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Automatic Detection and Reconstruction of Building
Radar Footprints from Single VHR SAR Images

Adamo Ferro, Dominik BrunneMember, IEEELorenzo Bruzzonekellow, IEEE

Abstract—The spaceborne synthetic aperture radar (SAR) interest, due to their independence on the solar illumbmati

systems Cosmo-SkyMed, TerraSAR-X and TanDEM-X acquire and the relative insensitivity to the weather condition8][1
imagery with very high spatial resolution (VHR), supporting [11].

various important application scenarios, such as damage as . . .
sessment in urban areas after natural disasters. To ensure a One of the main drawbacks of VHR SAR is the complexity

reliable, consistent and fast extraction of the information from the ~ Of the images, mainly owing to the speckle effect and the-side
complex SAR scenes, automatic information extraction metbds looking geometry of the SAR sensor, hampering the interpre-
are essential. Focusing on the analysis of urban areas, whids tation of the data by non-SAR experts. This is especiallg tru
of prime interest of VHR SAR, in this paper we present a novel o, \,rhan areas, where the data are mainly characterized by

method for the automatic detection and 2D reconstruction of | Itib d shadowi ffects of the buildi
building radar footprints from VHR SAR scenes. Unlike most of ayover, muflibounce and shadowing efiects ot the bulleing

the literature methods, the proposed approach can be applieto ~ Therefore, to support the widespread usage of VHR SAR,
single images. The method is based on the extraction of a seft o robust automatic information extraction methods are d&den
low-level features from the images and on their compositiorto Different techniques for building detection and reconstru
more structured primitives using a production system. Thenthe i from VHR SAR images have been presented in literature.
concept of semantic meaning of t.he. primitives is introducednd For instance, Soerget al. [12] proposed an iterative technique
used for both the generation of building candidates and theadar = ’ g . p _p : q
footprint reconstruction. The semantic meaning represerg the for building reconstruction from interferometric SAR (IAR)
probability that a primitive belongs to a certain scattering class data which is based on the detection of the combined occur-
(e.g., double bounce, roof, facade) and has been defined inder rence of a strong scattering line and a shadow area in corre-
to compensate for the lack of detectable features in singlenages. spondence of an elevated region. Celli¢ral. [13] presented

Indeed, it allows the selection of the most reliable primitves O . .
and footprint hypotheses on the basis of fuzzy membership & building reconstruction technique for INSAR data based on

grades. The efficiency of the proposed method is demonstrate building hypothesis management. The developed method uses
by processing a 1-m resolution TerraSAR-X spotbeam scene a tree of hypotheses, which is simplified according to a set
containing flat- and gable-roof buildings at various settirgs. The of semantic rules. Thielet al. [14] proposed an approach to
results show that the method has a high overall detection rat building detection which uses orthogonal multi-aspectdRS
and that radar footprints are well reconstructed, in particular . Th his based the detecti fed d
for medium and large buildings. images. The approach is based on the detection of edges an
o ] o ] their combination to building footprints. A method for the
Index Terms—Building detection, building reconstruction, pro- gy 4raction of buildings and the estimation of their heigioinf
duction system, very high spatial resolution (VHR), synthé&c ic airb dar i d by Si
aperture radar (SAR), urban areas, remote sensing. Stereosco_p'c air Orn.e r_a ar 'mage.S \_Nas preser_lte y =imon-
etto et al. in [15], while in [16] a building extraction method
using dual-aspect SAR data was presented. An algorithm for
. INTRODUCTION building reconstruction from multi-aspect polarimetri&\rs
N the last decade, very high spatial resolution (VHR)POISAR) images was presented by Xu and Jin [17]. The
spaceborne remote sensing sensors (e.g., QuickBip@larimetric information is exploited by employing an edge
Worldview-2, Cosmo-SkyMed) acquiring data with meter ofletector effective on polarimetric images. The retrieveges
sub-meter resolutions became widely available. These date then parameterized by means of the Hough transform
have the potential to be employed for various importantiappto generate the building footprint hypotheses. Waatgal.
cation scenarios, such as the monitoring of changes in urdag] developed a method for the detection of buildings from
areas [1], [2], the characterization of urban areas (elgm s single-aspect PoISAR data combining edge and area features
mapping) [3], [4], the surveillance of the effects of violenwith Markov random fields. Hilet al. [19] presented a semi-
conflicts [5], and the crisis management after natural thsas supervised method for the estimation of building dimension
(e.g., earthquakes) [6], [7]. For the latter applicatioarsario, in VHR SAR temporal scenes based on the analysis of the
spaceborne VHR synthetic aperture radar (SAR) sensor, sgbape of building shadows. Another method based on shadow
as Cosmo-SkyMed [8] and TerraSAR-X [9], are of particulaanalysis which exploits INSAR data and is suitable for high
_ or isolated buildings was proposed by Tiseh al. [20]. A
_A. Ferro and L. Bruzzone are with the Department of Informapjlding detection method using an orthophoto and an InSAR
tion Engineering and Computer Science, University of Toenvia . b d diti | d fields i dinI2
Sommarive 5, [-38123, Trento, ltaly, e-mail: adamo.fercig@unitn.it, 'mage_ ased on conditional ran Om e S'_S Presem? in [21]
lorenzo.bruzzone@ing.unitn.it. ‘ Techniques for the 3D reconstruction of buildings using VHR
At the time of the research, D. Brunner was also with the Diepant of  gptical data for the 2D building footprint reconstructionda
Information Engineering and Computer Science, UniversityTrento, Via . o . .
Sommarive 5, -38123, Trento, Italy, e-mail: dominik@bmeronline.org a single VHR SAR scene for the building height extraction
Manuscript received Month day, year; revised Month dayr.yea were presented in [22] and [23].



All the above-mentioned works addressed the problem ofSome steps in our proposed method have similarities with
building detection and reconstruction in VHR SAR imagesxisting work. For instance, the method presented in [13] is
by relying on the availability of ancillary or multi-sensorbased on hypothesis management. Since their approach relie
data (e.g., optical imagery), polarimetric SAR, interfagiric on sub-meter resolution INSAR data the hypothesis are based
SAR, or multi-dimensional airborne data which implies thatn different information (combination of height and topmy®
the area under investigation is imaged more than once wibmpared to ours (presence and semantic meaning of scatter-
different viewing configurations (changed incidence and/ing features). Moreover, we introduce a way to quantitifive
aspect angle). This represents a limitation for applicasice- evaluate the hypotheses to automatically select the best on
narios with stringent timing restrictions that do not allthe which is missing in [13]. Similar to our approach, the method
acquisition of multi-dimensional SAR data (e.g., emergendn [24] uses the layover and double-bounce features for the
response). For these reasons, research on the detectiex-andeconstruction of buildings. However, this method is based
traction of buildings from single VHR SAR data is importanta global MAP estimation using Monte Carlo methods, while
To our knowledge, only very few papers addressed the probléme approach proposed in this paper exploits also the shadow
of building detection with one single meter resolution SARformation and introduces the concept of semantic mean-
images only. One of the few related works using single VHRg and membership grade for each primitive and footprint
SAR images was presented by Quartulli and Datcu [24], ahgpothesis. Moreover, such a work was intended as a tool
was based on a stochastic geometrical modelapdsteriori for the investigation of the limits and merits of informatio
probability maximization (MAP). Recently, a method for L-extraction from single images, and was not optimized for
shape building footprint extraction from single SAR imageluilding reconstruction purposes.
was proposed in [25]. This method fails in the detection of The radar footprint map extracted with the proposed method
buildings if they do not show L-shaped returns. Moreover, an be used to derive different information, such as the
considers only bright lines and discards other relevantfea, build-up presence index. It can also be used as a feature
such as bright areas and shadows. in the classification of the build-up areas (e.g., according

In this paper, which generalizes and extends the worksidential and commercial areas). Indeed, radar fodforin
presented in [26] and [27], we propose a novel method for single SAR images lack the information about the exact
the detection and reconstruction of building radar fotisri dimensions (length, width, height) and the location of the
from detected VHR SAR images. Unlike most of the literatureD optical footprint of buildings. In order to derive them,
methods, it can be applied to single images. Moreover, it fise method could be combined with an iterative simulation
suitable to be used with data acquired by currently operatio and matching scheme as presented for instance in [22] for
spaceborne SAR sensors. In this context, radar footpriietse the building height extraction. In this context, the cafigbi
to the characteristic scattering signature of buildingS&R. of the proposed method to extract the individual scattering
The method integrates the concepts of basic feature exinactcontributions of a building in the SAR image could be used
and their composition to more structured primitives using improve the matching function as the simulator is als@ abl
a production system [28], [29]. In order to compensate fao distinguish between the different contributions.
the lack of detectable features in single images, the cdancepThe remainder of this paper is structured as follows. In
of semantic meaning of the primitives is introduced angection Il we review the characteristics of flat- and galbletr
used to generate building candidates and reconstruct rafaildings in VHR SAR imagery. In Section lll, we present the
footprints. The semantic meaning represents the probabilproposed methodology in detail, while Section IV discusses
that a primitive belongs to a certain scattering class (e.the processing of full VHR SAR scenes using a grid computing
facade, double bounce) and allows the selection of the masfrastructure. In Section V we demonstrate the performanc
reliable primitives and footprint hypotheses on the badis and the properties of our approach by processing and anglysi
fuzzy membership grades. a large 1-meter resolution TerraSAR-X spotlight mode scene

