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Abstract—Radar sounders operating on satellite platforms MARSIS operates in a lower frequency range with respect to
(e.g., radar sounding missions at Mars) provide a huge amoun SHARAD and can penetrate the subsurface of Mars up to few
of data that currently are mostly analyzed by means of manual jjometers with a vertical (range) free space resolution 5@

investigations. This calls for the development of novel témiques . .
for the automatic extraction of information from sounder signals m. On the other hand, SHARAD has a maximum penetration

that could greatly support the scientific community. Such aopic  ©f more than 1 km but with higher vertical resolution (15 m
has not been addressed sufficiently in the literature. This @per free space). These instruments are providing a new insight
provides a contribution to fill this gap by presenting both i) a on the subsurface of Mars, both on its Polar Caps [4]-[7]
study of the theoretical statistical properties of radar sainder and at mid-latitudes, where ice has been detected [8]. thdee
signals, and ii) two novel techniques for the automatic anasis ’ . . . ) .

of sounder radargrams. The main goal of the study is the radar sounders are p:_;\rncularly effective on glaciers ayd i .
identification of statistical distributions that can accurately model ~grounds because ice is the most transparent natural niateria
the amplitude fluctuations of different subsurface targets This in the range of frequencies in which they work. The success
is fundamental for the understanding of signal properties @ad of MARSIS and SHARAD lead to the inclusion of a radar
for the definition of automatic data analysis techniques. Tk sounder in the study for the possible future missions to the

results of such a study drive the development of two novel lorati fthe Jupit t h the i
techniques for i) the generation of subsurface feature mapsand exploration of the Jupiter system, where the icy moons Eairop

ii) the automatic detection of the deepest scattering areagisible Ganymede and Callisto are very important targets for ttpe ty
in the radargrams. The former produces for each radargram of instrument [9], [10]. Radar sounding from space is also a

a map showing which areas have high probability to contain possibility for the study of the Earth’s subsurface andriege
relevant subsurface features. The latter exploits a regiomgrowing has been already shown by the scientific community [11].

approach properly defined for the analysis of radargrams to . .
identify and compose the basal scattering areas. Experiméal The sounders currently operating at Mars are providing a

results obtained on Shallow Radar (SHARAD) data acquired on huge amount of data. In general, the planetary scientific-com
Mars confirm the effectiveness of the proposed techniques. munity which handles such data follows a manual investgati

Index Terms—Radar sounding, ground penetrating radar approac_h. Manual analy_sis pf rg\dargrams_isatime-contgjmin
(GPR), signal processing, statistical analysis, featurextraction. ~ task which leads to subjective interpretations of the dath a
limits their scientific return. This calls for the developmhe

of techniques for the automatic extraction of information

|. INTRODUCTION from sounder data, which could greatly support the scientifi

LANETARY radar sounders are orbiting ground penetragommunity. On the one hand, the use of reliable techniques
Ping radars (GPR) which operate at very low frequency (@_Ilows an objective and fast extraction of information from
20 MHz) with a nadir looking geometry. Thanks to their cha€ach radargram as soon as data become available. On the
acteristics, they are able to investigate the subsurfagganf Other hand, the exploitation of such techniques allowsdi j
etary bodies by exploiting the radar signal propagation infhalysis and the combination of many acquisitions, resmilti
the ground and measuring the backscattering from subsurfitthe possibility to analyze subsurface features at sdatgsr
structures [1]. The output of a radar sounder is a radargrdf@n @ single radargram. This can highlight structures that
representing the vertical profile of the subsurface. Nowagaare not visible from the measurements performed on single
two radar sounders are operating at Mars: the Mars Advandgacks. Automatic methods can also play a significant role in
Radar for Subsurface and lonosphere Sounding (MARSIS) [P integrated analysis of the radargrams with measurement
on the Mars Express orbiter of the European Space Agerfitained from other instruments. It is also worth notingt tha
(ESA), and the Shallow Radar (SHARAD) [3] on-board th@utomatic methods developed for the analysis of orbiting
Mars Reconnaissance Orbiter of the US National Aeronauti@lar sounders can be properly tuned for the analysis of
and Space Administration (NASA). Both instruments wergounding data acquired by airborne platforms on the Earth's

provided by the Italian Space Agency (ASI). On the one hangljbsurface.. Finally, such mgthods can _be also exploited for
the processing of data acquired by possible future spacebor
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the analysis of ground-based or airborne GPR signals (ethg signals provided by the SHARAD instrument, the results
[12], [13]), which operate in different frequency rangesl anobtained can be applied also to MARSIS data or to signals
achieve a better spatial resolution with respect to plagetaacquired by other radar sounder instruments after a proper
radar sounders. Moreover, GPR campaigns are often reduttging of the techniques.

to well defined areas with limited extension, for which the The remaining of the paper is organized as follows. In
interpretation of the radargrams can be performed manuaBec. Il we address the problem of the statistical modeling of
without the need of automatic techniques. An exception iadar sounder signals. The models presented are then tested
represented by anti-mines and unexploded ordnance (UX@) real SHARAD data in Sec. lll. Section IV presents an
detection campaigns, which make extensive use of GPR tealsomatic technique for the generation of subsurface featu
nology [14]. Different papers in the past decade proposed tmaps. Section V addresses the automatic detection of basal
use of pattern recognition approaches to the analysis of GRRurns and its application to SHARAD radargrams of the
signals (e.g., [15]). However, they are mainly devoted t® tiNPLD of Mars. Finally, Sec. VI draws the conclusion of this
detection of specific buried objects, such as mines, pipespaper and discusses possible future developments.

tanks buried at small depths using ground-based GPR. Such

objects present hyperbola-like signatures in the radergra ||, STATISTICAL MODELING OF RADAR SOUNDER

which are completely different from the signatures of bdirie SIGNALS

structures present in radar sounder images acquired byngrbi
platforms. The radargrams obtained by airborne acquisitio
over the Earth's polar areas Show S|m|Ia_r|t|es with sp_auaaé)o statistics of the analyzed signals is necessary. In thisosec
radar so.under d_ata acquired on icy bodies. The main featuy review the main characteristics of the sounder signals
present in such images are subsurface echoes coming ffoméﬂ& select three statistical models which are likely to be

interfaces present between different subsurface ice daged ; . : -
L ) o .~ appropriate to model the signal fluctuations. The validity o
basal returns [16]. This is the typical situation shown ie th pprop g y

radargrams related to the Mars' Poles [5], [6] and othersare%UCh models will be tested on real SHARAD data in Sec. Ill.
of the Red Planet [17]. o

Another approach to the analysis of radar sounder me- Background and Motivation
surements is to apply inversion techniques to the signals inThe analysis of radar signals is historically linked to istat
order to estimate the dielectric characteristics of thesstfiace tics. This is due to the coherent nature of the radar signals
[18], [19]. In this context, the correct understanding oé thwhich makes the radar cross section (RCS) of targets fluectuat
radargrams and the development of any information extmactiwhen even slightly changes in the viewing configuration or
technique need the knowledge of the propagation laws iof the target orientation occur [22]. The effects of clutter
the radar signal into the matter in order to avoid erro@nd noise also greatly contribute to the fluctuations of the
in the physical interpretation of the returns [20]. HoweveRCS. Radar signals are thus modeled using probability tiensi
the inversion process is very complex and requires prodenctions (pdf) under the assumption that the signal anngbdit
assumptions on the investigated domain, e.g., on the groyod intensity) is the realization of a random variable withi
composition [21]. each radar resolution cell. Many statistical models havenbe

