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Abstract

Forest inventories are important tools for the mgement of forests. In this context the estimatibthe tree stem
volume is a key issue. In this paper we presenystem for the estimation of forest stem diametet wolume at
individual tree level from multireturn LIDAR datéhe proposed system is made up of a preprocessidgle) a LIDAR
segmentation algorithm (aimed at retrieving treedwns), a variable extraction and selection procedand an
estimation module based on Support Vector Regmeggibich is compared with a multiple linear regriesstechnique).
The variables derived from LIDAR data are computedh both the intensity and elevation channels Ibheaailable

returns. Three different methods of variable séectre analyzed, and the sets of variables saleate used in the
estimation phase. The stem volume is estimatedwidtimethods: i) direct estimation from the LIDARiables; and ii)

combination of diameters and heights estimated ftdBAR variables with the species information dedvirom a
classification map according to standard heightfde&ter relationships. Experimental results show tthe system
proposed is effective and provides high accuragieboth the stem volume and diameter estimationteb\eer, the

presented study provides useful indications oreffextiveness of SVR with LIDAR in forestry prolslem
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.  INTRODUCTION

Light Detection and Ranging (LIDAR) is a powerfuicaeffective instrument for the study of forestaaelt provides
information on the vertical structure of forestslatirectly measures the tree height. From thesa ilas possible to
derive many forest and tree parameters useful doest management (e.g., [1]-[19]). In the literatutwo main
approaches on the use of LIDAR data in the studipiEst areas are reported: stand and single ppeaches. In the
stand approach, forest parameters (e.g., stem eolasal area, etc.) are estimated on groups e$ ffesually on
circular areas of a given radius), whereas thelesitrge approach estimates parameters of eacl{eige stem height,
diameter at breast height (DBH), stem volume).his paper we focus our attention on the single aggeroach. Many

papers have been published in the literature @ntdigic and it is possible to divide them into fguoups.

The first group comprises papers focused on algostfor single tree detection (e.g., [5],[6]). Amgothem we recall
Palenichkaet al. in [5] that presented an automatic tree detediémhnique based on a multiscale isotropic matched
filtering and multireturn LIDAR data. The proposaigorithm exhibited a correct detection rate of entbran 80% on the
analyzed dataset. Another recent study is the di@ch et al.in [6]. In this paper the authors proposed a teplnto
delineate automatically the single tree crownsasterized first return LIDAR data. The segmentatitgorithm is based

on some assumptions on the shape of trees, anéetops detection and searching vector techniguthé delineation

of crowns.

In the second group we have papers that addressstimation of single tree parameters (e.g., stameter, stem
volume) starting from a model-based approach basddDAR-derived tree height and crown diametertha literature
many papers are present that adopt this approagh [€-[12]). As an example, in [7] Zhaat al. developed methods
for scale-invariant estimation of forest biomasm@dirst and last return LIDAR data. The authatsritified the single
trees using the algorithm described in [8] and thpplied two models based on LIDAR-derived treeghgicrown
width and crown base height. The final estimatieauits show an Rof more than 0.9. Recently, Heurich in [10]

proposed a new method for delineating individuaétcrowns based on a fully automated recognitiothoa®logy and



first return LIDAR data. Once the tree crowns hé&e=n modeled the author estimated the tree stemetia and
volume of the recognized trees through a linearesgion based on the above cited variables (elDAR-derived
height, LIDAR-derived crown radius). The experim@ntesults showed an RMSE between 11.9 and 15.2%hdn

estimation of DBH and between 27 and 35% in thienedéton of stem volume.