The main novelties and advantages of the proposed methiasm Dorsten, Germany, which is characterized by different
are: i) the capability to accurately detect the radar fdotpr types of buildings at various settings. Finally, in Sectih
of individual buildings using only one SAR scene withoufve draw the conclusions and give an outlook for future work.
the need for ancillary data, ii) the possibility to estim#te
reliability of the detected features and footprint hypate
through a set of fuzzy functions, iii) the flexibility to haled
gable- and flat-roof buildings at different sizes and atoasi
settings, and iv) the expansibility of the approach, which The key characteristics of buildings in SAR are the layover,
allows the definition of new scattering classes and rules ainuble-bounce, and shadowing effects which are caused by
cording to specific image characteristics or user requirgse the side-looking and ranging properties of SAR sensors. To
These characteristics make the approach valuable for suppilustrate this, Fig. 1 shows a schematic view of the scatter
ing different application scenarios, e.g., damage assa#snprofile of a simplified flat-roof building model. In this figure
after crisis events and change detection in urban areas.the building in the middle, which is modeled as a rectangular
addition, as shown later in the paper, the method is suitedx, is imaged by a sensor with incidence angleThe
to the implementation on computer clusters, thereby makiagnotations: refers to backscattering from the ground surface
it possible almost-real-time applications. surrounding (in this 2D figure before/behind) the buildingd

Il. MODELING OF BUILDING RADAR FOOTPRINTS IN
SINGLE DETECTEDVHR SAR IMAGES
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Fig. 1. Scattering model for a flat-roof building with viewindirection Fig. 3. Scattering model for a gable-roof building with vieg direction
from left. The different gray areas at the bottom of the figsyenbolize the from left. Here, the roof inclination angle is smaller thard. The different
amplitudes. gray areas at the bottom of the figure symbolize the ampktude

(b)

Fig. 2. Example of a flat-roof building. (a) Building in 1-neetresolution Sy " :

TerraSAR-X data with viewing direction from left (Infotex The double (@ (b)

bounce line is highlighted with a red arrow. (b) The samediug in an

optical image (Microsoft). Fig. 4. Examples of gable-roof buildings with small aspengles. (a)

Buildings in 1-meter resolution TerraSAR-X data with viegidirection from
left (Infoterra). The double-bounce and roof scatteringedi are highlighted
with red and yellow arrows, respectively. (b) The same lngd from (a) in

denotes the layover area where scattering from the grouad optical image (Microsoft).

from the vertical building front wall and from parts of thetfla

roof are superimposed since these parts have the samecdistan

to the sensor. The vertical front wall and the surface arearnelationship betweef and the roof inclination angle.. For

front of the building compose a corner reflector resulting in = 0 the strength of this feature is maximum, whereas its

the bright double-bounce effeét The scattering area that isextent is minimum. Moreover, we found that in actual 1-meter

only characterized by scattering from the roof is denoted lgsolution TerraSAR-X and Cosmo-SkyMed data this second

d. The elevated building occludes parts of the surface behihdght scattering area is also detectable for buildings vait

the building from the radar beam, resulting in the shadoligh aspect angle (the angle between the building wall ¢acin

areae. This backscattering profile is flexible with respecthe sensor and the azimuth direction). This is illustrated i

to a number of parameters [22]. For instance, for very hidgkig. 4 and Fig. 5, where we show actual scattering signatures

buildings there is typically no ared as the part of the roof from gable-roof buildings with small and large aspect asgle

is entirely included in the layover area. An example of radaespectively.

footprint of an industrial flat-roof building is shown in Fig In Fig. 1 and Fig. 3 the double-bounce feature is very

2. The main scattering mechanisms are visible (i.e., layovgronounced. A detailed analysis of the characteristicshef t

double bounce, scattering from roof and shadow). Howevelbuble bounce of buildings with actual TerraSAR-X data

additional features appear (e.g., bright spots on the roef dand theoretic electromagnetic scattering models pregente

to metallic structures). The figure also shows examples [@2] showed that this feature has a significant dependency on

interference due to other targets, in this case tall treefadt, the building aspect angle. The double bounce has a strong

both the layover and the shadow areas of the footprint asgnature for buildings with low aspect angles (the walirigc

partially masked by the trees that surround the building.  the sensor is almost parallel to the azimuth direction).nThe
For gable-roof buildings the theoretic scattering sigrata it decays significantly in a narrow range of aspect angles,

slightly different [30], [31]. As shown in Fig. 3, the signmé while it drops moderately for larger aspect angles. The pgeth

has a second bright scattering featuted at the sensor presented in this paper will take into account this nondine

close side resulting from direct backscattering from thef.ro relationship between the strength of the double bounce and

The extent and the strength of this feature depends on the aspect angle.



Fig. 5. Examples of gable-roof buildings with large aspewjles. (a) Buildings in 1-meter resolution TerraSAR-X daiith viewing direction from left
(Infoterra). The scattering lines due to the roofs are lgited with yellow arrows. (b) The same buildings from (a)aim optical image (Microsoft).

[1l. PROPOSEDTECHNIQUE FOR THEAUTOMATIC composing building radar footprints in VHR SAR images
DETECTION AND RECONSTRUCTION OFBUILDING RADAR  are extracted from the calibrated image. According to the
FOOTPRINTS aforementioned assumptions on building shapes, these are

The proposed technique for the automatic detection aRAgnt linear features with different thicknesses, ankdaieas. _
reconstruction of building radar footprints from single RH The former are usually related to double-bounce scattering
SAR images is suited for meter-resolution data. Building¥, @s the line thickness increases, to layover areas, where
are assumed to be approximately regular parallelepipeHi roof or the facade scattering may be dominant depending
with rectangular base, or compositions of parallelepipedd the building characteristics. The latter are due to ingd
The minimum building size which can be handled by thghadows and low-return areas (e.g., roads, rivers, lakspe
algorithm depends on the specific building characteristiss features are sufficient to describe the main parts of a mgldi
a reference, buildings with a base with a main side short&@dar footprint in meter-resolution images. However, as fa
than 10 m and a height lower than 5 m with no relevaf resolution increases, other scattering effects due #dl sm
scattering centers are likely to be not detected in metéfiructures become visible (e.g., point scatterers duepiesmn
resolution images. The radar footprints correspondingety v Walls) and other types of features may be extracted to iserea
tall buildings have a high probability to be detected. Hoerev the detection performance of the algorithm. In the follagyin
additional features and rules would be necessary (withetspthe techniques used for the extraction of bright lineartfees
to the algorithm specifications reported in this paper) ieor a@nd dark areas are described in detail.
to handle properly those situations. The algorithm does notl) Extraction of bright linear featuresThe extraction of
require the buildings to be isolated. However, it may previd®right linear features is performed on the unfiltered image
better results on isolated buildings. In fact, such buigin by means of the line detector proposed by Tupinal. in
usually show a clear shadow feature, which is exploited §§4]- This detector is based on a three-region sliding-wind
the algorithm to improve the detection performance. Veogel approach and is a well-known algorithm specifically devetbp
buildings may be detected as single structures, as we vashfor SAR images. In this paper we use as reference for the
in Section V. window size the dimension of the central region, and assume

The proposed technique is composed of six main steps:thf‘t the lateral regions have the same width and length (see
preprocessing and feature extraction, ii) generation ofipr Fig. 7). The length has been set to ten times the resolution
itives, iii) analysis of primitives, iv) generation of bdihg of the image and 16 directions have been considered for
radar footprint hypotheses, v) selection of hypothesds?Di the window. As we are interested in both thin and thick
radar footprint reconstruction. Fig. 6 shows a block schenfigear features, the detector is appliédtimes with different
representing the proposed processing chain. In the fatigwiincreasing window sizess; (¢t = 1,...,T). Each filtering
we describe in detail each step. In this paper we present thePerformed independently. The result of each filtering is a
algorithm optimized for the application to meter-resainti detection map, which is then thresholded, obtaining binary
SAR images. However, the general structure of the algorithfi€ar regions which thickness is relatedg. Such regions
is suitable to handle also higher resolution data. We higinli are vectorized using a rectangular approximation. This is
throughout the paper the modifications which would be neBerformed by approximating the region skeletons with lines
essary to apply the algorithm to sub-meter resolution irmag@nd using such lines as the axis of rectangles of width

The region skeletons are extracted according to [35]. In Fig
A. Preprocessing and Feature Extraction 8 we show an example of the detection on a meter resolution
SAR image of an urban area using = 5 m. The intermediate

In the preprocessing, the input image is first radlomewc"]llr.esults are also shown. For each rectangléne local contrast

calibrated. Although this step is not strictly necessaty, \'/ﬁlueOT is calculated on the filtered image as:

permits to define the algorithm parameters to be used wit
SAR images of different datasets and data products acquired 1 1
Mn 1€ Ain MOUI 1€ Aout

by either the same or different sensors. Afterwards, thegana r=
is filtered with a Gamma MAP filter [33] in order to reduce

the signal variability due to speckle. Both the unfiltered anwhereA;, and Ay are the inner region of the rectangle and an
filtered images are used by the algorithm. The basic featumsger thick border surrounding it, respectively. The thiegs
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Fig. 6. Block scheme of the processing chain of the proposelthique for the automatic detection and reconstructiobudéling radar footprints in single
VHR SAR images.

contrast, which is the rectangle associated to the lowdseva
of C,.