This paper provides a contribution to fill the gap presenteveloped in order to fit the radar signals related to differe
in the literature on the automatic analysis of planetaryaradtarget types. Such statistical models are based on thealreti
sounder data by presenting a study of the theoretical statiescriptions of the scattering effects, or on empiricabhfitto
tical properties of radar sounder signals. The goal of théemple data. Examples of theoretical pdf commonly used in
study is the identification of a statistical distribution iafn the analysis of radar signals are the Rayleigh, Rice, negati
can accurately model the amplitude fluctuations of differeexponential, Gamma and K distributions. The most important
subsurface targets. On the basis of the results of this studmpirical pdf are the Weibull and log-normal distributions
we then propose two novel techniques for i) the generation [@P].
subsurface feature maps, and ii) the automatic detectitimeof The statistical approach has been extensively used in the
deepest scattering area visible in the radargrams. Theeforranalysis of synthetic aperture radar (SAR) images for the
produces for each radargram a map showing which aredmaracterization of distributed targets such as agricaifields,
have high probability to contain relevant subsurface festu forests or water surfaces. For this type of targets a single
Such a map can be used to identify interesting radargramg@solution cell does not provide sufficient information abo
large datasets or to drive further signal processing steps the scattering characteristics of the surface under iga&in
specific areas within single radargrams. The latter is baseddue to the signal fluctuations, which depend on intrinsic
an iterative procedure that exploits a region-growing radth fluctuations of the target RCS and on the so-ca#ipdckle In
properly defined for the analysis of radargrams to identifgf a order to characterize the analyzed surface it is thus nagess
compose the basal scattering areas. The obtained regienstarcalculate statistical parameters of the distributiontlod
kept or discarded according to the statistical distributad radar signals coming from the area of interest.
their samples. We tested both techniqgues on SHARAD dataln this context, statistical tools can be also exploited for
acquired on the North Polar Layered Deposits (NPLD) dhe analysis of radar sounder signals for the detection and
Mars. Although in this paper we will focus on the analysis ofharacterization of different types of subsurface feaurdis

In order to develop effective information extraction tech-
niques from radar sounder data, a precise knowledge of the



can support the analysis of the radargrams, by automaticall

detecting the regions of interest and extracting infororati %ﬁ;%
which can drive subsequent feature extraction algorithirhs.
goal of this section is thus to define a reference theoretical
framework which can be used for a reliable statistical asialy

of the signals, taking into account the physical charasties hsc
of the targets.

B. Statistical Models

In order to perform an analysis of radar sounder signals, it
is necessary to describe the signal statistical propesidng
into account the physical processes involved in the sdadter
from subsurface features for a typical radar sounder inmstnt
mounted onboard of an aerial or satellite platform. Our goal
to describe statistically the distribution of the signatsning
from the subsurface by considering groups of adjacent sssnpl _ o 3 _
in a predefined neighborhood system extended both in rar L pice ecuston geamety of an sting rceumder . & he
(vertical) and along-track (azimuth) directions. Indeedch ground resolution in the along-track and across-trackctioes, respectively.
radargram can be seen as a 2D image defined in the range and
azimuth directions. The signals measured by the radar glurin
each acquisition window (frames) correspond to the columpsmuch more amplified in intensity data and may affect the
of the 2D image. Thus, pixels in the same neighborhoggability of the analysis.
system describe the geologic features in a given position of1) Rayleigh pdf:The simplest pdf that describes the ampli-
the subsurface. According to this modeling, we can analyggje = of the returns from a large numbér of independent

radargrams with a 2D signal processing approach; this dgatterers is the Rayleigh distribution:
important given that most of the subsurface features dedect

by a radar sounder are not spot features but show a certain 2 [ IQ} 1)
extension, especially in the azimuth direction. Lz ’

As a reference, Tab. | reports the main characteristicseof th
two radar sounders currently operating at Mars: MARSIS [ L
and SHARAD [3]. f. is the central frequency of the radar’ nly parameter of the distribution and represents the mean

A depicts the wavelength (which is reported for the dielectrPOWe' of the signal [22]. Eq. (1.) Is yalid far > 0 (th_is
constant of the vacuun, — 1, and for an icy subsurface also holds for the other pdfs which will be presented in the

material,, = 3.15), By represents the radar bandwidsh, fls)rilowing) and tdh_e mde_atn_g/al_ue qfifhgiven bypic t: v 7:“2/2'
is the vertical (range) resolution in the subsurface, @pédnd e corresponding distribution in the power (intensityytin

5.. are the along- and across-track resolutions, respectivé the negative exponential distribution. It is worth ngtithat

Dr is the theoretical Fresnel zone calculated at the surfa& e Raylt_aigh distribution is also the id.e.al thec_)retical eig‘dr .
Fig. 1 shows the typical acquisition geometry of orbitingaa the amplitude when a zero-mean additive white Gaussiamnois

sounders (AWGN) affects the in-phase and quadrature signals redeive

The sizes of the radar footprints reported in Tab. | are cor%y the radar |n.areas of no subsurface scattering. . .
parable with the diameter of the corresponding Fresnel zone2) Nakagami pdf:The second model that we consider is
from which the returns are supposed to be coherent. HoweJ3f Nakagami pdf, which is a two-parameter function given
the surface and especially the subsurface, which is thettarBy [24]:

of our investigation, are far from being flat and always pnése on \ N g2on—1 ONT2
a certain amount of roughness, which introduces a significan pn(z) = <—) m €xp {— } ) (2)
non-coherent component in the scattering [23]. Indeed, the N
amount of roughness drives the across-track resolutioithwh wherewy is calledshapeor order parameterandT'(.) depicts
for MARSIS and SHARAD, is controlled only by their dipolethe gamma function. The validity rangeaf; is (0; +o0). The
antenna pattern as no synthetic aperture processing ibjgosNakagami pdf for amplitude data corresponds in the intgnsit
in the across-track direction. It is thus possible to comisiddomain to the Gamma pdf described by the shape parameter
the radar footprints sufficiently wide to assume that many = vy and the mean intensity, [24]. The Gamma pdf has
different independent scatterers contribute to the siadtéor been widely used for the modeling of radar signals and is a
each resolution cell. generalization of other well-known distributions, suchtls

In the following, we will focus on the statistical distribu-negative exponential and chi-square [25]. In particuldrem
tion of amplitude signals. The analysis of amplitude data ig- is an integer value, the Gamma pdf can be derived as
preferred here with respect to intensity data due to theelarthe sum ofur identical independent exponentially distributed
dynamic that characterize radar sounder acquisitionsgtwhirandom variables. Similarly, in the amplitude domain the

here > indicates the signal power = z?2), and . is the

Mz

z



TABLE |
MAIN CHARACTERISTICS OF THEMARSISAND SHARAD RADAR SOUNDERS OPERATING ATMARS.

