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Automatic Extraction and Analysis of Ice Layering
In Radar Sounder Data

Adamo Ferro, Lorenzo Bruzzon€eellow, IEEE

Abstract—Nowadays, the interest on the development of or- moons. Examples are the Lunar Radar Sounder (LRS) of the
biting radar sounders for the observation of Earth polar areas Japanese orbiter Kaguya [4], the Mars Advanced Radar for
Itiemii:reeagtlngi lrg tr?'s i;"g}fex:'infgf e‘i%a'%sr'tzn‘g‘;t?; SEHgCtSL:E dOf Subsurface and lonosphere Sounding (MARSIS) on the ESAs
of the past h?stopryyand forpthe p¥edicrt)ion of the evolution gf Mars Express orblter_[5], and the_ShaIIow Radar (SHARAD)
icy environments. However’ as proven by p|anetary missions of the Mars Reconnaissance Orbiter of NASA [6] The latter
orbiting radar sounders provide a huge amount of data. Thus, two instruments are currently operating at Mars and are
the development of automatic techniques for the analysis of providing high quality data which make it possible a dethile
these data is of fundamental importance for a proper data gy,q4y of the subsurface of the Red Planet. In particular, the

exploitation. In this paper we propose a novel method for the . o
automatic detection of subsurface linear features from radr SHARAD instrument has the capability to produce radargrams

sounder data acquired in icy regions showing extended layarg. With a vertical (range) resolution of about 10 m in ice. This
The proposed method allows the estimation of the position makes it possible to reveal the ice stratigraphy of Marséepol
of the linear features with sub-pixel accuracy. Moreover, ach [7], [8], and to detect fine linear interfaces in other arehs o
detected linear interface is treated as a single object whitis o nianet [9]. New planetary radar sounder instruments are
completely described by the position of its points, the estiated . . L

local width and the contrast. This allows the direct measureent planned to b_e included in future missions de_voted to theyst_ud
of geometrical and radiometric parameters (e.g., slope arg, ~Of other bodies, such as the moons of Jupiter [10] and Titan
intensity) without the need of further post-processing stps. The [11]. Activities for the definition of an Earth orbiting soder
paper also proposes some measurements for deriving from the gre also in progress.

output of the proposed technique important variables that @an  gne of the most important applications of radar sounders is

characterize quantitatively the properties of the detectd linear . A .
features (e.g., mean depth, mean intensity) and their disiibution the analysis of the subsurface in icy regions (e.g., Greehla

(e.g., number and density of layers). The effectiveness ohe¢ Antarctica, poles of Mars). Indeed, ice is one of the most
proposed method is confirmed by the results obtained on sevalr transparent materials at the aforementioned frequenttias,

radargrams acquired by the Shallow Radar (SHARAD) on the making the penetration of the signals into the subsurfaae fe
North Pole of Mars. sible even for several kilometers [12]. A salient charasties
of icy regions is the presence of extended layering due to the
. INTRODUCTION deposition and subsequent solidification of snow in diffiere
Eperiods. The study of the structure of the ice stratigraghg.(
&)osition and density of the ice layers) is very important for

dielectric characteristics of the subsurface. This is grengd many reasons. Primarily, the analysis of the ice stratigyap

by transmitting waves in the MF, HF or VHF frequenc;?"ows the estimation of ice age and accumulation rate, and

ranges into the subsurface and recording the signals mmétf] ne:fessary I_or C(()jn]:str?mmg |cekﬂow mode![s [1?]' [t1h4]. 'i‘" q
back from subsurface structures or dielectric discontiesi = a'orémentioned factors are key parameters for the study

[1]. Radar sounder data are usually stored as radargra&fsthe past history and for the prediction of the evolution of

|8M6environments. Focusing on the Earth, nowadays this is of

Radargrams are 2D images that represent the recorded e . ; in the f K of th tof th
power for a given range position as a function of time on ong!Mmary importance in the framework ot the assessment of the

axis, and as a function of the instrument along-track pmsiti m(p)ag_tt_of chn;ate char(;ges on thde EaLth S system.t f data. |
on the other. Therefore, a radargram shows a sounding prome roiting ;a Iar stoun €rs provi tﬁ a ugle gmofun Oh data. hn
taken over a certain ground track. e case of planetary missions, the analysis of such data has

