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Automatic Extraction and Analysis of Ice Layering
in Radar Sounder Data
Adamo Ferro, Lorenzo Bruzzone,Fellow, IEEE

Abstract—Nowadays, the interest on the development of or-
biting radar sounders for the observation of Earth polar areas
is increasing. In this context, the analysis of the structure of
the ice stratigraphy is of primary importance for the study
of the past history and for the prediction of the evolution of
icy environments. However, as proven by planetary missions,
orbiting radar sounders provide a huge amount of data. Thus,
the development of automatic techniques for the analysis of
these data is of fundamental importance for a proper data
exploitation. In this paper we propose a novel method for the
automatic detection of subsurface linear features from radar
sounder data acquired in icy regions showing extended layering.
The proposed method allows the estimation of the position
of the linear features with sub-pixel accuracy. Moreover, each
detected linear interface is treated as a single object which is
completely described by the position of its points, the estimated
local width and the contrast. This allows the direct measurement
of geometrical and radiometric parameters (e.g., slope angle,
intensity) without the need of further post-processing steps. The
paper also proposes some measurements for deriving from the
output of the proposed technique important variables that can
characterize quantitatively the properties of the detected linear
features (e.g., mean depth, mean intensity) and their distribution
(e.g., number and density of layers). The effectiveness of the
proposed method is confirmed by the results obtained on several
radargrams acquired by the Shallow Radar (SHARAD) on the
North Pole of Mars.

I. I NTRODUCTION

RADAR sounding is a well known nonintrusive technique
which allows the investigation of the structural and

dielectric characteristics of the subsurface. This is performed
by transmitting waves in the MF, HF or VHF frequency
ranges into the subsurface and recording the signals scattered
back from subsurface structures or dielectric discontinuities
[1]. Radar sounder data are usually stored as radargrams.
Radargrams are 2D images that represent the recorded echo
power for a given range position as a function of time on one
axis, and as a function of the instrument along-track position
on the other. Therefore, a radargram shows a sounding profile
taken over a certain ground track.

Radar sounders are often mounted on flying platforms, such
as airplanes or satellites. The former are widely used for
the study of Earth’s poles and can provide local or regional
mapping on areas of interest [2]. Although interest has been
shown by the glaciological community for an Earth orbiting
sounder [3], at the time of writing spaceborne radar sounders
have been used only for the exploration of other planets or
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moons. Examples are the Lunar Radar Sounder (LRS) of the
Japanese orbiter Kaguya [4], the Mars Advanced Radar for
Subsurface and Ionosphere Sounding (MARSIS) on the ESA’s
Mars Express orbiter [5], and the Shallow Radar (SHARAD)
of the Mars Reconnaissance Orbiter of NASA [6]. The latter
two instruments are currently operating at Mars and are
providing high quality data which make it possible a detailed
study of the subsurface of the Red Planet. In particular, the
SHARAD instrument has the capability to produce radargrams
with a vertical (range) resolution of about 10 m in ice. This
makes it possible to reveal the ice stratigraphy of Mars’ poles
[7], [8], and to detect fine linear interfaces in other areas of
the planet [9]. New planetary radar sounder instruments are
planned to be included in future missions devoted to the study
of other bodies, such as the moons of Jupiter [10] and Titan
[11]. Activities for the definition of an Earth orbiting sounder
are also in progress.

One of the most important applications of radar sounders is
the analysis of the subsurface in icy regions (e.g., Greenland,
Antarctica, poles of Mars). Indeed, ice is one of the most
transparent materials at the aforementioned frequencies,thus
making the penetration of the signals into the subsurface fea-
sible even for several kilometers [12]. A salient characteristics
of icy regions is the presence of extended layering due to the
deposition and subsequent solidification of snow in different
periods. The study of the structure of the ice stratigraphy (e.g.,
position and density of the ice layers) is very important for
many reasons. Primarily, the analysis of the ice stratigraphy
allows the estimation of ice age and accumulation rate, and
is necessary for constraining ice flow models [13], [14]. All
the aforementioned factors are key parameters for the study
of the past history and for the prediction of the evolution of
icy environments. Focusing on the Earth, nowadays this is of
primary importance in the framework of the assessment of the
impact of climate changes on the Earth’s system.

Orbiting radar sounders provide a huge amount of data. In
the case of planetary missions, the analysis of such data has
been carried out mainly by means of manual investigations.
This limits their return, as manual analysis are time consuming
and inherently subjective. This calls for the development of
automatic or semi-automatic techniques for the analysis of
radar sounder data that can extract relevant information from
radargrams in an efficient and fast way. Such techniques
can thus help the scientific community in the selection of
interesting radargrams, in the detection and characterization of
subsurface features, in the correlation of such features between
large sets of radargrams taken on adjacent tracks, and in global
mapping.

