the kernel in eq. (16)
reduces to the approach in [22] when only the cluster assign-
ment with maximum posterior probability is considered (hard
or crisp clustering). The GMM cluster kernel can be related
to the family of Fisher’s kernels [25], [26]. Nonetheless, the
proposed kernel has the very important advantage that it does
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KsOriginal distribution Kc K

β• +(1−β)• =

Fig. 2. Illustration of the projections (top) obtained with the KPLS method using different kernels (bottom). The original data and the ideal kernel (left). Ks
corresponds to the RBF kernel constructed with labeled samples, Kc is the probabilistic cluster kernel constructed with both labeled and unlabeled samples,
and K is the final kernel constructed by a linear combination of the previous kernels (right).

not assume an ad hoc parametric form or sophisticated priors
and thus is more flexible and general. In addition the method
does not require computationally demanding procedures, such
as in dynamic programming optimization. Actually, current
implementations for GMM scale linearly with the number of
examples and data dimensions. All these properties are quite
appealing from the practitioner point of view.

Theoretically, it can be shown that the cluster kernel fulfils
the existence and uniqueness in a Hilbert space. In addition,
it is trivial to show that the cluster kernel performs a linear
kernel in a posterior probability space generated by the EM-
GMM, it is a positive definite kernel, and the feature map
corresponding to the cluster kernel Kc is unique [7].

A toy example of the projections obtained with KPLS
method with the three kernels involved is shown in Fig. 2 for
a two-dimensional binary classification problem. One could
think that the probabilistic cluster kernel alone constitute
a good enough metric to find better projections. However,
this issue strongly depends on the number of both labeled
and unlabeled samples. Figure 3[left] shows the results in
this toy example for a fixed number of labeled samples and
varying number of unlabeled samples, u: as u is increased
the optimal β becomes lower, and hence the cluster kernel
becomes relatively more important. Furthermore, we show in
Fig. 3[right] the surface of optimal β values for different
numbers of labeled and unlabeled samples. It is worth noting
that the RBF kernel dominates the linear combination (high
β values) when few data (less than 100 labeled and less than
200 unlabeled samples) are available, while for many data
available, the probabilistic kernel becomes more important
(low β values). This is due to the fact that the cluster kernel
is not able to capture good information of the manifold data
using low number of samples (labeled and unlabeled) since
the clusters obtained by GMM are not representative of the
data manifold.

Figure 4 illustrates the features extracted by linear and
kernel feature extraction methods in the same nonlinear toy
classification problem in a two-dimensional space. Linear
methods fail in finding good projections since they cannot
cope with the nonlinear nature of the data distribution. Kernel

10
−1

10
0

18.5

18.6

18.7

18.8

18.9

19

19.1

19.2

β

A
lig

nm
en

t

 

 
u=10
u=100
u=300
u=500

100 200 300 400 500

50

100

150

200

250

300

Unlabeled samples, u

La
be

le
d 

sa
m

pl
es

, l

Optimal β, K=β Ks + (1−β)Kc

 

 

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3. Left: The alignment obtained with several values of β (weight of
linear combination kernels) for a fixed number of labeled samples ` = 100
and different unlabeled samples, u = {10, 100, 300, 500}. Right: Surface of
optimal values of β for different number of labeled and unlabeled samples.

methods find nonlinear projections that better separate the data.
The solution of KPCA does not allow to linearly separate the
data. This is due to the fact that it becomes very difficult to
tune the kernel parameter without labeled data, as previously
studied in [27]. Such problem should be alleviated with KPLS
but tuning the parameter is hampered by the low number of
labeled data. The proposed cluster kernel Kc included in the
KPLS method projects the original data such that they become
linearly separable. The combination of the supervised and
unsupervised kernels in KPLS refines the decision boundaries.

