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Automatic Detection and Reconstruction of Building
Radar Footprints from Single VHR SAR Images

Adamo Ferro, Dominik Brunner,Member, IEEE,Lorenzo Bruzzone,Fellow, IEEE

Abstract—The spaceborne synthetic aperture radar (SAR)
systems Cosmo-SkyMed, TerraSAR-X and TanDEM-X acquire
imagery with very high spatial resolution (VHR), supporting
various important application scenarios, such as damage as-
sessment in urban areas after natural disasters. To ensure a
reliable, consistent and fast extraction of the information from the
complex SAR scenes, automatic information extraction methods
are essential. Focusing on the analysis of urban areas, which is
of prime interest of VHR SAR, in this paper we present a novel
method for the automatic detection and 2D reconstruction of
building radar footprints from VHR SAR scenes. Unlike most of
the literature methods, the proposed approach can be applied to
single images. The method is based on the extraction of a set of
low-level features from the images and on their compositionto
more structured primitives using a production system. Then, the
concept of semantic meaning of the primitives is introducedand
used for both the generation of building candidates and the radar
footprint reconstruction. The semantic meaning represents the
probability that a primitive belongs to a certain scattering class
(e.g., double bounce, roof, facade) and has been defined in order
to compensate for the lack of detectable features in single images.
Indeed, it allows the selection of the most reliable primitives
and footprint hypotheses on the basis of fuzzy membership
grades. The efficiency of the proposed method is demonstrated
by processing a 1-m resolution TerraSAR-X spotbeam scene
containing flat- and gable-roof buildings at various settings. The
results show that the method has a high overall detection rate
and that radar footprints are well reconstructed, in particular
for medium and large buildings.

Index Terms—Building detection, building reconstruction, pro-
duction system, very high spatial resolution (VHR), synthetic
aperture radar (SAR), urban areas, remote sensing.

I. I NTRODUCTION

I N the last decade, very high spatial resolution (VHR)
spaceborne remote sensing sensors (e.g., QuickBird,

Worldview-2, Cosmo-SkyMed) acquiring data with meter or
sub-meter resolutions became widely available. These data
have the potential to be employed for various important appli-
cation scenarios, such as the monitoring of changes in urban
areas [1], [2], the characterization of urban areas (e.g., slum
mapping) [3], [4], the surveillance of the effects of violent
conflicts [5], and the crisis management after natural disasters
(e.g., earthquakes) [6], [7]. For the latter application scenario,
spaceborne VHR synthetic aperture radar (SAR) sensors, such
as Cosmo-SkyMed [8] and TerraSAR-X [9], are of particular
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interest, due to their independence on the solar illumination
and the relative insensitivity to the weather conditions [10],
[11].

One of the main drawbacks of VHR SAR is the complexity
of the images, mainly owing to the speckle effect and the side-
looking geometry of the SAR sensor, hampering the interpre-
tation of the data by non-SAR experts. This is especially true
for urban areas, where the data are mainly characterized by
layover, multibounce and shadowing effects of the buildings.
Therefore, to support the widespread usage of VHR SAR,
robust automatic information extraction methods are essential.

Different techniques for building detection and reconstruc-
tion from VHR SAR images have been presented in literature.
For instance, Soergelet al.[12] proposed an iterative technique
for building reconstruction from interferometric SAR (InSAR)
data which is based on the detection of the combined occur-
rence of a strong scattering line and a shadow area in corre-
spondence of an elevated region. Cellieret al. [13] presented
a building reconstruction technique for InSAR data based on
building hypothesis management. The developed method uses
a tree of hypotheses, which is simplified according to a set
of semantic rules. Thieleet al. [14] proposed an approach to
building detection which uses orthogonal multi-aspect InSAR
images. The approach is based on the detection of edges and
their combination to building footprints. A method for the
extraction of buildings and the estimation of their height from
stereoscopic airborne radar images was presented by Simon-
etto et al. in [15], while in [16] a building extraction method
using dual-aspect SAR data was presented. An algorithm for
building reconstruction from multi-aspect polarimetric SAR
(PolSAR) images was presented by Xu and Jin [17]. The
polarimetric information is exploited by employing an edge
detector effective on polarimetric images. The retrieved edges
are then parameterized by means of the Hough transform
to generate the building footprint hypotheses. Wanget al.
[18] developed a method for the detection of buildings from
single-aspect PolSAR data combining edge and area features
with Markov random fields. Hillet al. [19] presented a semi-
supervised method for the estimation of building dimensions
in VHR SAR temporal scenes based on the analysis of the
shape of building shadows. Another method based on shadow
analysis which exploits InSAR data and is suitable for high
or isolated buildings was proposed by Tisonet al. [20]. A
building detection method using an orthophoto and an InSAR
image based on conditional random fields is presented in [21].
Techniques for the 3D reconstruction of buildings using VHR
optical data for the 2D building footprint reconstruction and
a single VHR SAR scene for the building height extraction
were presented in [22] and [23].
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All the above-mentioned works addressed the problem of
building detection and reconstruction in VHR SAR images
by relying on the availability of ancillary or multi-sensor
data (e.g., optical imagery), polarimetric SAR, interferometric
SAR, or multi-dimensional airborne data which implies that
the area under investigation is imaged more than once with
different viewing configurations (changed incidence and/or
aspect angle). This represents a limitation for application sce-
narios with stringent timing restrictions that do not allowthe
acquisition of multi-dimensional SAR data (e.g., emergency
response). For these reasons, research on the detection andex-
traction of buildings from single VHR SAR data is important.
To our knowledge, only very few papers addressed the problem
of building detection with one single meter resolution SAR
images only. One of the few related works using single VHR
SAR images was presented by Quartulli and Datcu [24], and
was based on a stochastic geometrical model anda posteriori
probability maximization (MAP). Recently, a method for L-
shape building footprint extraction from single SAR images
was proposed in [25]. This method fails in the detection of
buildings if they do not show L-shaped returns. Moreover, it
considers only bright lines and discards other relevant features,
such as bright areas and shadows.

In this paper, which generalizes and extends the work
presented in [26] and [27], we propose a novel method for
the detection and reconstruction of building radar footprints
from detected VHR SAR images. Unlike most of the literature
methods, it can be applied to single images. Moreover, it is
suitable to be used with data acquired by currently operational
spaceborne SAR sensors. In this context, radar footprint refers
to the characteristic scattering signature of buildings inSAR.
The method integrates the concepts of basic feature extraction
and their composition to more structured primitives using
a production system [28], [29]. In order to compensate for
the lack of detectable features in single images, the concept
of semantic meaning of the primitives is introduced and
used to generate building candidates and reconstruct radar
footprints. The semantic meaning represents the probability
that a primitive belongs to a certain scattering class (e.g.,
facade, double bounce) and allows the selection of the most
reliable primitives and footprint hypotheses on the basis of
fuzzy membership grades.

The main novelties and advantages of the proposed method
are: i) the capability to accurately detect the radar footprint
of individual buildings using only one SAR scene without
the need for ancillary data, ii) the possibility to estimatethe
reliability of the detected features and footprint hypotheses
through a set of fuzzy functions, iii) the flexibility to handle
gable- and flat-roof buildings at different sizes and at various
settings, and iv) the expansibility of the approach, which
allows the definition of new scattering classes and rules ac-
cording to specific image characteristics or user requirements.
These characteristics make the approach valuable for support-
ing different application scenarios, e.g., damage assessment
after crisis events and change detection in urban areas. In
addition, as shown later in the paper, the method is suited
to the implementation on computer clusters, thereby making
it possible almost-real-time applications.

Some steps in our proposed method have similarities with
existing work. For instance, the method presented in [13] is
based on hypothesis management. Since their approach relies
on sub-meter resolution InSAR data the hypothesis are based
on different information (combination of height and topology)
compared to ours (presence and semantic meaning of scatter-
ing features). Moreover, we introduce a way to quantitatively
evaluate the hypotheses to automatically select the best one,
which is missing in [13]. Similar to our approach, the method
in [24] uses the layover and double-bounce features for the
reconstruction of buildings. However, this method is basedon
a global MAP estimation using Monte Carlo methods, while
the approach proposed in this paper exploits also the shadow
information and introduces the concept of semantic mean-
ing and membership grade for each primitive and footprint
hypothesis. Moreover, such a work was intended as a tool
for the investigation of the limits and merits of information
extraction from single images, and was not optimized for
building reconstruction purposes.