The development of techniques for the automatic analysis
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of radar sounder data has not been addressed sufficiently in the
literature. In [15] we made a first step towards the automatic
analysis of planetary radar sounder signals by presenting a
statistical analysis of the signals and proposing a technique
for the automatic detection of polar basal returns. As men-
tioned previously, subsurface layering is another important
characteristic. In this paper we thus focus on the automatic
detection and characterization of subsurface linear features
in sounding profiles of regions showing extended layering.
Related works are mainly devoted to the automatic analysis
of data acquired by surface-mounted ground penetrating radars
(GPR) showing linear and hyperbolic returns [16]–[20]. Linear
features are often detected by means of the Hough transform
or modeled as the limit of hyperbolas with no slope. These
approaches are suited for GPR radargrams containing clear
straight lines, but they are not appropriate for radar sounder
data in which linear features are not straight and change
slope locally. In fact, radar sounder radargrams cover a much
longer track than GPR acquisitions usually with a much worse
along-track sampling, thereby showing the large scale shape
of subsurface linear interfaces (e.g., due to topography).To
our knowledge, the only attempt to the automatic detection of
shallow linear features in radar sounder data reported in the
literature was made by Freemanet al. [21] using SHARAD
radargrams. In their work the authors used a combination
of image filterings followed by a threshold operation. The
goal of the filterings is: i) to reduce background noise, ii) to
normalize the data using a band-pass Gaussian filter; and iii)
to highlight almost-horizontal linear features by means ofa
matched filter. Indeed, the algorithm relies on the assumption
that linear features have very low slopes. In order to achieve
this, a coordinate transformation is applied in order to flatten
the surface topography, and thus reduce the induced layer
slopes prior to image filterings. The output of the processing is
a binary image where the pixels belonging to linear interfaces
are highlighted. Therefore, the method does not detect directly
single linear features and needs further processing steps in
order to extract detailed information on their radiometricand
geometrical characteristics.

In this paper we propose a novel technique for the automatic
detection of subsurface linear features in layered media which
allows the direct estimation of the position of the single
linear features with sub-pixel accuracy. The method does not
rely on specific geometrical assumptions (e.g., flatness of
subsurface features). Moreover, each detected linear interface
is treated as a vector object which is completely described by
the position of its points, and its estimated local width and
contrast, thus allowing the direct measurement of geometrical
or radiometric parameters (e.g., slope angle, intensity) without
the need of further post-processing steps (as necessary for
simpler techniques based on image filtering and thresholding).
The paper also proposes some measurements for deriving from
the output of the proposed technique variables that characterize
quantitatively the properties of the detected linear features
(mean depth, mean intensity, relative mean contrast) and their
distribution (number of features, density of layers). Despite
that the proposed technique is general, in this paper we
evaluate its effectiveness by considering SHARAD radargrams

δal

δac

h

Fig. 1. Acquisition geometry of a radar sounder instrument.h is the platform
height, δal and δac are the along- and across-track resolutions on ground,
respectively.

of the North Pole Layered Deposits (NPLD) of Mars. The
results show the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Sec. II
describes briefly the acquisition geometry of a radar sounder
and defines the notation used throughout the paper. Sec. III
presents the proposed method for the automatic detection of
linear features in radar sounder radargrams. Sec. IV shows the
experimental results obtained on real SHARAD radargrams of
the NPLD of Mars. Finally, Sec. V draws the conclusions of
the paper and suggests future developments.

II. REFERENCESYSTEM AND NOTATION

In this section we fix the reference system and define the
notation used throughout the paper.

A. Radargram Reference System

The acquisition geometry of a radar sounder instrument is
depicted in Fig. 1. The platform on which the instrument is
mounted flies at a certain altitudeh over the ground. Such
an altitude can span between several hundreds of meters and
several hundreds of kilometers, depending on the type of
platform (i.e., airplane or satellite). The resolution on ground
of the system depends on the type of antennas and on the
signal processing techniques adopted. In general, the spatial
resolution in the along-track directionδal can be sharpened
by synthetic aperture processing [1]. In contrast, the resolution
in the across-track directionδac is usually linked to the real
antenna aperture and the surface roughness. This may lead to
a wide swath in the across-track direction, which can be of
some tens of kilometers for a spaceborne radar sounder [5],
[10]. When relevant topography is present within the ground
swath, lateral echoes coming from the surface can appear
in the range corresponding to the subsurface. Such returns
become relevant on irregular (sloped) or rough surfaces, and
their strength depends on the system spatial resolution andon
the relation between the radar wavelength and the size of the
surface irregularities. The presence of such echoes represents
one of the main factors which complicate the development
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and reduce the effectiveness of automatic techniques for the
analysis of radar sounder data. Indeed, they can be erroneously
detected as (or mask) actual subsurface features.