Radar sounders are often mounted on flying platforms, su%ﬁ?nl.ca.‘tmi? .OUt tmamly by mealms Olf ma”“at'. mvesngatlons.
as airplanes or satellites. The former are widely used f IS IMILS Iheirreturn, as manuaj analysis are time conagm

the study of Earth’'s poles and can provide local or regionapd mht_arently sul:_)jectlve. Th|s callg for the developme‘r_n 0
tomatic or semi-automatic techniques for the analysis of

mapping on areas of interest [2]. Although interest has begHOl der data that tract rel Cinf tiom f
shown by the glaciological community for an Earth orbitinia ar sounder data that can extract relevant informatiom fr

sounder [3], at the time of writing spaceborne radar sound ";ldargrams in an efficient and fast way. Such techniques

have been used only for the exploration of other planets N thu_s help the sme_ntmc commgnlty in the se!egtlon of
interesting radargrams, in the detection and charactenzaf
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ADAR sounding is a well known nonintrusive techniqu
which allows the investigation of the structural an



of radar sounder data has not been addressed sufficientig in t %
literature. In [15] we made a first step towards the automatic T
analysis of planetary radar sounder signals by presenting a
statistical analysis of the signals and proposing a techaiq
for the automatic detection of polar basal returns. As men- h
tioned previously, subsurface layering is another imptrta
characteristic. In this paper we thus focus on the automatic
detection and characterization of subsurface linear featu
in sounding profiles of regions showing extended layering.
Related works are mainly devoted to the automatic analysis
of data acquired by surface-mounted ground penetratiraysad
(GPR) showing linear and hyperbolic returns [16]—[20].ean
features are often detected by means of the Hough transform
or modeled as the limit of hyperbolas with no slope. These
approaches are suited for GPR radargrams containing clear
straight lines, but they are not appropriate for radar Seuncflig. 1. Acquisition geometry of a radar sounder instrumeris _the platform
. . . . eight, ,; and .. are the along- and across-track resolutions on ground,

data in which linear features are not straight and chang@pecively.
slope locally. In fact, radar sounder radargrams cover ahmuc
longer track than GPR acquisitions usually with a much worse
along-track sampling, thereby showing the large scale eshagf the North Pole Layered Deposits (NPLD) of Mars. The
of subsurface linear interfaces (e.g., due to topography). results show the effectiveness of the proposed method.
our knowledge, the only attempt to the automatic detection o The remainder of the paper is organized as follows. Sec. II
shallow linear features in radar sounder data reporteden thescribes briefly the acquisition geometry of a radar sounde
literature was made by Freema al. [21] using SHARAD and defines the notation used throughout the paper. Sec. llI
radargrams. In their work the authors used a combinatipresents the proposed method for the automatic detection of
of image filterings followed by a threshold operation. Thénear features in radar sounder radargrams. Sec. IV shusvs t
goal of the filterings is: i) to reduce background noise, @) texperimental results obtained on real SHARAD radargrams of
normalize the data using a band-pass Gaussian filter; gnd tiie NPLD of Mars. Finally, Sec. V draws the conclusions of
to highlight almost-horizontal linear features by meansaof the paper and suggests future developments.
matched filter. Indeed, the algorithm relies on the asswonpti
that linear features have very low slopes. In order to a&hiev Il. REFERENCESYSTEM AND NOTATION
this, a coordinate transformation is applied in order tadlat
the surface topography, and thus reduce the induced Ia}ﬁ
slopes prior to image filterings. The output of the procegsn
a binary image where the pixels belonging to linear intexfac
are highlighted. Therefore, the method does not detectttjire A- Radargram Reference System
single linear features and needs further processing steps iThe acquisition geometry of a radar sounder instrument is
order to extract detailed information on their radiometii@d  depicted in Fig. 1. The platform on which the instrument is
geometrical characteristics. mounted flies at a certain altitude over the ground. Such

In this paper we propose a novel technique for the automadin altitude can span between several hundreds of meters and
detection of subsurface linear features in layered medialwh several hundreds of kilometers, depending on the type of
allows the direct estimation of the position of the singlelatform (i.e., airplane or satellite). The resolution aound
linear features with sub-pixel accuracy. The method doés raf the system depends on the type of antennas and on the
rely on specific geometrical assumptions (e.g., flathess sfinal processing techniques adopted. In general, théakpat
subsurface features). Moreover, each detected linearfdnte resolution in the along-track directiof),; can be sharpened
is treated as a vector object which is completely descrilyed by synthetic aperture processing [1]. In contrast, thelutiem
the position of its points, and its estimated local width anid the across-track directiod,. is usually linked to the real
contrast, thus allowing the direct measurement of geona@triantenna aperture and the surface roughness. This may lead to
or radiometric parameters (e.g., slope angle, intensitffjout a wide swath in the across-track direction, which can be of
the need of further post-processing steps (as necessarysimme tens of kilometers for a spaceborne radar sounder [5],
simpler techniques based on image filtering and threshg)din[10]. When relevant topography is present within the ground
The paper also proposes some measurements for deriving fromath, lateral echoes coming from the surface can appear
the output of the proposed technique variables that cheriaet in the range corresponding to the subsurface. Such returns
guantitatively the properties of the detected linear festu become relevant on irregular (sloped) or rough surfaced, an
(mean depth, mean intensity, relative mean contrast) agid ththeir strength depends on the system spatial resolutioroand
distribution (number of features, density of layers). Desp the relation between the radar wavelength and the size of the
that the proposed technique is general, in this paper wearface irregularities. The presence of such echoes &pses
evaluate its effectiveness by considering SHARAD radangra one of the main factors which complicate the development