For the choice of the values 6fv,,. and A;, values on the
order of 3 m and 0.5 are suggested, respectively. Moreaver, i
our experiments a number @ = 7 filterings using equally
spacedw; between 3 and 15 m has given a good detection
of the linear bright features in the test images using a fixed
threshold equal to 0.4 for all the consideregd

It is worth noting that this downselection step is not slyict
necessary for the correct operation of the proposed teakniq

- > <>

wy wy wy However, it greatly reduces the number of extracted bright

linear features, thus improving the overall performance in

Fig. 7. Definition of the window used by line detector. terms of execution time and memory requirements of the
technique.

f is defined ast q h ber of 2) Extraction of dark areas:Dark areas are extracted
o! Aout i elined as3". M‘” and Mo, are the num .er O from the unfiltered image by means of mean shift clustering
pixels contained in the reglonfkn and Aou, respecyvely, and ¢ol1owed by a threshold operation, according to the apgnoac
x; represents the pixel amplitude value normalized betwe Fbposed in [37]. This operation selects only the clustéts w

0 and 1. For the normalization the image amplitude dyna 9np|itude values lower than an user-defined threshaid
range has been thresholded to cover the 99.5th percentiie OfThe extracted clusters are then vectorized and a simpiditat

or!ginal ir_‘nage histogram in order to reduce the effect ofyver rocedure is applied in order to reduce the number of vestexe
bright point scatterer<.;. is a measure of the contrast bewVeeEescribing their shape. Such simplification is not strictly

the pixels contained in the rectangles and their surroundi ecessary, but it allows the algorithm to work with simpler
The higher the diffe;rence between the mean amplitude of :BSjects reducing the needed amount of memory. In order to
two regions, th? higher the value df,. Th|§ measure has select only the dark regions which are likely to be related to
bee|_1 proposed in [36] and has been used in [15] for the Cqﬁﬁ'lding shadows, the algorithm removes the regions whieh a
of binary images. . , not located in the sensor-far side of any bright linear feaitu
As a result of thel” filterings we obtainT’ vector maps eviously extracted). This is done by keeping only thekdar
containing rectangles corresponding to bright linearie 5,05 \which overlap with the predicted shadow area of the
with different thicknesses. These maps are thus mergedeén Qg features. The predicted shadow area is determined by
map. It_ is possible that the same real t?r'ght objects are ﬁking into account the viewing configuration of the SAR. The
tected independently for different;, resulting in overlapping ,ovimum range sizé; of the expected shadow area is set by
rectangles in the merged map. In ord(_ar to reduce the num user. Schematic examples of predicted shadow area and
of rectangles, a downselection step is performed by meange e dark area are shown in Fig. 10. The parameters of the
of a production net. For each combination of two rectanglse », shift clustering and the value:afhave to be selected by
(i, 4) the net tests the following conditions: i) the width of theanalyzing the amplitude of sample pixels belonging to shado
two rectangles is similar, and ii) the two rectangles O‘mrlaregions in the SAR image. In our experiments, reasonable

Condition i) is met when: values forzs were in the order of -13 — -11 dB.

|’LUi - wj| < 5wmax (2)

. . B. Generation of Primitives
wherew; andw; are the widths of the rectangles, aing,, . is

an user-defined threshold (see Fig. 9). Condition ii) isifatfi ~ The goal of this step is to generate the primitives that will
when: be used in the following steps as basis for the composition

An > Ai- Ay A An > A - A, 3) of building radar footprint hypotheses. Starting from tlet s
' of simple extracted bright linear features and dark ardes, t
where A; and A; are the areas of the rectanglesalgorithm merges adjacent features in order to composesbigg
An = A; N A; (see Fig. 9), and4, is a value belonging to objects. This is done by a production system applied to the
the range(0, 1) set by the user. When conditions (2) and (3)ector domain, after a conversion from slant range to ground
are fulfilled, the net discards the rectangle with the lowesinge, and is aimed at compensating for errors in the feature



Fig. 8. (a) Meter-resolution TerraSAR-X image of an urbaeaatinfoterra). (b) Result of the line detection usimg = 5 m. (c) Skeletons of the binary
regions shown in (b). (d) Rectangles generated using theteke shown in (c).

In this paper the merging is carried out by calculating the
convex hull including the two original features. For theeas
of bright linear features, merged features are generatedwas
rectangles that have as principal axis the conjunctionefwo
extremes of the principal axes of the original features Wwhic
have the largest relative distance (see Fig. 11). The wiflth o
the new rectangles is calculated as the weighted average of t
widths of the original features, using as weights their thng
The algorithm merges two bright features when the following
Fig. 9. Measures involved in the rectangle downselectioscaleed in the  congitions are fulfilled P5 and P,): i) the features have similar
feature extraction step, and in the primitives generatiep.s . .. . . . . . N
widths, ii) their orientation is approximately the samé, tine
predicted composed object has an orientation that is approximately th
range direction shadow area dark arez  Same of the original features. Condition i) is equivalentap
Condition i) is fulfilled whenv (%, j) < d9max, Wherey (s, j)
is the angle between the two linear bright features repteden
by the rectangles and j (see Fig. 9), andymax iS user-
defined and indicates the maximum angle allowed between two
features for which they are considered parallel. The vafue o
01max Should be on the order of 20Condition iii) is satisfied
when:

bright
feature

w(XaZ) < (ijax A 7/)(X77) < 57/)max (4)

wherey is the rectangle corresponding to the composed bright
linear feature. It is probable that in this step many bright
! primitives are generated. In order to reduce their number,
I 1 a selection procedure as the one described in the previous
subsection for bright linear features can be applied.
Fig. 10. Schematic examples of predicted shadow area aedtee|dark At the end of this step, for the whole set of simple and
area. composed objects the algorithm stores a set of attributes
regarding their size and position, and the amplitude festur
extraction step. The conversion from slant to ground ran@é _thg composing p|xgls (ie., mean value, poefﬁuept of
j{latmn). The set of simple and composed objects (with the

3"0WS. us to _defme f[he parameters of the_me_thod in the grourré ated attributes) will be considered as set of primitif@s
omain, which is independent on the incidence angle aﬂ1 followi A

thus simpler to handle for an end-user. After their genenati € foflowing steps.
composed objects are given as input to the production system _ o

Therefore, multiple compositions with other simple or confc- Analysis of Primitives

posed objects are possible. The set of objects and prodsctio This step aims at evaluating the semantic meaning of the
involved in the generation of primitives is shown in Fig. 12primitives. Here we use the term semantic meaning to describ
The composition of dark areas is described by the productitire membership grade of a certain primitive to belong to a pre
rules P, and P,. Such rules merge two dark areas when theskefined scattering class. Different scattering classesedaited

are adjacent (e.g., their minimum distance is less than 2 my.different parts of building radar footprints. The choiake
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Fig. 13. Example of sigmoid functioit.(z) defined according to (5).
Fig. 11. Schematic example of the merging of two rectangleandr; into  2r = 2, 20 = 0, R = 0.95.

a new rectangley.

Bright
primitive
/Thm’"ne\ K
General Double Roof Homogeneous Non-homogeneous
line bounce

Roof Facade Roc

Fig. 14. Tree representing the semantic classes used ipapir for bright

primitives.