In the above-mentioned papers (i.e., [7]-[12]) sfmmameters are estimated starting from two spetclDAR derived
variables (i.e., stem height and crown diameter}hitd group of papers addresses the estimatiostesh parameters
starting from a larger set of LIDAR-derived variebland including in the processing architecture alsvariable
selection phase (e.qg., [13]-[16]). It is the caB¥@uhkonenret al.in [13], who estimated DBH, height and volume using
first return LIDAR data. They considered a larganber of predictors, and after a selection of thestioformative
ones, estimated the stem parameters. On a validsegioof 1249 trees they obtained an RMSE% of 18&634.% for the
estimation of the stem diameter and volume, regpygt Similarly, Chenet al. in [14] estimated basal area and stem
volume using a set of variables derived from finstl last return LIDAR pulses. The authors segmetitegingle trees
using an algorithm based on tree tops detectionveatdrshed segmentation. In the estimation of teabarea they

obtained an Rof 0.79 on the best model, while for the stem mwdithe Rwas equal to 0.80.

Finally, the fourth group of papers refers to téghes that automatically retrieve stem attributeg{19]. Among the
studies that face this problem, we recall Buckstchl.in [17] who present an automatic technique forgkmation of
tree stem diameters. This technique is based orstep3approach and it applies a skeletonizatioordfgn. The
estimation results obtained on a set of 49 treesvetl a deviation from the ground measured diameteabout 10%.
On the same topic, Katt al.in [18] proposed a novel method called “wrappedase reconstruction” for the definition
of tree crowns characteristics. In greater detlady estimated the tree height, the crown width,live crown base, the
height of the lowest branches, and the crown volufrey validated the estimations on a set of 58str@btaining R

values that range between 0.51 and 0.96.

From this brief analysis of the existing literatuirés clear that many papers exist on stem atteb@stimation. Despite
that only few papers explore the combination ofaldes extracted from multiple returns data for ¢élisémation of tree
parameters. Moreover from our analysis, no studiressed the problem of stem diameter and voluniea&tsbn with
multireturn LIDAR data by using advanced machireréng techniques, like Support Vector RegressiviR). This

regression technique is increasingly used in rersetsing applications [20]-[23], and we expect thaain be effective



also in forestry as it exhibits some propertieschtare very important for the estimation of foneatameters, i.e., i) it
has a good generalization capability; ii) it iseetfve in problems characterized by a small nunaidraining samples
(ill-posed problems); iii) the cost function usedthe learning of the estimator is convex (i.g@sialways possible to
derive the best solution according to quadratigmmming methods); and iv) the kernel-SVR can mati strongly
non linear relationships between the predictors thedtarget. This is very important to better ekptbe information

contained in LIDAR data, especially when returrféedént from the first one are considered.

Thus, the goals of this paper are: i) to proposgséem that, starting from a set of variables ekt from multireturn
LIDAR data, exploits the SVR technique to estimbtth tree diameter and volume; ii) to compare diffe variable
selection techniques; iii) to compare the SVR témpiva (with two different kernel functions) with tis¢andard multiple
linear estimator; and iv) to compare different agmhes to stem volume estimation. To achieve theats, we adopt a
segmentation-based method that: i) identifies sirtgbe crowns from LIDAR data, ii) extracts andes&d the most

effective variables, and iii) estimates tree diaanend volume for each crown.

The rest of the paper is organized as follows.dati®n 1l materials and methods are presentedirgtthe data set used
is described (Section 11.A), and then Section IpBesents the architecture of the system adopted tlddata
preprocessing operations. The segmentation algorishillustrated in section I1.C, while sectionDland II.E present
the techniques of variables extraction and seleclible SVR estimator technique is described in@edt.F. Section Ill

reports experimental results. Finally, conclusiaresdrawn in section IV.

. MATERIAL AND METHODS
A. Data set description

The study area is a forest site in the Italian Alpsated at Lavarone (near the city of Trento)ha Trento Province
(Italy) (see Figure 1 for the Digital Canopy HeigWibdel of the area). The central point of the dnaa the following
coordinates: 45° 57’ 30.09” N, 11° 16’ 25.17” E.eTtopography of this area is complex: it includédksdides having
different inclinations with an altitude that rangesm 1200 to 1600 meters on the sea level. Tha hes a size of

approximately 495 ha. This site is a typical Alpfiogest with three main species (i.e., Norway Serugilver Firand

European Beech) and less common species (i.e.pBandoLarch and Scots Pine).



