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Analysis of Radar Sounder Signals for the
Automatic Detection and Characterization of

Subsurface Features
Adamo Ferro, Lorenzo Bruzzone,Fellow, IEEE

Abstract—Radar sounders operating on satellite platforms
(e.g., radar sounding missions at Mars) provide a huge amount
of data that currently are mostly analyzed by means of manual
investigations. This calls for the development of novel techniques
for the automatic extraction of information from sounder signals
that could greatly support the scientific community. Such a topic
has not been addressed sufficiently in the literature. This paper
provides a contribution to fill this gap by presenting both i) a
study of the theoretical statistical properties of radar sounder
signals, and ii) two novel techniques for the automatic analysis
of sounder radargrams. The main goal of the study is the
identification of statistical distributions that can accurately model
the amplitude fluctuations of different subsurface targets. This
is fundamental for the understanding of signal properties and
for the definition of automatic data analysis techniques. The
results of such a study drive the development of two novel
techniques for i) the generation of subsurface feature maps, and
ii) the automatic detection of the deepest scattering areasvisible
in the radargrams. The former produces for each radargram
a map showing which areas have high probability to contain
relevant subsurface features. The latter exploits a region-growing
approach properly defined for the analysis of radargrams to
identify and compose the basal scattering areas. Experimental
results obtained on Shallow Radar (SHARAD) data acquired on
Mars confirm the effectiveness of the proposed techniques.

Index Terms—Radar sounding, ground penetrating radar
(GPR), signal processing, statistical analysis, feature extraction.

I. I NTRODUCTION

PLANETARY radar sounders are orbiting ground penetrat-
ing radars (GPR) which operate at very low frequency (1-

20 MHz) with a nadir looking geometry. Thanks to their char-
acteristics, they are able to investigate the subsurface ofplan-
etary bodies by exploiting the radar signal propagation into
the ground and measuring the backscattering from subsurface
structures [1]. The output of a radar sounder is a radargram
representing the vertical profile of the subsurface. Nowadays,
two radar sounders are operating at Mars: the Mars Advanced
Radar for Subsurface and Ionosphere Sounding (MARSIS) [2]
on the Mars Express orbiter of the European Space Agency
(ESA), and the Shallow Radar (SHARAD) [3] on-board the
Mars Reconnaissance Orbiter of the US National Aeronautics
and Space Administration (NASA). Both instruments were
provided by the Italian Space Agency (ASI). On the one hand,
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MARSIS operates in a lower frequency range with respect to
SHARAD and can penetrate the subsurface of Mars up to few
kilometers with a vertical (range) free space resolution of150
m. On the other hand, SHARAD has a maximum penetration
of more than 1 km but with higher vertical resolution (15 m
free space). These instruments are providing a new insight
on the subsurface of Mars, both on its Polar Caps [4]–[7]
and at mid-latitudes, where ice has been detected [8]. Indeed,
radar sounders are particularly effective on glaciers and icy
grounds because ice is the most transparent natural material
in the range of frequencies in which they work. The success
of MARSIS and SHARAD lead to the inclusion of a radar
sounder in the study for the possible future missions to the
exploration of the Jupiter system, where the icy moons Europa,
Ganymede and Callisto are very important targets for this type
of instrument [9], [10]. Radar sounding from space is also a
possibility for the study of the Earth’s subsurface and interest
has been already shown by the scientific community [11].

The sounders currently operating at Mars are providing a
huge amount of data. In general, the planetary scientific com-
munity which handles such data follows a manual investigation
approach. Manual analysis of radargrams is a time-consuming
task which leads to subjective interpretations of the data and
limits their scientific return. This calls for the development
of techniques for the automatic extraction of information
from sounder data, which could greatly support the scientific
community. On the one hand, the use of reliable techniques
allows an objective and fast extraction of information from
each radargram as soon as data become available. On the
other hand, the exploitation of such techniques allows the joint
analysis and the combination of many acquisitions, resulting
in the possibility to analyze subsurface features at scaleslarger
than a single radargram. This can highlight structures that
are not visible from the measurements performed on single
tracks. Automatic methods can also play a significant role in
the integrated analysis of the radargrams with measurements
obtained from other instruments. It is also worth noting that
automatic methods developed for the analysis of orbiting
radar sounders can be properly tuned for the analysis of
sounding data acquired by airborne platforms on the Earth’s
subsurface. Finally, such methods can be also exploited for
the processing of data acquired by possible future spaceborne
sounding missions devoted to the observation of the Earth.

The automatic analysis of planetary radar sounder signals
has not yet been addressed in the literature to a sufficient
extent. The related works present in the literature regard
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the analysis of ground-based or airborne GPR signals (e.g.,
[12], [13]), which operate in different frequency ranges and
achieve a better spatial resolution with respect to planetary
radar sounders. Moreover, GPR campaigns are often reduced
to well defined areas with limited extension, for which the
interpretation of the radargrams can be performed manually,
without the need of automatic techniques. An exception is
represented by anti-mines and unexploded ordnance (UXO)
detection campaigns, which make extensive use of GPR tech-
nology [14]. Different papers in the past decade proposed the
use of pattern recognition approaches to the analysis of GPR
signals (e.g., [15]). However, they are mainly devoted to the
detection of specific buried objects, such as mines, pipes or
tanks buried at small depths using ground-based GPR. Such
objects present hyperbola-like signatures in the radargrams,
which are completely different from the signatures of buried
structures present in radar sounder images acquired by orbiting
platforms. The radargrams obtained by airborne acquisitions
over the Earth’s polar areas show similarities with spaceborne
radar sounder data acquired on icy bodies. The main features
present in such images are subsurface echoes coming from the
interfaces present between different subsurface ice layers and
basal returns [16]. This is the typical situation shown in the
radargrams related to the Mars’ Poles [5], [6] and other areas
of the Red Planet [17].

Another approach to the analysis of radar sounder mea-
surements is to apply inversion techniques to the signals in
order to estimate the dielectric characteristics of the subsurface
[18], [19]. In this context, the correct understanding of the
radargrams and the development of any information extraction
technique need the knowledge of the propagation laws of
the radar signal into the matter in order to avoid errors
in the physical interpretation of the returns [20]. However,
the inversion process is very complex and requires proper
assumptions on the investigated domain, e.g., on the ground
composition [21].

This paper provides a contribution to fill the gap present
in the literature on the automatic analysis of planetary radar
sounder data by presenting a study of the theoretical statis-
tical properties of radar sounder signals. The goal of this
study is the identification of a statistical distribution which
can accurately model the amplitude fluctuations of different
subsurface targets. On the basis of the results of this study,
we then propose two novel techniques for i) the generation of
subsurface feature maps, and ii) the automatic detection ofthe
deepest scattering area visible in the radargrams. The former
produces for each radargram a map showing which areas
have high probability to contain relevant subsurface features.
Such a map can be used to identify interesting radargrams in
large datasets or to drive further signal processing steps on
specific areas within single radargrams. The latter is basedon
an iterative procedure that exploits a region-growing method
properly defined for the analysis of radargrams to identify and
compose the basal scattering areas. The obtained regions are
kept or discarded according to the statistical distribution of
their samples. We tested both techniques on SHARAD data
acquired on the North Polar Layered Deposits (NPLD) of
Mars. Although in this paper we will focus on the analysis of

the signals provided by the SHARAD instrument, the results
obtained can be applied also to MARSIS data or to signals
acquired by other radar sounder instruments after a proper
tuning of the techniques.