The radar footprint map extracted with the proposed method
can be used to derive different information, such as the
build-up presence index. It can also be used as a feature
in the classification of the build-up areas (e.g., accordingto
residential and commercial areas). Indeed, radar footprints
in single SAR images lack the information about the exact
dimensions (length, width, height) and the location of the
2D optical footprint of buildings. In order to derive them,
the method could be combined with an iterative simulation
and matching scheme as presented for instance in [22] for
the building height extraction. In this context, the capability
of the proposed method to extract the individual scattering
contributions of a building in the SAR image could be used
to improve the matching function as the simulator is also able
to distinguish between the different contributions.

The remainder of this paper is structured as follows. In
Section II we review the characteristics of flat- and gable-roof
buildings in VHR SAR imagery. In Section III, we present the
proposed methodology in detail, while Section IV discusses
the processing of full VHR SAR scenes using a grid computing
infrastructure. In Section V we demonstrate the performance
and the properties of our approach by processing and analysing
a large 1-meter resolution TerraSAR-X spotlight mode scene
from Dorsten, Germany, which is characterized by different
types of buildings at various settings. Finally, in SectionVI,
we draw the conclusions and give an outlook for future work.

II. M ODELING OF BUILDING RADAR FOOTPRINTS IN

SINGLE DETECTEDVHR SAR IMAGES

The key characteristics of buildings in SAR are the layover,
double-bounce, and shadowing effects which are caused by
the side-looking and ranging properties of SAR sensors. To
illustrate this, Fig. 1 shows a schematic view of the scattering
profile of a simplified flat-roof building model. In this figure,
the building in the middle, which is modeled as a rectangular
box, is imaged by a sensor with incidence angleθ. The
annotationsa refers to backscattering from the ground surface
surrounding (in this 2D figure before/behind) the building.acd
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Fig. 1. Scattering model for a flat-roof building with viewing direction
from left. The different gray areas at the bottom of the figuresymbolize the
amplitudes.

(a) (b)

Fig. 2. Example of a flat-roof building. (a) Building in 1-meter resolution
TerraSAR-X data with viewing direction from left (Infoterra). The double
bounce line is highlighted with a red arrow. (b) The same building in an
optical image (Microsoft).

denotes the layover area where scattering from the ground,
from the vertical building front wall and from parts of the flat
roof are superimposed since these parts have the same distance
to the sensor. The vertical front wall and the surface area in
front of the building compose a corner reflector resulting in
the bright double-bounce effectb. The scattering area that is
only characterized by scattering from the roof is denoted by
d. The elevated building occludes parts of the surface behind
the building from the radar beam, resulting in the shadow
area e. This backscattering profile is flexible with respect
to a number of parameters [22]. For instance, for very high
buildings there is typically no aread as the part of the roof
is entirely included in the layover area. An example of radar
footprint of an industrial flat-roof building is shown in Fig.
2. The main scattering mechanisms are visible (i.e., layover,
double bounce, scattering from roof and shadow). However,
additional features appear (e.g., bright spots on the roof due
to metallic structures). The figure also shows examples of
interference due to other targets, in this case tall trees. In fact,
both the layover and the shadow areas of the footprint are
partially masked by the trees that surround the building.

For gable-roof buildings the theoretic scattering signature is
slightly different [30], [31]. As shown in Fig. 3, the signature
has a second bright scattering featureacd at the sensor
close side resulting from direct backscattering from the roof.
The extent and the strength of this feature depends on the
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Fig. 3. Scattering model for a gable-roof building with viewing direction
from left. Here, the roof inclination angleα is smaller thanθ. The different
gray areas at the bottom of the figure symbolize the amplitudes.

(a) (b)

Fig. 4. Examples of gable-roof buildings with small aspect angles. (a)
Buildings in 1-meter resolution TerraSAR-X data with viewing direction from
left (Infoterra). The double-bounce and roof scattering lines are highlighted
with red and yellow arrows, respectively. (b) The same buildings from (a) in
an optical image (Microsoft).

relationship betweenθ and the roof inclination angleα. For
α = θ the strength of this feature is maximum, whereas its
extent is minimum. Moreover, we found that in actual 1-meter
resolution TerraSAR-X and Cosmo-SkyMed data this second
bright scattering area is also detectable for buildings with a
high aspect angle (the angle between the building wall facing
the sensor and the azimuth direction). This is illustrated in
Fig. 4 and Fig. 5, where we show actual scattering signatures
from gable-roof buildings with small and large aspect angles,
respectively.

In Fig. 1 and Fig. 3 the double-bounce feature is very
pronounced. A detailed analysis of the characteristics of the
double bounce of buildings with actual TerraSAR-X data
and theoretic electromagnetic scattering models presented in
[32] showed that this feature has a significant dependency on
the building aspect angle. The double bounce has a strong
signature for buildings with low aspect angles (the wall facing
the sensor is almost parallel to the azimuth direction). Then
it decays significantly in a narrow range of aspect angles,
while it drops moderately for larger aspect angles. The method
presented in this paper will take into account this non-linear
relationship between the strength of the double bounce and
the aspect angle.
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(a) (b)

Fig. 5. Examples of gable-roof buildings with large aspect angles. (a) Buildings in 1-meter resolution TerraSAR-X datawith viewing direction from left
(Infoterra). The scattering lines due to the roofs are highlighted with yellow arrows. (b) The same buildings from (a) inan optical image (Microsoft).

III. PROPOSEDTECHNIQUE FOR THEAUTOMATIC

DETECTION AND RECONSTRUCTION OFBUILDING RADAR

FOOTPRINTS

The proposed technique for the automatic detection and
reconstruction of building radar footprints from single VHR
SAR images is suited for meter-resolution data. Buildings
are assumed to be approximately regular parallelepipeds,
with rectangular base, or compositions of parallelepipeds.
The minimum building size which can be handled by the
algorithm depends on the specific building characteristics. As
a reference, buildings with a base with a main side shorter
than 10 m and a height lower than 5 m with no relevant
scattering centers are likely to be not detected in meter-
resolution images. The radar footprints corresponding to very
tall buildings have a high probability to be detected. However,
additional features and rules would be necessary (with respect
to the algorithm specifications reported in this paper) in order
to handle properly those situations. The algorithm does not
require the buildings to be isolated. However, it may provide
better results on isolated buildings. In fact, such buildings
usually show a clear shadow feature, which is exploited by
the algorithm to improve the detection performance. Very close
buildings may be detected as single structures, as we will show
in Section V.

The proposed technique is composed of six main steps: i)
preprocessing and feature extraction, ii) generation of prim-
itives, iii) analysis of primitives, iv) generation of building
radar footprint hypotheses, v) selection of hypotheses, vi) 2D
radar footprint reconstruction. Fig. 6 shows a block scheme
representing the proposed processing chain. In the following
we describe in detail each step. In this paper we present the
algorithm optimized for the application to meter-resolution
SAR images. However, the general structure of the algorithm
is suitable to handle also higher resolution data. We highlight
throughout the paper the modifications which would be nec-
essary to apply the algorithm to sub-meter resolution images.

A. Preprocessing and Feature Extraction

In the preprocessing, the input image is first radiometrically
calibrated. Although this step is not strictly necessary, it
permits to define the algorithm parameters to be used with
SAR images of different datasets and data products acquired
by either the same or different sensors. Afterwards, the image
is filtered with a Gamma MAP filter [33] in order to reduce
the signal variability due to speckle. Both the unfiltered and
filtered images are used by the algorithm. The basic features

composing building radar footprints in VHR SAR images
are extracted from the calibrated image. According to the
aforementioned assumptions on building shapes, these are
bright linear features with different thicknesses, and dark areas.
The former are usually related to double-bounce scattering
or, as the line thickness increases, to layover areas, where
the roof or the facade scattering may be dominant depending
on the building characteristics. The latter are due to building
shadows and low-return areas (e.g., roads, rivers, lakes).These
features are sufficient to describe the main parts of a building
radar footprint in meter-resolution images. However, as far
as resolution increases, other scattering effects due to small
structures become visible (e.g., point scatterers due to pipes on
walls) and other types of features may be extracted to increase
the detection performance of the algorithm. In the following,
the techniques used for the extraction of bright linear features
and dark areas are described in detail.