Instrument fe Aler=1) A (er =3.15) By by (er = 3.15) dal dac Dp
MARSIS 1.8-5 MHz  167-60 m 94-34 m 1 MHz 85m 5-10 km  10-30 km-10 km
SHARAD 20 MHz 15 m 8.5 m 10 MHz 8.5m 0.3-1 km 3-7 km ~3 km

0.45

Nakagami pdf is a generalization of the Rayleigh pdf, which

can be obtained by settingy = 1 in (2). 0.4
3) K pdf: The last distribution that we consider is the K 0.35

distribution, defined as [22]: '

3

0.
4 UK)<vK+1>/2 B} { \/W}
r) = ——— —_— Iv KU — 256 I Y
px () T (o) (uz k-1 o 0.25

@3) i
whereK,, _1(.) is the modified Bessel function of the second 02
kind of ordervx — 1. The parametery is also called shape 0-19
(or order parameter), and its validity range(is +o0). The 0.1 |
K distribution has also been used for modeling sea clutter
and distributed targets of different types in SAR images. 19-05
is derived by assuming that the number of scatterers within a
resolution cellQ fluctuates being controlled by a birth-death- 0 1 2 3 4 5 6 7 8
immigration process, i.eQ is a random variable that follows x
a negative binomial dIStrlbutI_On [22]. The gssumptlon th. ig. 2. Examples of pdf curves obtained using the modelsepied in Sec.
the number of scatterers varies between different resoiutiy “For ail the curvesu. = 5.
cells is in agreement with the scenario represented by a rada
sounder acquisition, where within each single radargramé
a different number of scatterers (e.g., subsurface intesfa of subsurface layer stratigraphy, where the returns aretieah
may contribute to the scattering measured in different tingg each interface. The K distribution has thus physical<asi
samples. which are in agreement with the characteristics of radar
The K distribution is also obtained by modeling the radarounder acquisitions.
intensity z as a compound pdf, also referred to @®duct Fig. 2 shows a comparison between the Rayleigh, Nakagami
model This formulation expresses the radar intensity as tked K distributions for a fixegh, and varying shape parame-
product of two uncorrelated processes with different gpatiters.
scales: an underlying RCS and a multiplicative speckle con-Other pdfs can be used to model radar data, e.g., Rice,
tribution. The mathematical representation of this foratioh log-normal, Weibull [22]. In particular, for the analysid o
is: - radar sounder signals, the Rice distribution is suited ® th
prc(2) :/ p1(2/5)pa(s)ds, (4) modelmg of surface returns from ﬂat surf_aces, .aIIowmg the
estimation of the coherent scattering for inversion puegos

whereps (s) represents the pdf of the underlying RCS (whic_{128]- However, the pdfs selected for the analysis reported

only depends on the physical characteristics of the seaser N th.is paper cover the most important c_lasses of theotetica
and py(z/s) is the speckle contribution, which arises as distributions which are used for the modeling of radar daa,

consequence of their random distribution and orientat&yn. have the advantage to_aIIow us t_o describe the scatterimg fro

assuming an underlying RCS which is Gamma distributed afgHbsurface features with a physical-based approach. As suc

a speckle contribution modeled by a negative exponential pH'€Y represent generalizations or approximations of mémgro

both the signal intensity and amplitude result K distrilitediStributions proposed in the literature. It is worth ngtitmat

[22]. the rese_arch of the absolute begt fitting pdf for radar saunde
The product model is thus suited to the modeling of spatial}jgnas is out of the scope of this paper.

non-homogeneous targets. As proposed in [26] and [27],

p1(z/s) can be interpreted as the density of the returns frof{!- EMPIRICAL ANALYSIS OF THE STATISTICAL MODELS

an incremental area of a surface whose reflectivity varies ON SHARAD RADARGRAMS

spatially with means, while p»(s) describes the bunching With the goal of studying the statistical distribution of

of scatterers in terms of spatial variations of the undegyi real data, we analyzed different subsurface target typds an

RCS, which are on a much larger scale than the variatiosisidied the statistical distributions of their returns ijrfg the

described by (z/s). Such a formulation has been effectivelytheoretical pdfs described in Sec. Il to the data. We selecte

used to model sea clutter, where scatterers are bunchedabytest data a set of SHARAD radargrams of the NPLD of

swell structure [27]. This situation to a certain extenerables Mars. Such radargrams show different target types, frorg ver

the measurements performed by a radar sounder in presestoeng scattering linear interfaces (due to ice stratigyapo




TABLE Il
smooth returns from the base of the NPLD. An example of syaRADRADARGRAMS USED IN THE ANALYSIS AND NUMBER OF

SHARAD radargram of the NPLD of Mars and its ground SAMPLESPER TARGET CLASS COLLECTED FOR EACH RADARGRAM
track are reported in Fig. 3.

Radargram

— . b NT SL wL LR BR
A. Definition of Target Classes and Dataset Description number
The target classes that we investigated are the following: 0371502 212,311 9,443 18,233 18,017 50,905
0385902 166,832 4,425 6,284 13,289 21,417
target(NT), strong layer{SL), weak layer{WL), low returns 0681402 209,416 41,459 22,264 44,829 130,687
(LR), basal returns(BR). The classno targetcorresponds to 0794703 209,057 14,586 27,004 46,207 71,387

N is Vi 1292401 113,768 4,701 11,173 12,049 37,082
areas of the radargram where no scattering is visible. These 1312901 148651 0173 17506 5L218 26684
are the shallow part_of the radargram, before any surface 1319502 195748 14,688 18952 33448 72582
return, and the areas in the subsurface where no interfaees a

detected. We definstrong layersthe areas of the radargram

where dense and strong scattgring layering is visible. Thig o qqq (ML) estimation approach. For the Rayleigh dis-

corresponds generally to areas in the shallow subsurfaite of tribution the ML estimatei. of the only parametet. is given

NPLD._The classwveak layerscorresponds to the subsurfacebx the sample mean power [25];

scattering related to less dense and less strong scattering

layering, which usually occurs below the areas described by 1 9

the classstrong layers The classlow returns includes the Pz = in’ ®)

areas of the radargram containing very weak scatteringrogmi

from deep structures. When these are present, they ardysuaherer; depicts an amplitude sample, andis the number

located between the areas weak layersand basal returns of considered samples.