In this section we fix the reference system and define the
Gtation used throughout the paper.



and reduce the effectiveness of automatic techniques or til. AUTOMATIC DETECTION AND CHARACTERIZATION OF
analysis of radar sounder data. Indeed, they can be errslyeou LINEAR FEATURES IN RADAR SOUNDER DATA

detected as (or mask) actual subsurface features. In this section we describe the proposed automatic teckniqu
In this paper radar sounder radargrams are consideretk@sne detection and characterization of linear featuneadar

2D images where each pixel at the positiony{ corresponds soynder data. The proposed method is a four-step procedure

to a power sample acquired by the instrument at @ giVefage up of: i) radargram denoising and enhancement, ii)

along-track position (corresponding to the column ind§X |ine detection, iii) removal of first returns, and iv) exttiac

and at a certain time (corresponding to the row inggxThe ot measures of interest. Fig. 3 shows a block scheme of

sequence of samples belonging to a certain colunuf the  he proposed method. In the following we describe in detalil

radargram is also referred to ashoor frame Fig. 2 shows o5ch step of the algorithm and propose examples of derived

schematically the defined reference system. The geogiaphigeasyrements that can be calculated after the detection.
position of the track on ground can be reconstructed by

means of ancillary information usually distributed witheth o
radargrams. In contrast, the vertical range of the samplas ¢ Radargram Denoising and Enhancement
be known exactly only in the time domain. Indeed, in order to The goal of this step is to reduce the background noise of
translate the sample positions from time to depth it is neanys the radargrams and enhance the signature of linear features
to assume a certain dielectric constagg for the subsurface Noise reduction and line enhancement are performed jointly
[1]. by exploiting the intrinsic correlation that linear featarshow
on adjacent frames. As an example, a linear feature covering
several adjacent frames is expected to appear at adjgcent
o , ) positions. This holds independently from its intensity.idear
, A generic linear feat.ure\i in a radargram acquired on eature characterized by low intensity can thus be masked by
icy region will be described as a set of four-element tupes J;e heaks in some echoes. However, as noise is uncodrelate
follows: among the different frames, the linear feature can be preder
i ={(z,y,w,¢): (z,y) € ¥; whereas noise is_ r_educed. '_I'o this end, we propose for thee join
Aw=n(2,y) A c=Cr(zy)} (1) radargram den_0|smg and linear feature enhanceme_nt the use
A A of the BM3D filter developed by Daboet al. [22]. Fig. 4
where ®; is the representation of; in the image reference summarizes the operations performed by the filter. The first
system, and,, and C,, are operators which calculate thestep is aimed at producing a so-called basic estimate oftlee t
local width and contrast of; at a given point £,y), respec- image (i.e., the image with no noise). This is done by opegati
tively. The line contrast is defined as the difference betwe@ a non-local way. The filter searches the radargram space
the line intensity and its surrounding, assuming the sifyiplj for similar parcels by means of a block-matching procedure
assumption that each line section has a rectangular shape. Nased on a square sliding window. The retrieved blocks are
that®; includes only the skeleton of a linear feature, and do#isen stacked together to form a 3D group, which is filtered
not provide any information on its thickness. We defin@#s by means of hard-thresholding operated on the coefficieints o
the set of pixels corresponding to the area of the radargnam ta 3D transform applied to the group (for instance based on
is described by the region having as axis the paintg) € ®; Discrete Cosine Transform or Walsh-Hadamard). The inverse
and a local width defined for each pointas= Q2,, (x,y). Fig. 3D transform is then applied to the thresholded coefficients
2 shows graphically the definitions given in this paragraph.Finally, the output block estimates are aggregated togethe
It is worth noting that the definition of\; allows one to using weights calculated from the thresholded coefficients
calculate for each linear feature a set of derived measurdsus, at the end of the first step a basic estimate of the
which can be computed also locally by selecting a subs##noised image is produced. Such image is used as input to the
of the elements composing; (e.g., line total length, mean second step. In the second step, the filter performs a proeedu
width, local mean contrast). For the analysis of actual gubswhich is similar to the one of the first step. The main differen
face reflections, such measures can be then straightfdgwaiid the use of a Wiener filter which denoises the original input
translated in physical quantities (e.g., geographicaglerof image using as reference the basic estimate derived in #te fir
a linear interface, mean intensity of the reflection). Inevrd step. For more details on the processing performed by tlee filt
to give the most general definition, in this paper we willhe reader is referred to [22].
use as unit for linear feature width and length the numberThe BM3D filter has been originally developed for optical
of pixels of the radargrams. In fact, radargrams of différeimages affected by additive white Gaussian noise (AWGN),
sensors have different resolutions, both in range and aloramd for this type of images it represents the state of th& be.
track. Moreover, even radargrams from the same instrumenain parameter of the BM3D filter is the estimated variance
can be focused at different resolutions. Therefore, thatioel of the image background AWGN noise. Other parameters tune
between the physical length and width of a reflection and thehe size of the blocks and the maximum number of blocks
representations in the image domain are not unique. Usipgr group. The BM3D filter can be properly defined also for
physical quantities for the definition of the parametershef t non-AWGN noise [22], [23]. It has been also used with good
proposed technique would be thus not general, but linked toesults for despeckling of log-transformed synthetic aper
certain instrument and focusing approach. radar (SAR) images [24].