1) Extraction of bright linear features:The extraction of
bright linear features is performed on the unfiltered image
by means of the line detector proposed by Tupinet al. in
[34]. This detector is based on a three-region sliding-window
approach and is a well-known algorithm specifically developed
for SAR images. In this paper we use as reference for the
window size the dimension of the central region, and assume
that the lateral regions have the same width and length (see
Fig. 7). The length has been set to ten times the resolution
of the image and 16 directions have been considered for
the window. As we are interested in both thin and thick
linear features, the detector is appliedT times with different
increasing window sizeswt (t = 1, . . . , T ). Each filtering
is performed independently. The result of each filtering is a
detection map, which is then thresholded, obtaining binary
linear regions which thickness is related towt. Such regions
are vectorized using a rectangular approximation. This is
performed by approximating the region skeletons with lines
and using such lines as the axis of rectangles of widthwt.
The region skeletons are extracted according to [35]. In Fig.
8 we show an example of the detection on a meter resolution
SAR image of an urban area usingwt = 5 m. The intermediate
results are also shown. For each rectangler, the local contrast
valueCr is calculated on the filtered image as:

Cr =

[

1

Min

∑

i∈Ain

xi

]

·

[

1

Mout

∑

i∈Aout

(1− xi)

]

(1)

whereAin andAout are the inner region of the rectangle and an
outer thick border surrounding it, respectively. The thickness
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Fig. 6. Block scheme of the processing chain of the proposed technique for the automatic detection and reconstruction ofbuilding radar footprints in single
VHR SAR images.

wt wt wt

Fig. 7. Definition of the window used by line detector.

of Aout is defined aswt

2 . Min andMout are the number of
pixels contained in the regionsAin andAout, respectively; and
xi represents the pixel amplitude value normalized between
0 and 1. For the normalization the image amplitude dynamic
range has been thresholded to cover the 99.5th percentile ofthe
original image histogram in order to reduce the effect of very
bright point scatterers.Cr is a measure of the contrast between
the pixels contained in the rectangles and their surrounding.
The higher the difference between the mean amplitude of the
two regions, the higher the value ofCr. This measure has
been proposed in [36] and has been used in [15] for the case
of binary images.

As a result of theT filterings we obtainT vector maps
containing rectangles corresponding to bright linear features
with different thicknesses. These maps are thus merged in one
map. It is possible that the same real bright objects are de-
tected independently for differentwt, resulting in overlapping
rectangles in the merged map. In order to reduce the number
of rectangles, a downselection step is performed by means
of a production net. For each combination of two rectangles
(i, j) the net tests the following conditions: i) the width of the
two rectangles is similar, and ii) the two rectangles overlap.
Condition i) is met when:

|wi − wj | < δwmax (2)

wherewi andwj are the widths of the rectangles, andδwmax is
an user-defined threshold (see Fig. 9). Condition ii) is fulfilled
when:

A∩ > Ai · At ∧ A∩ > Aj · At (3)

where Ai and Aj are the areas of the rectangles,
A∩ = Ai ∩ Aj (see Fig. 9), andAt is a value belonging to
the range(0, 1) set by the user. When conditions (2) and (3)
are fulfilled, the net discards the rectangle with the lowest

contrast, which is the rectangle associated to the lowest value
of Cr.

For the choice of the values ofδwmax andAt, values on the
order of 3 m and 0.5 are suggested, respectively. Moreover, in
our experiments a number ofT = 7 filterings using equally
spacedwt between 3 and 15 m has given a good detection
of the linear bright features in the test images using a fixed
threshold equal to 0.4 for all the consideredwt.

It is worth noting that this downselection step is not strictly
necessary for the correct operation of the proposed technique.
However, it greatly reduces the number of extracted bright
linear features, thus improving the overall performance in
terms of execution time and memory requirements of the
technique.

2) Extraction of dark areas:Dark areas are extracted
from the unfiltered image by means of mean shift clustering
followed by a threshold operation, according to the approach
proposed in [37]. This operation selects only the clusters with
amplitude values lower than an user-defined thresholdxS.
The extracted clusters are then vectorized and a simplification
procedure is applied in order to reduce the number of vertexes
describing their shape. Such simplification is not strictly
necessary, but it allows the algorithm to work with simpler
objects reducing the needed amount of memory. In order to
select only the dark regions which are likely to be related to
building shadows, the algorithm removes the regions which are
not located in the sensor-far side of any bright linear feature
(previously extracted). This is done by keeping only the dark
areas which overlap with the predicted shadow area of the
bright features. The predicted shadow area is determined by
taking into account the viewing configuration of the SAR. The
maximum range sizelS of the expected shadow area is set by
the user. Schematic examples of predicted shadow area and
selected dark area are shown in Fig. 10. The parameters of the
mean shift clustering and the value ofxS have to be selected by
analyzing the amplitude of sample pixels belonging to shadow
regions in the SAR image. In our experiments, reasonable
values forxS were in the order of -13 – -11 dB.

B. Generation of Primitives

The goal of this step is to generate the primitives that will
be used in the following steps as basis for the composition
of building radar footprint hypotheses. Starting from the set
of simple extracted bright linear features and dark areas, the
algorithm merges adjacent features in order to compose bigger
objects. This is done by a production system applied to the
vector domain, after a conversion from slant range to ground
range, and is aimed at compensating for errors in the feature
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(a) (b) (c) (d)

Fig. 8. (a) Meter-resolution TerraSAR-X image of an urban area (Infoterra). (b) Result of the line detection usingwt = 5 m. (c) Skeletons of the binary
regions shown in (b). (d) Rectangles generated using the skeletons shown in (c).

wj

wi

A∩
Aj

Ai ψ(i, j)

Fig. 9. Measures involved in the rectangle downselection described in the
feature extraction step, and in the primitives generation step.

bright
feature

range direction
predicted

shadow area dark area

lS

Fig. 10. Schematic examples of predicted shadow area and selected dark
area.

extraction step. The conversion from slant to ground range
allows us to define the parameters of the method in the ground
domain, which is independent on the incidence angle and
thus simpler to handle for an end-user. After their generation,
composed objects are given as input to the production system.
Therefore, multiple compositions with other simple or com-
posed objects are possible. The set of objects and productions
involved in the generation of primitives is shown in Fig. 12.
The composition of dark areas is described by the production
rulesP1 andP2. Such rules merge two dark areas when these
are adjacent (e.g., their minimum distance is less than 2 m).

In this paper the merging is carried out by calculating the
convex hull including the two original features. For the case
of bright linear features, merged features are generated asnew
rectangles that have as principal axis the conjunction of the two
extremes of the principal axes of the original features which
have the largest relative distance (see Fig. 11). The width of
the new rectangles is calculated as the weighted average of the
widths of the original features, using as weights their length.
The algorithm merges two bright features when the following
conditions are fulfilled (P3 andP4): i) the features have similar
widths, ii) their orientation is approximately the same, iii) the
composed object has an orientation that is approximately the
same of the original features. Condition i) is equivalent to(2).
Condition ii) is fulfilled whenψ(i, j) < δψmax, whereψ(i, j)
is the angle between the two linear bright features represented
by the rectanglesi and j (see Fig. 9), andδψmax is user-
defined and indicates the maximum angle allowed between two
features for which they are considered parallel. The value of
δψmax should be on the order of 20◦. Condition iii) is satisfied
when:

ψ(χ, i) < δψmax ∧ ψ(χ, j) < δψmax (4)

whereχ is the rectangle corresponding to the composed bright
linear feature. It is probable that in this step many bright
primitives are generated. In order to reduce their number,
a selection procedure as the one described in the previous
subsection for bright linear features can be applied.

At the end of this step, for the whole set of simple and
composed objects the algorithm stores a set of attributes
regarding their size and position, and the amplitude features
of the composing pixels (i.e., mean value, coefficient of
variation). The set of simple and composed objects (with the
related attributes) will be considered as set of primitivesfor
the following steps.

C. Analysis of Primitives

This step aims at evaluating the semantic meaning of the
primitives. Here we use the term semantic meaning to describe
the membership grade of a certain primitive to belong to a pre-
defined scattering class. Different scattering classes arerelated
to different parts of building radar footprints. The choiceof
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χ
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ri

Fig. 11. Schematic example of the merging of two rectanglesri andrj into
a new rectangleχ.
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LBL
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P3 P4P1 P2

Fig. 12. Production net for the generation of dark primitives (DP) and bright
primitives (BP). The inputs of the process are dark areas (DA) and bright linear
features (BL), which are composed to large dark areas (LDA) and large bright
linear features (LBL), respectively. The whole set of DA, LDA, BL and LBL
are selected as primitives.

the set of semantic classes is related to the types of features
extracted from the image and, thus, to the image resolution.
For the bright primitives (i.e., the primitives obtained from
bright linear features) we define four semantic classes:general
line, double bounce, roof, and facade. For dark primitives
(i.e., the primitives obtained from dark areas) only the class
shadowhas been defined. The membership grade of each
primitive to belong to a certain semantic class is calculated on
the filtered image according to membership functions (MFs)
derived empirically for each semantic class. The MFs are func-
tions of the primitive attributes and describe the membership
grade of a primitive as a number in the range(0, 1). The
membership grades to belong to the different semantic classes
are calculated independently. Thus, one primitive can have
high membership grade for different classes at the same time.
The different semantic meanings are managed by the proposed
technique in the later stages of the processing chain.