Finally, the classbasal returnsis related to the scattering For the Nakagami distribution, the estimate is obtained

coming from the base of the NPLD, which nature giveds for the Rayleigh distribution, and is given by (5). The

a diffuse scattering especially in correspondence of the gglculation of iy has been performed using the classical

called basal unit [7]. Fig. 4 highlights such classes on ése t estimator proposed by Greenwood and Durand [32], which

radargram of Fig. 3. is considered in the literature an accurate estimator fer th
The analysis has been carried out on 7 SHARAD radsghape parameter of the Nakagami distribution [33]. Theegfo

grams of the NPLD of Mars. The main characteristics of thev has been derived by:

SHARAD instrumerjt are summarized in Tab. |. The radar- (0.5000876 + 0.1648852y — 0.054427412) [y,

grams were stored in the Reduced Data Record (RDR) format 0<y< 05772

[30], and have ,been downloaded from the the Geosuence%N _ 8.98919 + 9.059950y -+ 0.9775373y>

Node of NASAs Planetary Data System (PDS) [31]. We 3

extracted the amplitude information and aligned in time the y(17'7972%g71712'968477y1;ry )

echoes using the information contained in the RDRs. As the ' Sy<ih 6

data are highly oversampled in the along-track directioa dy, ©)

- - here
to the high pulse repetition frequency (PRF) of the system, w 1 <ﬂz)
y =

applied a downsampling factor of 15 in the selection of the Fal @)

radargram frames. Each frame thus corresponds to an alor%?—

track step which can vary approximately between 270 a

500 m depending on the amount of presumming performed n 0

onboard the instrument. No multilooking has been performed F= <H xf)
=1

in order to maintain the original statistics of the signatsthe

range direction each frame is sampled every 75 ns. Thereforerpe (L estimation of the K distribution has been obtained
each sample corresponds to a free-space distance of ah8ut iléltrieving thedx and /i, estimated values by the numerical

m, which scales to approximately 6.3 m in i¢g. = 3.15).  aximization of the log-likelihood function, according[&4],
The acquisitions have been cut in order to consider only thg

NPLD area. The resulting radargrams are made of a number of

samples between 1,071,869 and 2,582,624. On each radargrafiix, fi-) = arg max {In[l,(vk, ft-; 1, Z2,...,25)]},
we selected manually the areas corresponding to the classes (vrcz) 9)
defined in the previous subsection. In Tab. Il we report fahea,nere

analyzed acquisition its identification number and the nemb

(8)

of samples per class we collected. It is worth noting that a [ (Ui, 11 1, T, - -+, )] = VK anlnxi
very high number of samples for each class in each radargram =
is considered in order to have a reliable statistical amalys n -
o +Zln{KvK1 [21:” s } (10)
B. Procedure for the Estimation of pdf Parameters —1 Mz
For each class type we estimated the parameters of the v +1 VK
Rayleigh, Nakagami and K distributions using a Maximum n{ In (Z) +1n4_1nF(UK)}’



(b)

Fig. 3. (@) Portion of the SHARAD radargram 1319502, and {b)tquisition track highlighted on an altimetric map of LD of Mars. The altimetric
map has been derived from Mars Orbiter Laser Altimeter (MQ[29] data. The radargram corresponds to the solid line.

Fig. 4. Target classes used in the statistical analysisepted in this paper highlighted on the radargram showeddn Fi

andl,, (vi, pz; 1,22, ..,2,) is the likelihood function for is defined as [35]:

the K distribution. Due to numerical constraints, the range e

values ofvi has been limited between 0.1 and 50. However, KL(A,B) = ZA(xi) log e (11)
this does not affect the generality of our analysis. Indeed, x; B(a:)

the one hand, the characteristics of the signals Never™®dynere A and B represent the probability distribution of the
values qfvl_( onver than 0.1. On the other_hand, fog > 50 samples and of the theoretical fit, respectively. The vatdies
the K distribution becomes nearty Ra_ylelgh [.34].'.Theref0r%epend on the size of the bins used for the computation of the
the use of yalues greater than 50 for is not significant for histograms. This size has been calculated for each tarags cl
the comparison between the f|tt|ng. performance of the_ cording to the method proposed in [36], which is suited for
pdfs. For _the _parametqzz we only_ |mpos_ed a lower limit nknown distribution data values, and has already been used
at 0.1, which is well below the typical noise mean power Qbr the computation of histograms of SAR images [37]. As an
SHARAD data. example, Fig. 6 shows the histogram and the ML estimates
for each target class for the test radargram of Fig. 3.

The results point out that the best fitting distribution is in
almost all the cases the K distribution. Such results agitre w

Tab. Il reports the fitting accuracies obtained for the dithe physical basis of the K distribution, which can describe
ferent classes of targets for each analyzed radargram. Sefflectively the cases where the scatterers are bunched (see
accuracies have been evaluated in terms of root mean squgee. Il). Fig. 5 shows graphically the mean and the standard
error (RMSE) and Kullback-Leibler divergence (KL) betweedeviation of the parameters derived for the K distribution
the normalized histogram of the data and the histograior each target class. It is possible to note that within each
obtained by the fitting of each distribution. The KL divergen class the parameters of the distributions are quite stable.

C. Results



Moreover, it is also worth noting that different targets are
described by different parameters. The K distribution show 45
lower fitting performances for th@o target case. This is 10
due to the numerical limit imposed tox (which leads to
v = 50 for the no targetclass for all the test radargrams).
However, as previously mentioned, the highigr the more 30
the distribution approximates the Rayleigh pdf. The Nakaiga
distribution provides almost always a more accurate fit thah
the Rayleigh distribution except for the case of tietarget 20
class. For theno targetcase, as expected from the theory, the 5
Rayleigh distribution is an effective estimate as it pread
accurate estimations using only one parameter. The Nakagam
distribution has approximately the same fitting perfornganc 5
using two parameters, buiy is always nearly 1, i.e., it
approximates the Rayleigh pdf. The Rayleigh pdf can thus be SL WL LR BR NT
considered the best fitting distribution for the targetareas. @

This confirms that the background noise of the SHARAD data
can be modeled as a zero mean AWGN in both the in-phase
and quadrature components.

Let us now focus on the computational complexity of the 8o
ML estimation for the three considered distributions. Such
issue becomes relevant when the statistical analysis of the
signals is propaedeutic to other processing steps, etgrirfg 60
or feature-extraction algorithms. The calculations of Me . 5
estimates for the Rayleigh and Nakagami pdfs are performed
analytically and their computational time is negligible an
standard workstation. Instead, the maximization of (10) fo 30
the estimation of the parameters of the K distribution must
be performed numerically. Although the computational time
in our tests is still in the order of less than one minute, it 10
may become not negligible when analyzing a large series of
radargrams. When the computational time becomes a limit SL WL LR BR NT
in practical analysis scenarios, one may consider to use the ()

Nakagami distribution for the modeling of the signal stitis Fig. 5. Mean values and range of v§riation ~of the parametttheofitted
in order to speed up the processing, at the cost of slighﬁydIStrIbunonS for each target class: (@k: (b) /i=-
lower accuracies.
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A. Proposed Technique

