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Abstract—Radar sounders operating on satellite platforms MARSIS operates in a lower frequency range with respect to
(e.g., radar sounding missions at Mars) provide a huge amoun SHARAD and can penetrate the subsurface of Mars up to few
of data that currently are mostly analyzed by means of manual jjometers with a vertical (range) free space resolution 5@

investigations. This calls for the development of novel témiques . .
for the automatic extraction of information from sounder signals m. On the other hand, SHARAD has a maximum penetration

that could greatly support the scientific community. Such aopic  ©f more than 1 km but with higher vertical resolution (15 m
has not been addressed sufficiently in the literature. This @per free space). These instruments are providing a new insight
provides a contribution to fill this gap by presenting both i) a on the subsurface of Mars, both on its Polar Caps [4]-[7]
study of the theoretical statistical properties of radar sainder and at mid-latitudes, where ice has been detected [8]. thdee
signals, and ii) two novel techniques for the automatic anasis ’ . . . ) .

of sounder radargrams. The main goal of the study is the radar sounders are p:_;\rncularly effective on glaciers ayd i .
identification of statistical distributions that can accurately model ~grounds because ice is the most transparent natural niateria
the amplitude fluctuations of different subsurface targets This in the range of frequencies in which they work. The success
is fundamental for the understanding of signal properties @ad of MARSIS and SHARAD lead to the inclusion of a radar
for the definition of automatic data analysis techniques. Tk sounder in the study for the possible future missions to the

results of such a study drive the development of two novel lorati fthe Jupit t h the i
techniques for i) the generation of subsurface feature mapsand exploration of the Jupiter system, where the icy moons Eairop

ii) the automatic detection of the deepest scattering areagisible Ganymede and Callisto are very important targets for ttpe ty
in the radargrams. The former produces for each radargram of instrument [9], [10]. Radar sounding from space is also a

a map showing which areas have high probability to contain possibility for the study of the Earth’s subsurface andriege
relevant subsurface features. The latter exploits a regiomgrowing has been already shown by the scientific community [11].

approach properly defined for the analysis of radargrams to . .
identify and compose the basal scattering areas. Experiméal The sounders currently operating at Mars are providing a

results obtained on Shallow Radar (SHARAD) data acquired on huge amount of data. In general, the planetary scientific-com
Mars confirm the effectiveness of the proposed techniques. munity which handles such data follows a manual investgati

Index Terms—Radar sounding, ground penetrating radar approac_h. Manual analy_sis pf rg\dargrams_isatime-contgjmin
(GPR), signal processing, statistical analysis, featurextraction. ~ task which leads to subjective interpretations of the dath a
limits their scientific return. This calls for the developmhe

of techniques for the automatic extraction of information

|. INTRODUCTION from sounder data, which could greatly support the scientifi

LANETARY radar sounders are orbiting ground penetragommunity. On the one hand, the use of reliable techniques
Ping radars (GPR) which operate at very low frequency (@_Ilows an objective and fast extraction of information from
20 MHz) with a nadir looking geometry. Thanks to their cha€ach radargram as soon as data become available. On the
acteristics, they are able to investigate the subsurfagganf Other hand, the exploitation of such techniques allowsdi j
etary bodies by exploiting the radar signal propagation infhalysis and the combination of many acquisitions, resmilti
the ground and measuring the backscattering from subsurfitthe possibility to analyze subsurface features at sdatgsr
structures [1]. The output of a radar sounder is a radargrdf@n @ single radargram. This can highlight structures that
representing the vertical profile of the subsurface. Nowagaare not visible from the measurements performed on single
two radar sounders are operating at Mars: the Mars Advandgacks. Automatic methods can also play a significant role in
Radar for Subsurface and lonosphere Sounding (MARSIS) [P integrated analysis of the radargrams with measurement
on the Mars Express orbiter of the European Space Agerfitained from other instruments. It is also worth notingt tha
(ESA), and the Shallow Radar (SHARAD) [3] on-board th@utomatic methods developed for the analysis of orbiting
Mars Reconnaissance Orbiter of the US National Aeronauti@lar sounders can be properly tuned for the analysis of
and Space Administration (NASA). Both instruments wergounding data acquired by airborne platforms on the Earth's

provided by the Italian Space Agency (ASI). On the one hangljbsurface.. Finally, such mgthods can _be also exploited for
the processing of data acquired by possible future spacebor
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tion Engineering and Computer Science, University of Toenbia The automatic analysis of planetary radar sounder signals
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the analysis of ground-based or airborne GPR signals (ethg signals provided by the SHARAD instrument, the results
[12], [13]), which operate in different frequency rangesl anobtained can be applied also to MARSIS data or to signals
achieve a better spatial resolution with respect to plagetaacquired by other radar sounder instruments after a proper
radar sounders. Moreover, GPR campaigns are often reduttging of the techniques.