The MFs are defined as a product of sigmoid functions.
Each sigmoid factor depends on a specific attribute of the
primitives. A generic sigmoid function is defined as follows
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Fig. 13. Example of sigmoid functionΣz(z) defined according to (5).
zR = 2, z0 = 0, R = 0.95.
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Fig. 14. Tree representing the semantic classes used in thispaper for bright
primitives.

[38]:

Σz(z) =
1

1 + e−αz(z−z0)
(5)

αz = −
ln(1/R− 1)

zR − z0
(6)

wherez indicates the attribute which constrains the function
(e.g., the coefficient of variation of the amplitude of the pixels
contained in the primitive),Σ(z0) = 0.5 and Σ(zR) = R.
The functionΣz(z) gives values in the range(0, 1). For each
sigmoid function two parameters needs to be specified: the
value ofz for which the sigmoid returns a high likelihoodR
(zR), and the value corresponding to the center of the sigmoid
(z0), implicitly setting the slope of the function. Fig. 13 shows
an example of sigmoid function.

The MFs which relate bright primitives to the relative
semantic classes are defined according to the tree shown in Fig.
14. The number of sigmoid functions composing the MF for
a semantic class is smaller or equal to the number of branches
which connect the root to the final leaf. In the following we
describe in detail the MFs of each semantic class for both
bright and dark primitives, by also suggesting the range of
parameters which is most suited for the related scattering class.
Unless otherwise stated, such values have been estimated by
analyzing the scattering properties of a set of samples of the
considered scattering classes manually selected on the meter-
resolution TerraSAR-X input images used in this paper. As the
images are calibrated, the suggested values related to pixel
amplitude can be considered generally valid. In the case of
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images acquired at different resolution and/or with a sensor
with different characteristics, some of the values should be
estimated again. In Section V-E the choice of the parameters
is discussed more in detail.

1) Bright primitives:
General line: The membership grade of a primitive to

the classgeneral linedepends only on its width. The MF is
thus defined as

MFGL = Σthin
w (w) (7)

where Σthin
w (w) gives a measure of the membership of the

primitive to the high-level classthin line, which depends on
the primitive widthw. According to the definitions of (5) and
(6), Σthin

w (w) is controlled by the parameterswthin
R andwthin

0 .
The values of these parameters are chosen to give high values
whenw is small (e.g.,wthin

R = 5 m, wthin
0 = 7 m for meter-

resolution images).
Double bounce:The double-bounce effect appears in

VHR SAR images as relatively thin bright lines. It is more
evident when the building wall is parallel to the azimuth
direction, i.e., its aspect angle is close to zero (see Section
II). The MF of the classdouble bounceis thus defined as
follows

MFDB = Σthin
w (w)ΣDB

φ (φ) (8)

where the termφ is the primitive aspect angle, andΣDB
φ (φ)

takes into account the dependence of the double-bounce effect
onφ. ΣDB

φ (φ) has high values whenφ is close to zero. In such
a case, the MFs of the classesgeneral lineanddouble bounce
give very similar values. Proper values forφDB

R andφDB
0 are on

the order of 10◦ and 30◦, respectively. Such values have been
chosen according to our previous studies about the double-
bounce effect in VHR SAR images [32].

Roof: The classroof is the most specific, as it appears as
leaf for every branch combination. This is due to the intrinsic
uncertainty given by the fact that we are using only one
VHR SAR image and that we are considering meter-resolution
images. Indeed, the signature of a building roof could be either
a thin line (e.g., in the case of gable-roof buildings with high
aspect angle), or a homogeneous rectangular area (e.g., flat
roof buildings), or a non-homogeneous rectangular area (e.g.,
flat roof buildings with metal structures on the roof, which are
common for industrial buildings). Therefore, for the classroof
the final membership grade is calculated as the maximum of
the membership grades given by the three MFs corresponding
to the three occurrences of the class in the tree. These are
defined as:

MF′

R = Σthin
w (w) (9)

MF′′

R = Σthick
w (w)Σhom

σ (σ) (10)

MF′′′

R = Σthick
w (w)Σnon-hom

σ (σ). (11)

Finally, we obtain:

MFR = max
{

MF′

R,MF′′

R,MF′′′

R

}

. (12)

The definition of Σthick
w (w) is complementary to that of

Σthin
w (w). As a requirement, to cover the whole possible range

of primitive thicknesses it is necessary thatwthin
R = wthick

R .
This assures that any value ofw is mapped either in thethin

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
w

Σthin
w (w)Σthick

w (w)

Fig. 15. Complementary MFsΣthin
w (w) andΣthick

w (w) used in this paper.
wthin

R
= wthick

R
= 5, wthin

0
= 7, wthick

0
= 3, R = 0.999.

line or thick lineclasses with high membership grade (greater
thanR). Fig. 15 shows the behaviors of the complementary
MFs Σthin

w (w) andΣthick
w (w) that are used in this paper. The

same considerations hold for the definition ofΣhom
σ (σ) and

Σnon-hom
σ (σ), which indicate the degree of membership of a

primitive to the classeshomogeneousand non-homogeneous,
respectively. These refer to the homogeneity of the pixels
contained in the primitive. The homogeneity is measured using
as parameter the coefficient of variationσ of the pixels.
Reasonable values forwthick

0 , σhom
R = σnon-hom

R , σhom
0 and

σnon-hom
0 are on the order of 2 – 3 m, 0.3 – 0.35, 0.45 – 0.55,

and 0.15 – 0.3, respectively. Thanks to these constraints, the
tree representing the semantic classes covers all the possible
combinations of attributes taken into account in this paper.
In the specific case of the classroof, (12) shows that the
membership grade is always greater or equal toR2. This is in
line with the aforementioned issue of the uncertainties related
to the radar signature of building roofs.

Facade: As reported in the tree of Fig. 14, the semantic
class facade includes primitives with a relevant width and
which pixels have non-homogeneous values. This is the gen-
eral scattering behavior of building facades, where returns
coming from structures like windows or balconies (often made
of metal) give a strong textured signature in the radar footprint.
As a further constraint, the aspect angle of the building should
not be too high (i.e., the building should not be perpendicular
to the azimuth direction). Indeed, the facade scattering area
in the radar footprint becomes smaller with increasing aspect
angles. These factors are taken into account in the definition
of the facadeMF as follows:

MFF = Σthick
w (w)Σnon-hom

σ (σ)ΣF
φ(φ) (13)

whereΣF
φ(φ) models the effect of the building aspect angle

φ by penalizing primitives with high aspect angles (e.g.,
φF
R = 70◦ and φF

0 = 80◦). As mentioned at the beginning
of this section, we do not include in our analysis very high
buildings, for which the facade scattering area can have
different characteristics.

2) Dark primitives: For dark primitives only the semantic
classshadowhas been defined. The MF of this class takes
into account the mean and the coefficient of variation of the
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pixels contained in the primitive. It is defined as:

MFS = ΣS
m(m)Σhom

σ (σ) (14)

whereΣS
m(m) is the sigmoid functions depending on the pixel

meanm. The MF is tuned in order to penalize dark primitives
with high mean value and high coefficient of variation. Our
experiments pointed out that reasonable values forΣS

m(m) are
mS
R ∈ (−14,−12) dB andmS

0 ∈ (−9,−8) dB.

D. Generation of Building Radar Footprint Hypotheses

In this step the algorithm creates building radar footprint
hypotheses starting from the set of primitives. The hypotheses
are generated according to a set of rules and the process
is performed by means of a production system. Fig. 16
summarizes the generation process. A footprint hypothesis
is generated when i) two bright primitives, or ii) two bright
primitives and one dark primitive, or iii) one bright primitive
and one dark primitive are close each other and have a relative
position compatible with the viewing configuration of the SAR
sensor (i.e., dark primitives are located in the sensor-farside
of bright primitives). The three cases are described by the
productionsP5, P6 andP7 of Fig. 16. The generation is thus
based only on the vicinity criterion, and many hypotheses are
usually created for the same actual building radar footprint.
The vicinity is checked by measuring the minimum distance
between the primitives. A proper value for the maximum
distance allowed between two primitives is the valueδd0 used
in the selection of hypotheses (see Section III-E). As it will
be shown in Section III-E, on the one hand if the maximum
distance allowed between two primitives is greater thanδd0
the probability that many low-score footprint hypotheses are
generated is high. On the other hand, a distance threshold
shorter thanδd0 would discard hypotheses which may be
associated to high scores.

The order in which the bright primitives are aggregated is
also taken into account, i.e., at least two hypotheses will be
generated for each pair of bright primitives. The choice of
using a maximum number of two bright primitives depends
on the image resolution and on the types of features used
in this paper. In meter-resolution images an average building
radar footprint can be usually described effectively by the
combinations considered in this paper. In the case more
types of features are extracted from the image or decimeter-
resolution images are used, more combinations of primitives
become relevant.