IV. PROPOSEDTECHNIQUE FOR THEGENERATION OF As discussed in Sec. lll, the background noise of SHARAD
SUBSURFACE FEATURE MAPS radargrams is Rayleigh distributed. The noise charatiesis
can be simply measured using the samples belonging to the
The results presented in the previous section can be u$esk space region of the radargram, i.e., before any surface
to study the radar sounder signals and analyze the scattecho. Therefore, the statistical distribution of the naiaa be
signatures of different types of targets. However, they alsletermined precisely and in an automatic way. By measuring
open to a wide range of applications for the automatic amalyshe statistical difference between the histograms of stiésel
of the radargrams. As mentioned in the introduction, plaryet parcels and the noise distribution it is thus possible tordis
radar sounding missions have provided and are still progidiinate in an unsupervised way the areas containing only noise
a large amount of data, which have been studied mostly firpm the regions which contain subsurface features. Skvera
means of manual investigations. In this framework, the -autstatistical indicators can be used to measure the differenc
matic detection of radargrams containing subsurface featubetween two distributions. Here, we propose the use of the
from the whole available set of radargrams, and the autdk divergence between the histogram of the samglesand
matic identification of the subsurface areas containingveeit the theoretical noise distributiaN, i.e., KLyy = KL (H, N).
features within each radargram become important tasks ti&e noise characteristics can vary between different acqui
can greatly support scientific investigations. In this mectve tions (see Fig. 5). This is mainly due to different condison
propose a novel automatic method for the generation of magfsacquisition, e.g., in terms of solar activity or spacéicra
of the subsurface areas containing relevant featuresrwithi attitude, which may raise the background noise level. The
radargram by analyzing the statistical distributions ofalo proposed algorithm takes into account this issue and adapts
parcels of the radargram. its behavior to the variations of the background noise leyel
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TABLE Il

FITTING PERFORMANCES OF THERAYLEIGH, NAKAGAMI AND K DISTRIBUTIONS TO THE SAMPLE AMPLITUDE DATA FOR EACH SCATTERIG CLASS.
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Radargram Distribution NT SL WL LR BR
number RMSE KL RMSE KL RMSE KL RMSE KL RMSE KL
Rayleigh 0.0031 0.0067 0.0074 0.0381 0.0133 0.0516 0.01250108 0.0106 0.0243
0371502 Nakagami  0.0031 0.0067 0.0032 0.0108 0.0075 0.0186 0.0085 0.0043 0.0079 0.0146
K 0.0041 0.0068 0.0028 0.0060 0.0018 0.0021 0.0046 0.0028 0.0024 0.0033
Rayleigh 0.0032 0.0029 0.0118 0.1035 0.0147 0.0475 0.0161 0.0293 0.0108 0.0313
0385902 Nakagami  0.0031 0.0030 0.0068 0.0418 0.0103 0.0249 0.0121 0.0153 0.0092 218.0
K 0.0047 0.0031 0.0026 0.0067 0.0046 0.0056 0.0059 0.0042 0.0045 0.0058
Rayleigh 0.0034 0.0045 0.0085 0.0707 0.0222 0.1258 0.0177 0.0247 0.0193 0.0675
0681402 Nakagami  0.0034 0.0045 0.0054 0.0285 0.0141 0.0503 0.0139 0.0136 0.0149 36D.0
K 0.0048 0.0046 0.0014 0.0031 0.0044 0.0054 0.0054 0.0033 0.0060 0.0064
Rayleigh 0.0041 0.0062 0.0027 0.0089 0.0188 0.0732 0.0122013@0 0.0155 0.0462
0794703 Nakagami  0.0040 0.0060 0.0021 0.0052 0.0120 0.0293 0.0090 0.0068 0.0126 0.0283
K 0.0052 0.0062 0.0014 0.0033 0.0039 0.0028 0.0031 0.0036 0.0052 0.0048
Rayleigh 0.0046 0.0041 0.0052 0.0288 0.0213 0.1016 0.0152 0.0108 0.0157 0.0343
1292401 Nakagami  0.0045 0.0043 0.0043 0.0225 0.0140 0.0456 0.0116 0.0060 0.0124 190.0
K 0.0062 0.0042 0.0034 0.0110 0.0051 0.0074 0.0087 0.0025 0.0053 0.0058
Rayleigh 0.0058 0.0048 0.0039 0.0623 0.0253 0.1093 0.0174027@2 0.0178 0.0357
1312901 Nakagami  0.0058 0.0047 0.0043 0.0500 0.0164 0.0452 0.0149 0.0157 0.0125 0.0189
K 0.0068 0.0048 0.0035 0.0252 0.0057 0.0061 0.0072 0.0065 0.0038 0.0026
Rayleigh 0.0053 0.0091 0.0029 0.0135 0.0157 0.0540 0.0210 0.0202 0.017858B.0
1319502 Nakagami 0.0053 0.0089 0.0022 0.0105 0.0079 0.0151 0.0166 0.0109 0.0140 0.0346
K 0.0065 0.0091 0.0025 0.0082 0.0027 0.0029 0.0073 0.0035 0.0056 0.0070

automatically detecting and measuring the statisticatada
teristics of the free space region for each radargram.

A block scheme of the proposed technique is shown in
Fig. 7. The main steps of the technique are explained in
the following using the SHARAD radargram of Fig. 3 as a
reference example.

1) First return detection this step aims at automatically
identifying the returns from the surface for then dis-
criminating in the radargram the parts belonging to the
free space and those associated with the subsurface. The
former is used to estimate the radargram background
noise signal distribution in the next step. For each frame
(column) ;7 of the radargram the algorithm detects the
position of the first sample which is statistically diffeten
from the frame background noise. We denote such a
position asf(;) and calculate it as follows:

fG)=min{i: z(i,j) > un + o~} Vi (12)

wherez(i, j) is the amplitude of the sample of the frame

j at the time step; i« € [1,1I]; j € [1,J]; I = 667 is

the number of samples of a SHARAD framg;is the
number of frames of the radargramjyy and oy are

the estimated frame noise mean amplitude and standard
deviation, respectivelyy; is a multiplicative factor. The
detected samples are in the ideal case representative of
the nadir surface return. This is not true when lateral
clutter echoes arrive to the receiver before the nadir
return. The local statistics of the noise is estimated
for each frame using its last 50 samples, which are in
general free from subsurface features as the signal loss
is very high at the corresponding depth. If no sample
fulfills the condition, the value ofy; is decreased and

the procedure is repeated. At each iteratidhe value of
~. is calculated using a positive damping factbx 1,
according to:

Ye =d - Ye—1 Ve=2,...,F (13)
where E' is the maximum number of iteration&, the
initial value v; and the damping factaf are specified

by the user. Note that from (12) the minimum signal
level necessary to perform a detection cannot be lower
than the frame noise meary. In the case that aftef/
trials no sample fulfills the condition yet, the first return
position of the considered frame is estimated using the
average position of the first adjacent frames for which
the detection was successfully. After the frame-based
detection, a smoothing function is applied in order to
reduce the effects of both outliers and missing detec-
tions. The smoothing function performs local regression
using weighted linear least squares and a first degree
polynomial model. Using this approach, for each frame
the algorithm detects the most reliable first return at
the first iteration (according to a user-defined minimum
signal level dependent on;). The reliability of the
detection decreases as the number of iterations increases.
By properly settingEl andd the user can thus tune the
reliability of the first return detection. The result of the
first return detection applied to the test radargram using
E =3, v1 = 4.5, andd = 0.9 is shown in Fig. 8a. The
first return line is detected with good accuracy for most
of the frames composing the considered radargram. The
only exception corresponds to a part of the radargram
where no returns are visible until a certain depth for a
relatively long series of frames. As the number of frames
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where no returns are visible is large, the smoothirig terms of statistical difference from the background eois
procedure cannot recover the missing part of the firsomputed according to the values of the )i distance. Such
return line. In order to correct for this error, it woulda difference may vary within the same scattering class. As an
be necessary to use very large smoothing windowesxample, the statistical characteristics of the scatjezroming
However, this would compromise the accuracy of thiom the basal area are not uniform. Fig. 8¢ shows the map
detection of the first return on the whole radargram, ad the subsurface features of the aforementioned radargram
the detected line would result too much smoothed. Fér qualitative comparison between Fig. 3 and Fig. 8c points
this reason, in this paper we preferred to give highewut the high accuracy obtained by the proposed technique
priority to achieve a good detection of the first returin the detection of subsurface features. In order to measure
line than to correct for large missing parts. guantitatively the performance of the proposed algoritfon,