to well defined areas with limited extension, for which the The remaining of the paper is organized as follows. In
interpretation of the radargrams can be performed manuaBec. Il we address the problem of the statistical modeling of
without the need of automatic techniques. An exception iadar sounder signals. The models presented are then tested
represented by anti-mines and unexploded ordnance (UX@) real SHARAD data in Sec. lll. Section IV presents an
detection campaigns, which make extensive use of GPR tealsomatic technique for the generation of subsurface featu
nology [14]. Different papers in the past decade proposed tmaps. Section V addresses the automatic detection of basal
use of pattern recognition approaches to the analysis of GRRurns and its application to SHARAD radargrams of the
signals (e.g., [15]). However, they are mainly devoted t® tiNPLD of Mars. Finally, Sec. VI draws the conclusion of this
detection of specific buried objects, such as mines, pipespaper and discusses possible future developments.

tanks buried at small depths using ground-based GPR. Such

objects present hyperbola-like signatures in the radergra ||, STATISTICAL MODELING OF RADAR SOUNDER

which are completely different from the signatures of bdirie SIGNALS

structures present in radar sounder images acquired byngrbi
platforms. The radargrams obtained by airborne acquisitio
over the Earth's polar areas Show S|m|Ia_r|t|es with sp_auaaé)o statistics of the analyzed signals is necessary. In thisosec
radar so.under d_ata acquired on icy bodies. The main featuy review the main characteristics of the sounder signals
present in such images are subsurface echoes coming ffoméﬂ& select three statistical models which are likely to be

interfaces present between different subsurface ice daged ; . : -
L ) o .~ appropriate to model the signal fluctuations. The validity o
basal returns [16]. This is the typical situation shown ie th pprop g y

radargrams related to the Mars' Poles [5], [6] and othersare%UCh models will be tested on real SHARAD data in Sec. Ill.
of the Red Planet [17]. o

Another approach to the analysis of radar sounder me- Background and Motivation
surements is to apply inversion techniques to the signals inThe analysis of radar signals is historically linked to istat
order to estimate the dielectric characteristics of thesstfiace tics. This is due to the coherent nature of the radar signals
[18], [19]. In this context, the correct understanding oé thwhich makes the radar cross section (RCS) of targets fluectuat
radargrams and the development of any information extmactiwhen even slightly changes in the viewing configuration or
technique need the knowledge of the propagation laws iof the target orientation occur [22]. The effects of clutter
the radar signal into the matter in order to avoid erro@nd noise also greatly contribute to the fluctuations of the
in the physical interpretation of the returns [20]. HoweveRCS. Radar signals are thus modeled using probability tiensi
the inversion process is very complex and requires prodenctions (pdf) under the assumption that the signal anngbdit
assumptions on the investigated domain, e.g., on the groyod intensity) is the realization of a random variable withi
composition [21]. each radar resolution cell. Many statistical models havenbe

This paper provides a contribution to fill the gap presenteveloped in order to fit the radar signals related to differe
in the literature on the automatic analysis of planetaryaradtarget types. Such statistical models are based on thealreti
sounder data by presenting a study of the theoretical statiescriptions of the scattering effects, or on empiricabhfitto
tical properties of radar sounder signals. The goal of théemple data. Examples of theoretical pdf commonly used in
study is the identification of a statistical distribution iafn the analysis of radar signals are the Rayleigh, Rice, negati
can accurately model the amplitude fluctuations of differeexponential, Gamma and K distributions. The most important
subsurface targets. On the basis of the results of this studmpirical pdf are the Weibull and log-normal distributions
we then propose two novel techniques for i) the generation [@P].
subsurface feature maps, and ii) the automatic detectitimeof The statistical approach has been extensively used in the
deepest scattering area visible in the radargrams. Theeforranalysis of synthetic aperture radar (SAR) images for the
produces for each radargram a map showing which aredmaracterization of distributed targets such as agricaifields,
have high probability to contain relevant subsurface festu forests or water surfaces. For this type of targets a single
Such a map can be used to identify interesting radargramg@solution cell does not provide sufficient information abo
large datasets or to drive further signal processing steps the scattering characteristics of the surface under iga&in
specific areas within single radargrams. The latter is baseddue to the signal fluctuations, which depend on intrinsic
an iterative procedure that exploits a region-growing radth fluctuations of the target RCS and on the so-ca#ipdckle In
properly defined for the analysis of radargrams to identifgf a order to characterize the analyzed surface it is thus nagess
compose the basal scattering areas. The obtained regienstarcalculate statistical parameters of the distributiontlod
kept or discarded according to the statistical distributad radar signals coming from the area of interest.
their samples. We tested both techniqgues on SHARAD dataln this context, statistical tools can be also exploited for
acquired on the North Polar Layered Deposits (NPLD) dhe analysis of radar sounder signals for the detection and
Mars. Although in this paper we will focus on the analysis ofharacterization of different types of subsurface feaurdis