B. Definition of Linear Feature
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Fig. 2. Reference system and definitions of linear featurarpaters as used in this paper on a simplified qualitativargadm.
Denoising and Line i i
Input radargram enhancement detection B. Line Detection . _
In order to extract linear features from the denoised radar-
Measure Setected inea First return grams we propose to use the Steger filter [27]._ The Steger
extraction features removal filter has been originally developed for the detection oé#n

features in optical images and exhibited good performalsce a
on images affected by significant noise [28]. Moreover, & ha
been successfully applied as a tool for primitive segmentat

by analyzing the second derivative of the convolution ofhsuc
Rolative mean profilg Wi.th a Gaussian smoothing kernel. In the 1D Cas_e,(e.g.

contrast considering only a single radargram framg the function
evaluated by the filter is:

aimed at building detection in VHR SAR images [29], [30].
The Steger filter assumes for linear features a rectangular
profile (see Fig. 2) and the detection of lines is performed

Fig. 3. Block scheme of the proposed method for the detectind
characterization of linear features in radar sounder data. r(y, s,w,c) = g;’(y) * P(y) (2)

/ w / w
“eli (o4 3) - (o )]
In the case of radar sounder data the AWGN assumptionjgere
not valid. Noise in amplitude radargrams appears as aniaeldit 9s(y) = 1 o ;; ©)
and Rayleigh distributed contribution (when no multiloogi V27s

is pgrformed) [15]. Moreover, in correspondence of any rgs the Gaussian convolution kernef,(y) and g”(y) are its
flection, the so-callegpeckleeffect appears because of thgjst and second derivatives, respectively, affg) is the line

coherent nature of a radar acquisition [15], [25]. Howeesr, representation in the 1D space (see Fig. 2). The line respons
it will be shown later, the use of the original BM3D filter fortq the filter is calculated as(0, s, w, ¢)|, given by:

AWGN! as a step prior to line detection on stretched dB-power

w2
radargrams is very effective and sufficient for performihg t (0, s, w,c)| = Lge‘sﬁ (4)
subsequent line detection. V2ms

For the sake of completeness, we also point out that mod-/According to [27], the value of should belong to the range

ified versions of the BM3D filter specifically devoted to thef%, % |- However, the maximum line response is obtained

jointimage denoising and edge sharpening have been prdpossing the minimum value allowed for, which is s = ﬁ

in the literature [26]. In our experiments such methods fexhiTherefore, in our experiments we will use this value §0As

ited good performance. However, the edge sharpening eesulan example, Fig. 5 shows the value |0f0, s, w, c)| for the

in a subsequent higher number of false line detections duectisew = 1 andc = 1 with s spanning its domain range.

filtering artifacts. Moreover, edge sharpening changeditiee =~ The mathematical description of the filter allows the unbi-

intensity, making it more difficult to select the parametefs ased calculation of the line position with sub-pixel accyra

the line detector according to values directly measurable also in the case in which the line has background with

the original radargram. For these reasons, in this papers@e asymmetric intensities on its sides. This is important as it

the BM3D filter without edge sharpening. allows a precise estimation of the position of the lineatdea

independently on the fixed pixel spacing. Moreover, width

1The implementation of the BM3D filter used in this paper is thailable @Nd contrast can be estimated locally for each detectedrline

at http:/Avww.cs.tut.fit foi/l GCF-BM3D/. feature); by properly defined2,, andC), operators [27].
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Fig. 4. Block scheme of the BM3D filter: (a) generation of ttesib estimate, (b) generation of the filtered image througn® filtering (scheme adapted
from [22]).