2) Estimation of the noise statistice this step the algo- each tested radargram we selected randomly 3000 reference
rithm uses all the samples of the radargram belongingsamples from the regions where it was possible to state
the free space regioRy, to estimate the parametgr clearly whether subsurface features were present or absent
of a Rayleigh distribution, according to the ML approack/sing such samples, we evaluated the number of missed and
(see Sec. IlI-B).Rys is defined as the upper part of thefalse detections yielded by the proposed algorithm with the
radargram delimited by the line representing the firglarameters reported in the previous subsection. The @atain

returns identified in the previous step, i.e., results (see Tab. IV) point out that most of the subsurface
Roo = £(i ) - , . 14 features present in the radargrams are correctly deteated.
s =105) 1 0<i < f(j) —we}, (A4 itis visible in Fig. 8c, the areas corresponding to the targe

where wg; is a positive constant used in order to inclassestrong layersweak layersaandbasal returnsare mostly
troduce a guard interval to take into account possibf@rrectly detected by the algorithm, whereas the class
uncertainty in the detection of the first returns. Théeturnsis only partially detected. This can be explained by
selection of the value ofi; should be made accordingthe simple sliding window and averaging model adopted in
to the level of reliability achieved by the first returnthis paper. This acts as a low pass filtering and averages the
detection. However, in our experiments the choice of tHgatistical characteristics of the classesv returns and no
value of wg has never been a critical issueg = 10 target which become similar from the statistical point of view.

has been used in all our tests. Such a value correspoidi§ choice of the parameters of the algorithm should be drive
to a distance of approximately 112 m. by both the sensitivity needed for the detection and the type

3) Calculation of KI—HN a map of KI—HN is gener- of features which have to be detected.
ated using a sliding window of, x I, samples (az- The results of the proposed algorithm can be a starting point
imuth x range), and a step of, and ¢, samples forasubsequent more detailed analysis of the detecteetttarg
in the azimuth and range direction, respectively. TH&hich can be achieved by estimating the statistical pararset
distribution of N is the one estimated in the previou®f the local distributions, according to a given fitting mbde
step. The value of Kl v is averaged in the intersectionse-d., the K distribution.
of overlapping windows. This process is applied only to From a more general point of view, the performance ob-
the subsurface part of the radargram, which is defined @ned by the proposed technique allows one to assess with
the bottom part of the radargram delimited by the firgery high reliability whether a radargram contains or does
return line. The choice of the size and of the steps of ti@t contain subsurface features. Thus, the technique can be
sliding window should be driven by the characteristics d¥ffectively exploited to discriminate from the huge set of a
the considered targets, which are generally extendeddHisitions the radargrams with significant subsurfaceufest
the azimuth direction but can present sharp variations {which should be object of further analysis) from those that
the range direction. Fig. 8b shows the values ofL do not have subsurface features.
obtained on the test radargram usig= 40, I, = 10, A possible extension of the proposed technique is to de-
t, = 8, and¢, = 10. These values correspond to aboutve maps of the subsurface features by calculating the KL
11-20 km, 63 m, 2.2-4 km, and 63 m, respectivelfivergence between a theoretical distribution fitted toltial
(range distances have been calculated usjng 3.15). histogram (e.g., the K distribution) and the theoreticalseo

4) Thresho]ding in this step the a|gorithm produces a bidistribution. The use of the fitted distribution in place bét
nary map which discriminates between the presence agfimple histogram can be seen as an implicit filtering of the
the absence of subsurface features by thresholding fignal aimed at discarding outliers.
image of KLy using the thresholdhry, . The value It is worth noting that the presented approach cannot detect
of thrk. can be chosen either manually or automaticaljpe difference between real subsurface features and rclutte

[38]. Fig. 8c shows the binary map obtained from Figeturns coming from the surface topography. The detectfon o
8b by usingthrk. = 0.13. clutter returns from single detected radargrams cannobhe d

automatically without the use of topographic data or clutte
simulations. However, the proposed method can be simply
integrated in a processing chain including a clutter daact

The results presented in Fig. 8b show a description of tiseep which masks the clutter areas in the radargram acgprdin
characteristics of the subsurface in the radargram of Fig.t@available clutter simulations.

B. Results and Discussion
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Fig. 7. Block scheme of the proposed technique for the géoaraf subsurface feature maps.
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Fig. 8. (a) Detected first returns on SHARAD radargram 1329&@e Fig. 3). (b) Map of Kl obtained on the same radargram. Values ofgk > 3
have been saturated to 3 for visualization purposes. (G@rBimap obtained from (b) by thresholding Kly at thrg. = 0.13.

TABLE IV

ACCURACY PROVIDED BY THE PROPOSED TECHNIQUE FOR THE GENERATN OF SUBSURFACE FEATURE MAPS

Radargram  Feature  Missed % missed Non-feature False % false Total % total
number samples  alarms alarms samples alarms  alarms  error eor
0371502 492 28 5.69 2,508 240 9.57 268 8.93
0385902 515 50 9.71 2,485 189 7.61 239 7.97
0681402 830 44 5.30 2,170 305 14.06 349 11.63
0794703 718 8 1.11 2,282 362 15.86 370 12.33
1292401 491 9 1.83 2,509 277 11.04 286 9.53
1312901 625 21 3.36 2,375 304 12.80 325 10.83
1319502 657 34 5.18 2,343 318 13.57 352 11.73

V. PROPOSEDTECHNIQUE FOR THEAUTOMATIC

DETECTION OFBASAL RETURNS

In this section we propose an algorithm aimed at detecti

the base of the NPLD in SHARAD radargrams. Howeve{h
after proper tuning, it can be adapted to other operatioriﬁ
conditions (e.g., to the detection of the bedrock returns
data acquired by airborne sounders on Earth’s polar re};ion&
As mentioned in Sec. lll, basal returns in the NPLD include

[7]. Different hypotheses about its origin have been prepos
in the literature [39]. SHARAD is able to penetrate the basal
unit only to a certain extent. As shown in Sec. lll, the return
) ing from the basal unitin SHARAD radargrams are mostly
H‘HJ]SG. The mean amplitude of the signals varies spatially
(ngending on the local geology of both the basal unit and
F overlying ice stratigraphy. However, the results oigdi
the following demonstrate that the statistical behawabr
{Re signals is in average stationary at least in single SHBRA

the scattering from the so-called basal unit. The basalisnit
often described as sandy with varying amounts of volatiles

cquisitions.