E. Selection of Hypotheses

As mentioned in the previous subsection, many hypotheses
are generated by aggregating the primitives. At this stage the
algorithm selects only the most reliable hypotheses, whichwill
be used in the next step as starting point for the 2D radar
footprint reconstruction. Therefore, the output of this step is a
map containing the detected (but not reconstructed) building
radar footprints. This means that the output map is composed
by footprint hypotheses which are still not refined.

The reliability of each hypothesis is evaluated on the basis
of a score. The score is computed from the membership grades

BP DP

FH

P5 P7P6

Fig. 16. Production net for the generation of building radarfootprint
hypotheses (FH) starting from the set of bright primitives (BP) and dark
primitives (DP).

of the primitives composing each hypothesis. The general form
of the score equation for a building radar footprint hypothesis
h is given by:

Sh = Nhmax
p,q

{Xh(p, q)Gh(p, q)}Wh (15)

whereNh depends on the number of primitives composing the
hypothesis,Xh(p, q) andGh(p, q) are related to the relative
position and to the membership grades of the bright primitives,
respectively, andWh depends on the membership grade and
position of the dark primitive.(p, q) indicates the combination
of the semantic classp of the first bright primitive and the class
q of the second bright primitive. All these factors belong to
the range[0, 1]. The overall value ofSh thus belongs to the
same range. In the following we describe in detail each term
of the equation:

• Nh: for the case presented in this paper, when the
hypothesish includes three primitives (i.e., the maximum
number allowed), thenNh = 1. In the case one primitive
is missing, it takes the valueNh = N ′

h < 1, which is
set by the user. This term is thus related to the reliability
assigned by the user to the candidates composed by a
non-complete set of primitives.

• Xh(p, q): this term depends on the relative position of the
bright primitives in the radar footprint hypothesis. In this
paper, only the classesgeneral lineand double bounce
are considered for the first bright primitive, and the
classesroof and facadefor the second bright primitive.
It is worth noting that the technique also considers the
case in which the bright primitives are switched, as
in the hypotheses generation step different hypotheses
are created taking into account also the order in which
the bright primitives are aggregated. If only one bright
primitive is present the value ofXh(p, q) is 1. When
two bright primitives are included in the hypothesis and
the first bright primitive is closer to the SAR flight path
than the second primitive, its value is 0. Indeed, for the
considered cases, scattering from double bounce or any
other linear scattering feature of a building (associated
to the first bright primitive) cannot precede in range
the scattering from the roof and from the facade (which
are associated to the second bright primitive). At most,
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the scattering area of double bounce and other lines are
contained in that of roof and facade. When this condition
is fulfilled, the value ofXh(p, q) is calculated differently
depending on the combination(p, q). In detail,Xh(p, q)
is calculated as follows:

Xh(p, q) =















Σclose
δd (δdfs)Σ

parallel
δψ (δψpa)

p=double bounce, q=facade
Σclose
δd (δd)Σparallel

δψ (δψmin)

otherwise
(16)

whereδdfs is the distance between the first bright primi-
tive and the sensor-far side of the second bright primitive
oriented in its principal direction, andδψpa is the angle
between them (see Fig. 17).δd is the distance between the
two bright primitives. Distances are measured in terms of
minimum distance between the considered objects. The
distance to the sensor is calculated considering an infinite
line located outside the image with a position and angle
compatible with the viewing configuration of the SAR.
If one bright primitive overlaps with the other,δd = 0.
δψmin is defined as:

δψmin = min {δψpa, δψsa} (17)

whereδψsa is the angle between the first bright primitive
and the secondary axis of the second bright primitive
(see Fig. 17). The functionsΣclose

δd (δd) andΣ
parallel
δψ (δψ)

give values close to 1 when their argument is small.
The definition ofXh(p, q) thus assures that its value is
close to 1 when the bright primitives are both close and
oriented parallel or perpendicularly to each other. For
the combinationdouble bounce/facade the condition is
more strict and requires that the two primitives have their
principal axis oriented in the same direction, and that the
supposed double-bounce line is located at the sensor-far
side of the facade scattering area (see Section II). Proper
values forδdR andδd0 are on the order of 3 and 10 m,
respectively. RegardingδψR andδψ0, values on the order
of 10◦ and 30◦ are suggested.

• Gh(p, q): this factor depends on the membership grades
of the bright primitives composing the footprint hypoth-
esis and on their size. When only one bright primitive
is present, it reduces toGh(p) and its value is equal to
the membership grade of the primitive to the classp. If
two bright primitives are present, it is calculated in the
following way:

Gh(p, q) =
G′

h(p, q) +G′′

h(p, q)

2
(18)

G′

h = MF1,p · MF2,q (19)

G′′

h =
A1 · MF1,p +A2 · MF2,q

A1 +A2
(20)

where MF1,p indicates the membership grade of the
first bright primitive to the classp, and MF2,q is the
membership grade of the second bright primitive to the
class q. A1 and A2 are the areas of the first and of
the second bright primitives, respectively. The definition
of Gh(p, q) permits to obtain reliable scores also for

second bright
primitive

dark
primitive

first bright
primitive

range direction

δψsa

δdfs

δd1,S δd2,S

δψpa

Fig. 17. Measures involved in the calculation of the termXh(p, q).

particular combinations of bright primitives. For instance,
if one of the two bright primitives has a very low
membership grade, the termG′

h(p, q) becomes very small
and the overall value ofGh(p, q) will be low (in the limit,
Gh(p, q) =

G′′

h
(p,q)
2 ≤ 0.5). Instead, the termG′′

h(p, q)
takes into account the area of the bright primitives. As a
result, the value ofG′′

h(p, q) depends more on the larger
bright primitive.

• Wh: this term is function of the membership grade to the
classshadowof the dark primitive, and on its position in
the radar footprint hypothesis with respect to the bright
primitives. It is calculated as:

Wh = MFS · Σ
close
δd (min {δd1,S, δd2,S}) (21)

where δd1,S and δd2,S are the distances of the dark
primitive from the first and the second bright primitive,
respectively (see Fig. 17).

On the basis of the value ofSh, the algorithm deletes all
the radar footprint hypotheses for whichSh < Sh,min, where
Sh,min is an user-defined threshold. After this first selection,
many hypotheses with high values ofSh may still overlap
in correspondence of actual building radar footprints (e.g.,
composed by different combinations of primitives). Therefore,
the algorithm selects amongst the overlapping hypotheses only
the one with the highest value ofSh.

F. 2D Radar Footprint Reconstruction

The 2D radar footprint reconstruction aims at refining the
detection of both, the bright part and the dark part (if present)
of the footprint hypotheses selected in the previous step. This
is performed in order to reduce the effect of imprecisions
coming from the feature extraction and primitive generation
steps, and to provide reliable outputs which can be used as a
starting point to estimate parameters of the buildings, such as
their length, width and height (with the limitations imposed by
the fact that only a single image is available). The result ofthis
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procedure is thus the final map of the building radar footprints
detected and reconstructed from the input VHR SAR image.

As a first step, the algorithm generates for each footprint
hypothesis a best-fit rectangle which includes its bright prim-
itives. If only one bright primitive is present, the best-fit
rectangle and the bright primitive match. The local contrast
Cr of the rectangle is calculated according to (1). Then, the
rectangle is translated, rotated, expanded and shrunk withthe
goal to maximizeCr. The maximization is carried out using
a Particle Swarm Optimization approach (PSO) [39], which
is a well-known iterative method suited for the optimization
of problems withouta priori assumptions. A similar approach
was applied in [15] for binary images and using a different
optimization strategy. The rectangles which become smaller
than the minimum sizes set in the previous steps of the
algorithm are deleted. Moreover, it is possible that some
rectangles move and overlap. Therefore, the algorithm deletes
overlapping rectangles, and thus the corresponding footprint
hypothesis, keeping only the rectangles associated to the
hypotheses with the highest scoresSh.