The remaining of the paper is organized as follows. In
Sec. II we address the problem of the statistical modeling of
radar sounder signals. The models presented are then tested
on real SHARAD data in Sec. III. Section IV presents an
automatic technique for the generation of subsurface feature
maps. Section V addresses the automatic detection of basal
returns and its application to SHARAD radargrams of the
NPLD of Mars. Finally, Sec. VI draws the conclusion of this
paper and discusses possible future developments.

II. STATISTICAL MODELING OF RADAR SOUNDER

SIGNALS

In order to develop effective information extraction tech-
niques from radar sounder data, a precise knowledge of the
statistics of the analyzed signals is necessary. In this section
we review the main characteristics of the sounder signals
and select three statistical models which are likely to be
appropriate to model the signal fluctuations. The validity of
such models will be tested on real SHARAD data in Sec. III.

A. Background and Motivation

The analysis of radar signals is historically linked to statis-
tics. This is due to the coherent nature of the radar signals
which makes the radar cross section (RCS) of targets fluctuate
when even slightly changes in the viewing configuration or
in the target orientation occur [22]. The effects of clutter
and noise also greatly contribute to the fluctuations of the
RCS. Radar signals are thus modeled using probability density
functions (pdf) under the assumption that the signal amplitude
(or intensity) is the realization of a random variable within
each radar resolution cell. Many statistical models have been
developed in order to fit the radar signals related to different
target types. Such statistical models are based on theoretical
descriptions of the scattering effects, or on empirical fitting to
sample data. Examples of theoretical pdf commonly used in
the analysis of radar signals are the Rayleigh, Rice, negative
exponential, Gamma and K distributions. The most important
empirical pdf are the Weibull and log-normal distributions
[22].

The statistical approach has been extensively used in the
analysis of synthetic aperture radar (SAR) images for the
characterization of distributed targets such as agriculture fields,
forests or water surfaces. For this type of targets a single
resolution cell does not provide sufficient information about
the scattering characteristics of the surface under investigation
due to the signal fluctuations, which depend on intrinsic
fluctuations of the target RCS and on the so-calledspeckle. In
order to characterize the analyzed surface it is thus necessary
to calculate statistical parameters of the distribution ofthe
radar signals coming from the area of interest.

In this context, statistical tools can be also exploited for
the analysis of radar sounder signals for the detection and
characterization of different types of subsurface features. This
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can support the analysis of the radargrams, by automatically
detecting the regions of interest and extracting information
which can drive subsequent feature extraction algorithms.The
goal of this section is thus to define a reference theoretical
framework which can be used for a reliable statistical analysis
of the signals, taking into account the physical characteristics
of the targets.

B. Statistical Models

In order to perform an analysis of radar sounder signals, it
is necessary to describe the signal statistical propertiestaking
into account the physical processes involved in the scattering
from subsurface features for a typical radar sounder instrument
mounted onboard of an aerial or satellite platform. Our goalis
to describe statistically the distribution of the signals coming
from the subsurface by considering groups of adjacent samples
in a predefined neighborhood system extended both in range
(vertical) and along-track (azimuth) directions. Indeed,each
radargram can be seen as a 2D image defined in the range and
azimuth directions. The signals measured by the radar during
each acquisition window (frames) correspond to the columns
of the 2D image. Thus, pixels in the same neighborhood
system describe the geologic features in a given position of
the subsurface. According to this modeling, we can analyze
radargrams with a 2D signal processing approach; this is
important given that most of the subsurface features detected
by a radar sounder are not spot features but show a certain
extension, especially in the azimuth direction.

As a reference, Tab. I reports the main characteristics of the
two radar sounders currently operating at Mars: MARSIS [2]
and SHARAD [3]. fc is the central frequency of the radar,
λ depicts the wavelength (which is reported for the dielectric
constant of the vacuum,εr = 1, and for an icy subsurface
material,εr = 3.15), BW represents the radar bandwidth,δv
is the vertical (range) resolution in the subsurface, andδal and
δac are the along- and across-track resolutions, respectively.
DF is the theoretical Fresnel zone calculated at the surface.
Fig. 1 shows the typical acquisition geometry of orbiting radar
sounders.

The sizes of the radar footprints reported in Tab. I are com-
parable with the diameter of the corresponding Fresnel zone,
from which the returns are supposed to be coherent. However,
the surface and especially the subsurface, which is the target
of our investigation, are far from being flat and always present
a certain amount of roughness, which introduces a significant
non-coherent component in the scattering [23]. Indeed, the
amount of roughness drives the across-track resolution, which,
for MARSIS and SHARAD, is controlled only by their dipole
antenna pattern as no synthetic aperture processing is possible
in the across-track direction. It is thus possible to consider
the radar footprints sufficiently wide to assume that many
different independent scatterers contribute to the scattering for
each resolution cell.

In the following, we will focus on the statistical distribu-
tion of amplitude signals. The analysis of amplitude data is
preferred here with respect to intensity data due to the large
dynamic that characterize radar sounder acquisitions, which

vsc

δal

δac

hsc

Fig. 1. Typical acquisition geometry of an orbiting radar sounder.vsc is the
pacecraft velocity,hsc represents the orbit altitude, andδal and δac are the
ground resolution in the along-track and across-track directions, respectively.

is much more amplified in intensity data and may affect the
stability of the analysis.

1) Rayleigh pdf:The simplest pdf that describes the ampli-
tudex of the returns from a large numberQ of independent
scatterers is the Rayleigh distribution:

pR(x) =
2x

µz
exp

[

−x
2

µz

]

, (1)

wherez indicates the signal power(z = x2), andµz is the
only parameter of the distribution and represents the mean
power of the signal [22]. Eq. (1) is valid forx ≥ 0 (this
also holds for the other pdfs which will be presented in the
following) and the mean value ofx is given byµx =

√
πµz/2.

The corresponding distribution in the power (intensity) domain
is the negative exponential distribution. It is worth noting that
the Rayleigh distribution is also the ideal theoretical model for
the amplitude when a zero-mean additive white Gaussian noise
(AWGN) affects the in-phase and quadrature signals received
by the radar in areas of no subsurface scattering.

2) Nakagami pdf:The second model that we consider is
the Nakagami pdf, which is a two-parameter function given
by [24]:

pN(x) = 2

(

vN
µz

)vN x2vN−1

Γ(vN )
exp

[

−vNx
2

µz

]

, (2)

wherevN is calledshapeor order parameterandΓ(.) depicts
the gamma function. The validity range ofvN is (0;+∞). The
Nakagami pdf for amplitude data corresponds in the intensity
domain to the Gamma pdf described by the shape parameter
vΓ = vN and the mean intensityµz [24]. The Gamma pdf has
been widely used for the modeling of radar signals and is a
generalization of other well-known distributions, such asthe
negative exponential and chi-square [25]. In particular, when
vΓ is an integer value, the Gamma pdf can be derived as
the sum ofvΓ identical independent exponentially distributed
random variables. Similarly, in the amplitude domain the
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TABLE I
MAIN CHARACTERISTICS OF THEMARSIS AND SHARAD RADAR SOUNDERS OPERATING ATMARS.