A. Proposed Technique

A block scheme of the proposed technique is shown in Fig.

9. The technique is based on the statistical analysis daorié

in Sec. lIl. It composes the basal scattering area usingiameg
growing approach. The obtained regions are kept or disdarde

according to the statistical distribution of their samplehich

has to be similar to the expected distribution of the basal

returns. The latter is estimated automatically by the atlgor.

The technique is made up of two main phases: i) definition

of an initial map of the basal scattering area, and ii) ifeeat

refinement of the initial map. The two phases are described in
detail in the following along with example images showing th
main outputs (see Fig. 10). As test case we use the radargram

shown in Fig. 3.

1) Definition of an initial map of the basal scattering area:

the algorithm selects seed regions that have a high prdtyabil
to belong to the basal scattering area. Then, it uses a region
growing approach which exploits a Kiy map (calculated
using the concepts introduced in Sec. IV) in order to produce
a first initial map of the basal returns. In the following we
describe in detail each step of this phase of the algorithm.

o First return detection and calculation of Kly: the

radargrams are cut on the area of interest and the pro-
cedure described in Sec. IV is applied in order to detect
the surface line, estimate the noise statistics, and ekul
the KL distance between the local signal histogram and
the estimated noise statistical distribution. The cakeda
image of KLy is used as basis for the next steps.
KLy n thresholding the goal of this step is to extract the
regions which have a statistical distribution significgntl
different from that for the noise distribution. Such region
will be used by the algorithm to select the seeds of the_
basal scattering area in the next step. Therefore, the map
of KL v is thresholded using a threshalbl-; in order

to produce a binary image Kl.defined as:

1 if KL HN(i,j) Z th?"l

0 otherwise. (15)

The value chosen fothr; should be high enough to
identify only few small regions of the basal scattering
area, besides strong scattering areas belonging mostly
to the strong layersand weak layersclasses. In our
experiments a value equal to 1.2 fulfilled this condition.
The image of KL; for the test radargram is shown in Fig.
10a.

BR seed selectiorthe binary image KL contains a set

R o of disjoint regions. Only those which are likely to
be related to the basal returns are kept. The selection
is performed on the basis of geometrical criteria, which
take into account the usual position of the basal returns
in the radargrams, i.e., i) the regions should correspond
to the maximum ranges (depths); ii) the regions must not
belong to the neighborhood of the surface. Condition i)
is verified by the subset of region®, , defined as:

’1,0:{1":7’6]?170 A Jj:(,5)er

Ad=max{i:KLi(i,5) =1}}.  (16)
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The subsef?y , of regions ofR; o which fuffill condition
ii) is defined as:

’1’70:{T:TER1,0/\7’QR52®}7 (17)

where R, is the subsurface neighborhood region of the
first returns considering a distanaess from the first
returns. Formally, it is given by:

Rs :{(Za.]) : f(j) <Z<f(.])+w33}

The selection of the value afss should take into account
the expected thickness of the area of the NPLD that
is investigated. The final set of selected regidds is
composed by the regions @}, = R , N Ry, which
fulfill the condition:

(18)

Ry ={r:reR/,

A Z.R/f,/o —wyp < 1y < Z.R/f,/o + wdown} , (29)
where ER% is the weighted mean range position of
the regions contained irky’, (using the areas of the
regions as weights},. is the mean range position of the
region r, and wyp and wgown are tolerance thicknesses
used to define the width of the range of the expected
basal positionwy, is referred to the thickness toward the
surface, whilewgown represents the thickness towards the
bottom of the subsurface. On the one hand, the choice
of wgown IS IN general not critical as usually no returns
are observed after the basal scattering area. On the other
hand, similarly to the discussion abowgs, the value of

wyp Should be chosen according to the expected thickness
of the investigated NPLD region. The output of this step
for the test radargram is shown in Fig. 10b.

Region growingthe regions selected in the previous step
are used as seeds for a level-set algorithm. Such an
algorithm stretches their contour to fit the basal scatterin
area using the Kz y image. The algorithm describes the
contour as the zero level set of the function given by the
following differential equation:

S = [aPlig)+ 6CIIVYl,  (20)

whereaP(i, j) drives the expansion of the contour, and
the termgC affects its curvature (and thus the “smooth-
ness” of the detection)( is calculated as the mean
curvature of the contour, and and 5 are scalar values
which define the weight of each term of the equation. In
the proposed approach, the te#fi, j) is calculated as

KLHN(i,j) — th?‘L

if KL HN(i,j) < % + thry,
thT‘U — KLHN(i,j)

otherwise,

P(i,j) =

(21)
where thry and thry define the upper and the lower
thresholds of Klyy, respectively, which limit the ex-
pansion of the contour. Using the definition in (21) the
propagation termP(i,j) is positive (expansion) only
when KLy (i,5) € (thry, thry). More details on level
sets can be found in [40]. The choice of the values of
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thry and thrp depends on the limit values of Kiy This step is performed to discard the regions which grew
associated with the basal returns. The most important on areas which are not related to the basal scattering
parameter ighry, as it defines the minimum statistical area. Therefore, the value t¢firs should be small (e.g.,
difference to the background noise which makes the on the order of 0.1). Once the selection is performed,
contour expand. the provisional set of the basal return regigds 1 grow

At the end of the region growing step, the algorithm has is merged with the new regions obtaining the new set
produced an initial map of the basal scattering area contpose  m.grow- Such a set will be the input for the next iteration.
by a set of regiong?; grow. The result of the iterative phase is thus a binary map contpose

2) Iterative refinement of the initial magan (M — 1)-step by the merging of the whole set of regions produced during
iterative procedure is started, which is aimed at detedtieg the different iterations.
weak scattering areas of the basal returns and refining the=inally, small isolated regions are deleted and the finahbas
previous detection. The steps of the iterative loop per&mmreturn map is created. The resulting basal return areatéetec
for each iterationn (m = 2,..., M) are as follows. on the test radargram is shown in Fig. 10c.