[38]:
Fig. 12. Production net for the generation of dark primii{®P) and bright > . 1 5
primitives (BP). The inputs of the process are dark areas @W bright linear z (Z) -1 + ei,az(z,m) ( )
features (BL), which are composed to large dark areas (LD#)large bright
linear features (LBL), respectively. The whole set of DA,ABL and LBL _ ln(l/R - 1) (6)
are selected as primitives. z ZR — 20

where 2z indicates the attribute which constrains the function
(e.g., the coefficient of variation of the amplitude of theqis

: : contained in the primitive)X(zp) = 0.5 and £(zr) = R.
the set of semantic classes is related to the types of fesatu%e function. (=) gives values in the rang@®, 1). For each

extracted f_rom th_e i_r_nage _and, thus, _to_t_he image_ resom“?ﬁ'gmoid function two parameters needs to be specified: the
Fo_r th? bright primitives (|.e_., the primitives obtainedbrin value of z for which the sigmoid returns a high likelihoa@
bright linear features) we define four semantic clasgegseral (2z), and the value corresponding to the center of the sigmoid

line, double bounceroof, and facade For dark primitives (0), implici : : .
) o . o), implicitly setting the slope of the function. Fig. 13 shew
(i.e., the primitives obtained from dark areas) only thesslaa example of sigmoid function.

sh_ao!qwhas been defined. _The mem_bersh|p_grade of eac he MFs which relate bright primitives to the relative
primitive to belong to a certain semantic class is calcadlaie

semantic class is smaller or equal to the number of branches
hich connect the root to the final leaf. In the following we
describe in detail the MFs of each semantic class for both
Bright and dark primitives, by also suggesting the range of

tions of the primitive attributes and describe the membﬁrsqN
grade of a primitive as a number in the ran@e1). The
membership grades to belong to the different semanticedas

are calculated !ndependently. Thus, one primitive can h_ Srameters which is most suited for the related scattetasgc
high membership grade for different classes at the same fi less otherwise stated, such values have been estimated by

Thid]ffere.nt shemlantlc meamng:cs sre managgd byhth.e pmpoaﬁglyzing the scattering properties of a set of samplesef th
technique in the later stages of the processing chain. considered scattering classes manually selected on ther-met
The MFs are defined as a product of sigmoid functionsesolution TerraSAR-X input images used in this paper. &s th
Each sigmoid factor depends on a specific attribute of timages are calibrated, the suggested values related tb pixe
primitives. A generic sigmoid function is defined as followamplitude can be considered generally valid. In the case of



images acquired at different resolution @odwith a sensor 1 —=
with different characteristics, some of the values showdd b
estimated again. In Section V-E the choice of the parametefs3
is discussed more in detail. \

1) Bright primitives: 0.6

General line: The membership grade of a primitive to Ythick (1) \Egﬁ'i“(w)
the classgeneral linedepends only on its width. The MF is ¢.4
thus defined as \
MFeL = S5 (w) ™) o2

where 2"(y) gives a measure of the membership of the

primitive to the high-level clasthin line, which depends on 0 5 . 6 S 10
the primitive widthw. According to the definitions of (5) and w

(6), Xn(w) is controlled by the parametersi™ and wi™™. , , o

The values of these parameters are chosen to give high valg§§lf"wthiccfn_"péerl‘u‘fhﬂ‘,faiy7“"5%}2,'(“(_”% e}gd_zéggg(g“) used in this paper.
whenw is small (e.g.,wf" = 5 m, w™ = 7 m for meter- % % 70 0 o m T

resolution images).

Double bounce:The double-bounce effect appears ifine or thick line classes with high membership grade (greater
VHR SAR images as relatively thin bright lines. It is morgnan ) Fig. 15 shows the behaviors of the complementary
evident when the building wall is parallel to the azimutfjgg $hin () and Sk (1) that are used in this paper. The

direction, i.e., its aspect angle is close to zero (see @ectiiyme considerations hold for the definition of°m(5) and
II). The MF of the classdouble bounces thus defined as snon-homy ) which indicate the degree of membership of a

follows primitive to the classesomogeneouand non-homogeneous

hi DB
MFpg = EL'“(w)E(b (4) (8) respectively. These refer to the homogeneity of the pixels

where the terms is the primitive aspect angle, are2®(¢) contained in the primitive.. '!'he homoggn_eity is measu_relngsi
takes into account the dependence of the double-bounas effS Parameter the Coefft'tf?'fnt hOf variation r?f th‘i pixels.
on ¢. X28(¢) has high values when is close to zero. In such Reashonable values fowg"™, o™ = oM 0g”" and

a case, the MFs of the classgsneral lineanddouble bounce 20" aré on the order of 2 — 3 m, 0.3 - 0.35, 0.45 — 0.55,
give very similar values. Proper values 8 and¢R® are on and 0.15 - 0.3, respectively. _Thanks to these constraims, t
the order of 10 and 30, respectively. Such values have beeH€€ representing the semantic classes covers all thebfessi
chosen according to our previous studies about the doutﬁgmblnatlon_s_ of attributes taken into account in this paper
bounce effect in VHR SAR images [32]. In the specific case of the classof, (12) shows that the

Roof: The clasgoof is the most specific, as it appears ag'émbership grade is always greater or equaktoThis is in
leaf for every branch combination. This is due to the intgnsline with the aforementioned issue of the uncertaintieategl
uncertainty given by the fact that we are using only onf@ the radar signature of building roofs. _
VHR SAR image and that we are considering meter-resolution Facade: As reported in the tree of Fig. 14, the semantic
images. Indeed, the signature of a building roof could Heeeit class facade includes primitives with a relevant width and
a thin line (e.g., in the case of gable-roof buildings witithi Which pixels have non-homogeneous values. This is the gen-
aspect angle), or a homogeneous rectangular area (e.g., 818l scattering behavior of building facades, where return
roof buildings), or a non-homogeneous rectangular areg, (e °Ming from structures like W|ndpws or bqlconles (oﬂen mad
flat roof buildings with metal structures on the roof, whicle a ©f metal) give a strong textured signature in the radar fiaotp
common for industrial buildings). Therefore, for the classf AS & further constraint, the aspect angle of the buildingiho
the final membership grade is calculated as the maximum Rt be too high (i.e., the building should not be perpendicul
the membership grades given by the three MFs correspondifighe azimuth direction). Indeed, the facade scatterireg ar
to the three occurrences of the class in the tree. These #ydN€ radar footprint becomes smaller with increasing esspe

defined as: angles. These factors are taken into account in the definitio
) i of the facadeMF as follows:
MFg = 20" (w) 9) .

w ME: — Etmck Znon—ho EF 13

MFS — Zglck(w)zgom(o,) (10) F w (w) o m(a_) ¢>(¢) ( )
MFY = Ethick(w)znon—hom(a). (11) where Eg(d)) models the effect of the building aspect angle
_ _ v 7 ¢ by penalizing primitives with high aspect angles (e.g.,

Finally, we obtain: #% = 70° and ¢f = 80°). As mentioned at the beginning

MFEg — max{MF’R,M Q,MFQ'}. (12) of this section, we do not include in our analysis very high

buildings, for which the facade scattering area can have
The definition of £ () is complementary to that of different characteristics.
»ihin(1y). As a requirement, to cover the whole possible range2) Dark primitives: For dark primitives only the semantic
of primitive thicknesses it is necessary thaff" = wfi®.  classshadowhas been defined. The MF of this class takes
This assures that any value afis mapped either in théhin  into account the mean and the coefficient of variation of the



pixels contained in the primitive. It is defined as: ‘ FH ‘

MFs = =5 (m)x1°™(¢) (14)

whereX:3 (m) is the sigmoid functions depending on the pixel
meanm. The MF is tuned in order to penalize dark primitives e e e
with high mean value and high coefficient of variation. Our A\
experiments pointed out that reasonable value&fptm) are T
m3, € (—14,—12) dB andm§ € (-9, —8) dB. | ‘
_ | " (=)

In this step the algorithm creates building radar footprint
hypotheses starting from the set of primitives. The hypstse _ _ o _
are generated according to a set of rules and the procBls . e 8 T O B and  ark
is performed by means of a production system. Fig. ]gémitives (DP).
summarizes the generation process. A footprint hypothesis
is generated when i) two bright primitives, or ii) two bright
primitives and one dark primitive, or iii) one bright pririvié  of the primitives composing each hypothesis. The generai fo
and one dark primitive are close each other and have a relatdf the score equation for a building radar footprint hypstee
position compatible with the viewing configuration of the BA A is given by:

sensor (i.e., dark primitives are located in the sensosifie -
of bright primitives). The three cases are described by the S = N a {Xn(p, )G (p: )} Wi (15)

productionsPs, s and Py of Fig. 16. The generation is thushere v, depends on the number of primitives composing the
based only on the vicinity criterion, and many hypotheses Ahypothesis, X}, (p, ¢) and Gy (p, q) are related to the relative
usually created for the same actual building radar fOOtp”rbosition and to the membership grades of the bright pririv
The vicinity is che_cked by measuring the minimum dislta”%spectively, andV;, depends on the membership grade and
between the primitives. A proper value for the maximurgasition of the dark primitive(p, ¢) indicates the combination
distance allowed between two primitives is the valdg used ot the semantic clagsof the first bright primitive and the class
in the selection of hypotheses (see Section II-E). As it wil, of the second bright primitive. All these factors belong to
be shown in Section IlI-E, on the one hand if the maximugpq rangel0, 1]. The overall value ofS), thus belongs to the

distance allowed between two primitives is greater théh same range. In the following we describe in detail each term
the probability that many low-score footprint hypotheses a,f e equation:

generated is high. On the other hand, a dlsta_nce thresholq Ny: for the case presented in this paper, when the
shorter thandd, would discard hypotheses which may be o I : .
. ! hypothesis: includes three primitives (i.e., the maximum
associated to high scores. I
The order in which the briaht primitives are agareqated is number allowed), theV;, = 1. In the case one primitive
also taken inlto V{;lcclzount i.e Igat IFt)-:‘rls\stl It\\ivo h otﬁgsei will Ib is missing, it takes the valudf, = Nj, < 1, which is
Lo WO nhyp : set by the user. This term is thus related to the reliability
generated for each pair of bright primitives. The choice of , ;
. ) . - assigned by the user to the candidates composed by a
using a maximum number of two bright primitives depends N
. . non-complete set of primitives.
on the image resolution and on the types of features used s : -
) . L .- e Xp(p,q): this term depends on the relative position of the
in this paper. In meter-resolution images an average Imgldi ; I . : . :
radar footorint can be usually described effectively by the bright primitives in the radar footprint hypothesis. Inghi
footpri . usuatly | ! Vely by paper, only the classegeneral lineand double bounce
combinations considered in this paper. In the case more . . . o
. . are considered for the first bright primitive, and the
types of features are extracted from the image or decimeter-

o o N classesoof andfacadefor the second bright primitive.
resolution images are used, more combinations of pringtive . . . .
It is worth noting that the technique also considers the
become relevant.

case in which the bright primitives are switched, as
) in the hypotheses generation step different hypotheses
E. Selection of Hypotheses are created taking into account also the order in which

As mentioned in the previous subsection, many hypotheses the bright primitives are aggregated. If only one bright
are generated by aggregating the primitives. At this stage t primitive is present the value oK (p,q) is 1. When

D. Generation of Building Radar Footprint Hypotheses

algorithm selects only the most reliable hypotheses, whith two bright primitives are included in the hypothesis and
be used in the next step as starting point for the 2D radar the first bright primitive is closer to the SAR flight path
footprint reconstruction. Therefore, the output of thispsis a than the second primitive, its value is 0. Indeed, for the
map containing the detected (but not reconstructed) mgldi considered cases, scattering from double bounce or any
radar footprints. This means that the output map is composed other linear scattering feature of a building (associated
by footprint hypotheses which are still not refined. to the first bright primitive) cannot precede in range

The reliability of each hypothesis is evaluated on the basis the scattering from the roof and from the facade (which
of a score. The score is computed from the membership grades are associated to the second bright primitive). At most,



the scattering area of double bounce and other lines are
contained in that of roof and facade. When this condition
is fulfilled, the value ofX},(p, ¢q) is calculated differently
depending on the combinatidp, ¢). In detail, X} (p, q)

is calculated as follows:

Eglgse(édfs)Eg,labra"el(é'l/]pa)

p=double bouncgg=facade
Eglé)se((;d)Zg?prallel(éwmm)

otherwise

Xh(paq) =

(16)
whereddss is the distance between the first bright primi-
tive and the sensor-far side of the second bright primitive
oriented in its principal direction, anék)p, is the angle
between them (see Fig. 1) is the distance between the
two bright primitives. Distances are measured in terms of
minimum distance between the considered objects. The
distance to the sensor is calculated considering an infinite
line located outside the image with a position and angrég'
compatible with the viewing configuration of the SAR.

If one bright primitive overlaps with the othesd = 0.
0min is defined as:

(W)min = min {(ija, (sta}

whereds, is the angle between the first bright primitive
and the secondary axis of the second bright primitive
(see Fig. 17). The functions$°s¢sd) and ngpra"e'(&/))
give values close to 1 when their argument is small.
The definition of X}, (p, ¢) thus assures that its value is
close to 1 when the bright primitives are both close and
oriented parallel or perpendicularly to each other. For
the combinationdouble bouncéacadethe condition is
more strict and requires that the two primitives have their
principal axis oriented in the same direction, and that the
supposed double-bounce line is located at the sensor-far
side of the facade scattering area (see Section Il). Proper
values forédr andddy are on the order of 3 and 10 m,
respectively. Regardingy)r anddy, values on the order
of 10° and 30 are suggested.

G (p, q): this factor depends on the membership gradese

(17)

10

range direction
4>

dark
second bright primitive
primitive

\
\

first bright
primitive

17. Measures involved in the calculation of the tekn (p, q).

particular combinations of bright primitives. For instanc

if one of the two bright primitives has a very low
membership grade, the ter@, (p, ¢) becomes very small
and the overall value df}, (p, ¢) will be low (in the limit,
Gr(p,q) = M < 0.5). Instead, the tern@, (p, q)
takes into account the area of the bright primitives. As a
result, the value ot} (p, ¢) depends more on the larger
bright primitive.

o W this term is function of the membership grade to the

classshadowof the dark primitive, and on its position in
the radar footprint hypothesis with respect to the bright
primitives. It is calculated as:

W), = MFs - Eg'c‘l)se(min {ddys,0d2 s}) (21)

where dd; s and ddz s are the distances of the dark
primitive from the first and the second bright primitive,
respectively (see Fig. 17).

On the basis of the value d;,, the algorithm deletes all

radar footprint hypotheses for whiéh, < Si, min, Where

of the bright primitives composing the footprint hypoth-S, ., is an user-defined threshold. After this first selection,
esis and on their size. When only one bright primitivenany hypotheses with high values 6f, may still overlap
is present, it reduces t6',(p) and its value is equal to in correspondence of actual building radar footprints .(e.g

the membership grade of the primitive to the clasdf
two bright primitives are present, it is calculated in théhe
following way: the

G, (p,q) + G} (p,q)

Gr(p,q) = 5

W =MF, - MFy,
Ay -MF, + Az - MFo
A + As

(19)

1

h=

composed by different combinations of primitives). Theref

algorithm selects amongst the overlapping hypothedgs o
one with the highest value &f,.

F. 2D Radar Footprint Reconstruction

The 2D radar footprint reconstruction aims at refining the
(20) detection of both, the bright part and the dark part (if pngse
of the footprint hypotheses selected in the previous stes T

where MF , indicates the membership grade of thé performed in order to reduce the effect of imprecisions
first bright primitive to the clasp, and Mk, is the coming from the feature extraction and primitive generatio
membership grade of the second bright primitive to th&teps, and to provide reliable outputs which can be used as a
classq. A; and As are the areas of the first and ofstarting point to estimate parameters of the buildingshags

the second bright primitives, respectively. The definitiotheir length, width and height (with the limitations impdday

of Gn(p,q) permits to obtain reliable scores also fothe fact that only a single image is available). The resuthisf
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procedure is thus the final map of the building radar footgrindamages after a natural disasters. For these applicatiass i
detected and reconstructed from the input VHR SAR imagé@nportant to process entire scenes in a fast manner. However
As a first step, the algorithm generates for each footpritite processing chain described in the previous section is
hypothesis a best-fit rectangle which includes its brigithpr demanding both in terms of computation effort and memory
itives. If only one bright primitive is present, the best-firequirements. This reduces the size of the input images that
rectangle and the bright primitive match. The local cortrasan be analyzed to a small subset of an actual VHR SAR
C, of the rectangle is calculated according to (1). Then, tlseene, thus limiting the potential application of the meitho
rectangle is translated, rotated, expanded and shrunktiagth real scenarios. In particular, the amount of resourcesinedju
goal to maximizeC,.. The maximization is carried out usingby the proposed technique depends directly on: i) the size of
a Particle Swarm Optimization approach (PSO) [39], whidthe input image, mainly for the parts of the algorithm based
is a well-known iterative method suited for the optimizatioon image filtering and feature extraction (i.e., despegklin
of problems without priori assumptions. A similar approachand line detection); and ii) the number of primitives and
was applied in [15] for binary images and using a differeritypotheses generated through the processing chain. Thae lat
optimization strategy. The rectangles which become smalis the most relevant factor that defines the complexity of the
than the minimum sizes set in the previous steps of theethod. Indeed, the amount of required resources shows a
algorithm are deleted. Moreover, it is possible that somn-linear dependence on the number of objects inserted in
rectangles move and overlap. Therefore, the algorithmetelethe production systems used in the processing chain. Agfinou
overlapping rectangles, and thus the corresponding fimtprthe number of primitives and hypotheses depends on the size
hypothesis, keeping only the rectangles associated to tifethe input image, it also depends on the type of imaged
hypotheses with the highest scorgs area. As an example, two images of the same size covering an
A refinement procedure is carried out also for the dark partban area and a rural area will produce a different number
of the footprint hypothesis, when it is present. In fact, agjo of primitives, with the greater number of primitives frometh
knowledge of the size of the shadow area of a building carban area.
be exploited for the retrieval of the building height [22h&  In order to face these problems, we extended the algorithm
refinement aims at expanding the dark primitive on pixelfiwito operate in a computer cluster infrastructure. In such a
amplitude values similar to those of shadows in the sens@iamework, the nodes in the cluster process different gabse
far side area of the reconstructed bright primitive (i.e, iof the input image in parallel. Each subset contains only
the neighborhood of the reconstructed bright primitive rehefew primitives, and thus also a reduced number of footprint
it is expected the presence of a shadow region). To tHigpotheses. This enables us to apply the proposed technique
end, the center of the dark primitive is used as seed fon large scenes in a fast way on state-of-the-art hardware. |
a region growing algorithm which, starting from an initialFig. 18 a block scheme of the considered simple architecture
circular contour, stretches its border to fit the dark areaiad is presented. As a first step, the VHR SAR image is split
the seed. The chosen implementation is a level-set algoritinto tiles. Every tile overlaps with its neighbors to assure
[40] which moves the contour by including the pixels whiclihat buildings located at the tile borders are detected and
have amplitude values in the rand@ m%] (m}% has been reconstructed properly at least in one tile. Then, the tilies
defined in Section 1lI-C). The resulting regions are cut idistributed across the nodes which independently exebete t
the azimuth direction in order to match the extension of thgoposed method. Finally, the results for each tile are suerg
reconstructed bright part of the footprint hypothesis.¢ed, in order to generate the final radar footprint map for therenti
the reconstructed regions are associated to building shadoput scene. When footprint hypotheses coming from differe
areas, which cannot be larger than the corresponding bgidi tiles overlap on tile borders, the algorithm selects thesami¢h
in the azimuth direction. The size of the reconstructed daitke highest scoré},.
areas in the range direction depends only on the radiometric
measurements in the image. As the proposed technique uses as V. EXPERIMENTAL RESULTS