In order to develop effective information extraction tech-
niques from radar sounder data, a precise knowledge of the



can support the analysis of the radargrams, by automaticall

detecting the regions of interest and extracting infororati %ﬁ;%
which can drive subsequent feature extraction algorithirhs.
goal of this section is thus to define a reference theoretical
framework which can be used for a reliable statistical asialy

of the signals, taking into account the physical charasties hsc
of the targets.

B. Statistical Models

In order to perform an analysis of radar sounder signals, it
is necessary to describe the signal statistical propesidng
into account the physical processes involved in the sdadter
from subsurface features for a typical radar sounder inmstnt
mounted onboard of an aerial or satellite platform. Our goal
to describe statistically the distribution of the signatsning
from the subsurface by considering groups of adjacent sssnpl _ o 3 _
in a predefined neighborhood system extended both in rar L pice ecuston geamety of an sting rceumder . & he
(vertical) and along-track (azimuth) directions. Indeedch ground resolution in the along-track and across-trackctioes, respectively.
radargram can be seen as a 2D image defined in the range and
azimuth directions. The signals measured by the radar glurin
each acquisition window (frames) correspond to the columpsmuch more amplified in intensity data and may affect the
of the 2D image. Thus, pixels in the same neighborhoggability of the analysis.
system describe the geologic features in a given position of1) Rayleigh pdf:The simplest pdf that describes the ampli-
the subsurface. According to this modeling, we can analyggje = of the returns from a large numbér of independent

radargrams with a 2D signal processing approach; this dgatterers is the Rayleigh distribution:
important given that most of the subsurface features dedect

by a radar sounder are not spot features but show a certain 2 [ IQ} 1)
extension, especially in the azimuth direction. Lz ’

As a reference, Tab. | reports the main characteristicseof th
two radar sounders currently operating at Mars: MARSIS [ L
and SHARAD [3]. f. is the central frequency of the radar’ nly parameter of the distribution and represents the mean

A depicts the wavelength (which is reported for the dielectrPOWe' of the signal [22]. Eq. (1.) Is yalid far > 0 (th_is
constant of the vacuun, — 1, and for an icy subsurface also holds for the other pdfs which will be presented in the

material,, = 3.15), By represents the radar bandwidsh, fls)rilowing) and tdh_e mde_atn_g/al_ue qfifhgiven bypic t: v 7:“2/2'
is the vertical (range) resolution in the subsurface, @pédnd e corresponding distribution in the power (intensityytin

5.. are the along- and across-track resolutions, respectivé the negative exponential distribution. It is worth ngtithat

Dr is the theoretical Fresnel zone calculated at the surfa& e Raylt_aigh distribution is also the id.e.al thec_)retical eig‘dr .
Fig. 1 shows the typical acquisition geometry of orbitingaa the amplitude when a zero-mean additive white Gaussiamnois

sounders (AWGN) affects the in-phase and quadrature signals redeive

The sizes of the radar footprints reported in Tab. | are cor%y the radar |n.areas of no subsurface scattering. . .
parable with the diameter of the corresponding Fresnel zone2) Nakagami pdf:The second model that we consider is
from which the returns are supposed to be coherent. HoweJ3f Nakagami pdf, which is a two-parameter function given
the surface and especially the subsurface, which is thettarBy [24]:

of our investigation, are far from being flat and always pnése on \ N g2on—1 ONT2
a certain amount of roughness, which introduces a significan pn(z) = <—) m €xp {— } ) (2)
non-coherent component in the scattering [23]. Indeed, the N
amount of roughness drives the across-track resolutioithwh wherewy is calledshapeor order parameterandT'(.) depicts
for MARSIS and SHARAD, is controlled only by their dipolethe gamma function. The validity rangeaf; is (0; +o0). The
antenna pattern as no synthetic aperture processing ibjgosNakagami pdf for amplitude data corresponds in the intgnsit
in the across-track direction. It is thus possible to comisiddomain to the Gamma pdf described by the shape parameter
the radar footprints sufficiently wide to assume that many = vy and the mean intensity, [24]. The Gamma pdf has
different independent scatterers contribute to the siadtéor been widely used for the modeling of radar signals and is a
each resolution cell. generalization of other well-known distributions, suchtls

In the following, we will focus on the statistical distribu-negative exponential and chi-square [25]. In particuldrem
tion of amplitude signals. The analysis of amplitude data ig- is an integer value, the Gamma pdf can be derived as
preferred here with respect to intensity data due to theelarthe sum ofur identical independent exponentially distributed
dynamic that characterize radar sounder acquisitionsgtwhirandom variables. Similarly, in the amplitude domain the

here > indicates the signal power = z?2), and . is the

Mz

z



TABLE |
MAIN CHARACTERISTICS OF THEMARSISAND SHARAD RADAR SOUNDERS OPERATING ATMARS.