IV. EXPERIMENTAL RESULTS

This section presents the results obtained with the proposed
SS-KPLS applied to remote sensing image classification and
biophysical parameter retrieval problems. For the classification
setting, we show results in three multispectral and hyper-
spectral images acquired by different sensors and involving
the identification of different number of land cover classes.
For the biophysical parameter retrieval, we consider two
particularly relevant problems for land and ocean monitoring:
the estimation of oceanic chlorophyll concentration, and of
chlorophyll, LAI and fPAR for vegetation monitoring. The
method is compared against standard linear and nonlinear
feature extraction approaches in terms of accuracy and robust-
ness, and expressive power (compactness of the information).
Matlab code and demos are available for the interested reader
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Original Data

PCA (85.42%) PLS (86.16%) KPCA (86.84%)
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Fig. 4. Projections extracted by different linear and nonlinear feature
extraction methods in a binary problem. We indicate the overall accuracy
in the test set for comparison. Note that the SS-KPLS method reduces to
KPLS for β = 1 and KcPLS method for β = 0.

in http://isp.uv.es.

A. Experimental setup

For all experiments, we used ` labeled samples and u
unlabeled samples in order to define the (q · t) cluster centers
and the pixel posterior probabilities for each of the examples
xi, i.e. πi. In all cases, we used t = q = 20 and the parameters
β and σ were optimized by N -fold cross-validation. Given the
low number of examples, a common prescription in machine
learning is to use a low number of folds; in our case we
optimized β and σ with N = 3 folds. The parameter β was
tuned between (0, 1) in steps of 0.05 and σ was varied between
[0.05, 2] × s (s here represents the mean distance between
all labeled data) for each number of extracted features. Once
the mixture models are obtained and stored, the posterior
probabilities or membership of the samples to each cluster
are computed and Kc is constructed following (16). The same
assignment is used for predicting the output (class membership
for classification or estimated output variable for regression)
of an unknown test pixel.

Obtaining projections in feature space for new test data X∗
involves two operations. First, one has to map the data to the
feature space, thus yielding Φ̃∗. Second, one has to project
these mapped data onto the projections U, which are expressed
as U = Φ̃

>
A. Therefore the projected test data reduces to:

P(Φ̃∗) = Φ̃∗U = Φ̃∗Φ̃
>

A = K̃(X∗,X)A,

where X is the training data matrix, and A contains in
columns the df extracted feature vectors with the particular
kernel method. The projected test data P(Φ̃∗) is a finite
dimensional matrix of size ntest× df . We used this projected
data (scores in the statistics literature) in a simple linear
regression model, Ŷ = P(Φ̃∗)W. The weight vectors are

obtained through the normal equations, W = P(Φ̃∗)†Ỹ, where
† is the Moore-Penrose pseudoinverse. This solution is valid
for multioutput regression problems. For the particular case of
classification, the linear model is followed by a “winner-takes-
all” activation function. We used different quality measures to
test model’s accuracy. In all cases, the quality measures were
computed over a total of u unlabeled samples for each number
of extracted features. For classification, we used the overall
accuracy OA[%] and the estimated Cohen’s kappa statistic κ.
For regression problems, we evaluated the accuracy of the
estimations through the root-means-square error (RMSE) and
the Mean Absolute Error (MAE); the bias through the mean
error (ME); and the goodness-of-fit through the Pearson’s
correlation coefficient, R.

B. Semi-supervised Feature Extraction for Classification

This subsection presents the results obtained by applying the
proposed SS-KPLS technique to remote sensing multispectral
and hyperspectral image classification. The next subsection
details the data used in the experiments. Then, we focus
our attention on the accuracy and robustness of the proposed
algorithm in terms of the number of extracted features. Finally,
we analyze the eigenspectrum, structure, and information
content of the derived kernels.

1) Data: The first image dataset consists of 4 spectral
bands acquired on a residential neighborhood of the city of
Zürich by the QuickBird satellite in 2002. The portion of
the image analyzed has size (329× 347) pixels. The original
image has been pansharpened using a Bayesian data fusion
method (for more information see [28]) to attain a spatial
resolution of 0.6 m. Nine classes of interest have been defined
by photointerpretation. According to the good results obtained
in previous studies [29], a total of 18 spatial features extracted
using morphological opening and closing [30] have been added
to the spectral bands, resulting in a final 22-dimensional vector.

The second image was acquired by the DAIS7915 sensor
over the city of Pavia (Italy), and constitutes a challenging
9-class urban classification problem dominated by structural
features and relatively high spatial resolution (5-meter pixels).
Following previous works on classification of this image, we
took into account only 40 spectral bands in the range [0.5,
1.76] µm, and thus skipped thermal and middle infrared bands
above 1958 nm.