38 | returns is carried out by means of the algorithm proposed in

3.6 [15]. Such an algorithm detects for each framéhe position

3.4 of the first sample which is statistically different from the

39 frame background noise (which is modeled with a Rayleigh
o distribution). A smoothing function is then applied to the
= 3 results to mitigate the effect of outliers. Note that in thisp
28 only the surface reflections appearing as first returns in the
\Cg 2.6 radargrams are removed. Surface clutter reflections ajpgear
- at the same range of the subsurface cannot be detected

24 straightforwardly. Usually, this detection is accompédhby

2.2 manually matching radargrams with clutter simulations][31

9 Recently, this problem has been also addressed by means

L8 of an automatic technique [32]. The automatic detection of

T 03 0.35 0.4 0.45 05 linear features in the subsurface range due to surfaceeclutt

thus involves a complex procedure which deviates from the
scope of this paper. However, the development of such post-

Fig. 5. Value of|r(0, s, w, )| calculated usingv = 1 andc = 1, and by processing step will be subject of future work.

) . w  w
varying s in the range[z—ﬁ, ol

S

D. Extraction of Measures of Interest

As described in the previous subsections, the output of the
For a givenw (and thuss), the main parameter of the Stegeproposed method is a set of detected linear features dedcrib
filter which has to be set isy,. ryp is the minimum response as defined in (1). This description already provides useful
to the filter that triggers the detection of a line point. Thgyformation, such as the linear feature position, thicknasd
algorithm also includes the possibility to link the detettecontrast. As an example, the contrast can be analyzed tcextr
line points into lines. This is performed by searching thRom the detected features those which have a significant
neighborhood of line points and adding new points which haygensity difference with their background. This inforrieat
a second derivative greater than a third parameter The could be useful to detect abrupt changes in the composition
choice ofryp can be made by calculating the response of & the ice, and thus it can drive the definition of dielectric
ideal rect-shaped line with given widtty and contrastcyy models of the ice column. Further parameters associated

using (4) and choosing = 3= This results in: with the detected linear features can be also estimatech Suc
s parameters can be computed locally for each feature, or can

Tup = 244 /E%Cup (5) be related to set of features covering a certain geogralphica

2m w area or belonging to the same depth range. For instance,

Similarly, the value ofroy can be calculated using in (5) ameasurements that can be estimated independently for each
valueciow Which represents the minimum contrast allowed faetected linear feature are the mean intensity and the mean

the linking of the detected line points. depth. This type of parameters can be associated to a vector
for each detected linear feature, i.e., by extending thaitiefi
C. First Return Removal of (1) with new values calculated by proper operators. In the

following we propose a set of measurements which can be

) The output of the previous step is a sktof de-tected used to extrapolate further information from the detecieedr
linear features\;. As the line detector has been applied to th]e atures

whole radargram) contains linear features which are cause

by both surface and subsurface reflections. Therefore,isn tfa 1.) Mean. depth:The mean depth of a linear feature is
. : efined as:

step the algorithm removes the linear features correspgndi 1

to the first returns and preserves only the lines which are Uss(\i) = ) E v — yo(x) (6)

likely to belong to the subsurface. The detection of the first (z,y)EP;



wherey, () is the position of the first return in the frameas
detected by the first return detection described in the previ
subsection, and the notatidn indicates the cardinality of a
set.

2) Mean intensity:We define the mean intensity of a lineaiggy
feature in the following way:

u(Ai>=FL| S Iy @)
v

z,y)edY

where & has been defined in Sec. II-Bi(z,y) is the
radargram intensity at the positiom,().

3) Relative mean contrastThe relative mean contrast
of a linear feature)\; is defined as the ratio between itg
mean intensity and the mean intensity of its surrounding Tl
latter can be extracted exploiting the feature contrasichvh
is estimated by the line detector. This results in:

N()\‘) Fig. 6. Digital elevation model of the North Pole of Mars ged from Mars
m (8) Orbiter Laser Altimeter (MOLA) [33] data.
PAAG) — CLA;

-5500

Er()\i) =

where
e\ = ] Z C, (2, ) 9) The size of the sliding window should be determined

1
| depending on the resolution of the data and on the size of
, the structures that have to be highlighted. In generalelarg
is the mean contrast of;. _ windows produce density maps with low detail but that are
4) Number of detected featuresThis measure can beqefy| to infer the general distribution of the features. On
def!ned locally to a certain range of frames and samples. )y, contrary, small windows can highlight better local teat
define as number of detected features the value patches at the cost of more visible blocking artifacts.