In this paper radar sounder radargrams are considered as
2D images where each pixel at the position (x,y) corresponds
to a power sample acquired by the instrument at a given
along-track position (corresponding to the column indexx)
and at a certain time (corresponding to the row indexy). The
sequence of samples belonging to a certain columnx of the
radargram is also referred to asechoor frame. Fig. 2 shows
schematically the defined reference system. The geographical
position of the track on ground can be reconstructed by
means of ancillary information usually distributed with the
radargrams. In contrast, the vertical range of the samples can
be known exactly only in the time domain. Indeed, in order to
translate the sample positions from time to depth it is necessary
to assume a certain dielectric constantεSS for the subsurface
[1].

B. Definition of Linear Feature

A generic linear featureλi in a radargram acquired on a
icy region will be described as a set of four-element tuples as
follows:

λi = {(x, y, w, c) : (x, y) ∈ Φi

∧ w = Ωλi
(x, y) ∧ c = Cλi

(x, y)} (1)

whereΦi is the representation ofλi in the image reference
system, andΩλi

and Cλi
are operators which calculate the

local width and contrast ofλi at a given point (x,y), respec-
tively. The line contrast is defined as the difference between
the line intensity and its surrounding, assuming the simplifying
assumption that each line section has a rectangular shape. Note
thatΦi includes only the skeleton of a linear feature, and does
not provide any information on its thickness. We define asΦw

i

the set of pixels corresponding to the area of the radargram that
is described by the region having as axis the points(x, y) ∈ Φi

and a local width defined for each point asw = Ωλi
(x, y). Fig.

2 shows graphically the definitions given in this paragraph.
It is worth noting that the definition ofλi allows one to

calculate for each linear feature a set of derived measures
which can be computed also locally by selecting a subset
of the elements composingλi (e.g., line total length, mean
width, local mean contrast). For the analysis of actual subsur-
face reflections, such measures can be then straightforwardly
translated in physical quantities (e.g., geographical length of
a linear interface, mean intensity of the reflection). In order
to give the most general definition, in this paper we will
use as unit for linear feature width and length the number
of pixels of the radargrams. In fact, radargrams of different
sensors have different resolutions, both in range and along-
track. Moreover, even radargrams from the same instrument
can be focused at different resolutions. Therefore, the relation
between the physical length and width of a reflection and their
representations in the image domain are not unique. Using
physical quantities for the definition of the parameters of the
proposed technique would be thus not general, but linked to a
certain instrument and focusing approach.

III. A UTOMATIC DETECTION AND CHARACTERIZATION OF

L INEAR FEATURES IN RADAR SOUNDER DATA

In this section we describe the proposed automatic technique
for the detection and characterization of linear features in radar
sounder data. The proposed method is a four-step procedure
made up of: i) radargram denoising and enhancement, ii)
line detection, iii) removal of first returns, and iv) extraction
of measures of interest. Fig. 3 shows a block scheme of
the proposed method. In the following we describe in detail
each step of the algorithm and propose examples of derived
measurements that can be calculated after the detection.

A. Radargram Denoising and Enhancement

The goal of this step is to reduce the background noise of
the radargrams and enhance the signature of linear features.
Noise reduction and line enhancement are performed jointly
by exploiting the intrinsic correlation that linear features show
on adjacent frames. As an example, a linear feature covering
several adjacent frames is expected to appear at adjacenty

positions. This holds independently from its intensity. A linear
feature characterized by low intensity can thus be masked by
noise peaks in some echoes. However, as noise is uncorrelated
among the different frames, the linear feature can be preserved
whereas noise is reduced. To this end, we propose for the joint
radargram denoising and linear feature enhancement the use
of the BM3D filter developed by Dabovet al. [22]. Fig. 4
summarizes the operations performed by the filter. The first
step is aimed at producing a so-called basic estimate of the true
image (i.e., the image with no noise). This is done by operating
in a non-local way. The filter searches the radargram space
for similar parcels by means of a block-matching procedure
based on a square sliding window. The retrieved blocks are
then stacked together to form a 3D group, which is filtered
by means of hard-thresholding operated on the coefficients of
a 3D transform applied to the group (for instance based on
Discrete Cosine Transform or Walsh-Hadamard). The inverse
3D transform is then applied to the thresholded coefficients.
Finally, the output block estimates are aggregated together
using weights calculated from the thresholded coefficients.
Thus, at the end of the first step a basic estimate of the
denoised image is produced. Such image is used as input to the
second step. In the second step, the filter performs a procedure
which is similar to the one of the first step. The main difference
is the use of a Wiener filter which denoises the original input
image using as reference the basic estimate derived in the first
step. For more details on the processing performed by the filter
the reader is referred to [22].