The third image is an AVIRIS hyperspectral image acquired
over Salinas valley, an agricultural area of California (USA).
A total of 16 crop classes were labeled and 224 spectral
bands were used. This is a high-resolution scene with pixels of
3.7 meters. The high number of spectrally similar subclasses
makes the classification problem very complex.

2) Results and discussion: For all experiments, ` and u are
samples per class being ` = 10 and u = 190 for all images. In
order to avoid biased results, a total number of 10 realizations
is carried out, and the averaged results are shown. We also
provide the classification maps and the accuracies obtained in
the whole scenes with the optimal parameters and fixing the
number of extracted features.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. Y, MONTH 2013 8

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

# features

O
A

(%
)

 

 

PCA

PLS

KPCA

Cluster Kernel, Kc

KPLS, Ks

SS−KPLS, K

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

100

# features

O
A

(%
)

 

 

PCA

PLS

KPCA

Cluster Kernel, Kc

KPLS, Ks

SS−KPLS, K

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

# features

O
A

(%
)

 

 

PCA

PLS

KPCA

Cluster Kernel, Kc

KPLS, Ks

SS−KPLS, K

Fig. 5. Comparison between different feature extraction methods (linear and non-linear) using the overall accuracy versus the number of extracted features
for the Zürich image (left), Pavia image (center), Salinas image (left).

RGB Ground truth PCA (51.72,0.43) PLS (59.40,0.51) KPCA (54.24,0.45) KPLS (59.33, 0.51) KcPLS (66.76, 0.60) SS-KPLS (66.77, 0.60)

RGB Ground truth PCA (87.84,0.85) PLS (87.33,0.85) KPCA (90.52,0.89) KPLS (93, 0.92) KcPLS (96.03, 0.95) SS-KPLS (95.95, 0.95)

RGB Ground truth PCA (75.01,0.72) PLS (52.59,0.64) KPCA (60.93,0.57) KPLS (67.24, 0.64) KcPLS (80.57, 0.78) SS-KPLS (79.21, 0.77)

Fig. 6. Left to right: RGB composite, ground truth and three classification maps along with the overall accuracy and kappa for the Zürich image (top) for
11 extracted features, Pavia image (middle) for 16 extracted features and Salinas image (bottom) for 20 extracted features.

We evaluated the accuracy of several methods for a varying
number of extracted features: 1) unsupervised linear, PCA, and
its nonlinear version, KPCA; 2) supervised feature extraction
algorithms (PLS and its nonlinear version KPLS); and 3) the
different kernels involved in SS-KPLS. Note that the proposed
SS-KPLS generalizes the standard KPLS (when β = 1).

Mean and standard deviation accuracies are shown in Fig. 5.
In general, nonlinear kernel methods (KPCA, KPLS and
variants) outperform linear approaches (PCA and PLS). The
proposed SS-KPLS improves the results of the standard KPLS
and the cluster kernel. The generative cluster kernel proposed
here yields higher accuracies than the RBF kernel when
increasing the number of features. When a higher number of
nonlinear features is extracted, all curves become stable but

the proposed SS-KPLS clearly outperforms the standard PCA
in a range between +5-15%, the more advanced KPCA in a
range between +4-15% and KPLS in a range between +3-
10%. The behaviour of PCA and KPCA in the Zürich and
Salinas images to be analyzed because higher accuracy is not
obtained with higher number of extracted features, revealing
a kind of overfitting problem. This effect has been recently
reported in the literature [27]. This is not the case of the
proposed cluster kernel Kc. These results are confirmed by
the visual inspection of the classification maps shown in Fig.
6, which confirm qualitatively the quantitative results in which
the SS-KPLS shows a clear and consistent gain over KPLS of
about +7% (Zürich), +3% (Pavia), +13% (Salinas).
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Fig. 7. Left: Normalized eigenvalues for all kernels used in the Pavia dataset.
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dependence (HSIC).