Instrument fe Aler=1) A (er =3.15) By by (er = 3.15) dal dac Dp
MARSIS 1.8-5 MHz  167-60 m 94-34 m 1 MHz 85m 5-10 km  10-30 km-10 km
SHARAD 20 MHz 15 m 8.5 m 10 MHz 8.5m 0.3-1 km 3-7 km ~3 km

0.45

Nakagami pdf is a generalization of the Rayleigh pdf, which

can be obtained by settingy = 1 in (2). 0.4
3) K pdf: The last distribution that we consider is the K 0.35

distribution, defined as [22]: '

3

0.
4 UK)<vK+1>/2 B} { \/W}
r) = ——— —_— Iv KU — 256 I Y
px () T (o) (uz k-1 o 0.25

@3) i
whereK,, _1(.) is the modified Bessel function of the second 02
kind of ordervx — 1. The parametery is also called shape 0-19
(or order parameter), and its validity range(is +o0). The 0.1 |
K distribution has also been used for modeling sea clutter
and distributed targets of different types in SAR images. 19-05
is derived by assuming that the number of scatterers within a
resolution cellQ fluctuates being controlled by a birth-death- 0 1 2 3 4 5 6 7 8
immigration process, i.eQ is a random variable that follows x
a negative binomial dIStrlbutI_On [22]. The gssumptlon th. ig. 2. Examples of pdf curves obtained using the modelsepied in Sec.
the number of scatterers varies between different resoiutiy “For ail the curvesu. = 5.
cells is in agreement with the scenario represented by a rada
sounder acquisition, where within each single radargramé
a different number of scatterers (e.g., subsurface intesfa of subsurface layer stratigraphy, where the returns aretieah
may contribute to the scattering measured in different tingg each interface. The K distribution has thus physical<asi
samples. which are in agreement with the characteristics of radar
The K distribution is also obtained by modeling the radarounder acquisitions.
intensity z as a compound pdf, also referred to @®duct Fig. 2 shows a comparison between the Rayleigh, Nakagami
model This formulation expresses the radar intensity as tked K distributions for a fixegh, and varying shape parame-
product of two uncorrelated processes with different gpatiters.
scales: an underlying RCS and a multiplicative speckle con-Other pdfs can be used to model radar data, e.g., Rice,
tribution. The mathematical representation of this foratioh log-normal, Weibull [22]. In particular, for the analysid o
is: - radar sounder signals, the Rice distribution is suited ® th
prc(2) :/ p1(2/5)pa(s)ds, (4) modelmg of surface returns from ﬂat surf_aces, .aIIowmg the
estimation of the coherent scattering for inversion puegos

whereps (s) represents the pdf of the underlying RCS (whic_{128]- However, the pdfs selected for the analysis reported

only depends on the physical characteristics of the seaser N th.is paper cover the most important c_lasses of theotetica
and py(z/s) is the speckle contribution, which arises as distributions which are used for the modeling of radar daa,

consequence of their random distribution and orientat&yn. have the advantage to_aIIow us t_o describe the scatterimg fro

assuming an underlying RCS which is Gamma distributed afgHbsurface features with a physical-based approach. As suc

a speckle contribution modeled by a negative exponential pH'€Y represent generalizations or approximations of mémgro

both the signal intensity and amplitude result K distrilitediStributions proposed in the literature. It is worth ngtitmat

[22]. the rese_arch of the absolute begt fitting pdf for radar saunde
The product model is thus suited to the modeling of spatial}jgnas is out of the scope of this paper.

non-homogeneous targets. As proposed in [26] and [27],

p1(z/s) can be interpreted as the density of the returns frof{!- EMPIRICAL ANALYSIS OF THE STATISTICAL MODELS

an incremental area of a surface whose reflectivity varies ON SHARAD RADARGRAMS

spatially with means, while p»(s) describes the bunching With the goal of studying the statistical distribution of

of scatterers in terms of spatial variations of the undegyi real data, we analyzed different subsurface target typds an

RCS, which are on a much larger scale than the variatiosisidied the statistical distributions of their returns ijrfg the

described by (z/s). Such a formulation has been effectivelytheoretical pdfs described in Sec. Il to the data. We selecte

used to model sea clutter, where scatterers are bunchedabytest data a set of SHARAD radargrams of the NPLD of

swell structure [27]. This situation to a certain extenerables Mars. Such radargrams show different target types, frorg ver

the measurements performed by a radar sounder in presestoeng scattering linear interfaces (due to ice stratigyapo




TABLE Il
smooth returns from the base of the NPLD. An example of syaRADRADARGRAMS USED IN THE ANALYSIS AND NUMBER OF

SHARAD radargram of the NPLD of Mars and its ground SAMPLESPER TARGET CLASS COLLECTED FOR EACH RADARGRAM
track are reported in Fig. 3.