The BM3D filter has been originally developed for optical
images affected by additive white Gaussian noise (AWGN),
and for this type of images it represents the state of the art.The
main parameter of the BM3D filter is the estimated variance
of the image background AWGN noise. Other parameters tune
the size of the blocks and the maximum number of blocks
per group. The BM3D filter can be properly defined also for
non-AWGN noise [22], [23]. It has been also used with good
results for despeckling of log-transformed synthetic aperture
radar (SAR) images [24].
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Fig. 2. Reference system and definitions of linear feature parameters as used in this paper on a simplified qualitative radargram.
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Fig. 3. Block scheme of the proposed method for the detectionand
characterization of linear features in radar sounder data.

In the case of radar sounder data the AWGN assumption is
not valid. Noise in amplitude radargrams appears as an additive
and Rayleigh distributed contribution (when no multilooking
is performed) [15]. Moreover, in correspondence of any re-
flection, the so-calledspeckleeffect appears because of the
coherent nature of a radar acquisition [15], [25]. However,as
it will be shown later, the use of the original BM3D filter for
AWGN1 as a step prior to line detection on stretched dB-power
radargrams is very effective and sufficient for performing the
subsequent line detection.

For the sake of completeness, we also point out that mod-
ified versions of the BM3D filter specifically devoted to the
joint image denoising and edge sharpening have been proposed
in the literature [26]. In our experiments such methods exhib-
ited good performance. However, the edge sharpening resulted
in a subsequent higher number of false line detections due to
filtering artifacts. Moreover, edge sharpening changes theline
intensity, making it more difficult to select the parametersof
the line detector according to values directly measurable on
the original radargram. For these reasons, in this paper we use
the BM3D filter without edge sharpening.

1The implementation of the BM3D filter used in this paper is that available
at http://www.cs.tut.fi/∼foi/GCF-BM3D/.

B. Line Detection

In order to extract linear features from the denoised radar-
grams we propose to use the Steger filter [27]. The Steger
filter has been originally developed for the detection of linear
features in optical images and exhibited good performance also
on images affected by significant noise [28]. Moreover, it has
been successfully applied as a tool for primitive segmentation
aimed at building detection in VHR SAR images [29], [30].

The Steger filter assumes for linear features a rectangular
profile (see Fig. 2) and the detection of lines is performed
by analyzing the second derivative of the convolution of such
profile with a Gaussian smoothing kernel. In the 1D case (e.g.,
considering only a single radargram framey), the function
evaluated by the filter is:

r(y, s, w, c) = g′′s (y) ∗ φ(y) (2)

= c
[

g′s

(

y +
w

2

)

− g′s

(

y − w

2

)]

where
gs(y) =

1√
2πs

e
− y2

2s2 (3)

is the Gaussian convolution kernel.g′s(y) and g′′s (y) are its
first and second derivatives, respectively, andφ(y) is the line
representation in the 1D space (see Fig. 2). The line response
to the filter is calculated as|r(0, s, w, c)|, given by:

|r(0, s, w, c)| = wc√
2πs3

e
− w2

8s2 (4)

According to [27], the value ofs should belong to the range
[

w

2
√
3
, w2

]

. However, the maximum line response is obtained
using the minimum value allowed fors, which is s = w

2
√
3
.

Therefore, in our experiments we will use this value fors. As
an example, Fig. 5 shows the value of|r(0, s, w, c)| for the
casew = 1 andc = 1 with s spanning its domain range.

The mathematical description of the filter allows the unbi-
ased calculation of the line position with sub-pixel accuracy
also in the case in which the line has background with
asymmetric intensities on its sides. This is important as it
allows a precise estimation of the position of the linear feature
independently on the fixed pixel spacing. Moreover, width
and contrast can be estimated locally for each detected linear
featureλi by properly definedΩλi

andCλi
operators [27].
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Fig. 4. Block scheme of the BM3D filter: (a) generation of the basic estimate, (b) generation of the filtered image through Wiener filtering (scheme adapted
from [22]).
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For a givenw (and thuss), the main parameter of the Steger
filter which has to be set isrup. rup is the minimum response
to the filter that triggers the detection of a line point. The
algorithm also includes the possibility to link the detected
line points into lines. This is performed by searching the
neighborhood of line points and adding new points which have
a second derivative greater than a third parameterrlow. The
choice ofrup can be made by calculating the response of an
ideal rect-shaped line with given widthw and contrastcup

using (4) and choosings = w

2
√
3
. This results in:

rup = 24

√

3

2π

e−
3

2

w2
cup (5)

Similarly, the value ofrlow can be calculated using in (5) a
valueclow which represents the minimum contrast allowed for
the linking of the detected line points.