3) Analysis of the kernels: Figure 7 shows the eigenvalues
of the best kernels for the Pavia image. The eigendecom-
position of the proposed semi-supervised kernel K shows a
tradeoff between the RBF and the cluster kernel, as expected.
It is worth noting that the eigenvalues of cluster kernel (blue
line) show a slower decay because the kernel is indeed quite
blocky and sparse. On the other hand, the RBF kernel shows
a heavier tail. The introduction of the cluster kernel can be
casted as an extra regularization of the RBF kernel. The right
plots present the used kernels and their similarity to the ideal
one, Kideal = YY>. Two quantitative measures are given:
the Frobenius norm of the difference of these two kernels,
‖·‖F , and the Hilbert-Schmidt Independence Criterion (HSIC)
between them [31]. The proposed kernel K aligns well with
the ideal kernel (lower error, higher dependence), and takes
advantage of the sharper structure learned by the Cluster
Kernel.

C. Semi-supervised Feature Extraction for Regression

We focus now on two challenging problems of biophysical
parameter estimation. In particular, we first tackle the estima-
tion of oceanic chlorophyll concentration from multispectral
MERIS measurements, and second the retrieval of land-cover
biophysical parameters –leaf chlorophyll content (Chl), leaf
area index (LAI), and fractional vegetation cover (fCover)–
from CHRIS hyperspectral images. In both cases, satellite-
derived data and in situ measurements are subjected to high
levels of uncertainty, as well as collinearity between the
input features (channels) and the output target variables. In
these difficult scenarios, a proper (robust) feature extraction is
necessary, particularly when their relationship is believed to
be non-linear or the target data is scarce thus leading to badly
conditioned problems.

1) Oceanic chlorophyll concentration: The first dataset
simulates data acquired by the Medium Resolution Imaging
Spectrometer (MERIS) on board the Envisat satellite (MERIS
dataset), and in particular the spectral behavior of chlorophyll
concentration in the subsurface waters. We selected the eight

TABLE II
ESTIMATED RESULTS FOR THE OCEANIC CHLOROPHYLL CONCENTRATION

RETRIEVAL PROBLEM AS A FUNCTION OF THE NUMBER OF EXTRACTED
FEATURES.

Model RMSE MAE |ME| R
PCA (df = 1) 0.540 0.429 0.173 -0.252
PCA (df = 2) 0.415 0.329 0.073 0.589
PCA (df = 3) 0.397 0.318 0.050 0.629
PCA (df = 4) 0.315 0.232 0.000 0.822
PLS 0.540 0.429 0.175 -0.201
KPCA (df = 1) 0.531 0.425 0.163 0.000
KPCA (df = 2) 0.523 0.418 0.156 0.109
KPCA (df = 3) 0.507 0.406 0.171 0.385
KPCA (df = 4) 0.385 0.310 0.039 0.651
KPLS (df = 1) 0.451 0.354 0.010 0.462
KPLS (df = 2) 0.472 0.377 0.033 0.407
KPLS (df = 3) 0.453 0.355 0.009 0.453
KPLS (df = 4) 0.436 0.341 0.005 0.513
KcPLS (df = 1) 0.339 0.255 0.000 0.775
KcPLS (df = 2) 0.295 0.206 0.026 0.833
KcPLS (df = 3) 0.275 0.192 0.008 0.857
KcPLS (df = 4) 0.271 0.190 0.006 0.863
SS-KPLS (df = 1) 0.341 0.257 0.000 0.771
SS-KPLS (df = 2) 0.298 0.210 0.027 0.829
SS-KPLS (df = 3) 0.280 0.196 0.009 0.853
SS-KPLS (df = 4) 0.265 0.189 0.007 0.864

channels in the visible range (412-681 nm) to be used for
retrieval. The range of variation of chlorophyll concentration
in this dataset is 0.02− 25mg/m3.

In this experiment, we evaluate different quantitative mea-
sures of accuracy, bias and goodness-of-fit for a varying
number of extracted features. We compare the results ob-
tained by 1) unsupervised linear PCA and its nonlinear kernel
version, KPCA; 2) supervised feature extraction algorithms
(PLS and its nonlinear version KPLS); and 3) the different
kernels involved in SS-KPLS. Table II shows the obtained
results with ` = 45 labeled samples and u = 955 unlabeled
samples to construct the cluster kernel Kc. In general, the
nonlinear methods obtain better results than linear approaches.
The proposed method reduces the prediction error around 35%
with respect to linear PLS and PCA, and KPCA method. In
addition, the proposed semi-supervised KPLS reduces the error
about 25% for a given number of extracted features. Note
that, the good results obtained with semi-supervised KPLS are
mainly due to the cluster kernel function (β values are small)
which in many cases yields very high accuracies working alone
(β = 0).