" (zy)ed;

N(X,Y) = |A(X,Y)] (10) It is worth noting that mean depth, number of features, and
density are defined in the radargram image space. However,
where they can be related to geographic and time scales by applying
AX,Y)={\:(2,y) €®; A I(z,y):2€ XAyecY} theappropriate conversion factors.
(11)
X = [Tmin, Tmay @NdY = [ymin, Ymax] define the range of IV. EXPERIMENTAL RESULTS

frames and samples to be considered, respectively. The-calc |n this section we present the results obtained by the pro-

lation of N(X,Y’) can be performed by means of a slidingosed technique on real radar sounder data. First, we presen
window approach on the whole radargram portion related {e dataset used in the experiments. Second, we show the
the subsurface. This gives a 2D map of the distribution @ltput of the BM3D filter on sample radargrams and frames

the linear features within the radargram. If the computatian order to discuss its denoising capabilities. Third, wedgt

is performed frame-by-frame (i.e|X| = 1) on the whole qualitatively the influence of the parameters of the linedtr

Y range, the output is a 1D graph describing the numbgs its detection performance. Then, we measure quanétgtiv

of detected subsurface linear features versus the alaw§-trthe detection performance of the proposed method for a fixed
direction. This information is very useful to estimate tlye®f set of parameters. Finally, we show examples of measures

the ice column, as each layer is associated with the depositextracted automatically from the radargrams.
and subsequent solidification of snow in different periddd [

5) Layer density:The layer density is defined as: A. Dataset Description
N(X,Y)

DX,)Y)= ——"—= (12) In order to assess the performance of the proposed technique
Y we used many different SHARAD radargrams taken on the
Similarly to the case ofV(X,Y), D(X,Y) can be com- NPLD of Mars. Since we obtained very similar results, in the
puted using a sliding window approach. This measure efollowing we focus the attention (for space constraintsjaur
presses the number of linear features per sample in tlaelargrams (see Fig. 7). It is worth noting that the presente
range direction. The definition takes into account themsida method is general and can be applied to any radargram type
correlation that linear features show between adjacentdsa (e.g., acquired by other radar sounders) with a proper ¢unin
Indeed, the size of the window in the along-track directiosn of parameters, which depend on the technical characteyisti
not used in the denominator. The result is thus a 2D map of tbkthe instrument adopted. The test radargrams refer to flat
density of the layers in the range direction. This measurgmeegions of the NPLD of Mars. A digital elevation model
is linked to the ice accumulation rate. Therefore, it is imipot (DEM) of the NPLD is shown in Fig. 6. In the considered
for the analysis of the past history of the ice column [14]. areas, surface clutter is very limited and this allows us to



(d)
Fig. 7. SHARAD radargrams (a) 520501000, (b) 528401000,1()1902000, and (d) 1591701000.

focus on the detection of actual subsurface linear featiWes a laptop equipped with an Intg) Core™ i5 M540 and 4 GB
will consider only the upper part of the radargrams (i.ee thof RAM.

first 7.5-11 us after the first detected return for each frame,

depending on the considered radargram), corresponding t%.aRadargram Denoising and Enhancement

densely layered shallow subsurface. The radargrams have be i

focused using the FPB processor [34] hosted at the Southwesf € output of the BM3D filter for two of the test radargrams
Research Institute of Boulder, CO, USA. The data have bel§nPresented in Fig. 8. The figure shows the capability of the
converted to dB and thresholded in the range [ 3,7ids +32] filter to_flatten t_he noise backgroundlwhne preserving, and
dB, wherefigs is the mean noise power measured on tHhhancing, the linear f_eatures pre.sentm.the re_ldargralm_eT
radargram expressed in dB. Finally, the radargrams have b&&€cts can be appreciated more in detail in Fig. 9. The figure
stretched in the range [0,255]. The spatial resolution ef tfghows one echo taI_<en_from the test radargram of Fig. 7a before
radargrams is approximately 450 m 3 km (alongx across a_md after the application of the I_3M3D_f||ter. Note that_the
track) with an along-track sampling of about 115 m. Thiilter mostly preserves the act_ual intensity value of thedin .
range sampling is of 37.5 ns, corresponding to 5.63 m fgatures, thus making the ch0|c_e of tr_le parameters of tlfre lin
free space and slightly more than 3 m in an icy subsurfagéteCtor directly related to the intensity of the featureshie

(ess = 3.15). However, as mentioned in the introduction, thQriginal radargram. In our experiments we fixed the size of
range resolution of SHARAD is about 10 m in ice. the blocks used by the BM3D filter to 3% 32, and set the

maximum number of blocks per group to 16. We obtained
The average running time of the proposed method on thee best tradeoff between denoising and feature enhancing
test radargrams is of less than one minute using one corebgf setting the AWGN standard deviation parameter of the



Fig. 8. SHARAD radargrams (a) 520501000 and (b) 528401064 #ie application of the BM3D filter.