C. First Return Removal

The output of the previous step is a setΛ of detected
linear featuresλi. As the line detector has been applied to the
whole radargram,Λ contains linear features which are caused
by both surface and subsurface reflections. Therefore, in this
step the algorithm removes the linear features corresponding
to the first returns and preserves only the lines which are
likely to belong to the subsurface. The detection of the first

returns is carried out by means of the algorithm proposed in
[15]. Such an algorithm detects for each framex the position
of the first sample which is statistically different from the
frame background noise (which is modeled with a Rayleigh
distribution). A smoothing function is then applied to the
results to mitigate the effect of outliers. Note that in thisstep
only the surface reflections appearing as first returns in the
radargrams are removed. Surface clutter reflections appearing
at the same range of the subsurface cannot be detected
straightforwardly. Usually, this detection is accomplished by
manually matching radargrams with clutter simulations [31].
Recently, this problem has been also addressed by means
of an automatic technique [32]. The automatic detection of
linear features in the subsurface range due to surface clutter
thus involves a complex procedure which deviates from the
scope of this paper. However, the development of such post-
processing step will be subject of future work.

D. Extraction of Measures of Interest

As described in the previous subsections, the output of the
proposed method is a set of detected linear features described
as defined in (1). This description already provides useful
information, such as the linear feature position, thickness and
contrast. As an example, the contrast can be analyzed to extract
from the detected features those which have a significant
intensity difference with their background. This information
could be useful to detect abrupt changes in the composition
of the ice, and thus it can drive the definition of dielectric
models of the ice column. Further parameters associated
with the detected linear features can be also estimated. Such
parameters can be computed locally for each feature, or can
be related to set of features covering a certain geographical
area or belonging to the same depth range. For instance,
measurements that can be estimated independently for each
detected linear feature are the mean intensity and the mean
depth. This type of parameters can be associated to a vector
for each detected linear feature, i.e., by extending the definition
of (1) with new values calculated by proper operators. In the
following we propose a set of measurements which can be
used to extrapolate further information from the detected linear
features.

1) Mean depth: The mean depth of a linear feature is
defined as:

ȳSS(λi) =
1

|Φi|
∑

(x,y)∈Φi

y − y0(x) (6)
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wherey0(x) is the position of the first return in the framex, as
detected by the first return detection described in the previous
subsection, and the notation|·| indicates the cardinality of a
set.

2) Mean intensity:We define the mean intensity of a linear
feature in the following way:

µ(λi) =
1

|Φw
i |

∑

(x,y)∈Φw
i

I(x, y) (7)

where Φw
i has been defined in Sec. II-B.I(x, y) is the

radargram intensity at the position (x,y).
3) Relative mean contrast:The relative mean contrast̄cr

of a linear featureλi is defined as the ratio between its
mean intensity and the mean intensity of its surrounding. The
latter can be extracted exploiting the feature contrast, which
is estimated by the line detector. This results in:

c̄r(λi) =
µ(λi)

µ(λi)− c̄(λi)
(8)

where
c̄(λi) =

1

|Φi|
∑

(x,y)∈Φi

Cλi
(x, y) (9)

is the mean contrast ofλi.
4) Number of detected features:This measure can be

defined locally to a certain range of frames and samples. We
define as number of detected features the value

N(X,Y ) = |Λ(X,Y )| (10)

where

Λ(X,Y ) = {λi : (x, y) ∈ Φi ∧ ∃(x, y) : x ∈ X ∧ y ∈ Y }
(11)

X = [xmin, xmax] and Y = [ymin, ymax] define the range of
frames and samples to be considered, respectively. The calcu-
lation of N(X,Y ) can be performed by means of a sliding
window approach on the whole radargram portion related to
the subsurface. This gives a 2D map of the distribution of
the linear features within the radargram. If the computation
is performed frame-by-frame (i.e.,|X | = 1) on the whole
Y range, the output is a 1D graph describing the number
of detected subsurface linear features versus the along-track
direction. This information is very useful to estimate the age of
the ice column, as each layer is associated with the deposition
and subsequent solidification of snow in different periods [13].

5) Layer density:The layer density is defined as:

D(X,Y ) =
N(X,Y )

|Y | (12)

Similarly to the case ofN(X,Y ), D(X,Y ) can be com-
puted using a sliding window approach. This measure ex-
presses the number of linear features per sample in the
range direction. The definition takes into account the intrinsic
correlation that linear features show between adjacent frames.
Indeed, the size of the window in the along-track direction is
not used in the denominator. The result is thus a 2D map of the
density of the layers in the range direction. This measurement
is linked to the ice accumulation rate. Therefore, it is important
for the analysis of the past history of the ice column [14].