Instrument fc λ (εr = 1) λ (εr = 3.15) BW δv (εr = 3.15) δal δac DF

MARSIS 1.8–5 MHz 167–60 m 94–34 m 1 MHz 85 m 5–10 km 10–30 km∼10 km
SHARAD 20 MHz 15 m 8.5 m 10 MHz 8.5 m 0.3–1 km 3–7 km ∼3 km

Nakagami pdf is a generalization of the Rayleigh pdf, which
can be obtained by settingvN = 1 in (2).

3) K pdf: The last distribution that we consider is the K
distribution, defined as [22]:

pK(x) =
4

Γ(vK)

(

vK
µz

)(vK+1)/2

xvKKvK−1

[

2x

√

vK
µz

]

,

(3)
whereKvK−1(.) is the modified Bessel function of the second
kind of ordervK − 1. The parametervK is also called shape
(or order parameter), and its validity range is(0;+∞). The
K distribution has also been used for modeling sea clutter
and distributed targets of different types in SAR images. It
is derived by assuming that the number of scatterers within a
resolution cellQ fluctuates being controlled by a birth-death-
immigration process, i.e.,Q is a random variable that follows
a negative binomial distribution [22]. The assumption that
the number of scatterers varies between different resolution
cells is in agreement with the scenario represented by a radar
sounder acquisition, where within each single radargram frame
a different number of scatterers (e.g., subsurface interfaces)
may contribute to the scattering measured in different time
samples.

The K distribution is also obtained by modeling the radar
intensity z as a compound pdf, also referred to asproduct
model. This formulation expresses the radar intensity as the
product of two uncorrelated processes with different spatial
scales: an underlying RCS and a multiplicative speckle con-
tribution. The mathematical representation of this formulation
is:

pK(z) =

∫

∞

0

p1(z/s)p2(s)ds, (4)

wherep2(s) represents the pdf of the underlying RCS (which
only depends on the physical characteristics of the scatterers)
and p1(z/s) is the speckle contribution, which arises as a
consequence of their random distribution and orientation.By
assuming an underlying RCS which is Gamma distributed and
a speckle contribution modeled by a negative exponential pdf,
both the signal intensity and amplitude result K distributed
[22].

The product model is thus suited to the modeling of spatially
non-homogeneous targets. As proposed in [26] and [27],
p1(z/s) can be interpreted as the density of the returns from
an incremental area of a surface whose reflectivity varies
spatially with means, while p2(s) describes the bunching
of scatterers in terms of spatial variations of the underlying
RCS, which are on a much larger scale than the variations
described byp1(z/s). Such a formulation has been effectively
used to model sea clutter, where scatterers are bunched by
swell structure [27]. This situation to a certain extent resembles
the measurements performed by a radar sounder in presence

0
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Fig. 2. Examples of pdf curves obtained using the models presented in Sec.
II. For all the curvesµz = 5.

of subsurface layer stratigraphy, where the returns are bunched
at each interface. The K distribution has thus physical basis
which are in agreement with the characteristics of radar
sounder acquisitions.

Fig. 2 shows a comparison between the Rayleigh, Nakagami
and K distributions for a fixedµz and varying shape parame-
ters.

Other pdfs can be used to model radar data, e.g., Rice,
log-normal, Weibull [22]. In particular, for the analysis of
radar sounder signals, the Rice distribution is suited to the
modeling of surface returns from flat surfaces, allowing the
estimation of the coherent scattering for inversion purposes
[28]. However, the pdfs selected for the analysis reported
in this paper cover the most important classes of theoretical
distributions which are used for the modeling of radar data,and
have the advantage to allow us to describe the scattering from
subsurface features with a physical-based approach. As such,
they represent generalizations or approximations of many other
distributions proposed in the literature. It is worth noting that
the research of the absolute best fitting pdf for radar sounder
signals is out of the scope of this paper.

III. E MPIRICAL ANALYSIS OF THE STATISTICAL MODELS

ON SHARAD RADARGRAMS

With the goal of studying the statistical distribution of
real data, we analyzed different subsurface target types and
studied the statistical distributions of their returns by fitting the
theoretical pdfs described in Sec. II to the data. We selected
as test data a set of SHARAD radargrams of the NPLD of
Mars. Such radargrams show different target types, from very
strong scattering linear interfaces (due to ice stratigraphy) to
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smooth returns from the base of the NPLD. An example of
SHARAD radargram of the NPLD of Mars and its ground
track are reported in Fig. 3.

A. Definition of Target Classes and Dataset Description

The target classes that we investigated are the following:no
target(NT), strong layers(SL), weak layers(WL), low returns
(LR), basal returns(BR). The classno targetcorresponds to
areas of the radargram where no scattering is visible. These
are the shallow part of the radargram, before any surface
return, and the areas in the subsurface where no interfaces are
detected. We definestrong layersthe areas of the radargram
where dense and strong scattering layering is visible. This
corresponds generally to areas in the shallow subsurface ofthe
NPLD. The classweak layerscorresponds to the subsurface
scattering related to less dense and less strong scattering
layering, which usually occurs below the areas described by
the classstrong layers. The classlow returns includes the
areas of the radargram containing very weak scattering coming
from deep structures. When these are present, they are usually
located between the areas ofweak layersand basal returns.
Finally, the classbasal returns is related to the scattering
coming from the base of the NPLD, which nature gives
a diffuse scattering especially in correspondence of the so-
called basal unit [7]. Fig. 4 highlights such classes on the test
radargram of Fig. 3.

The analysis has been carried out on 7 SHARAD radar-
grams of the NPLD of Mars. The main characteristics of the
SHARAD instrument are summarized in Tab. I. The radar-
grams were stored in the Reduced Data Record (RDR) format
[30], and have been downloaded from the the Geosciences
Node of NASA’s Planetary Data System (PDS) [31]. We
extracted the amplitude information and aligned in time the
echoes using the information contained in the RDRs. As the
data are highly oversampled in the along-track direction due
to the high pulse repetition frequency (PRF) of the system, we
applied a downsampling factor of 15 in the selection of the
radargram frames. Each frame thus corresponds to an along-
track step which can vary approximately between 270 and
500 m depending on the amount of presumming performed
onboard the instrument. No multilooking has been performed
in order to maintain the original statistics of the signals.In the
range direction each frame is sampled every 75 ns. Therefore,
each sample corresponds to a free-space distance of about 11.3
m, which scales to approximately 6.3 m in ice(εr = 3.15).
The acquisitions have been cut in order to consider only the
NPLD area. The resulting radargrams are made of a number of
samples between 1,071,869 and 2,582,624. On each radargram
we selected manually the areas corresponding to the classes
defined in the previous subsection. In Tab. II we report for each
analyzed acquisition its identification number and the number
of samples per class we collected. It is worth noting that a
very high number of samples for each class in each radargram
is considered in order to have a reliable statistical analysis.

B. Procedure for the Estimation of pdf Parameters

For each class type we estimated the parameters of the
Rayleigh, Nakagami and K distributions using a Maximum

TABLE II
SHARAD RADARGRAMS USED IN THE ANALYSIS AND NUMBER OF

SAMPLES PER TARGET CLASS COLLECTED FOR EACH RADARGRAM.