A refinement procedure is carried out also for the dark part
of the footprint hypothesis, when it is present. In fact, a good
knowledge of the size of the shadow area of a building can
be exploited for the retrieval of the building height [22]. The
refinement aims at expanding the dark primitive on pixels with
amplitude values similar to those of shadows in the sensor-
far side area of the reconstructed bright primitive (i.e., in
the neighborhood of the reconstructed bright primitive where
it is expected the presence of a shadow region). To this
end, the center of the dark primitive is used as seed for
a region growing algorithm which, starting from an initial
circular contour, stretches its border to fit the dark area around
the seed. The chosen implementation is a level-set algorithm
[40] which moves the contour by including the pixels which
have amplitude values in the range[0,mS

R] (mS
R has been

defined in Section III-C). The resulting regions are cut in
the azimuth direction in order to match the extension of the
reconstructed bright part of the footprint hypothesis. Indeed,
the reconstructed regions are associated to building shadow
areas, which cannot be larger than the corresponding buildings
in the azimuth direction. The size of the reconstructed dark
areas in the range direction depends only on the radiometric
measurements in the image. As the proposed technique uses as
input only one VHR SAR image and noa priori information
is available, it is not possible to detect the end of the shadow
region by other means. This may lead to shadow areas which
are longer than real shadows because of low scattering areas
behind the buildings (e.g., roads, parking lots). This problem
can be partially mitigated by imposing a maximum shadow
range sizelS set by the user as in Section III-A2. Shadows
longer thanlS are cut tolS, and a flag is set to notice the user
about the lower reliability of the reconstructed shadow.

IV. A NALYSIS OF LARGE VHR SAR SCENES

The technique proposed in this paper can be used as a pre-
liminary step in many application scenarios, e.g., the detection
of changes in urban areas aimed at the quick assessment of

damages after a natural disasters. For these applications it is
important to process entire scenes in a fast manner. However,
the processing chain described in the previous section is
demanding both in terms of computation effort and memory
requirements. This reduces the size of the input images that
can be analyzed to a small subset of an actual VHR SAR
scene, thus limiting the potential application of the method in
real scenarios. In particular, the amount of resources required
by the proposed technique depends directly on: i) the size of
the input image, mainly for the parts of the algorithm based
on image filtering and feature extraction (i.e., despeckling
and line detection); and ii) the number of primitives and
hypotheses generated through the processing chain. The latter
is the most relevant factor that defines the complexity of the
method. Indeed, the amount of required resources shows a
non-linear dependence on the number of objects inserted in
the production systems used in the processing chain. Although
the number of primitives and hypotheses depends on the size
of the input image, it also depends on the type of imaged
area. As an example, two images of the same size covering an
urban area and a rural area will produce a different number
of primitives, with the greater number of primitives from the
urban area.

In order to face these problems, we extended the algorithm
to operate in a computer cluster infrastructure. In such a
framework, the nodes in the cluster process different subsets
of the input image in parallel. Each subset contains only
few primitives, and thus also a reduced number of footprint
hypotheses. This enables us to apply the proposed technique
on large scenes in a fast way on state-of-the-art hardware. In
Fig. 18 a block scheme of the considered simple architecture
is presented. As a first step, the VHR SAR image is split
into tiles. Every tile overlaps with its neighbors to assure
that buildings located at the tile borders are detected and
reconstructed properly at least in one tile. Then, the tilesare
distributed across the nodes which independently execute the
proposed method. Finally, the results for each tile are merged
in order to generate the final radar footprint map for the entire
input scene. When footprint hypotheses coming from different
tiles overlap on tile borders, the algorithm selects the ones with
the highest scoreSh.

V. EXPERIMENTAL RESULTS

In this section we show the results obtained by applying the
proposed methodology to a real meter-resolution large SAR
image. After a brief description of the used dataset, we show
and analyze qualitatively the results obtained on the whole
image following the grid-computing approach described in
Section IV. Then, we focus on two subsets of the image in
order to assess quantitatively the accuracy of the method.

A. Dataset Description

The effectiveness of the proposed method has been tested
on a TerraSAR-X image of the city of Dorsten, Germany. The
image has been acquired in HH polarization in spotligth mode,
resulting in a geometrical resolution of approximately 1.1m
× 1.2 m (azimuth× slant range). The incidence angle varies
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Fig. 18. Proposed computing architecture to perform the building detection and reconstruction method on large VHR SAR scenes.

between 50.3 and 51.0 degrees. The original scene has been
cut to a subset of 2800× 3712 pixels, covering an area of
approximately 10 km2. The cut includes both urban and rural
areas. Urban areas are characterized by both flat- and gable-
roof buildings at various settings. Fig. 19 shows the SAR test
image and an optical image corresponding to the same area
taken from Google Maps.

B. Results on the Entire Scene

The proposed method has been run using the parameters
reported in Table I, Table II and Table III. The values of such
parameters have been chosen according to the guidelines given
in Section III. The results obtained are shown in Fig. 20. The
method shows in overall a high detection rate. False alarms
are mostly related to the scattering from objects different
from buildings (e.g., trees, garages) that show radar footprints
similar to those of buildings. A particular case is represented
by bridges, which have been also detected. Such structures
can be easily masked, either usinga priori information about
the presence of rivers, or by extracting the rivers directlyfrom
the SAR scene [41]. The radar footprints of complex build-
ings which do not correspond to the rectangular model used
in this paper are mostly detected with some reconstruction
errors (e.g., the radar footprint has been split in more parts).
In general, the proposed method detected and reconstructed
quite precisely the radar footprints of medium- and big-size
buildings that fulfill the rectangular model. Radar footprints
of small adjacent buildings aligned in regular patterns arealso
detected, but in some cases are considered as belonging to
a single building. Small buildings which do not show clear
features are not detected by the method. However, considering
the use of a single SAR image, the results can be considered
qualitatively very satisfactory. Moreover, it is worth noting that
if the proposed method is applied in order to derive indexes
of the presence of buildings, reconstruction errors (i.e.,split
and merged buildings) do not represent a critical issue. In
order to analyze quantitatively and in greater detail the results
achieved by the proposed method, in the following we focus
on two subsets of the test image.

C. Results on Subset 1

Fig. 21 shows the area corresponding to the subset 1 in
both the SAR and optical images. This area is characterized
by both flat- and gable-roof buildings with different sizes and
orientations. In particular, the upper part of the image contains

TABLE I
PARAMETERS USED IN THE FEATURE EXTRACTION AND PRIMITIVE

GENERATION STEPS IN THE EXPERIMENTS CARRIED OUT WITH THE
PROPOSED TECHNIQUE.

Parameter Value

T 7
w1, . . . , w7 3,5,. . . ,15
δwmax 3
At 0.5
xS -12.2 dB
lS 30 m

δψmax 20◦

TABLE II
PARAMETERS USED IN THE ANALYSIS OF PRIMITIVES STEP IN THE

EXPERIMENTS CARRIED OUT WITH THE PROPOSED TECHNIQUE.

Parameter Value

R 0.999
wthin

R
, wthin

0
5 m, 7 m

wthick
R

, wthick
0

5 m, 3 m
φDB
R
, φDB

0
10◦, 30◦

σhom
R

, σhom
0

0.3, 0.5
σnon-hom
R

, σnon-hom
0

0.3, 0.2
φF
R
, φF

0
70◦, 80◦

mS
R
, mS

0
-13.6 dB, -8.6 dB

mainly medium to large buildings, while the bottom part
includes smaller buildings, which are also often joined together
and surrounded by gardens with other man-made structures
or trees. In order to assess the performance of the proposed
technique, we consider the correct/missed and false building
detection rates and correlate such results with the size of the
buildings. The number of split or merged buildings is also
counted. The planar area of the buildings (length× width) has
been estimated using the optical image. The set of buildings
present in the investigated area has been divided into three
subsets:small, mediumand large. Each subset corresponds to
a different range of planar areas. Buildings are consideredto be
small if their planar area is smaller or equal to 200 m2, medium
if the area is between 200 and 400 m2, and large if it is greater
than 400 m2. Table IV reports the number of buildings for each
size class in the subset 1 and the number of buildings correctly
detected given by the proposed technique. As it is difficult
to measure numerically the correctness of the reconstruction
of the building radar footprints, here we only evaluate the
detection performance of the algorithm in terms of footprints
detected in correspondence of actual buildings. The detections
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(a) (b)

Fig. 19. (a) TerraSAR-X image used for assessing the effectiveness of the proposed technique (Infoterra). (b) Optical image taken from Google Maps of the
investigated area.

TABLE III
PARAMETERS USED IN THE SELECTION OF HYPOTHESES AND2D RADAR

FOOTPRINT RECONSTRUCTION STEPS IN THE EXPERIMENTS CARRIEDOUT

WITH THE PROPOSED TECHNIQUE.