270°

Latitude

86°

82°

Longitude

90°

180°

0° −5500 m

−2500 m

Fig. 6. Digital elevation model of the North Pole of Mars derived from Mars
Orbiter Laser Altimeter (MOLA) [33] data.

The size of the sliding window should be determined
depending on the resolution of the data and on the size of
the structures that have to be highlighted. In general, large
windows produce density maps with low detail but that are
useful to infer the general distribution of the features. On
the contrary, small windows can highlight better local feature
patches at the cost of more visible blocking artifacts.

It is worth noting that mean depth, number of features, and
density are defined in the radargram image space. However,
they can be related to geographic and time scales by applying
the appropriate conversion factors.

IV. EXPERIMENTAL RESULTS

In this section we present the results obtained by the pro-
posed technique on real radar sounder data. First, we present
the dataset used in the experiments. Second, we show the
output of the BM3D filter on sample radargrams and frames
in order to discuss its denoising capabilities. Third, we study
qualitatively the influence of the parameters of the line detector
on its detection performance. Then, we measure quantitatively
the detection performance of the proposed method for a fixed
set of parameters. Finally, we show examples of measures
extracted automatically from the radargrams.

A. Dataset Description

In order to assess the performance of the proposed technique
we used many different SHARAD radargrams taken on the
NPLD of Mars. Since we obtained very similar results, in the
following we focus the attention (for space constraints) onfour
radargrams (see Fig. 7). It is worth noting that the presented
method is general and can be applied to any radargram type
(e.g., acquired by other radar sounders) with a proper tuning
of parameters, which depend on the technical characteristics
of the instrument adopted. The test radargrams refer to flat
regions of the NPLD of Mars. A digital elevation model
(DEM) of the NPLD is shown in Fig. 6. In the considered
areas, surface clutter is very limited and this allows us to
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Fig. 7. SHARAD radargrams (a) 520501000, (b) 528401000, (c)1041902000, and (d) 1591701000.

focus on the detection of actual subsurface linear features. We
will consider only the upper part of the radargrams (i.e., the
first 7.5-11µs after the first detected return for each frame,
depending on the considered radargram), corresponding to a
densely layered shallow subsurface. The radargrams have been
focused using the FPB processor [34] hosted at the Southwest
Research Institute of Boulder, CO, USA. The data have been
converted to dB and thresholded in the range [n̄dB−3,n̄dB+32]
dB, where n̄dB is the mean noise power measured on the
radargram expressed in dB. Finally, the radargrams have been
stretched in the range [0,255]. The spatial resolution of the
radargrams is approximately 450 m× 3 km (along× across
track) with an along-track sampling of about 115 m. The
range sampling is of 37.5 ns, corresponding to 5.63 m in
free space and slightly more than 3 m in an icy subsurface
(εSS = 3.15). However, as mentioned in the introduction, the
range resolution of SHARAD is about 10 m in ice.

The average running time of the proposed method on the
test radargrams is of less than one minute using one core of

a laptop equipped with an IntelR© CoreTM i5 M540 and 4 GB
of RAM.

B. Radargram Denoising and Enhancement

The output of the BM3D filter for two of the test radargrams
is presented in Fig. 8. The figure shows the capability of the
filter to flatten the noise background while preserving, and
enhancing, the linear features present in the radargrams. These
effects can be appreciated more in detail in Fig. 9. The figure
shows one echo taken from the test radargram of Fig. 7a before
and after the application of the BM3D filter. Note that the
filter mostly preserves the actual intensity value of the linear
features, thus making the choice of the parameters of the line
detector directly related to the intensity of the features in the
original radargram. In our experiments we fixed the size of
the blocks used by the BM3D filter to 32× 32, and set the
maximum number of blocks per group to 16. We obtained
the best tradeoff between denoising and feature enhancing
by setting the AWGN standard deviation parameter of the
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Fig. 8. SHARAD radargrams (a) 520501000 and (b) 528401000 after the application of the BM3D filter.

0

20

40

60

80

100

120

140

160

180

200 300 400 500 600 700 800 900

In
te
n
si
ty

Samples

Original frame
Filtered frame

Fig. 9. Sample frames taken from the radargram of Fig. 7a before (dotted
green curve) and after (solid red curve) the application of the BM3D filter.

filter equal to the background noise dynamic measured on the
radargrams, which is on the order of 60 in the considered
dataset.