180

Original frame constraint comes from the fact that standard radar sounder
160 Filtered frame 1 focusing processing makes it difficult to detect returnsrfro
140 , surfaces with high slopes. Thus, inclined features havé hig
il probability to be false alarms.
) 120 1) Dependence om: The evaluation of the influence of
£ 100 ‘ ;; w on the results obtained by the proposed technique has been
§ 0 ' ‘ carried out by applying the method using three differentigal
= (2, 4 and 6) on several test radargrams. In these experiments
60 the value ofcmax has been fixed to 3. On the one hand, as
40 expected the results show that increasingesults in a lower

sensitivity of the technique to thin linear features. Ondtiger
i b 2 ; hand, linear features thicker than the selected value afe
0 ] ! _ H i ! ! " ' . .
200 300 400 500 600 700 soo 900 Still well detecFed. The number of falsg ala(m is overaI.I low
Samples and the detection accuracy of the algorithm is high. A slight
greater number of false alarms is associated with higheegal
Fig. 9. Sample frames taken from the radargram of Fig. 7arbeftotted  of w. This can be explained by analyzing (5). Indeed, for a
green curve) and after (solid red curve) the applicationhef BM3D filter. given value ofcmay the maximum line responS@ax decreases
by increasingu, thus increasing the probability of false alarms.

) ) i 2) Dependence onnax: In this tests we fixed the values
filter equal to the background noise dynamic measured on t&ew to 2. The value ofcmay has been set to 3, 10 and 20.

radargrams, which is on the order of 60 in the consider%% expected, by increasing the value ®f.x the proposed
dataset. technique detects only the most salient lines, whereasrine

features with low contrast are not detected. For the aim of

C. Selection of the Parameters of the Line Detector this paper low contrast features are important. Therefove,

. values ofcnax Will be considered in the following.
In order to select the best parameters to be used as input

to the proposed technique and to understand the dependence o )

of the results on the parameter values, we analyzed thesesh: Quantitative Performance Analysis

obtained by the method with different input parameters. In The qualitative analysis presented in the previous suiosect
particular, we studied the dependence of the results on #illowed us to define a range of values for the parameters of
choice ofw andc,p. The value ofcq, has been fixed to 2 for the proposed technique that permits the effective appicat

all the experiments. Lines shorter than 10 pixels have beehthe method to the test dataset. In particular, the values
discarded both in the reference and in the detected maphich gave the best results ate = 2 and cmax = 3.

In fact, the proposed technique is suited for the analydtsy. 10 shows the results obtained on two of the four test
of subsurface areas showing extended layering where lineadargrams. Using those parameters, in this section we thus
interfaces usually appear for long distances. As our gotd isanalyze quantitatively the performance of the proposedhatkt
detect significant layers, small lines are discarded as ¢hay on the four SHARAD radargrams shown in Fig. 7. Each
be associated with other features of ice. Lines with a hot&lo radargram contains a large number of lines with different
inclination greater than 45have been also discarded. Suckengths and widths. The amount of short/long and thin/thick

20 p




(b)
Fig. 10. Results obtained by the proposed technique on SHARAlargrams (a) 520501000 and (b) 528401000 using 2 and cmax = 3.

. . TABLE |
linear features, and the background noise, depend on beth th  Accuracy PROVIDED BY THE PROPOSED TECHNIQUE FOR THE

specific sounded area and the environmental conditions. ThBETECTION OF LINEAR FEATURES IN RADAR SOUNDER DATA ON FOUR
detection performance is assessed by measuring i) the mumbe SHARAD RADARGRAMS.

of correctly detected linear features and false alarms,iiand
the quality of the detections in terms of length of detected

Radargram  Number of  Detected False

i f hei I | d number lines lines alarms
inear res ver ir ngth. In order

ea eatures versus their actua eII gt order to mmsh 520501000 — p—e o
such quantities we deflned manually reference maps of the 528401000 768 601 52
linear features present in the radargrams and comparedtthem 1041902000 694 591 78
the results of the proposed method. The reference maps do not 1591701000 754 610 48

contain lines shorter than 10 pixels in order to be comparabl

to the output of the proposed method.
measured for each retrieved line the length of the detected

2Lt This measure has been compared to the actual length of

and the number of false alarms produced by the proposed tetle line. Fig. 12 summarizes the results obtained on the four

nigue are summarized in Tab. | for the four test radargrarig.sz radargrams. Trt1_e f'?hure Sh%WS f;)(rj etac? éel_st radz;gram a
We consider a line detected if it overlaps with a line prodlic IStogram representing the number of detected lines vensus

by the algorithm. Similarly, we consider a line produced b t!o between.detected length and aptualllength. The eesult
the algorithm as a false alarm if it does not overlap with a int out that in most cases the algorithm is able to detect up

line contained in the reference map. The analysis of thdtses the 60-90% of the length of the linear features. A lower

points out that the proposed technique has good performanf%%teaion quality is associated with the radargram of F&y. 7

especially considering that it is automatic. In order to éhav, his was e_xpected, as the radargram shows less clear linear
a more detailed understanding of the detection rate of tff\eatures with respect to the others.