Radargram

— . b NT SL wL LR BR
A. Definition of Target Classes and Dataset Description number
The target classes that we investigated are the following: 0371502 212,311 9,443 18,233 18,017 50,905
0385902 166,832 4,425 6,284 13,289 21,417
target(NT), strong layer{SL), weak layer{WL), low returns 0681402 209,416 41,459 22,264 44,829 130,687
(LR), basal returns(BR). The classno targetcorresponds to 0794703 209,057 14,586 27,004 46,207 71,387

N is Vi 1292401 113,768 4,701 11,173 12,049 37,082
areas of the radargram where no scattering is visible. These 1312901 148651 0173 17506 5L218 26684
are the shallow part_of the radargram, before any surface 1319502 195748 14,688 18952 33448 72582
return, and the areas in the subsurface where no interfaees a

detected. We definstrong layersthe areas of the radargram

where dense and strong scattgring layering is visible. Thig o qqq (ML) estimation approach. For the Rayleigh dis-

corresponds generally to areas in the shallow subsurfaite of tribution the ML estimatei. of the only parametet. is given

NPLD._The classwveak layerscorresponds to the subsurfacebx the sample mean power [25];

scattering related to less dense and less strong scattering

layering, which usually occurs below the areas described by 1 9

the classstrong layers The classlow returns includes the Pz = in’ ®)

areas of the radargram containing very weak scatteringrogmi

from deep structures. When these are present, they ardysuaherer; depicts an amplitude sample, andis the number

located between the areas weak layersand basal returns of considered samples.

Finally, the classbasal returnsis related to the scattering For the Nakagami distribution, the estimate is obtained

coming from the base of the NPLD, which nature giveds for the Rayleigh distribution, and is given by (5). The

a diffuse scattering especially in correspondence of the gglculation of iy has been performed using the classical

called basal unit [7]. Fig. 4 highlights such classes on ése t estimator proposed by Greenwood and Durand [32], which

radargram of Fig. 3. is considered in the literature an accurate estimator fer th
The analysis has been carried out on 7 SHARAD radsghape parameter of the Nakagami distribution [33]. Theegfo

grams of the NPLD of Mars. The main characteristics of thev has been derived by:

SHARAD instrumerjt are summarized in Tab. |. The radar- (0.5000876 + 0.1648852y — 0.054427412) [y,

grams were stored in the Reduced Data Record (RDR) format 0<y< 05772

[30], and have ,been downloaded from the the Geosuence%N _ 8.98919 + 9.059950y -+ 0.9775373y>

Node of NASAs Planetary Data System (PDS) [31]. We 3

extracted the amplitude information and aligned in time the y(17'7972%g71712'968477y1;ry )

echoes using the information contained in the RDRs. As the ' Sy<ih 6

data are highly oversampled in the along-track directioa dy, ©)

- - here
to the high pulse repetition frequency (PRF) of the system, w 1 <ﬂz)
y =

applied a downsampling factor of 15 in the selection of the Fal @)

radargram frames. Each frame thus corresponds to an alor%?—

track step which can vary approximately between 270 a

500 m depending on the amount of presumming performed n 0

onboard the instrument. No multilooking has been performed F= <H xf)
=1

in order to maintain the original statistics of the signatsthe

range direction each frame is sampled every 75 ns. Thereforerpe (L estimation of the K distribution has been obtained
each sample corresponds to a free-space distance of ah8ut iléltrieving thedx and /i, estimated values by the numerical

m, which scales to approximately 6.3 m in i¢g. = 3.15).  aximization of the log-likelihood function, according[&4],
The acquisitions have been cut in order to consider only thg

NPLD area. The resulting radargrams are made of a number of

samples between 1,071,869 and 2,582,624. On each radargrafiix, fi-) = arg max {In[l,(vk, ft-; 1, Z2,...,25)]},
we selected manually the areas corresponding to the classes (vrcz) 9)
defined in the previous subsection. In Tab. Il we report fahea,nere

analyzed acquisition its identification number and the nemb

(8)

of samples per class we collected. It is worth noting that a [ (Ui, 11 1, T, - -+, )] = VK anlnxi
very high number of samples for each class in each radargram =
is considered in order to have a reliable statistical amalys n -
o +Zln{KvK1 [21:” s } (10)
B. Procedure for the Estimation of pdf Parameters —1 Mz
For each class type we estimated the parameters of the v +1 VK
Rayleigh, Nakagami and K distributions using a Maximum n{ In (Z) +1n4_1nF(UK)}’



(b)

Fig. 3. (@) Portion of the SHARAD radargram 1319502, and {b)tquisition track highlighted on an altimetric map of LD of Mars. The altimetric
map has been derived from Mars Orbiter Laser Altimeter (MQ[29] data. The radargram corresponds to the solid line.