C. Selection of the Parameters of the Line Detector

In order to select the best parameters to be used as input
to the proposed technique and to understand the dependence
of the results on the parameter values, we analyzed the results
obtained by the method with different input parameters. In
particular, we studied the dependence of the results on the
choice ofw andcup. The value ofclow has been fixed to 2 for
all the experiments. Lines shorter than 10 pixels have been
discarded both in the reference and in the detected maps.
In fact, the proposed technique is suited for the analysis
of subsurface areas showing extended layering where linear
interfaces usually appear for long distances. As our goal isto
detect significant layers, small lines are discarded as theycan
be associated with other features of ice. Lines with a horizontal
inclination greater than 45◦ have been also discarded. Such

constraint comes from the fact that standard radar sounder
focusing processing makes it difficult to detect returns from
surfaces with high slopes. Thus, inclined features have high
probability to be false alarms.

1) Dependence onw: The evaluation of the influence of
w on the results obtained by the proposed technique has been
carried out by applying the method using three different values
(2, 4 and 6) on several test radargrams. In these experiments
the value ofcmax has been fixed to 3. On the one hand, as
expected the results show that increasingw results in a lower
sensitivity of the technique to thin linear features. On theother
hand, linear features thicker than the selected value ofw are
still well detected. The number of false alarm is overall low
and the detection accuracy of the algorithm is high. A slightly
greater number of false alarms is associated with higher values
of w. This can be explained by analyzing (5). Indeed, for a
given value ofcmax the maximum line responsermax decreases
by increasingw, thus increasing the probability of false alarms.

2) Dependence oncmax: In this tests we fixed the values
of w to 2. The value ofcmax has been set to 3, 10 and 20.
As expected, by increasing the value ofcmax the proposed
technique detects only the most salient lines, whereas linear
features with low contrast are not detected. For the aim of
this paper low contrast features are important. Therefore,low
values ofcmax will be considered in the following.

D. Quantitative Performance Analysis

The qualitative analysis presented in the previous subsection
allowed us to define a range of values for the parameters of
the proposed technique that permits the effective application
of the method to the test dataset. In particular, the values
which gave the best results arew = 2 and cmax = 3.
Fig. 10 shows the results obtained on two of the four test
radargrams. Using those parameters, in this section we thus
analyze quantitatively the performance of the proposed method
on the four SHARAD radargrams shown in Fig. 7. Each
radargram contains a large number of lines with different
lengths and widths. The amount of short/long and thin/thick



9

(a)

(b)

Fig. 10. Results obtained by the proposed technique on SHARAD radargrams (a) 520501000 and (b) 528401000 usingw = 2 and cmax = 3.

linear features, and the background noise, depend on both the
specific sounded area and the environmental conditions. The
detection performance is assessed by measuring i) the number
of correctly detected linear features and false alarms, andii)
the quality of the detections in terms of length of detected
linear features versus their actual length. In order to measure
such quantities we defined manually reference maps of the
linear features present in the radargrams and compared themto
the results of the proposed method. The reference maps do not
contain lines shorter than 10 pixels in order to be comparable
to the output of the proposed method.

1) Detection and False Alarm Rate:The number of lines
present in the reference maps, the number of detected lines
and the number of false alarms produced by the proposed tech-
nique are summarized in Tab. I for the four test radargrams.
We consider a line detected if it overlaps with a line produced
by the algorithm. Similarly, we consider a line produced by
the algorithm as a false alarm if it does not overlap with any
line contained in the reference map. The analysis of the results
points out that the proposed technique has good performance,
especially considering that it is automatic. In order to have
a more detailed understanding of the detection rate of the
method, we studied the relation between the number of missed,
detected and false alarms and the line lengths. The results are
reported in Fig. 11, which shows the histograms representing
the number of detected (green), missed (red) and false (yellow)
lines versus their length for the four test radargrams. The last
column of the histograms includes the lines that have a length
equal or greater than 195 pixels. The histograms show that the
proposed method detected approximately all the linear features
with a length greater than about 30 pixels. For shorter linesthe
detection performance decreases, and false alarms arise. This
behavior is not an issue for the goal of the proposed technique,
which is the automatic analysis of subsurface areas showing
extended layering. It is expected that in such areas significant
linear features have a long extension in the radargram domain.

2) Quality of Detection: In order to quantify the quality
of the detection performed by the proposed method, we

TABLE I
ACCURACY PROVIDED BY THE PROPOSED TECHNIQUE FOR THE

DETECTION OF LINEAR FEATURES IN RADAR SOUNDER DATA ON FOUR

SHARAD RADARGRAMS.

Radargram Number of Detected False
number lines lines alarms

520501000 777 636 63
528401000 768 601 52
1041902000 694 591 78
1591701000 754 610 48

measured for each retrieved line the length of the detected
part. This measure has been compared to the actual length of
the line. Fig. 12 summarizes the results obtained on the four
test radargrams. The figure shows for each test radargram a
histogram representing the number of detected lines versusthe
ratio between detected length and actual length. The results
point out that in most cases the algorithm is able to detect up
to the 60-90% of the length of the linear features. A lower
detection quality is associated with the radargram of Fig. 7d.
This was expected, as the radargram shows less clear linear
features with respect to the others.