Radargram NT SL WL LR BRnumber

0371502 212,311 9,443 18,233 18,017 50,905
0385902 166,832 4,425 6,284 13,289 21,417
0681402 209,416 41,459 22,264 44,829 130,687
0794703 209,057 14,586 27,004 46,207 71,387
1292401 113,768 4,701 11,173 12,049 37,082
1312901 148,651 9,173 17,596 51,218 26,684
1319502 195,748 14,688 18,952 33,448 72,582

Likelihood (ML) estimation approach. For the Rayleigh dis-
tribution the ML estimatẽµz of the only parameterµz is given
by the sample mean power [25]:

µ̃z =
1

n

n
∑

i=1

x2i , (5)

wherexi depicts an amplitude sample, andn is the number
of considered samples.

For the Nakagami distribution, the estimateµ̃z is obtained
as for the Rayleigh distribution, and is given by (5). The
calculation of ṽN has been performed using the classical
estimator proposed by Greenwood and Durand [32], which
is considered in the literature an accurate estimator for the
shape parameter of the Nakagami distribution [33]. Therefore,
ṽN has been derived by:

ṽN =























(0.5000876+ 0.1648852y− 0.0544274y2)/y,
0 < y ≤ 0.5772

8.98919+ 9.059950y+ 0.9775373y2

y(17.79728+ 11.968477y+ y2)
,

0.5772 < y < 17,
(6)

where

y = ln

(

µ̃z

F

)

(7)

and

F =

(

n
∏

i=1

x2i

)
1

n

. (8)

The ML estimation of the K distribution has been obtained
retrieving theṽK and µ̃z estimated values by the numerical
maximization of the log-likelihood function, according to[34],
i.e.,

(ṽK , µ̃z) = arg max
(vK ,µz)

{ln [ln(vK , µz;x1, x2, . . . , xn)]} ,
(9)

where

ln [ln(vK , µz;x1, x2, . . . , xn)] = vK

n
∑

i=1

lnxi

+

n
∑

i=1

ln

{

KvK−1

[

2xi

√

vK
µz

]}

(10)

+n

{

vK + 1

2
ln

(

vK
µz

)

+ ln 4− ln Γ(vK)

}

,
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10 µs

(a)

(b)

Fig. 3. (a) Portion of the SHARAD radargram 1319502, and (b) its acquisition track highlighted on an altimetric map of theNPLD of Mars. The altimetric
map has been derived from Mars Orbiter Laser Altimeter (MOLA) [29] data. The radargram corresponds to the solid line.

SL

WL

LR
LR

SL
SL

SL

WL LR
BR

NT

NT

Fig. 4. Target classes used in the statistical analysis presented in this paper highlighted on the radargram showed in Fig. 3.

and ln(vK , µz ;x1, x2, . . . , xn) is the likelihood function for
the K distribution. Due to numerical constraints, the rangeof
values ofvK has been limited between 0.1 and 50. However,
this does not affect the generality of our analysis. Indeed,on
the one hand, the characteristics of the signals never require
values ofvK lower than 0.1. On the other hand, forvK ≥ 50
the K distribution becomes nearly Rayleigh [34]. Therefore,
the use of values greater than 50 forvK is not significant for
the comparison between the fitting performance of the two
pdfs. For the parameterµz we only imposed a lower limit
at 0.1, which is well below the typical noise mean power of
SHARAD data.

C. Results

Tab. III reports the fitting accuracies obtained for the dif-
ferent classes of targets for each analyzed radargram. Such
accuracies have been evaluated in terms of root mean square
error (RMSE) and Kullback-Leibler divergence (KL) between
the normalized histogram of the data and the histogram
obtained by the fitting of each distribution. The KL divergence

is defined as [35]:

KL(A,B) =
∑

xi

A(xi) log
A(xi)

B(xi)
, (11)

whereA andB represent the probability distribution of the
samples and of the theoretical fit, respectively. The valuesof xi
depend on the size of the bins used for the computation of the
histograms. This size has been calculated for each target class
according to the method proposed in [36], which is suited for
unknown distribution data values, and has already been used
for the computation of histograms of SAR images [37]. As an
example, Fig. 6 shows the histogram and the ML estimates
for each target class for the test radargram of Fig. 3.

The results point out that the best fitting distribution is in
almost all the cases the K distribution. Such results agree with
the physical basis of the K distribution, which can describe
effectively the cases where the scatterers are bunched (see
Sec. II). Fig. 5 shows graphically the mean and the standard
deviation of the parameters derived for the K distribution
for each target class. It is possible to note that within each
class the parameters of the distributions are quite stable.
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Moreover, it is also worth noting that different targets are
described by different parameters. The K distribution shows
lower fitting performances for theno target case. This is
due to the numerical limit imposed tõvK (which leads to
ṽK = 50 for the no targetclass for all the test radargrams).
However, as previously mentioned, the higherṽK the more
the distribution approximates the Rayleigh pdf. The Nakagami
distribution provides almost always a more accurate fit than
the Rayleigh distribution except for the case of theno target
class. For theno targetcase, as expected from the theory, the
Rayleigh distribution is an effective estimate as it provides
accurate estimations using only one parameter. The Nakagami
distribution has approximately the same fitting performance
using two parameters, but̃vN is always nearly 1, i.e., it
approximates the Rayleigh pdf. The Rayleigh pdf can thus be
considered the best fitting distribution for theno targetareas.
This confirms that the background noise of the SHARAD data
can be modeled as a zero mean AWGN in both the in-phase
and quadrature components.

Let us now focus on the computational complexity of the
ML estimation for the three considered distributions. Such
issue becomes relevant when the statistical analysis of the
signals is propaedeutic to other processing steps, e.g., filtering
or feature-extraction algorithms. The calculations of theML
estimates for the Rayleigh and Nakagami pdfs are performed
analytically and their computational time is negligible ona
standard workstation. Instead, the maximization of (10) for
the estimation of the parameters of the K distribution must
be performed numerically. Although the computational time
in our tests is still in the order of less than one minute, it
may become not negligible when analyzing a large series of
radargrams. When the computational time becomes a limit
in practical analysis scenarios, one may consider to use the
Nakagami distribution for the modeling of the signal statistics
in order to speed up the processing, at the cost of slightly
lower accuracies.

IV. PROPOSEDTECHNIQUE FOR THEGENERATION OF

SUBSURFACEFEATURE MAPS

The results presented in the previous section can be used
to study the radar sounder signals and analyze the scattering
signatures of different types of targets. However, they also
open to a wide range of applications for the automatic analysis
of the radargrams. As mentioned in the introduction, planetary
radar sounding missions have provided and are still providing
a large amount of data, which have been studied mostly by
means of manual investigations. In this framework, the auto-
matic detection of radargrams containing subsurface features
from the whole available set of radargrams, and the auto-
matic identification of the subsurface areas containing relevant
features within each radargram become important tasks that
can greatly support scientific investigations. In this section we
propose a novel automatic method for the generation of maps
of the subsurface areas containing relevant features within a
radargram by analyzing the statistical distributions of local
parcels of the radargram.
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Fig. 5. Mean values and range of variation of the parameters of the fitted
K distributions for each target class: (a)ṽK ; (b) µ̃z .