This result suggests that Kc could be used as a parameter-
free kernel learned from the data, thus constituting an alterna-
tive to standard kernel functions.

2) Biophysical parameter retrieval: For the second dataset,
we considered data obtained in the SPectra bARrax Campaign
(SPARC) in 2003 and 2004 in Barrax, Spain. The test area is
an agricultural research facility with an extent of 5 × 10km.
It is characterized by a flat landscape and large uniform
land-use units of irrigated and dry lands. The vegetation
biophysical parameters were measured among different crops
where a large number of samples on an elementary sampling
unit (ESU) were taken and averaged for different parameters,
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Fig. 8. Estimation maps for Chl, LAI and FCV, for the KPLS, KcPLS and SS-KPLS feature extractor methods with the RMSE for the small area of
CHRIS/PROBA image with 4 features.

obtaining a local characterization. The Chl was measured with
a calibrated Minolta CCM-200 from 50 samples per ESU. The
LAI was derived from canopy measurements made with a
LiCor LAI-2000 at 24 locations per ESU. The fCover was
derived from hemispherical photographs taken at the same
locations as the LAI measurements. All parameters present
standard errors between 3% and 10%. For both years, we have
a total of nine crop types (garlic, alfalfa, onion, sunflower,
corn, potato, sugar beet, vineyard, and wheat), with field-
measured values of LAI that vary between 0.4 and 6.3, Chl
between 2 and 55 µg/cm2, and fCover between 0 and 1. This
makes the dataset representative and well-suited to multioutput
regression studies. Simultaneously to the ground sampling,
hyperspectral images were collected by the CHRIS/PROBA
spaceborne sensor. The data provided have 62 bands in the
visible and near-infrared (NIR) region (400 − 1000 nm) at
a spatial resolution of 34m. The images selected for this
experiment were those acquired from the nadir view sharing
similar observation configuration in order to minimize angular

and atmospheric effects. The images were geometrically and
atmospherically corrected using the official CHRIS/PROBA
Toolbox for BEAM [32]. Finally, the database consists of
` = 135 Chl, LAI, and fCover measurements and their
associated 62 CHRIS reflectance channels. We used all pixels
in the image as unlabeled samples u = 243648 to construct
the cluster kernel.

The obtained maps and RMSE for the three considered
biophysical parameters are shown in Fig. 8. In the three cases,
the use of the kernel combination reports slightly better results.
Even if the gain is not very big with regard the standard KPLS
approach (about +2%), we should note that 1) the built Kc

could be used directly for retrieval without the need of tuning
kernel parameters; 2) the cluster kernel leads to higher RMSEs
than KPLS for Chl and fCover but, since the solutions are
complementary, the SS-KPLS benefits from the combination,
and 3) the combination makes the final model more robust for
LAI as well.
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V. CONCLUSIONS

This paper proposed a novel nonlinear feature extraction
technique for remote sensing image classification and retrieval
of biophysical parameters. The method is specifically devised
for addressing problems where the number of training samples
available is relatively small. Note that these problems are
common in operational applications of remote sensing. In such
situations, the combination of labeled and unlabeled samples
in a semi-supervised framework can significantly improve the
representation of the data. The main limitation is that the
number of unlabeled samples used to estimate the cluster
structure via the EM-GMM algorithm should be high enough,
which is usually the case in remote sensing applications.

Good results were obtained on both multispectral and hy-
perspectral data sets considered in our experiments, where the
proposed method performs better than supervised and unsuper-
vised linear and nonlinear approaches, both in classification
and regression problems. In this paper we focused on the
KPLS method but it is possible to apply and generalize to
others supervised kernel feature extraction methods like the
Fisher’s discriminant family. Future work will consider the
direct use of the generative cluster kernel in unsupervised
image segmentation as it revealed consistent behaviour in
problems with many data available, and the study of the metric
space induced by the kernels.
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