Parameter Value

N ′

h
0.8

δdR, δd0 3 m, 10 m
δψR, δψ0 10◦, 30◦

Sh,min 0.7

Fig. 20. Building detection and radar footprint reconstruction obtained by
the proposed technique on the SAR image of Fig. 19a. Only the bright parts
of the reconstructed building radar footprints are shown.

have been checked by comparing the positions of the radar
footprints extracted by the algorithm with those manually
detected on the SAR image in correspondence of buildings,
which positions have been previously estimated from an op-
tical image of the same area. A building is considered detected
if the algorithm extracted a footprint which overlaps with the
actual building radar footprint. Fig. 21e shows the correctand
missed detection on the optical image. As it is not possible
to directly match the detected radar footprints to the optical
signatures of buildings without information on their height,

this map has been drawn manually using as reference the
results obtained by the proposed method for each building
in the scene. The results point out that the overall detection
rate of radar footprints of the proposed technique is high,
especially considering that the method is unsupervised and
works on a single meter-resolution VHR SAR image. The
performance of the technique is very good for medium and
large buildings, while small buildings result in a higher number
of missed alarms. This expected result is due to the fact that
small buildings in meter-resolution images often do not show
the scattering features used by the proposed technique. On the
one hand, the number of split buildings is 1, 4 and 2 for the
classessmall, mediumandlarge, respectively. Therefore, as far
as building size increases, the probability that the technique
splits the radar footprints in more parts increases. On the other
hand, as far as building size decreases, the probability that the
radar footprints of adjacent buildings are detected as a single
one increases. In fact, the number of merged buildings is 9 for
the classsmall, 3 for the classmediumand 1 for the classlarge.
The number of false alarms in building detection is 11. The
size of the bright part of the false building radar footprints has
been measured on the SAR image and false alarms have been
divided insmall, mediumandlargeaccording to the same rules
used for building planar sizes. Although the two measurements
considered (i.e., area of false building radar footprints and
planar area of real buildings) are different, the use for false
alarms of the same classes as for real buildings allows us
to give an indication on the types of false alarms produced
by the proposed method. As shown in Table IV, false alarms
are mostly related to small radar footprints. By comparing
the SAR image to the optical image it is clear that false
alarms usually correspond to other man-made structures (e.g.,
isolated garages) or trees which show radar signatures thatare
very similar to those of buildings. Such false alarms are also
difficult to be detected by an expert human interpreter without
other sources of information (e.g., a reference optical image).
The footprints generated by the proposed technique are usually
correctly reconstructed for medium and large buildings. Asan
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example, Fig. 22 shows the refinement of the bright part of a
footprint hypothesis after the 2D footprint reconstruction step.
For small buildings the radar footprints are often reconstructed
with lower precision. Fig. 21c shows also the detected (and
reconstructed) building shadows. The proposed technique ex-
tracted with good precision most of the shadow areas related
to the detected building radar footprints. This result can be
used as a starting point for further estimations on the building
sizes, e.g., for estimating building heights [22]. However, it is
worth noting that in many cases shadow areas are limited by
adjacent buildings, thus reducing their usefulness for height
extraction purposes.

D. Results on Subset 2

The area corresponding to the subset 2 is shown in Fig.
23. This area is characterized by a large number of trees
located along the streets (in Fig. 23d it is possible to see their
shadows). Such trees often mask the radar returns also from
medium-sized buildings. Moreover, small buildings are usually
quite irregular, and show many structures on their walls.
This subset is thus a challenging benchmark for the proposed
technique. Table IV reports the results obtained for the subset
2, and Fig. 23e shows the correct and missed detections on
the optical image. As for the subset 1, the detection rate for
the classeslarge and medium is very good. For the class
small performance are less satisfactory. The number of split
buildings is 1 for the classsmall, 4 for the classmediumand
4 for the classlarge; while the number of merged buildings
is 8 for the classsmall, 3 for the classmediumand 0 for the
class large. The total number of false alarms is 11. As for
subset 1, the most of them are related to small false building
radar footprints. In overall, considering the issues mentioned
at the beginning of this paragraph and the limited amount of
information used by the proposed technique, the results can
be considered very good. In order to provide a more general
view of the results obtained by the proposed method, Table
IV also reports the overall results computed by summing the
results of the subsets 1 and 2. The total statistic confirms the
trend highlighted for the single subsets, i.e., the algorithm has
a high detection rate for medium and large buildings, with
a limited amount of false alarms, whereas its performance
decreases in the case of small buildings, which are associated
to most of the total number of false alarms. It is worth noting
that it is possible to mitigate this problem by imposing a
rule for discarding the footprints smaller than an user-defined
minimum footprint size. As a consequence, the number of
false alarms would be considerably reduced and the detection
of radar footprints of small buildings would not be a target
of the method anymore. This is a reasonable strategy to adopt
for tuning the proposed technique only on the detection of
medium and large buildings.

E. Selection of Algorithm Parameters

The tuning of the parameters has been performed according
to the scene investigated. However, some parameters are not
strictly related to the image analyzed, and can be seta priori
following general rules. Moreover, many of the considered

parameters have a clear physical meaning that helps the user
to include its prior knowledge on the scene in the detection
algorithm. In addition to the guidelines already provided in
Section III, in this section we analyze more in detail the role
of the parameters of the proposed method.

1) Feature extraction and primitive generation:In these
steps the main parameters of the proposed technique are
related to the detection and generation of bright rectangles, and
to the extraction of the shadows. The possible range of values
for the window of the line detectorwt should be set between
the expected thickness of thin linear features and the maximum
size of the buildings which has to be extracted. The sampling
of the range ofwt, given by the number of filteringsT ,
should assure that most of the linear features can be effectively
modeled with the considered values ofwt. The minimum
value for δwmax has to be greater than the width sampling
resulting from the definition of the values ofwt. On the one
hand, a value smaller than this quantity would not allow the
algorithm to downselect effectively the rectangles produced
in the feature extraction step. Moreover, the procedure for
the generation of primitives would combine only rectangles
with approximately the same width. On the other hand, a
value much greater than the width sampling would make the
algorithm to downselect too many rectangles, and combine
features with much different widths. According to our tests,
a good choice for the value ofδwmax is 1.5 times the width
sampling used in the line detection. Regarding the parameters
At and δψmax, high values forAt and low angles forδψmax

make conditions (3) and (4) too stringent, respectively. By
settingAt = 0.5 andδψmax = 20◦ we obtained the best results
in our experiments. Note that these settings are general and
do not depend on the image under analysis.

As mentioned in Section III-A2, the choice of the value
of xS depends on the characteristics of the shadow regions
in the SAR image. The results obtained with different values
for xS showed that the detection and reconstruction of the
shadows is not sensitive to slight variations of the parameter.
The choice oflS depends on the maximum expected height
of the buildings present in the scene (and thus of their
shadows). Thus, this parameter should be set according to the
acquisition incidence angle and to prior information on the
scene. However, if noa priori information is available, a large
value can be set. This does not affect significantly the detection
of the radar footprints. In fact, footprint hypotheses including
dark primitives which are not close to bright primitives (which
have been kept in the feature extraction due to a largelS) are
penalized by the term (21) in the selection of hypotheses. Thus,
only the reconstruction step is affected by the choice oflS, as
shadows can grow further.

2) Analysis of primitives:In this step the main parameters
to be set are those related to the membership functions defined
for the different scattering classes. The choice of the value of
R is not critical, andR = 0.999 can be considered as a fixed
value. The parameterswthin

R = wthick
R , wthin

0 , andwthick
0 used

in this paper can also be considered general. Indeed, they are
given in meters, so that they do not depend on the resolution of
the system. According to our tests, by settingwthin

R = wthick
R to

a value 2-3 m greater than the expected thickness of the linear
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(a) (b) (c)

(d) (e)

Fig. 21. Subset 1: (a) original TerraSAR-X image of the considered area, viewing direction from left (Infoterra); (b) reconstructed bright parts of the detected
building radar footprints on the SAR image; (c) reconstructed building radar footprints on the SAR image: (yellow) bright parts, (red) dark parts; (d) optical
image (Google); (e) optical image with detected and missed buildings for each building size class: (green)large, (yellow) medium, and (red)small. Detected
and missed buildings are highlighted with filled and empty rectangles, respectively.

(a) (b)

Fig. 22. Example of bright part of a radar footprint hypothesis (a) before,
and (b) after the 2D footprint reconstruction step.

signatures due to the double-bounce effect give the best results,
as the procedure which creates rectangles from the output of
the line detector may overestimate their actual thickness.

The values of the parametersφDB
R , φDB

0 , φF
R, and φF

0 are
defined on the basis of our experience in analyzing VHR SAR
images. These values are also general, and can be considered
valid for most images of urban areas. The main studies carried

out specifically on the relation between the double-bounce
effect and the aspect angle of buildings can be found in [32].

The choice of the valuesσhom
R = σnon-hom

R , σhom
0 , andσnon-hom

0

depends on the characteristics of speckle in the considered
image. As the membership functions are evaluated on the
GMAP filtered image, different parameters apply for different
filterings. Similarly, these parameters depend on the image
resolution, as speckle develops differently on the same target
depending on resolution. For these reasons, the correct choice
of these values in terms of capability to model effectively ho-
mogeneous and non-homogeneous areas comes after a proper
optimization of the GMAP filtering parameters.