input only one VHR SAR image and reopriori information | hjs section we show the results obtained by applying the
is available, it is not possible to detect the end of the shadg, ,n4sed methodology to a real meter-resolution large SAR
region by other means. This may lead to shadow areas Whigfbge After a brief description of the used dataset, we show
are longer than real shadows because of low scattering argag analyze qualitatively the results obtained on the whole
behind the *?“"d'”g_s_ (e.g., roa_ds, pa_rklng IOtS): This feob image following the grid-computing approach described in
can be partially mitigated by imposing a maximum shadoWection |v. Then, we focus on two subsets of the image in

range sizels set by the user as in Section I1l-A2. Shadowgqer to assess quantitatively the accuracy of the method.
longer than/s are cut tols, and a flag is set to notice the user

about the lower reliability of the reconstructed shadow. .
A. Dataset Description

The effectiveness of the proposed method has been tested
on a TerraSAR-X image of the city of Dorsten, Germany. The
The technique proposed in this paper can be used as a pmgage has been acquired in HH polarization in spotligth mode
liminary step in many application scenarios, e.g., thea&te resulting in a geometrical resolution of approximately inl
of changes in urban areas aimed at the quick assessmenk df.2 m (azimuthx slant range). The incidence angle varies

IV. ANALYSIS OF LARGE VHR SAR SCENES
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Radar footprint detectiori
and reconstruction

Tiles ! ' Footprints

Merging of ;
footprints Footprint map

VHR SAR image Splitting into tiles

Computer cluster

Fig. 18. Proposed computing architecture to perform thédimgj detection and reconstruction method on large VHR SAénes.

i TABLE |
between 50.3 and 51.0 degrees. The original scene has Deep,raverers USED IN THE FEATURE EXTRACTION AND PRIMITIVE

cut to a subset of 2806 3712 pixels, covering an area of GENERATION STEPS IN THE EXPERIMENTS CARRIED OUT WITH THE
approximately 10 krh The cut includes both urban and rural PROPOSED TECHNIQUE

areas. Urban areas are characterized by both flat- and gable-
roof buildings at various settings. Fig. 19 shows the SAR tes
image and an optical image corresponding to the same area T 7
taken from Google Maps. wi, - wr 35,18

Parameter Value

SWmax 3
Ay 0.5
B. Results on the Entire Scene 7 122 dB
The proposed method has been run using the parameters dtbmax 20°
reported in Table I, Table Il and Table Ill. The values of such
parameters have been chosen according to the guidelings giv TABLE Il

PARAMETERS USED IN THE ANALYSIS OF PRIMITIVES STEP IN THE

in Section Ill. The results obtained are shown in Fig. 20. The EXPERIMENTS CARRIED OUT WITH THE PROPOSED TECHNIQUE

method shows in overall a high detection rate. False alarms
are mostly related to the scattering from objects different

from buildings (e.qg., trees, garages) that show radar foutp Para}r:eter ;/63:3
similar to those of buildings. A particular case is représdn wthin_gpthin 5m 7m

by bridges, which have been also detected. Such structures ek fhick 5m 3m
can be easily masked, either usiagriori information about &B,¢§B 10°, 30°

the presence of rivers, or by extracting the rivers direfrthyn no‘r{_%?o? o 03,05

the SAR scene [41]. The radar footprints of complex build- 7R ¢>F7f¢> 700'5’ g(')f
ings which do not correspond to the rectangular model used m%mis) 13.6 dé, 8.6 dB

in this paper are mostly detected with some reconstruction
errors (e.g., the radar footprint has been split in morespart
In _general_, the proposed methpd detected_ and recor!strq%eaqnly medium to large buildings, while the bottom part
qu_|te_ precisely th_e radar footprints of medium- and b'ge_s'%ncludes smaller buildings, which are also often joinedc:tbgr
buildings that fulfill the rectangular model. Radar footysi

f | adi t buildi lianed i I tternsads and surrounded by gardens with other man-made structures
of smail adjacent buildings aligned In reguiar patiernsase . v |n order to assess the performance of the proposed
detected, but in some cases are considered as belongin

. o o . ge&?mique, we consider the correct/missed and false bgildi
? stlngle bwldmtgd ?m?lldbbungzngs v;/rf]ncdh So not show (.:leaaetection rates and correlate such results with the sizheof t
cafures are hot detected by e method. However, Comwerﬂ)uidings. The number of split or merged buildings is also
the use of a single SAR image, the results can be con3|deE

litativel tisfact M it th frat that Blnted. The planar area of the buildings (lengtiwidth) has
qualitatively very satisfactory. Moreover, It is worth mg Al heen estimated using the optical image. The set of buildings

%?esent in the investigated area has been divided into three
ubsetssmall mediumandlarge. Each subset corresponds to
Yifferent range of planar areas. Buildings are consideréd

small if their planar area is smaller or equal to 208 medium

“the area is between 200 and 406,rand large if it is greater
than 400 M. Table IV reports the number of buildings for each
size class in the subset 1 and the number of buildings ctyrect

C. Results on Subset 1 detected given by the proposed technique. As it is difficult

Fig. 21 shows the area corresponding to the subset 1tinmeasure numerically the correctness of the reconsbructi
both the SAR and optical images. This area is characterizefdthe building radar footprints, here we only evaluate the
by both flat- and gable-roof buildings with different sizesla detection performance of the algorithm in terms of foot{zin
orientations. In particular, the upper part of the imagetaims detected in correspondence of actual buildings. The detect

of the presence of buildings, reconstruction errors (split
and merged buildings) do not represent a critical issue.
order to analyze quantitatively and in greater detail tsailte
achieved by the proposed method, in the following we fo
on two subsets of the test image.
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Fig. 19. (a) TerraSAR-X image used for assessing the effawiss of the proposed technique (Infoterra). (b) Optitalge taken from Google Maps of the
investigated area.

TABLE Il . .
PARAMETERS USED IN THE SELECTION OF HYPOTHESES ANBD RADAR  thiS map has been drawn manually using as reference the

FOOTPRINT RECONSTRUCTION STEPS IN THE EXPERIMENTS CARRIEIUT  results obtained by the proposed method for each building
WITH THE PROPOSED TECHNIQUE in the scene. The results point out that the overall detectio
rate of radar footprints of the proposed technique is high,

Parameter _ Value especially considering that the method is unsupervised and
Ny, 0.8 works on a single meter-resolution VHR SAR image. The
ggR’ng 3m, 10 m performance of the technique is very good for medium and
R, 0%  10°, 30° - . - . .
Sh.min 0.7 large buildings, while small buildings result in a highenmer

of missed alarms. This expected result is due to the fact that
small buildings in meter-resolution images often do notwsho
the scattering features used by the proposed techniquéheOn t
one hand, the number of split buildings is 1, 4 and 2 for the
classesmall mediumandlarge, respectively. Therefore, as far
as building size increases, the probability that the tespimni
splits the radar footprints in more parts increases. On thero
hand, as far as building size decreases, the probabilitythiea
radar footprints of adjacent buildings are detected as glesin
one increases. In fact, the number of merged buildings is 9 fo
the classmall 3 for the classnediumand 1 for the claskrge.
The number of false alarms in building detection is 11. The
size of the bright part of the false building radar footpsihtis
been measured on the SAR image and false alarms have been
divided insmall mediumandlarge according to the same rules
used for building planar sizes. Although the two measuremen
Fig. 20. Building detection and radar footprint reconsiinre obtained by considered (i.e., area of false building radar footprintsl a
the proposed technique on the SAR image of Fig. 19a. Only tightparts  planar area of real buildings) are different, the use fosdal
of the reconstructed building radar footprints are shown. alarms of the same classes as for real buildings allows us
to give an indication on the types of false alarms produced
the proposed method. As shown in Table 1V, false alarms

have _been checked by comparing the p_osmons of the ra(i%/é mostly related to small radar footprints. By comparing
footprints extracted bY the qlgorlthm with those manugll%e SAR image to the optical image it is clear that false
detected on the SAR image in corespondence of bu”dm%ﬁarms usually correspond to other man-made structurgs (e.