Fig. 4. Target classes used in the statistical analysisepted in this paper highlighted on the radargram showeddn Fi

andl,, (vi, pz; 1,22, ..,2,) is the likelihood function for is defined as [35]:

the K distribution. Due to numerical constraints, the range e

values ofvi has been limited between 0.1 and 50. However, KL(A,B) = ZA(xi) log e (11)
this does not affect the generality of our analysis. Indeed, x; B(a:)

the one hand, the characteristics of the signals Never™®dynere A and B represent the probability distribution of the
values qfvl_( onver than 0.1. On the other_hand, fog > 50 samples and of the theoretical fit, respectively. The vatdies
the K distribution becomes nearty Ra_ylelgh [.34].'.Theref0r%epend on the size of the bins used for the computation of the
the use of yalues greater than 50 for is not significant for histograms. This size has been calculated for each tarags cl
the comparison between the f|tt|ng. performance of the_ cording to the method proposed in [36], which is suited for
pdfs. For _the _parametqzz we only_ |mpos_ed a lower limit nknown distribution data values, and has already been used
at 0.1, which is well below the typical noise mean power Qbr the computation of histograms of SAR images [37]. As an
SHARAD data. example, Fig. 6 shows the histogram and the ML estimates
for each target class for the test radargram of Fig. 3.

The results point out that the best fitting distribution is in
almost all the cases the K distribution. Such results agitre w

Tab. Il reports the fitting accuracies obtained for the dithe physical basis of the K distribution, which can describe
ferent classes of targets for each analyzed radargram. Sefflectively the cases where the scatterers are bunched (see
accuracies have been evaluated in terms of root mean squgee. Il). Fig. 5 shows graphically the mean and the standard
error (RMSE) and Kullback-Leibler divergence (KL) betweedeviation of the parameters derived for the K distribution
the normalized histogram of the data and the histograior each target class. It is possible to note that within each
obtained by the fitting of each distribution. The KL divergen class the parameters of the distributions are quite stable.

C. Results



Moreover, it is also worth noting that different targets are
described by different parameters. The K distribution show 45
lower fitting performances for th@o target case. This is 10
due to the numerical limit imposed tox (which leads to
v = 50 for the no targetclass for all the test radargrams).
However, as previously mentioned, the highigr the more 30
the distribution approximates the Rayleigh pdf. The Nakaiga
distribution provides almost always a more accurate fit thah
the Rayleigh distribution except for the case of tietarget 20
class. For theno targetcase, as expected from the theory, the 5
Rayleigh distribution is an effective estimate as it pread
accurate estimations using only one parameter. The Nakagam
distribution has approximately the same fitting perfornganc 5
using two parameters, buiy is always nearly 1, i.e., it
approximates the Rayleigh pdf. The Rayleigh pdf can thus be SL WL LR BR NT
considered the best fitting distribution for the targetareas. @

This confirms that the background noise of the SHARAD data
can be modeled as a zero mean AWGN in both the in-phase
and quadrature components.

Let us now focus on the computational complexity of the 8o
ML estimation for the three considered distributions. Such
issue becomes relevant when the statistical analysis of the
signals is propaedeutic to other processing steps, etgrirfg 60
or feature-extraction algorithms. The calculations of Me . 5
estimates for the Rayleigh and Nakagami pdfs are performed
analytically and their computational time is negligible an
standard workstation. Instead, the maximization of (10) fo 30
the estimation of the parameters of the K distribution must
be performed numerically. Although the computational time
in our tests is still in the order of less than one minute, it 10
may become not negligible when analyzing a large series of
radargrams. When the computational time becomes a limit SL WL LR BR NT
in practical analysis scenarios, one may consider to use the ()

Nakagami distribution for the modeling of the signal stitis Fig. 5. Mean values and range of v§riation ~of the parametttheofitted
in order to speed up the processing, at the cost of slighﬁydIStrIbunonS for each target class: (@k: (b) /i=-
lower accuracies.
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A. Proposed Technique