E. Extraction of Measurements of Interest

In Sec. III-D we defined several measurements that can be
derived from the output of the linear feature detection. In
this section we focus on the calculation of the number of
detected lines and their density in a given radargram area.
Indeed, such measurements are interesting as they can give a
quick overview of the presence of subsurface linear features
and of their distribution, and become important when 3D
maps of these parameters should be obtained by interpreting
radargrams acquired on parallel adjacent tracks in global
mapping applications. Fig. 13 shows the measured number
of lines per frame for the test radargrams of Fig. 7a and
Fig. 7b. Both the number of layers present in the reference
map and in the detected set are shown. The values have been
averaged using a 10-wide moving window in order to reduce
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Fig. 11. Histograms representing the number of detected (green), missed (red) and false (yellow) lines versus their length for the four SHARAD test
radargrams: (a) 520501000, (b) 528401000, (c) 1041902000,and (d) 1591701000.

the effect of outliers. The graphs show that the output of the
proposed technique well approximates the values given by the
reference maps. In general the proposed technique slightly
underestimates the number of linear features. The largest gaps
between the output of the algorithm and the reference map are
due to low contrast linear features (low power at the interface)
which are not detected.

Fig. 14 and Fig. 15 show the layer densities maps obtained
for the same two test radargrams. Both the map obtained
from the layer reference map and the detected map are shown
for each radargram. The densities have been calculated using
a sliding window of size 5× 20 pixels (along-track×
range) with a step of 1 pixel in both along-track and range
directions. The measures obtained from overlapping windows
have been averaged. The layer density is represented in terms
of number of lines per samples. By considering the range
sampling of the SHARAD radargrams (which is 37.5 ns),
this means that the values shown in Fig. 14 and Fig. 15
correspond approximately to a range of 0 to 0.63 lines every
10 meters (usingεSS = 3.15). The choice of the size of
the sliding window has been driven by the much different
resolution of the data in the along-track and range direction.

As commented in Sec. III-D5, the choice of a larger window
would have produced smoothed versions of the density maps.
The density maps of Fig. 14 and Fig. 15 present clearly how
the linear features are distributed within the radargrams.A
visual comparison between the reference density maps and
the detected density maps shows that the proposed technique
is able to approximate the reference map with good accuracy
in a completely automatic way.

V. CONCLUSION

In this paper we presented a novel technique for the
automatic detection and characterization of subsurface lin-
ear features in radar sounder data. The method is suited
to the analysis of regions showing extended layering. The
experimental results obtained on real planetary radar sounder
data confirmed the effectiveness of the proposed method both
qualitatively and quantitatively.

In order to extract further information from the radargrams,
we also proposed a set of measurements which can be derived
from the detected linear features. Such measures can describe
locally the properties of the single linear features and provide
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Fig. 12. Histograms representing the number of detected lines versus the ratio between their detected and actual lengths for the four SHARAD test radargrams:
(a) 520501000, (b) 528401000, (c) 1041902000, and (d) 1591701000.

information about their distribution within the radargram(and
thus the geographical area of interest).

The technique and the measurements proposed in this paper
are relevant for the automatic analysis and combination of
many radar sounder acquisitions over large areas. Indeed,
they can provide in a fast way information on subsurface
layering which can be used to derive high level products in a
global mapping perspective, or to drive further manual analysis
on interesting areas. At the present time, this is important
especially for the analysis of the data provided by the currently
operating radar sounders at Mars. However, the development
of automatic methods such as the one proposed in this paper
become important also for future spaceborne missions explor-
ing other planetary bodies or the Earth’s polar regions. In the
latter case, it is expected that a radar sounder orbiting theEarth
will provide a huge amount of high-precision data, allowing
also multi-temporal studies. All these factors make automatic
methods suitable for a fast and objective analysis of the data,
which can help to provide information for the assessment of
the impact of climate changes on the Earth’s system.

As a final remark, we want to highlight that the research
presented in this paper is a part of a more general framework
aimed at the automatic extraction of information from radar
sounder data. The future work related to the analysis of
linear features will focus on the test of the proposed method

on airborne datasets acquired at different frequencies and
resolutions on the Earth’s polar regions. Moreover, we plan
to study automatic techniques for the automatic detection and
filtering of linear features due to surface clutter from the output
of the proposed technique.
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Fig. 13. Number of detected lines per frame for the SHARAD test radargrams (a) 520501000, and (b) 528401000. The measuredvalues have been averaged
using a moving window of width equal to 10 frames.
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