;’Ych;fhmgoztgr:z:g;’;:i?gaprp\e\go.ﬁlr{ gztgits?gefrfg]lanl gi%'olated garages) or trees which show radar signaturesitbat
icalimag - Abullding | ! \/ery similar to those of buildings. Such false alarms are als

if the a'gc_’”Fhm extracted a footprmt which overlaps wittet difficult to be detected by an expert human interpreter witho
actual building radar footprint. Fig. 21e shows the corseuad . . T
her sources of information (e.g., a reference opticabie)a

missed detection on the optical image. As it is not pOSS'b&I)ene footprints generated by the proposed technique ardlyisua

to directly match_ the dete_cted rgdar foo.tpnnts to the @t'ccorrectly reconstructed for medium and large buildingsaAs
signatures of buildings without information on their heigh
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example, Fig. 22 shows the refinement of the bright part ofpmrameters have a clear physical meaning that helps the user
footprint hypothesis after the 2D footprint reconstruntgiep. to include its prior knowledge on the scene in the detection
For small buildings the radar footprints are often recarted algorithm. In addition to the guidelines already provided i
with lower precision. Fig. 21c shows also the detected (a&#kction Ill, in this section we analyze more in detail theerol
reconstructed) building shadows. The proposed technigue ef the parameters of the proposed method.

tracted with good precision most of the shadow areas relatedl) Feature extraction and primitive generatiorn these

to the detected building radar footprints. This result can Isteps the main parameters of the proposed technique are
used as a starting point for further estimations on the mdld related to the detection and generation of bright rectangied
sizes, e.g., for estimating building heights [22]. Howeweis to the extraction of the shadows. The possible range of salue
worth noting that in many cases shadow areas are limited foy the window of the line detectar, should be set between
adjacent buildings, thus reducing their usefulness fogftei the expected thickness of thin linear features and the maxim

extraction purposes. size of the buildings which has to be extracted. The sampling
of the range ofw,;, given by the number of filteringq’,
D. Results on Subset 2 should assure that most of the linear features can be e#cti

modeled with the considered values @f. The minimum

The area corresponding to the subset 2 is shown in Fig. . .
23. This area is characterized by a large number of tre\(z':‘ljéIue for dumay has to be greater than the width sampling

located along the streets (in Fig. 23d it is possible to se& threSUItIng from the definition of the values @f. On the one

shadows). Such trees often mask the radar returns also frr(])and’ a value smaller than this quantity would not allow the

. . o - a@orithm to downselect effectively the rectangles predlic
medium-sized buildings. Moreover, small buildings arealigu in the feature extraction step. Moreover, the procedure for

quite irregular, and show many structures on their Wa”ﬁﬁ eneration of primitives would combine only rectangles
This subset is thus a challenging benchmark for the propose 9 P y 9

technique. Table IV reports the results obtained for theseubyélueagﬂr:: m::zleyr mgnsilrgewiv(\j/;ﬂﬂ;érgnlirghew(())tuhlzrn:];ll?ed,thae
2, and Fig. 23e shows the correct and missed detections 9 ping

n . .
the optical image. As for the subset 1, the detection rate g'gonthm t_o downselgct too many rectanglgs, and combine

oo eatures with much different widths. According to our tests
the classedarge and mediumis very good. For the class

small performance are less satisfactory. The number of sp"flltgoo.d choice _for the_ value Gﬁw.max Is 1.5 times the width
buildings is 1 for the classmall 4 for the classnediumand sampling used in the line detection. Regarding the parasiete

4 for the clasdarge; while the number of merged buiIdingsfq;sgdciﬁ”&?g‘ib:;gr(]s\)/a;:weds (fz)r/i:)(?ns?rilr?\/\g:tngrlgss ?:i;égfx B
is 8 for the classmall 3 for the classnediumand O for the gent, P Y- BY

classlarge. The total number of false alarms is 11. As fofsettmgAt = 0.5 andgymay = 20° we obtained the best results

subset 1, the most of them are related to small false buiIdiﬁ‘gonuort Zépir;?%ngst'hgl?rtsatheat:]rézsreazgt'ggs are general and
radar footprints. In overall, considering the issues nozred P 9 ysIs.

at the beginning of this paragraph and the limited amount g As mentioned in Section Ill-A2, the choice of the value
9 9 paragrap OF xs depends on the characteristics of the shadow regions

|nformat_|on used by the proposed technlq_ue, the results SAthe SAR image. The results obtained with different values
be considered very good. In order to provide a more geneFaI

view of the results obtained by the proposed method, Tabfg s shpwed that .the deteguon aqd _reconstruchon of the
. Shiadows is not sensitive to slight variations of the paramet

IV also reports the overall results computed by summing t e choice ofl< depends on the maximum exoected height

results of the subsets 1 and 2. The total statistic confirms t s dep P 9

trend highlighted for the single subsets, i.e., the albarihas of the buildings p_resent in the scene (and thus .Of their
. ) ; S .shadows). Thus, this parameter should be set accordingto th
a high detection rate for medium and large buildings, with

2 . acquisition incidence angle and to prior information on the
a limited amount of false alarms, whereas its performance

) A . . SCene. However, if na priori information is available, a large
decreases in the case of small buildings, which are assdcia . S
. . value can be set. This does not affect significantly the detec
to most of the total number of false alarms. It is worth notin

that it is possible to mitigate this problem by imposing gf the radar footprints. In fact, footprint hypotheses lrtthg

rule for discarding the footprints smaller than an userroefi dark primitives W.h'Ch are not close to _bnght primitives (aln
h?\ve been kept in the feature extraction due to a lapare

minimum footprint size. As a consequence, the number o . . )
false alarms would be considerably reduced and the delllectPoenallzed by the term (21) in the selection of hypothesessTh

of radar footprints of small buildings would not be a targe(%nIy the reconstruction step is affected by the choicésos
shadows can grow further.

of the method anymore. This is a reasonable strategy to adop, . T : .
. i . ) Analysis of primitives:n this step the main parameters
for tuning the proposed technique only on the detection 9f . ) .
medium and large buildings 0 be set.are those rela.ted to the membersh!p functions define
' for the different scattering classes. The choice of theevaliu
) ) R is not critical, andR = 0.999 can be considered as a fixed
E. Selection of Algorithm Parameters value. The parametersin = yihick, yfhin and wiick ysed
The tuning of the parameters has been performed accordinghis paper can also be considered general. Indeed, tleey ar
to the scene investigated. However, some parameters are giaén in meters, so that they do not depend on the resolufion o
strictly related to the image analyzed, and can beasgtiori the system. According to our tests, by sett'mg'“ = w}L]'Ck to
following general rules. Moreover, many of the consideresvalue 2-3 m greater than the expected thickness of therlinea
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Fig. 21. Subset 1: (a) original TerraSAR-X image of the cdestd area, viewing direction from left (Infoterra); (broastructed bright parts of the detected
building radar footprints on the SAR image; (c) reconstdcbuilding radar footprints on the SAR image: (yellow) btigarts, (red) dark parts; (d) optical
image (Google); (e) optical image with detected and misseldibgs for each building size class: (gredaige, (yellow) medium and (red)small Detected
and missed buildings are highlighted with filled and empttargles, respectively.

(b)

Fig. 22. Example of bright part of a radar footprint hypothe®) before,
and (b) after the 2D footprint reconstruction step.

signatures due to the double-bounce effect give the bagtses

out specifically on the relation between the double-bounce
effect and the aspect angle of buildings can be found in [32].

The choice of the valuesio™ = gon-nom shom gphon-hom
depends on the characteristics of speckle in the considered
image. As the membership functions are evaluated on the
GMAP filtered image, different parameters apply for diffare
filterings. Similarly, these parameters depend on the image
resolution, as speckle develops differently on the sangetar
depending on resolution. For these reasons, the correitecho
of these values in terms of capability to model effectivety h
mogeneous and non-homogeneous areas comes after a proper
optimization of the GMAP filtering parameters.

The last parameters used in this step ag andmg. As

as the procedure which creates rectangles from the outputfaf xs, these values depend on the characteristics of shadows

the line detector may overestimate their actual thickness.