IV. PROPOSEDTECHNIQUE FOR THEGENERATION OF As discussed in Sec. lll, the background noise of SHARAD
SUBSURFACE FEATURE MAPS radargrams is Rayleigh distributed. The noise charatiesis
can be simply measured using the samples belonging to the
The results presented in the previous section can be u$esk space region of the radargram, i.e., before any surface
to study the radar sounder signals and analyze the scattecho. Therefore, the statistical distribution of the naiaa be
signatures of different types of targets. However, they alsletermined precisely and in an automatic way. By measuring
open to a wide range of applications for the automatic amalyshe statistical difference between the histograms of stiésel
of the radargrams. As mentioned in the introduction, plaryet parcels and the noise distribution it is thus possible tordis
radar sounding missions have provided and are still progidiinate in an unsupervised way the areas containing only noise
a large amount of data, which have been studied mostly firpm the regions which contain subsurface features. Skvera
means of manual investigations. In this framework, the -autstatistical indicators can be used to measure the differenc
matic detection of radargrams containing subsurface featubetween two distributions. Here, we propose the use of the
from the whole available set of radargrams, and the autdk divergence between the histogram of the samglesand
matic identification of the subsurface areas containingveeit the theoretical noise distributiaN, i.e., KLyy = KL (H, N).
features within each radargram become important tasks ti&e noise characteristics can vary between different acqui
can greatly support scientific investigations. In this mectve tions (see Fig. 5). This is mainly due to different condison
propose a novel automatic method for the generation of magfsacquisition, e.g., in terms of solar activity or spacéicra
of the subsurface areas containing relevant featuresrwithi attitude, which may raise the background noise level. The
radargram by analyzing the statistical distributions ofalo proposed algorithm takes into account this issue and adapts
parcels of the radargram. its behavior to the variations of the background noise leyel



0.7 L T 0.1 T T T
histogram histogram 7
—~ Rayleigh —— 0.09 | Rayleigh —— |
0.6 r f x Nakagami — — - 1 Nakagami — — -
K _____ .

K —mm 0.08 |
0.5 1 ZZ \ 1 007 L

04 L \ 1 0.06 - i g
x 0.05 | g
0.3 1 o004t 1
0.2t 4 0.03 | R
0.02 i
0.1 i
0.01 i
0 I I I L I 0 L L L
0 1 2 3 4 5 6 0 30 35 40 45
T x
@ (b)
0.18 ‘ ‘ 0.5 w — ‘
. histogram 7 ; histogram ———
0.16 Rayleigh —— |  0.45 Rayleigh —— -
Nakagami — — - 04 Nakagami — — -
0.14 K —-e- ] - K === 1
0.35 |
0.12 |
0.3 E
0.1 E
0.25 |
0.08 g
0.2 |
0.06 1 o015 |
0.04 g 0.1 i
0.02 R 0.05 |
O L L 0 — L
20 25 30 6 7 8
x x
(© (d)
0.35 - \ 0.7 ‘
histogram No target
Rayleigh Strong layers — — -
0.3 Nakagami — — - - Weak layers —=—-- 1
K ---- Low returns —----
0.25 4 Basal returns |
0.2 | |
0.15 E g
0.1 | |
0.05 , |
0 . . " = = —
10 15 20 25 15 20 25
(e) ®

Fig. 6. Empirical and ML distributions for each target cldes the SHARAD radargram 1319502 (see Fig. 3): (@) target (b) strong layers (c) weak
layers (d) low returns (e) basal returns (f) summary of the fitted K distributions for each targetssla