A. Proposed Technique

As discussed in Sec. III, the background noise of SHARAD
radargrams is Rayleigh distributed. The noise characteristics
can be simply measured using the samples belonging to the
free space region of the radargram, i.e., before any surface
echo. Therefore, the statistical distribution of the noisecan be
determined precisely and in an automatic way. By measuring
the statistical difference between the histograms of subsurface
parcels and the noise distribution it is thus possible to discrim-
inate in an unsupervised way the areas containing only noise
from the regions which contain subsurface features. Several
statistical indicators can be used to measure the difference
between two distributions. Here, we propose the use of the
KL divergence between the histogram of the samplesH and
the theoretical noise distributionN , i.e., KLHN = KL(H,N).
The noise characteristics can vary between different acquisi-
tions (see Fig. 5). This is mainly due to different conditions
of acquisition, e.g., in terms of solar activity or spacecraft
attitude, which may raise the background noise level. The
proposed algorithm takes into account this issue and adapts
its behavior to the variations of the background noise levelby
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Fig. 6. Empirical and ML distributions for each target classfor the SHARAD radargram 1319502 (see Fig. 3): (a)no target, (b) strong layers, (c) weak
layers, (d) low returns, (e) basal returns, (f) summary of the fitted K distributions for each target class.
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TABLE III
FITTING PERFORMANCES OF THERAYLEIGH , NAKAGAMI AND K DISTRIBUTIONS TO THE SAMPLE AMPLITUDE DATA FOR EACH SCATTERING CLASS.

THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Radargram Distribution NT SL WL LR BR
number RMSE KL RMSE KL RMSE KL RMSE KL RMSE KL

0371502
Rayleigh 0.0031 0.0067 0.0074 0.0381 0.0133 0.0516 0.0125 0.0108 0.0106 0.0243
Nakagami 0.0031 0.0067 0.0032 0.0108 0.0075 0.0186 0.0085 0.0043 0.0079 0.0146

K 0.0041 0.0068 0.0028 0.0060 0.0018 0.0021 0.0046 0.0028 0.0024 0.0033

0385902
Rayleigh 0.0032 0.0029 0.0118 0.1035 0.0147 0.0475 0.0161 0.0293 0.0108 0.0313
Nakagami 0.0031 0.0030 0.0068 0.0418 0.0103 0.0249 0.0121 0.0153 0.0092 0.0214

K 0.0047 0.0031 0.0026 0.0067 0.0046 0.0056 0.0059 0.0042 0.0045 0.0058

0681402
Rayleigh 0.0034 0.0045 0.0085 0.0707 0.0222 0.1258 0.0177 0.0247 0.0193 0.0675
Nakagami 0.0034 0.0045 0.0054 0.0285 0.0141 0.0503 0.0139 0.0136 0.0149 0.0362

K 0.0048 0.0046 0.0014 0.0031 0.0044 0.0054 0.0054 0.0033 0.0060 0.0064

0794703
Rayleigh 0.0041 0.0062 0.0027 0.0089 0.0188 0.0732 0.0122 0.0131 0.0155 0.0462
Nakagami 0.0040 0.0060 0.0021 0.0052 0.0120 0.0293 0.0090 0.0068 0.0126 0.0283

K 0.0052 0.0062 0.0014 0.0033 0.0039 0.0028 0.0031 0.0036 0.0052 0.0048

1292401
Rayleigh 0.0046 0.0041 0.0052 0.0288 0.0213 0.1016 0.0152 0.0108 0.0157 0.0343
Nakagami 0.0045 0.0043 0.0043 0.0225 0.0140 0.0456 0.0116 0.0060 0.0124 0.0190

K 0.0062 0.0042 0.0034 0.0110 0.0051 0.0074 0.0087 0.0025 0.0053 0.0058

1312901
Rayleigh 0.0058 0.0048 0.0039 0.0623 0.0253 0.1093 0.0174 0.0272 0.0178 0.0357
Nakagami 0.0058 0.0047 0.0043 0.0500 0.0164 0.0452 0.0149 0.0157 0.0125 0.0189

K 0.0068 0.0048 0.0035 0.0252 0.0057 0.0061 0.0072 0.0065 0.0038 0.0026

1319502
Rayleigh 0.0053 0.0091 0.0029 0.0135 0.0157 0.0540 0.0210 0.0202 0.0178 0.0585
Nakagami 0.0053 0.0089 0.0022 0.0105 0.0079 0.0151 0.0166 0.0109 0.0140 0.0346

K 0.0065 0.0091 0.0025 0.0082 0.0027 0.0029 0.0073 0.0035 0.0056 0.0070

automatically detecting and measuring the statistical charac-
teristics of the free space region for each radargram.

A block scheme of the proposed technique is shown in
Fig. 7. The main steps of the technique are explained in
the following using the SHARAD radargram of Fig. 3 as a
reference example.

1) First return detection: this step aims at automatically
identifying the returns from the surface for then dis-
criminating in the radargram the parts belonging to the
free space and those associated with the subsurface. The
former is used to estimate the radargram background
noise signal distribution in the next step. For each frame
(column) j of the radargram the algorithm detects the
position of the first sample which is statistically different
from the frame background noise. We denote such a
position asf(j) and calculate it as follows:

f(j) = min {i : x(i, j) > µN + γ1σN} ∀j (12)

wherex(i, j) is the amplitude of the sample of the frame
j at the time stepi; i ∈ [1, I]; j ∈ [1, J ]; I = 667 is
the number of samples of a SHARAD frame;J is the
number of frames of the radargram;µN and σN are
the estimated frame noise mean amplitude and standard
deviation, respectively;γ1 is a multiplicative factor. The
detected samples are in the ideal case representative of
the nadir surface return. This is not true when lateral
clutter echoes arrive to the receiver before the nadir
return. The local statistics of the noise is estimated
for each frame using its last 50 samples, which are in
general free from subsurface features as the signal loss
is very high at the corresponding depth. If no sample
fulfills the condition, the value ofγ1 is decreased and

the procedure is repeated. At each iteratione the value of
γe is calculated using a positive damping factord < 1,
according to:

γe = d · γe−1 ∀e = 2, . . . , E (13)

whereE is the maximum number of iterations.E, the
initial value γ1 and the damping factord are specified
by the user. Note that from (12) the minimum signal
level necessary to perform a detection cannot be lower
than the frame noise meanµN . In the case that afterE
trials no sample fulfills the condition yet, the first return
position of the considered frame is estimated using the
average position of the first adjacent frames for which
the detection was successfully. After the frame-based
detection, a smoothing function is applied in order to
reduce the effects of both outliers and missing detec-
tions. The smoothing function performs local regression
using weighted linear least squares and a first degree
polynomial model. Using this approach, for each frame
the algorithm detects the most reliable first return at
the first iteration (according to a user-defined minimum
signal level dependent onγ1). The reliability of the
detection decreases as the number of iterations increases.
By properly settingE andd the user can thus tune the
reliability of the first return detection. The result of the
first return detection applied to the test radargram using
E = 3, γ1 = 4.5, andd = 0.9 is shown in Fig. 8a. The
first return line is detected with good accuracy for most
of the frames composing the considered radargram. The
only exception corresponds to a part of the radargram
where no returns are visible until a certain depth for a
relatively long series of frames. As the number of frames
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where no returns are visible is large, the smoothing
procedure cannot recover the missing part of the first
return line. In order to correct for this error, it would
be necessary to use very large smoothing windows.
However, this would compromise the accuracy of the
detection of the first return on the whole radargram, as
the detected line would result too much smoothed. For
this reason, in this paper we preferred to give higher
priority to achieve a good detection of the first return
line than to correct for large missing parts.