« Estimation of BR statisticsin this step the algorithm
uses the amplitudes of the samples belonging to the results and Discussion

regions of R,,_1 grow t0 estimate the parameters of a _
K distribution. The estimation is performed using an Fig. 11 reports the detected basal return areas of three

ML approach (see Sec. IIl). In this way, the algorithrﬁadargrams' A qualitativg analysis of the rgsultg pointstioat
estimates the statistical distribution of the basal regurri’® Proposed technique is able to detect with high accufeey t
which will be exploited in the next steps. §catter|ng areas related to the basal returns b_oth in aziamat

« KLy thresholding a binary map is produced by conn range direction. The Wor_st performance is re_late_d t_o_the
sidering only the samples of Kiy which belong to the detection of the NPLD base interface when layering is v&sibl

range [t thrm_1 ). For each iterationn, the binary at close depths. _As the subsurfa_ce_layenng is very close to
image KL, is thus created according to: the basal scattering area, the statistics of the two taypeftst

. are very similar; thus, the algorithm may fail to discard the
KL (i, j) = { 1 if thry <KLun(i,j) <thrm-1  layered areas.
’ 0 otherwise. In order to measure quantitatively the performance of the
. . , (22) algorithm, we followed an approach similar to that used io.Se
The binary map contains a sBf, o of regions. The value |\, " For each of the 7 radargrams analyzed in the paper, we
of eachthr,, and the number of iterations/ should .,hgigered000 reference samples randomly taken in the areas
ensure th"_"t for eg_ch iteration the binary map containg e radargrams for which it was possible to assess clearly
regions with significant areas. Moreover, the valué Gfie presence (or the absence) of basal returns. The results
thry must be greater thafhi, to assure that the level- o4 ing the detection performance are reported in Ta. V |
set algorithm can expand the region contours also in thgq of number of missed and false alarms calculated using
last |te_rat|on = M). ) L the selected samples. Taking into account that the proposed
* Sele_ctlon of BR seeds_ and region growisignilarly to the algorithm is automatic and unsupervised, the overall agur
previous steps, the binary maps are used to select sgsﬂ be considered high.
regions, which are likely to belong to the basal scattering o aqgitional note should be made about the choice of the
area, and the level-set algorithm IS run §tartlng from Su‘ﬁ%\rameters of the proposed algorithm. As already discussed
seeds. The subse_t of seed r_egmﬂﬂ_,% IS select_ed by the previous subsection, the algorithm is stable with respe
means of geometncal_ constraints, i.e., the regions MYst several parameters as their choice is not critical and the
belong to a range neighborhood of the estimated bagalye \ajues can be used for a large set of radargrams. The
mean range. This is formally translated in a condltlthOst sensitive parameters atlr; and thry. Indeed, thr,
similar to (19): affects the definition of the initial seeds of the algorithm,
Ry ={r:7€Rpmyo while thry defines the minimum statistical difference that
the basal returns must have with respect to the background
noise. Therefore, such parameters should be chosen taking
whereiRnH,ng is the weighted mean range position ofnto account the average signal-to-noise ratio (SNR) of the
the regions contained iR,,_1 grow (USing their areas as analyzed radargram. This depends on the noise level, on the
weights),q,. is the mean range position of the regipn state of the subsurface materials (which affects the signal
andwyp and wgewn are the same tolerance thicknesses asopagation), and on the spacecraft attitude (e.g., iraitert
those used in (19). configurations calleblled acquisitionghe SHARAD antenna
« Region selectiona subset of the regions obtained in th@ain is greater than that for standard spacecraft attituetejn
previous step is selected. The selection is made mairthe practical viewpoint, this means that if the algorithnua
on a statistical basis. For each region the histogramisth the same parameters on a set of radargrams with similar
computed and if its KL distance to the estimated bas8NR characteristics, its performances are almost constant
return distribution is smaller than an user-defined threstire whole set of radargrams. In addition, it is worth noting
old thrg the region is kept, otherwise it is discardedthat almost all the parameters involved in the algorithmehav

A 7:}%m—l,grow — Wup < 7;7” < 7:}%m—l,grow + deWﬂ} ’ (23)
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a clear physical meaning that represents a guide for a propée goal of such a framework is to extend the low-level
tuning. For all the test radargrams considered in this pag@ocessing chain currently applied to the downlinked data w
we used the following algorithm parametersss = 20, information extraction steps. To this end, additional auatic
M = 3, thry = 1.2, thro = 0.7, thrs = 0.2, thry = 100, techniques for the extraction of features and parameters fr
thrp = 0.13, a = 50, 8 = 10, wyp = 50, wdgown = 100, radargrams should be developed with respect to what was
thrq = 0.10. The values ofwss, wyp and wyown correspond presented in this paper. This should be done by taking into
to approximately 127 m, 317 m, and 634 m in the subsurfaaecount indications provided from scientists expert of the
using e, = 3.15. Using these parameters the computationabnsidered application and of the related requirements. Th
time for a test radargram with 3500 frames is in the order ffamework could be also extended to the use of input data
5-7 minutes depending on the extension of the basal retwmming from other sensors (e.g., optical images of the thves
region (the time includes the computation of the il map). gated area) or other information sources (e.g., a simufator
The output of the proposed algorithm can be used outter cancellation).
scientific analysis for many purposes. A first application is Although human interpretation cannot be fully replaced
the estimation of the NPLD thickness (assuming a reasonableautomatic algorithms, automatic methods can signifigant
dielectric constant for the icy materials of the NPLD) usindelp to overcome the subjectivity intrinsic in manual irtires
a large set of acquisitions. Given the resolution of SHARADations by providing in a fast way numerical results obtdine
radargrams, it is possible also to extrapolate from theatieie with predefined and fixed metrics. These results can then
basal topography local buried basins or impact craterstifaro drive further manual refinements. This research field is also
possible application is the measurement of the mean powery important for future radar sounding missions. Indeed,
scattered by the basal unit at a certain 3D position, whithe techniques developed for the analysis of present @lanet
is useful to study local geology and radar bright (or darkpdar sounder data represent a valuable starting point for
areas. Finally, the proposed technique can also be usedhe analysis of the data acquired by possible future mission
study seasonal variations of the signal propagation loffswi that will investigate other planetary bodies (e.g., Eurapd
the NPLD. This can be achieved by analyzing the amou@anymede) or the Earth.
of power scattered by the basal area during different ssasonAs a future development, we will study novel methods for
on the same areas, and relating such measurements totligegeneration of subsurface feature maps based on the local
absorption experienced by the signal within the NPLD. statistics using context-sensitive techniques for thepthda
determination of the local parcel size. Moreover, we plan to
develop a procedure for the automatic and adaptive definitio
of the parameters of the proposed techniques. Finally, vle wi
In this paper the problem of the automatic analysis of radalso focus on the identification of automatic methods for the
sounder signals acquired from orbiting platforms has bekn ajetection and the filtering of surface clutter returns frdva t
dressed. We presented both a study on the statistical pieperradargrams.
of the sounder signals and two novel automatic techniques
for the extraction of subsurface features from radargrams.
the study of the properties of sounder signals we analyzed
different statistical models from a theoretical point okwi  The authors would like to thank Dr. Mauro Dalla Mura for
and then empirically tested them on different real SHARAIDuitful discussion. We also acknowledge Dr. Glen Davidson
data acquired on the NPLD of Mars. The obtained resulfigr freely distributing some of the routines used in this
show that the statistical distributions of the amplitudgnsils paper [41], and the Orfeo Toolbox (OTB) [42] and Insight
related to different types of targets can be modeled pr@cisé’OO”(it (ITK) [43] communities for publishing these libias
using the K distribution, while, as expected, the backgbums open source products. We would also like to thank ASI for
noise follows a Rayleigh distribution. Exploiting the réistof ~ supporting this work.
the aforementioned study, we have then proposed two novel
techniques for the automatic analysis of radargrams airied a REFERENCES
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