TABLE Il

FITTING PERFORMANCES OF THERAYLEIGH, NAKAGAMI AND K DISTRIBUTIONS TO THE SAMPLE AMPLITUDE DATA FOR EACH SCATTERIG CLASS.
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Radargram Distribution NT SL WL LR BR
number RMSE KL RMSE KL RMSE KL RMSE KL RMSE KL
Rayleigh 0.0031 0.0067 0.0074 0.0381 0.0133 0.0516 0.01250108 0.0106 0.0243
0371502 Nakagami  0.0031 0.0067 0.0032 0.0108 0.0075 0.0186 0.0085 0.0043 0.0079 0.0146
K 0.0041 0.0068 0.0028 0.0060 0.0018 0.0021 0.0046 0.0028 0.0024 0.0033
Rayleigh 0.0032 0.0029 0.0118 0.1035 0.0147 0.0475 0.0161 0.0293 0.0108 0.0313
0385902 Nakagami  0.0031 0.0030 0.0068 0.0418 0.0103 0.0249 0.0121 0.0153 0.0092 218.0
K 0.0047 0.0031 0.0026 0.0067 0.0046 0.0056 0.0059 0.0042 0.0045 0.0058
Rayleigh 0.0034 0.0045 0.0085 0.0707 0.0222 0.1258 0.0177 0.0247 0.0193 0.0675
0681402 Nakagami  0.0034 0.0045 0.0054 0.0285 0.0141 0.0503 0.0139 0.0136 0.0149 36D.0
K 0.0048 0.0046 0.0014 0.0031 0.0044 0.0054 0.0054 0.0033 0.0060 0.0064
Rayleigh 0.0041 0.0062 0.0027 0.0089 0.0188 0.0732 0.0122013@0 0.0155 0.0462
0794703 Nakagami  0.0040 0.0060 0.0021 0.0052 0.0120 0.0293 0.0090 0.0068 0.0126 0.0283
K 0.0052 0.0062 0.0014 0.0033 0.0039 0.0028 0.0031 0.0036 0.0052 0.0048
Rayleigh 0.0046 0.0041 0.0052 0.0288 0.0213 0.1016 0.0152 0.0108 0.0157 0.0343
1292401 Nakagami  0.0045 0.0043 0.0043 0.0225 0.0140 0.0456 0.0116 0.0060 0.0124 190.0
K 0.0062 0.0042 0.0034 0.0110 0.0051 0.0074 0.0087 0.0025 0.0053 0.0058
Rayleigh 0.0058 0.0048 0.0039 0.0623 0.0253 0.1093 0.0174027@2 0.0178 0.0357
1312901 Nakagami  0.0058 0.0047 0.0043 0.0500 0.0164 0.0452 0.0149 0.0157 0.0125 0.0189
K 0.0068 0.0048 0.0035 0.0252 0.0057 0.0061 0.0072 0.0065 0.0038 0.0026
Rayleigh 0.0053 0.0091 0.0029 0.0135 0.0157 0.0540 0.0210 0.0202 0.017858B.0
1319502 Nakagami 0.0053 0.0089 0.0022 0.0105 0.0079 0.0151 0.0166 0.0109 0.0140 0.0346
K 0.0065 0.0091 0.0025 0.0082 0.0027 0.0029 0.0073 0.0035 0.0056 0.0070

automatically detecting and measuring the statisticatada
teristics of the free space region for each radargram.

A block scheme of the proposed technique is shown in
Fig. 7. The main steps of the technique are explained in
the following using the SHARAD radargram of Fig. 3 as a
reference example.

1) First return detection this step aims at automatically
identifying the returns from the surface for then dis-
criminating in the radargram the parts belonging to the
free space and those associated with the subsurface. The
former is used to estimate the radargram background
noise signal distribution in the next step. For each frame
(column) ;7 of the radargram the algorithm detects the
position of the first sample which is statistically diffeten
from the frame background noise. We denote such a
position asf(;) and calculate it as follows:

fG)=min{i: z(i,j) > un + o~} Vi (12)

wherez(i, j) is the amplitude of the sample of the frame

j at the time step; i« € [1,1I]; j € [1,J]; I = 667 is

the number of samples of a SHARAD framg;is the
number of frames of the radargramjyy and oy are

the estimated frame noise mean amplitude and standard
deviation, respectivelyy; is a multiplicative factor. The
detected samples are in the ideal case representative of
the nadir surface return. This is not true when lateral
clutter echoes arrive to the receiver before the nadir
return. The local statistics of the noise is estimated
for each frame using its last 50 samples, which are in
general free from subsurface features as the signal loss
is very high at the corresponding depth. If no sample
fulfills the condition, the value ofy; is decreased and

the procedure is repeated. At each iteratidhe value of
~. is calculated using a positive damping factbx 1,
according to:

Ye =d - Ye—1 Ve=2,...,F (13)
where E' is the maximum number of iteration&, the
initial value v; and the damping factaf are specified

by the user. Note that from (12) the minimum signal
level necessary to perform a detection cannot be lower
than the frame noise meary. In the case that aftef/
trials no sample fulfills the condition yet, the first return
position of the considered frame is estimated using the
average position of the first adjacent frames for which
the detection was successfully. After the frame-based
detection, a smoothing function is applied in order to
reduce the effects of both outliers and missing detec-
tions. The smoothing function performs local regression
using weighted linear least squares and a first degree
polynomial model. Using this approach, for each frame
the algorithm detects the most reliable first return at
the first iteration (according to a user-defined minimum
signal level dependent on;). The reliability of the
detection decreases as the number of iterations increases.
By properly settingEl andd the user can thus tune the
reliability of the first return detection. The result of the
first return detection applied to the test radargram using
E =3, v1 = 4.5, andd = 0.9 is shown in Fig. 8a. The
first return line is detected with good accuracy for most
of the frames composing the considered radargram. The
only exception corresponds to a part of the radargram
where no returns are visible until a certain depth for a
relatively long series of frames. As the number of frames
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where no returns are visible is large, the smoothirig terms of statistical difference from the back