2) Estimation of the noise statistics: in this step the algo-
rithm uses all the samples of the radargram belonging to
the free space regionRfs to estimate the parameterµz

of a Rayleigh distribution, according to the ML approach
(see Sec. III-B).Rfs is defined as the upper part of the
radargram delimited by the line representing the first
returns identified in the previous step, i.e.,

Rfs = {(i, j) : 0 < i < f(j)− wG} , (14)

wherewG is a positive constant used in order to in-
troduce a guard interval to take into account possible
uncertainty in the detection of the first returns. The
selection of the value ofwG should be made according
to the level of reliability achieved by the first return
detection. However, in our experiments the choice of the
value ofwG has never been a critical issue.wG = 10
has been used in all our tests. Such a value corresponds
to a distance of approximately 112 m.

3) Calculation of KLHN : a map of KLHN is gener-
ated using a sliding window ofla × lr samples (az-
imuth × range), and a step ofta and tr samples
in the azimuth and range direction, respectively. The
distribution ofN is the one estimated in the previous
step. The value of KLHN is averaged in the intersections
of overlapping windows. This process is applied only to
the subsurface part of the radargram, which is defined as
the bottom part of the radargram delimited by the first
return line. The choice of the size and of the steps of the
sliding window should be driven by the characteristics of
the considered targets, which are generally extended in
the azimuth direction but can present sharp variations in
the range direction. Fig. 8b shows the values of KLHN

obtained on the test radargram usingla = 40, lr = 10,
ta = 8, and tr = 10. These values correspond to about
11–20 km, 63 m, 2.2–4 km, and 63 m, respectively
(range distances have been calculated usingεr = 3.15).

4) Thresholding: in this step the algorithm produces a bi-
nary map which discriminates between the presence and
the absence of subsurface features by thresholding the
image of KLHN using the thresholdthrKL . The value
of thrKL can be chosen either manually or automatically
[38]. Fig. 8c shows the binary map obtained from Fig.
8b by usingthrKL = 0.13.

B. Results and Discussion

The results presented in Fig. 8b show a description of the
characteristics of the subsurface in the radargram of Fig. 3

in terms of statistical difference from the background noise
computed according to the values of the KLHN distance. Such
a difference may vary within the same scattering class. As an
example, the statistical characteristics of the scattering coming
from the basal area are not uniform. Fig. 8c shows the map
of the subsurface features of the aforementioned radargram.
A qualitative comparison between Fig. 3 and Fig. 8c points
out the high accuracy obtained by the proposed technique
in the detection of subsurface features. In order to measure
quantitatively the performance of the proposed algorithm,for
each tested radargram we selected randomly 3000 reference
samples from the regions where it was possible to state
clearly whether subsurface features were present or absent.
Using such samples, we evaluated the number of missed and
false detections yielded by the proposed algorithm with the
parameters reported in the previous subsection. The obtained
results (see Tab. IV) point out that most of the subsurface
features present in the radargrams are correctly detected.As
it is visible in Fig. 8c, the areas corresponding to the target
classesstrong layers, weak layersandbasal returnsare mostly
correctly detected by the algorithm, whereas the classlow
returns is only partially detected. This can be explained by
the simple sliding window and averaging model adopted in
this paper. This acts as a low pass filtering and averages the
statistical characteristics of the classeslow returns and no
target, which become similar from the statistical point of view.
The choice of the parameters of the algorithm should be driven
by both the sensitivity needed for the detection and the type
of features which have to be detected.

The results of the proposed algorithm can be a starting point
for a subsequent more detailed analysis of the detected targets,
which can be achieved by estimating the statistical parameters
of the local distributions, according to a given fitting model,
e.g., the K distribution.

From a more general point of view, the performance ob-
tained by the proposed technique allows one to assess with
very high reliability whether a radargram contains or does
not contain subsurface features. Thus, the technique can be
effectively exploited to discriminate from the huge set of ac-
quisitions the radargrams with significant subsurface features
(which should be object of further analysis) from those that
do not have subsurface features.

A possible extension of the proposed technique is to de-
rive maps of the subsurface features by calculating the KL
divergence between a theoretical distribution fitted to thelocal
histogram (e.g., the K distribution) and the theoretical noise
distribution. The use of the fitted distribution in place of the
sample histogram can be seen as an implicit filtering of the
signal aimed at discarding outliers.

It is worth noting that the presented approach cannot detect
the difference between real subsurface features and clutter
returns coming from the surface topography. The detection of
clutter returns from single detected radargrams cannot be done
automatically without the use of topographic data or clutter
simulations. However, the proposed method can be simply
integrated in a processing chain including a clutter detection
step which masks the clutter areas in the radargram according
to available clutter simulations.
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Fig. 7. Block scheme of the proposed technique for the generation of subsurface feature maps.
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Fig. 8. (a) Detected first returns on SHARAD radargram 1319502 (see Fig. 3). (b) Map of KLHN obtained on the same radargram. Values of KLHN > 3

have been saturated to 3 for visualization purposes. (c) Binary map obtained from (b) by thresholding KLHN at thrKL = 0.13.

TABLE IV
ACCURACY PROVIDED BY THE PROPOSED TECHNIQUE FOR THE GENERATION OF SUBSURFACE FEATURE MAPS.

Radargram Feature Missed % missed Non-feature False % false Total % total
number samples alarms alarms samples alarms alarms error error

0371502 492 28 5.69 2,508 240 9.57 268 8.93

0385902 515 50 9.71 2,485 189 7.61 239 7.97

0681402 830 44 5.30 2,170 305 14.06 349 11.63

0794703 718 8 1.11 2,282 362 15.86 370 12.33

1292401 491 9 1.83 2,509 277 11.04 286 9.53

1312901 625 21 3.36 2,375 304 12.80 325 10.83

1319502 657 34 5.18 2,343 318 13.57 352 11.73

V. PROPOSEDTECHNIQUE FOR THEAUTOMATIC

DETECTION OFBASAL RETURNS

In this section we propose an algorithm aimed at detecting
the deepest scattering area of a radargram. We applied such
a technique to the detection of the basal returns coming from
the base of the NPLD in SHARAD radargrams. However,
after proper tuning, it can be adapted to other operational
conditions (e.g., to the detection of the bedrock returns in
data acquired by airborne sounders on Earth’s polar regions).
As mentioned in Sec. III, basal returns in the NPLD include
the scattering from the so-called basal unit. The basal unitis
often described as sandy with varying amounts of volatiles

[7]. Different hypotheses about its origin have been proposed
in the literature [39]. SHARAD is able to penetrate the basal
unit only to a certain extent. As shown in Sec. III, the returns
coming from the basal unit in SHARAD radargrams are mostly
diffuse. The mean amplitude of the signals varies spatially
depending on the local geology of both the basal unit and
the overlying ice stratigraphy. However, the results obtained
in the following demonstrate that the statistical behaviorof
the signals is in average stationary at least in single SHARAD
acquisitions.
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A. Proposed Technique

A block scheme of the proposed technique is shown in Fig.
9. The technique is based on the statistical analysis carried out
in Sec. III. It composes the basal scattering area using a region-
growing approach. The obtained regions are kept or discarded
according to the statistical distribution of their samples, which
has to be similar to the expected distribution of the basal
returns. The latter is estimated automatically by the algorithm.
The technique is made up of two main phases: i) definition
of an initial map of the basal scattering area, and ii) iterative
refinement of the initial map. The two phases are described in
detail in the following along with example images showing the
main outputs (see Fig. 10). As test case we use the radargram
shown in Fig. 3.