The values of the parameter§?, ¢58, ¢%, and ¢f are

in the SAR image. According to our experiments;, andmg
should be set about 1.5 dB lower and 3-4 dB greater than

defined on the basis of our experience in analyzing VHR SARspectively. This allows one to obtain a quite smooth term
images. These values are also general, and can be consid&%@n) in (14). Indeed, the mean amplitude of a dark region
valid for most images of urban areas. The main studies chrrigorresponding to a shadow may be biased by the interference
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= Image2011GeoEye.

Fig. 23. Subset 2: (a) original TerraSAR-X image of the cdesed area, viewing direction from left (Infoterra); (broestructed bright parts of the detected
building radar footprints on the SAR image; (c) reconsedcbuilding radar footprints on the SAR image: (yellow) btigarts, (red) dark parts; (d) optical
image (Google); (e) optical image with detected and misseldibgs for each building size class: (gredaige, (yellow) medium and (red)small Detected
and missed buildings are highlighted with filled and empitaegles, respectively.

of surrounding structures which increases its value. Thume missing even though they were detected). On the contrary
using a sharg=$, (m) would make the algorithm to discardby setting Nj to low values would increase the number of
possible real shadows. missed detections. Therefore, the choice Mf should be

3) Selection of hypotheses and 2D radar footprint recoloN€ by the user as a tradeoff between reliability of the
struction: As mentioned in Section I1I-E, the paramefif is econstruction and detection performance.
related to the reliability assigned by the user to the fantpr The pair of parametergddg,ddo) and (d¢r, o) are
hypotheses composed by only two primitives. In our tests, §lated to the vicinity and relative orientation of the prm
setting this parameter to higher values resulted in detectitives, respectively. The values proposed in this paper @n b
maps with less hypotheses composed by three primitives, c@§isidered general for the defined scattering classes.thitie
expected. Indeed, increasing the value M makes three- using these values, the sigmoid functions present in (16) an
primitive hypotheses to have higher probability to scoredn (21) are quite smooth, thus mitigating the effect of possibl
than those composed by two primitives. Therefore, thretrors in feature extraction.
primitive hypotheses have higher probability to be disedrd The last parameter to be discussedjignin. This parameter
when they overlap with others made up of two primitivegyives the tradeoff between false and missed detections. Ac-
This does not affect significantly the detection rate of theording to our tests, the use of high min results in a greater
proposed method, but it increases the probability that thember of missed detections, as expected. However, the num-
extracted footprints are not well-reconstructed (e.gadsfvs ber of false alarms is not reduced significantly. Indeedsehe
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TABLE IV
ALGORITHM PERFORMANCE FORSUBSET1, SUBSET2 AND SUBSET1 + SUBSETZ2 IN TERMS OF NUMBER OF DETECTED BUILDINGSFALSE ALARMS,
SPLIT AND MERGED BUILDINGS PER BUILDING CLASS

Number of False

Building size buildings Detected alarms Split  Merged
Large 21 19 0 2 1
Subset 1 Medium 26 22 2 4 3
Small 66 35 9 1 9
Large 12 12 0 4 0
Subset 2 Medium 27 23 2 4 3
Small 53 34 9 1 8
Large 33 31 0 6 1
Subsets 1+2 Medium 53 45 4 8 6
Small 119 69 18 2 17

are usually related to footprints of other man-made strastu by exploiting the reconstruction of the shadow areas, heigh
or trees, which actually appear as related to buildingstiier retrieval techniques can be also applied to estimate Imgldi
reason, values in the order of 0.6-0.7 are suggested. heights. In order to make it possible to use the proposed
technique on large VHR SAR images in near real-time, we
also proposed and implemented an infrastructure based on a
] ) ) _ computer cluster for the processing of large VHR SAR scenes.
The testimage described in Section V-A has begln processeqhe proposed method is suited for meter-resolution SAR
using a cluster composed by 16 AN Opterorf™ 6172 images. However, it can be extended and tuned for higher-
CPU_S' for a total of 192_cores_, with 4 GB of RAM PEr COr€ragplution airborne data by introducing new types of primi-
The image has been split on tiles of 320300 pixels with an tives, composed objects and rules. Moreover, new semantic

overlapping _offset of 30 pixels with the ”eighbors- The ItOt%Iasses for the primitives should be defined, as finer saagter
number of tiles was thus 154, and each tile was procesﬁﬁgchanisms become visible in sub-meter data
by one core. The total processing time was about 45 minutes '

with th infrastruct it is th ible t The experimental results obtained on a large meter-
wrl10Ie sepc?ﬁlir;r?t :nmgzserg?:;dt g’ooouiopggg' piielz, Fnr?ggisr@solution SAR image confirmed the effectiveness of the
than 3 hours. We also tested the proposed technique us}?roposed technique. In particular, the method shows vegty hi

J&ection rates in the case of medium and large buildings,

a smaller cluster composed by 8 commercial kas'{atm@?(hibiting also a good capability to reconstruct their rada

. . Yares )
ZgngBpééiBngh R!;t&@ 'ﬁ]%re?otalﬂ ?Z(?egsu'sd (t:'?rzg ?g?iﬁzs?ézfootprints. The number of false alarms is limited, and these
. P ng ?(‘a mostly related to other man-made structures or trees

F. Computational Load

Image on th_'s s_maller architecture was about 1 hour an_d which show radar signatures similar to those of buildings. F
minutes, which is a good performance in terms of operationa Il buildinas the proposed techniaue shows worse detect
application of the algorithm. >ma gs the prop 9 i
and reconstruction performance of radar footprints, and an
increased number of false alarms. This is mainly due to thve lo
VI. DISCUSSION ANDCONCLUSION number of features related to small buildings visible irg&n
In this paper the problem of the detection and recomreter-resolution SAR images. Nonetheless, this is an éegec
struction of building radar footprints in VHR SAR imagegproblem, which is mainly related to the need to use sub-meter
has been addressed. Unlike many other methods preseriggplution images for a proper detection of these buildings
in the literature, the proposed technique can be applied ragher than to a limitation of the proposed technique. Ireord
single VHR SAR images. It extends state-of-the-art featute mitigate this problem, it is possible to include a simpléer
extraction and composition steps to more structured prigsit in the proposed technique for discarding the radar footprin
using a production system and by introducing the concept &#haller than an user-defined threshold, thereby reducieg th
semantic meaning. This has been done in order to compensutgber of false alarms and avoiding the detection of small
for the lack of information due to the fact that only onduildings. This is a reasonable strategy to adopt for tutiieg
VHR SAR image is used as input. The semantic meanimgoposed method only on the detection of medium and large
represents the probability that an object belongs to aicert&uildings, on which performances are very accurate.
scattering class (e.g., facade, double bounce), and iglatdd The proposed approach needs the user to set some pa-
via fuzzy membership functions. Therefore, it allows theameters which depend on the product under analysis. After
technique to select the most reliable primitives and fdotpr this, the method is automatic and can be applied with the
hypotheses during its processing steps. As a further reéinem same set of parameters to similar products. Guidelineshfor t
the proposed technique also reconstructs the detected rasddection of the parameters were given throughout the paper
footprints. The goal of this step is to provide as output a mdpis worth noting that many relevant parameters have been
which can be used as a starting point for further calculatioralready selected on calibrated SAR images so that they can
e.g., the estimation of building widths and lengths. Moexpv be applied to different VHR SAR scenes without the need to



be changed. [5]

The proposed technique is promising for addressing prob-
lems in real operative scenarios which exploit the avail-
able spaceborne meter-resolution SAR systems (e.g., Gosmo
SkyMed, TerraSAR-X, and TanDEM-X). As an example, it!6]
can be used as a preliminary step for a fine estimation of
the density of urban areas even from single images or it cdn|
be used for the analysis of multitemporal series, e.g.,Her t
detection of changes in urban areas. It is worth noting that t
method can work with any viewing configuration of the SAR[8]
sensor, as it can handle radar footprints acquired witlewifft
incidence and aspect angles. Moreover, it provides regults
the vector domain. These factors make it possible to patiinti
combine the results obtained from SAR acquisitions takeh wi [°]
different viewing angles, or also maps derived from optical
images. This would allow a finer detection of buildings ango]
a more precise estimation of building properties. However,
the problem of the correct geolocalization of buildings i)
the different acquisitions should be faced e.g., for the-emir
merging of the single radar and/or optical footprint maps.

As future developments we plan to extend the proposgd
technique to both the analysis of multi-aspect acquisition
(e.g., images acquired on ascending and descending orbits)
and the integration of interferometric height informatiarthe (13
steps of the processing chain. By this we aim at developing a
flexible framework for building detection and radar footyri
extraction requiring as minimum only a single SAR scengy;
but making best use of additional input data if available. We
also plan to study the integration of the presented methdtd wi
state-of-the-art change detection algorithms in ordeet@tbp (15
novel reliable approaches to change detection in urbarsarea

using VHR SAR multi-temporal series. [16]
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