method, we studied the relation between the number of missed

detected and false alarms and the line lengths. The reseltsB. Extraction of Measurements of Interest

reported in Fig. 11, which shows the histograms represgntin |, gec. |11-D we defined several measurements that can be
the number of detected (green), missed (red) and fals®@Well jerived from the output of the linear feature detection. In
lines versus their length for the four test radargrams. BSe | s section we focus on the calculation of the number of
column of the histograms includes the lines that have a lengfeected lines and their density in a given radargram area.
equal or greater than 195 pixels. The histograms show teat {igeed, such measurements are interesting as they can give a
proposed method detected approximately all the lineaufeat g ick overview of the presence of subsurface linear feature
with a_Iength greater than about 30 pixels. For shorter Iﬂ_1_es and of their distribution, and become important when 3D
detection performance decreases, and false alarms ah&. a5 of these parameters should be obtained by interpreting
behavior is not an issue for the goal of the proposed tecenidy, yargrams acquired on parallel adjacent tracks in global
which is the automatic analysis of subsurface areas Showi‘fﬁ%pping applications. Fig. 13 shows the measured number
e_xtended layering. It is expected t_hat_in such areas sign'lficqf lines per frame for the test radargrams of Fig. 7a and
linear features have a long extension in the radargram domf#ig. 7b. Both the number of layers present in the reference

2) Quality of Detection:In order to quantify the quality map and in the detected set are shown. The values have been
of the detection performed by the proposed method, veweraged using a 10-wide moving window in order to reduce

1) Detection and False Alarm Ratéfhe number of lines
present in the reference maps, the number of detected li
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Fig. 11. Histograms representing the number of detectede(gr missed (red) and false (yellow) lines versus theigtterfor the four SHARAD test
radargrams: (a) 520501000, (b) 528401000, (c) 1041902800 ,(d) 1591701000.

the effect of outliers. The graphs show that the output of thes commented in Sec. IlI-D5, the choice of a larger window
proposed technique well approximates the values given dy tivould have produced smoothed versions of the density maps.
reference maps. In general the proposed technique slightlye density maps of Fig. 14 and Fig. 15 present clearly how
underestimates the number of linear features. The larggst gthe linear features are distributed within the radargrafns.
between the output of the algorithm and the reference map argual comparison between the reference density maps and
due to low contrast linear features (low power at the intafa the detected density maps shows that the proposed technique
which are not detected. is able to approximate the reference map with good accuracy

Fig. 14 and Fig. 15 show the layer densities maps obtainéy@ completely automatic way.
for the same two test radargrams. Both the map obtained

from the layer reference map and the detected map are shown V. CONCLUSION
for each radargram. The densities have been calculated usin
a sliding window of size 5x 20 pixels (along-trackx In this paper we presented a novel technique for the

range) with a step of 1 pixel in both along-track and rangeutomatic detection and characterization of subsurface li
directions. The measures obtained from overlapping wirsdowar features in radar sounder data. The method is suited
have been averaged. The layer density is represented is teton the analysis of regions showing extended layering. The
of number of lines per samples. By considering the rangxperimental results obtained on real planetary radardsun
sampling of the SHARAD radargrams (which is 37.5 nsyata confirmed the effectiveness of the proposed method both
this means that the values shown in Fig. 14 and Fig. Ifalitatively and quantitatively.

correspond approximately to a range of 0 to 0.63 lines everyln order to extract further information from the radargrams
10 meters (usingsss = 3.15). The choice of the size of we also proposed a set of measurements which can be derived
the sliding window has been driven by the much differeritom the detected linear features. Such measures can lokescri
resolution of the data in the along-track and range diractidocally the properties of the single linear features and/jgl®
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Fig. 12. Histograms representing the number of detectes Mersus the ratio between their detected and actual Efgtthe four SHARAD test radargrams:
(a) 520501000, (b) 528401000, (c) 1041902000, and (d) 1GBBAAD.

information about their distribution within the radargrgamd on airborne datasets acquired at different frequencies and
thus the geographical area of interest). resolutions on the Earth’'s polar regions. Moreover, we plan

The technique and the measurements proposed in this p f e§tudy automatic techniques for the automatic detectimh a

are relevant for the automatic analysis and combination Lerlng of linear featur(_es due to surface clutter from tipmit
many radar sounder acquisitions over large areas. Inde® Ehe proposed technique.

they can provide in a fast way information on subsurface
layering which can be used to derive high level products in a ACKNOWLEDGMENT
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