1) Definition of an initial map of the basal scattering area:
the algorithm selects seed regions that have a high probability
to belong to the basal scattering area. Then, it uses a region-
growing approach which exploits a KLHN map (calculated
using the concepts introduced in Sec. IV) in order to produce
a first initial map of the basal returns. In the following we
describe in detail each step of this phase of the algorithm.

• First return detection and calculation of KLHN : the
radargrams are cut on the area of interest and the pro-
cedure described in Sec. IV is applied in order to detect
the surface line, estimate the noise statistics, and calculate
the KL distance between the local signal histogram and
the estimated noise statistical distribution. The calculated
image of KLHN is used as basis for the next steps.

• KLHN thresholding: the goal of this step is to extract the
regions which have a statistical distribution significantly
different from that for the noise distribution. Such regions
will be used by the algorithm to select the seeds of the
basal scattering area in the next step. Therefore, the map
of KLHN is thresholded using a thresholdthr1 in order
to produce a binary image KL1, defined as:

KL1(i, j) =

{

1 if KL HN (i, j) ≥ thr1
0 otherwise.

(15)

The value chosen forthr1 should be high enough to
identify only few small regions of the basal scattering
area, besides strong scattering areas belonging mostly
to the strong layersand weak layersclasses. In our
experiments a value equal to 1.2 fulfilled this condition.
The image of KL1 for the test radargram is shown in Fig.
10a.

• BR seed selection: the binary image KL1 contains a set
R1,0 of disjoint regions. Only those which are likely to
be related to the basal returns are kept. The selection
is performed on the basis of geometrical criteria, which
take into account the usual position of the basal returns
in the radargrams, i.e., i) the regions should correspond
to the maximum ranges (depths); ii) the regions must not
belong to the neighborhood of the surface. Condition i)
is verified by the subset of regionsR′

1,0 defined as:

R′

1,0 = {r : r ∈ R1,0 ∧ ∃j : (i, j) ∈ r

∧ i = max
{

ĩ : KL1(̃i, j) = 1
}}

. (16)

The subsetR′′

1,0 of regions ofR1,0 which fulfill condition
ii) is defined as:

R′′

1,0 = {r : r ∈ R1,0 ∧ r ∩Rs = ∅} , (17)

whereRs is the subsurface neighborhood region of the
first returns considering a distancewss from the first
returns. Formally, it is given by:

Rs = {(i, j) : f(j) < i < f(j) + wss} . (18)

The selection of the value ofwss should take into account
the expected thickness of the area of the NPLD that
is investigated. The final set of selected regionsR1 is
composed by the regions ofR′′′

1,0 = R′

1,0 ∩ R′′

1,0 which
fulfill the condition:

R1 =
{

r : r ∈ R′′′

1,0

∧ īR′′′

1,0
− wup < īr < īR′′′

1,0
+ wdown

}

, (19)

where īR′′′

1,0
is the weighted mean range position of

the regions contained inR′′′

1,0 (using the areas of the
regions as weights),̄ir is the mean range position of the
region r, and wup and wdown are tolerance thicknesses
used to define the width of the range of the expected
basal position.wup is referred to the thickness toward the
surface, whilewdown represents the thickness towards the
bottom of the subsurface. On the one hand, the choice
of wdown is in general not critical as usually no returns
are observed after the basal scattering area. On the other
hand, similarly to the discussion aboutwss, the value of
wup should be chosen according to the expected thickness
of the investigated NPLD region. The output of this step
for the test radargram is shown in Fig. 10b.

• Region growing: the regions selected in the previous step
are used as seeds for a level-set algorithm. Such an
algorithm stretches their contour to fit the basal scattering
area using the KLHN image. The algorithm describes the
contour as the zero level set of the function given by the
following differential equation:

d

dt
ψ = [−αP (i, j) + βC] |∇ψ| , (20)

whereαP (i, j) drives the expansion of the contour, and
the termβC affects its curvature (and thus the “smooth-
ness” of the detection),C is calculated as the mean
curvature of the contour, andα andβ are scalar values
which define the weight of each term of the equation. In
the proposed approach, the termP (i, j) is calculated as

P (i, j) =















KLHN (i, j)− thrL
if KL HN (i, j) < thrU−thrL

2 + thrL
thrU − KLHN (i, j)

otherwise,
(21)

where thrU and thrL define the upper and the lower
thresholds of KLHN , respectively, which limit the ex-
pansion of the contour. Using the definition in (21) the
propagation termP (i, j) is positive (expansion) only
when KLHN (i, j) ∈ (thrU , thrL). More details on level
sets can be found in [40]. The choice of the values of
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thrU and thrL depends on the limit values of KLHN

associated with the basal returns. The most important
parameter isthrL, as it defines the minimum statistical
difference to the background noise which makes the
contour expand.

At the end of the region growing step, the algorithm has
produced an initial map of the basal scattering area composed
by a set of regionsR1,grow.

2) Iterative refinement of the initial map:an (M − 1)-step
iterative procedure is started, which is aimed at detectingthe
weak scattering areas of the basal returns and refining the
previous detection. The steps of the iterative loop performed
for each iterationm (m = 2, . . . ,M ) are as follows.

• Estimation of BR statistics: in this step the algorithm
uses the amplitudes of the samples belonging to the
regions ofRm−1,grow to estimate the parameters of a
K distribution. The estimation is performed using an
ML approach (see Sec. III). In this way, the algorithm
estimates the statistical distribution of the basal returns,
which will be exploited in the next steps.

• KLHN thresholding: a binary map is produced by con-
sidering only the samples of KLHN which belong to the
range[thrm, thrm−1). For each iterationm, the binary
image KLm is thus created according to:

KLm(i, j) =

{

1 if thrm ≤ KLHN (i, j) < thrm−1

0 otherwise.
(22)

The binary map contains a setRm,0 of regions. The value
of each thrm and the number of iterationsM should
ensure that for each iteration the binary map contains
regions with significant areas. Moreover, the value of
thrM must be greater thanthrL to assure that the level-
set algorithm can expand the region contours also in the
last iteration (m =M ).

• Selection of BR seeds and region growing: similarly to the
previous steps, the binary maps are used to select seed
regions, which are likely to belong to the basal scattering
area, and the level-set algorithm is run starting from such
seeds. The subset of seed regionsRm is selected by
means of geometrical constraints, i.e., the regions must
belong to a range neighborhood of the estimated basal
mean range. This is formally translated in a condition
similar to (19):

Rm = {r : r ∈ Rm,0

∧ īRm−1,grow − wup < īr < īRm−1,grow + wdown
}

, (23)

where īRm−1,grow is the weighted mean range position of
the regions contained inRm−1,grow (using their areas as
weights), īr is the mean range position of the regionr,
andwup andwdown are the same tolerance thicknesses as
those used in (19).