The last parameters used in this step aremS
R andmS

0. As
for xS, these values depend on the characteristics of shadows
in the SAR image. According to our experiments,mS

R andmS
0

should be set about 1.5 dB lower and 3-4 dB greater thanxS,
respectively. This allows one to obtain a quite smooth term
ΣS
m(m) in (14). Indeed, the mean amplitude of a dark region

corresponding to a shadow may be biased by the interference



16

(a) (b)

(c)

(d) (e)

Fig. 23. Subset 2: (a) original TerraSAR-X image of the considered area, viewing direction from left (Infoterra); (b) reconstructed bright parts of the detected
building radar footprints on the SAR image; (c) reconstructed building radar footprints on the SAR image: (yellow) bright parts, (red) dark parts; (d) optical
image (Google); (e) optical image with detected and missed buildings for each building size class: (green)large, (yellow) medium, and (red)small. Detected
and missed buildings are highlighted with filled and empty rectangles, respectively.

of surrounding structures which increases its value. Thus,
using a sharpΣS

m(m) would make the algorithm to discard
possible real shadows.

3) Selection of hypotheses and 2D radar footprint recon-
struction: As mentioned in Section III-E, the parameterN ′

h is
related to the reliability assigned by the user to the footprint
hypotheses composed by only two primitives. In our tests, by
setting this parameter to higher values resulted in detection
maps with less hypotheses composed by three primitives, as
expected. Indeed, increasing the value ofN ′

h makes three-
primitive hypotheses to have higher probability to score lower
than those composed by two primitives. Therefore, three-
primitive hypotheses have higher probability to be discarded
when they overlap with others made up of two primitives.
This does not affect significantly the detection rate of the
proposed method, but it increases the probability that the
extracted footprints are not well-reconstructed (e.g., shadows

are missing even though they were detected). On the contrary,
by settingN ′

h to low values would increase the number of
missed detections. Therefore, the choice ofN ′

h should be
done by the user as a tradeoff between reliability of the
reconstruction and detection performance.

The pair of parameters(δdR, δd0) and (δψR, δψ0) are
related to the vicinity and relative orientation of the primi-
tives, respectively. The values proposed in this paper can be
considered general for the defined scattering classes. Notethat,
using these values, the sigmoid functions present in (16) and
(21) are quite smooth, thus mitigating the effect of possible
errors in feature extraction.

The last parameter to be discussed isSh,min. This parameter
gives the tradeoff between false and missed detections. Ac-
cording to our tests, the use of highSh,min results in a greater
number of missed detections, as expected. However, the num-
ber of false alarms is not reduced significantly. Indeed, these
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TABLE IV
ALGORITHM PERFORMANCE FORSUBSET1, SUBSET 2 AND SUBSET1 + SUBSET2 IN TERMS OF NUMBER OF DETECTED BUILDINGS, FALSE ALARMS,

SPLIT AND MERGED BUILDINGS PER BUILDING CLASS.

Building size Number of Detected False Split Mergedbuildings alarms

Subset 1
Large 21 19 0 2 1

Medium 26 22 2 4 3
Small 66 35 9 1 9

Subset 2
Large 12 12 0 4 0

Medium 27 23 2 4 3
Small 53 34 9 1 8

Subsets 1+2
Large 33 31 0 6 1

Medium 53 45 4 8 6
Small 119 69 18 2 17

are usually related to footprints of other man-made structures,
or trees, which actually appear as related to buildings. Forthis
reason, values in the order of 0.6-0.7 are suggested.

F. Computational Load

The test image described in Section V-A has been processed
using a cluster composed by 16 AMDR© OpteronTM 6172
CPUs, for a total of 192 cores, with 4 GB of RAM per core.
The image has been split on tiles of 300× 300 pixels with an
overlapping offset of 30 pixels with the neighbors. The total
number of tiles was thus 154, and each tile was processed
by one core. The total processing time was about 45 minutes.
With the same infrastructure it is thus possible to process a
whole spotlight image of about 6000× 10.000 pixels in less
than 3 hours. We also tested the proposed technique using
a smaller cluster composed by 8 commercial workstations
equipped with IntelR© CoreTM i7-870 quad-core processors
and 8 GB of RAM. The total processing time for the test
image on this smaller architecture was about 1 hour and 30
minutes, which is a good performance in terms of operational
application of the algorithm.

VI. D ISCUSSION ANDCONCLUSION

In this paper the problem of the detection and recon-
struction of building radar footprints in VHR SAR images
has been addressed. Unlike many other methods presented
in the literature, the proposed technique can be applied to
single VHR SAR images. It extends state-of-the-art feature
extraction and composition steps to more structured primitives
using a production system and by introducing the concept of
semantic meaning. This has been done in order to compensate
for the lack of information due to the fact that only one
VHR SAR image is used as input. The semantic meaning
represents the probability that an object belongs to a certain
scattering class (e.g., facade, double bounce), and is calculated
via fuzzy membership functions. Therefore, it allows the
technique to select the most reliable primitives and footprint
hypotheses during its processing steps. As a further refinement,
the proposed technique also reconstructs the detected radar
footprints. The goal of this step is to provide as output a map
which can be used as a starting point for further calculations,
e.g., the estimation of building widths and lengths. Moreover,

by exploiting the reconstruction of the shadow areas, height
retrieval techniques can be also applied to estimate building
heights. In order to make it possible to use the proposed
technique on large VHR SAR images in near real-time, we
also proposed and implemented an infrastructure based on a
computer cluster for the processing of large VHR SAR scenes.

The proposed method is suited for meter-resolution SAR
images. However, it can be extended and tuned for higher-
resolution airborne data by introducing new types of primi-
tives, composed objects and rules. Moreover, new semantic
classes for the primitives should be defined, as finer scattering
mechanisms become visible in sub-meter data.

The experimental results obtained on a large meter-
resolution SAR image confirmed the effectiveness of the
proposed technique. In particular, the method shows very high
detection rates in the case of medium and large buildings,
exhibiting also a good capability to reconstruct their radar
footprints. The number of false alarms is limited, and these
are mostly related to other man-made structures or trees
which show radar signatures similar to those of buildings. For
small buildings the proposed technique shows worse detection
and reconstruction performance of radar footprints, and an
increased number of false alarms. This is mainly due to the low
number of features related to small buildings visible in single
meter-resolution SAR images. Nonetheless, this is an expected
problem, which is mainly related to the need to use sub-meter
resolution images for a proper detection of these buildings,
rather than to a limitation of the proposed technique. In order
to mitigate this problem, it is possible to include a simple rule
in the proposed technique for discarding the radar footprints
smaller than an user-defined threshold, thereby reducing the
number of false alarms and avoiding the detection of small
buildings. This is a reasonable strategy to adopt for tuningthe
proposed method only on the detection of medium and large
buildings, on which performances are very accurate.

The proposed approach needs the user to set some pa-
rameters which depend on the product under analysis. After
this, the method is automatic and can be applied with the
same set of parameters to similar products. Guidelines for the
selection of the parameters were given throughout the paper.
It is worth noting that many relevant parameters have been
already selected on calibrated SAR images so that they can
be applied to different VHR SAR scenes without the need to
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be changed.
The proposed technique is promising for addressing prob-

lems in real operative scenarios which exploit the avail-
able spaceborne meter-resolution SAR systems (e.g., Cosmo-
SkyMed, TerraSAR-X, and TanDEM-X). As an example, it
can be used as a preliminary step for a fine estimation of
the density of urban areas even from single images or it can
be used for the analysis of multitemporal series, e.g., for the
detection of changes in urban areas. It is worth noting that the
method can work with any viewing configuration of the SAR
sensor, as it can handle radar footprints acquired with different
incidence and aspect angles. Moreover, it provides resultsin
the vector domain. These factors make it possible to potentially
combine the results obtained from SAR acquisitions taken with
different viewing angles, or also maps derived from optical
images. This would allow a finer detection of buildings and
a more precise estimation of building properties. However,
the problem of the correct geolocalization of buildings in
the different acquisitions should be faced e.g., for the correct
merging of the single radar and/or optical footprint maps.

As future developments we plan to extend the proposed
technique to both the analysis of multi-aspect acquisitions
(e.g., images acquired on ascending and descending orbits)
and the integration of interferometric height informationin the
steps of the processing chain. By this we aim at developing a
flexible framework for building detection and radar footprint
extraction requiring as minimum only a single SAR scene,
but making best use of additional input data if available. We
also plan to study the integration of the presented method with
state-of-the-art change detection algorithms in order to develop
novel reliable approaches to change detection in urban areas
using VHR SAR multi-temporal series.
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