• Region selection: a subset of the regions obtained in the
previous step is selected. The selection is made mainly
on a statistical basis. For each region the histogram is
computed and if its KL distance to the estimated basal
return distribution is smaller than an user-defined thresh-
old thrG the region is kept, otherwise it is discarded.

This step is performed to discard the regions which grew
on areas which are not related to the basal scattering
area. Therefore, the value ofthrG should be small (e.g.,
on the order of 0.1). Once the selection is performed,
the provisional set of the basal return regionsRm−1,grow

is merged with the new regions obtaining the new set
Rm,grow. Such a set will be the input for the next iteration.

The result of the iterative phase is thus a binary map composed
by the merging of the whole set of regions produced during
the different iterations.

Finally, small isolated regions are deleted and the final basal
return map is created. The resulting basal return area detected
on the test radargram is shown in Fig. 10c.

B. Results and Discussion

Fig. 11 reports the detected basal return areas of three
radargrams. A qualitative analysis of the results points out that
the proposed technique is able to detect with high accuracy the
scattering areas related to the basal returns both in azimuth and
in range direction. The worst performance is related to the
detection of the NPLD base interface when layering is visible
at close depths. As the subsurface layering is very close to
the basal scattering area, the statistics of the two target types
are very similar; thus, the algorithm may fail to discard the
layered areas.

In order to measure quantitatively the performance of the
algorithm, we followed an approach similar to that used in Sec.
IV. For each of the 7 radargrams analyzed in the paper, we
considered3000 reference samples randomly taken in the areas
of the radargrams for which it was possible to assess clearly
the presence (or the absence) of basal returns. The results
regarding the detection performance are reported in Tab. V in
terms of number of missed and false alarms calculated using
the selected samples. Taking into account that the proposed
algorithm is automatic and unsupervised, the overall accuracy
can be considered high.

An additional note should be made about the choice of the
parameters of the proposed algorithm. As already discussedin
the previous subsection, the algorithm is stable with respect
to several parameters as their choice is not critical and the
same values can be used for a large set of radargrams. The
most sensitive parameters arethr1 and thrL. Indeed,thr1
affects the definition of the initial seeds of the algorithm,
while thrL defines the minimum statistical difference that
the basal returns must have with respect to the background
noise. Therefore, such parameters should be chosen taking
into account the average signal-to-noise ratio (SNR) of the
analyzed radargram. This depends on the noise level, on the
state of the subsurface materials (which affects the signal
propagation), and on the spacecraft attitude (e.g., in certain
configurations calledrolled acquisitionsthe SHARAD antenna
gain is greater than that for standard spacecraft attitude). From
the practical viewpoint, this means that if the algorithm isrun
with the same parameters on a set of radargrams with similar
SNR characteristics, its performances are almost constanton
the whole set of radargrams. In addition, it is worth noting
that almost all the parameters involved in the algorithm have
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a clear physical meaning that represents a guide for a proper
tuning. For all the test radargrams considered in this paper
we used the following algorithm parameters:wss = 20,
M = 3, thr1 = 1.2, thr2 = 0.7, thr3 = 0.2, thrU = 100,
thrL = 0.13, α = 50, β = 10, wup = 50, wdown = 100,
thrG = 0.10. The values ofwss, wup andwdown correspond
to approximately 127 m, 317 m, and 634 m in the subsurface
using εr = 3.15. Using these parameters the computational
time for a test radargram with 3500 frames is in the order of
5-7 minutes depending on the extension of the basal return
region (the time includes the computation of the KLHN map).

The output of the proposed algorithm can be used in
scientific analysis for many purposes. A first application is
the estimation of the NPLD thickness (assuming a reasonable
dielectric constant for the icy materials of the NPLD) using
a large set of acquisitions. Given the resolution of SHARAD
radargrams, it is possible also to extrapolate from the detected
basal topography local buried basins or impact craters. Another
possible application is the measurement of the mean power
scattered by the basal unit at a certain 3D position, which
is useful to study local geology and radar bright (or dark)
areas. Finally, the proposed technique can also be used to
study seasonal variations of the signal propagation loss within
the NPLD. This can be achieved by analyzing the amount
of power scattered by the basal area during different seasons
on the same areas, and relating such measurements to the
absorption experienced by the signal within the NPLD.

VI. CONCLUSION

In this paper the problem of the automatic analysis of radar
sounder signals acquired from orbiting platforms has been ad-
dressed. We presented both a study on the statistical properties
of the sounder signals and two novel automatic techniques
for the extraction of subsurface features from radargrams.In
the study of the properties of sounder signals we analyzed
different statistical models from a theoretical point of view
and then empirically tested them on different real SHARAD
data acquired on the NPLD of Mars. The obtained results
show that the statistical distributions of the amplitude signals
related to different types of targets can be modeled precisely
using the K distribution, while, as expected, the background
noise follows a Rayleigh distribution. Exploiting the results of
the aforementioned study, we have then proposed two novel
techniques for the automatic analysis of radargrams aimed at:
i) producing maps of the subsurface areas showing relevant
features; and ii) identifying and mapping the deepest scattering
areas visible in the radargrams. The former is based on the
comparison of the distributions of local subsurface parcels
with that of noise adaptively estimated on each radargram. The
latter exploits a specifically defined region-growing method
implemented in an iterative technique based on the level-
set algorithm. The results obtained by both the developed
techniques are accurate and thus promising for operational
applications.

The statistical analysis, the techniques and the results de-
scribed in this paper are a first step to the definition of a
general framework for the analysis of radar sounder data.

The goal of such a framework is to extend the low-level
processing chain currently applied to the downlinked data with
information extraction steps. To this end, additional automatic
techniques for the extraction of features and parameters from
radargrams should be developed with respect to what was
presented in this paper. This should be done by taking into
account indications provided from scientists expert of the
considered application and of the related requirements. The
framework could be also extended to the use of input data
coming from other sensors (e.g., optical images of the investi-
gated area) or other information sources (e.g., a simulatorfor
clutter cancellation).

Although human interpretation cannot be fully replaced
by automatic algorithms, automatic methods can significantly
help to overcome the subjectivity intrinsic in manual investi-
gations by providing in a fast way numerical results obtained
with predefined and fixed metrics. These results can then
drive further manual refinements. This research field is also
very important for future radar sounding missions. Indeed,
the techniques developed for the analysis of present planetary
radar sounder data represent a valuable starting point for
the analysis of the data acquired by possible future missions
that will investigate other planetary bodies (e.g., Europaand
Ganymede) or the Earth.

As a future development, we will study novel methods for
the generation of subsurface feature maps based on the local
statistics using context-sensitive techniques for the adaptive
determination of the local parcel size. Moreover, we plan to
develop a procedure for the automatic and adaptive definition
of the parameters of the proposed techniques. Finally, we will
also focus on the identification of automatic methods for the
detection and the filtering of surface clutter returns from the
radargrams.
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