Figure 1. Digital Canopy Model of the investigataéa.

TABLE |. DISTRIBUTION OF REFERENCE POINTETREES IN THE TRAINING, TEST AND VALIDATION SETS THE SPECIES
COMPOSITION OF EACH SET AND THE VALUES OHEIGHT, DIAMETER AT BREASTHEIGHT (DBH) AND STEM VOLUME ARE
ALSO PRESENTEO(N= TOTAL NUMBER OF SAMPLES.

N % Height (m) DBH (cm) Stem Volume n
Mean Range Mean Range Mean Range
Training Set 174 100 26.2 7.5-38.1 45.2 9-90 342. 0.04-10.93
Silver Fir 74 425 26.3 7.5-38.0 45.8 13-90 2.37 0.05.9310
Norway Spruce 79 45.4 28.1 154-37.7 49.0 25-74 2.68 0.3227
Other specie 21 12.1 19.6 11.6-28.8 297 9-63 0.95 0.044 3.
Test Set 147 100 25.8 11.1-37.0 450 13-74 2.270.08 — 7.20
Silver Fir 71 48.3 258 129-36.8 442 19-73 2.20 0.20%6
Norway Spruce 59 40.1 274 159-37.0 48.6 21-74 2.66 0.3re 7
Other specie 17 11.6 20.6 11.1-29.2 36.3 13-60 1.21 0.0%% 3
Validation Set 160 100 26.44 9.4-38.1 45.2 974 — 2.30 0.05-7.21
Silver Fir 67 41.9 26.1 124-35.0 437 16-71 2.17 0.182 6
Norway Spruce 79 49.4 28.3 9.4-38.1 49.6 9.4 -38.1 2.72 0.02%
Other specie 14 8.7 17.6 124-245 27.7 14 - 44 0.53 0.164# 1.

The LIDAR data were acquired on Septemd®r2007, between 11:29 AM and 12:07 AM. These daeevaken by a
sensor Optech ALTM 3100EA, with a mean density @f Boints per square meter for the first returne Tdser pulse

wavelength and the laser repetition rate were If6dand 100 kHz, respectively. The number of reabnadurns for



each laser pulse is up to four. A Digital Terrailwdél (DTM) with a ground resolution of 1 m was ded from these

data and it was used in the preprocessing of tBR returns.

Reference data were collected on the ground in m2807. We analyzed 481 sample trees distribute®i plots
selected in order to obtain a statistical repregent of the study area. Sample plots were distetbwandomly across
the analyzed forest area according to an unaliggetématic sampling design (see [24]). A square giih cells of 250
x 250 m was laid over an ortophoto of the areaiareghch square a plot was randomly inserted arssified as inside
or outside the forest study area. 50 of these plaie interpreted as forest within the boundariethe study area.
Among these plots we measured parameters (e.ghthédBH) of some trees according to the relascogitinique.
These sample trees where then divided intro thete gaining, test and validation sets. Tabledvehthe distribution of
the points in these sets, the species compositienyvalues of height, Diameter at Breast Height KIDBind stem

volume.

B. Data preprocessing and ar chitecture of the system

Figure 2 presents the architecture of the systepgsed. The goal of the system is to obtain a nidgee stem volume

by integrating the information provided by both tireturn LIDAR data and a classification map.

Regarding the preprocessing phase we have two: $fepsterization of the raw LIDAR data, and ijbdraction of the
Digital Terrain Model (DTM) to the elevation infoation of the LIDAR data. The rasterization was parfed with a
ground resolution of 1 m. The average values ofaglen and intensity of each return included iqaae meter were
assigned to each pixel (we obtained two imagesé&mh return). In the first return images, pixelshwio value were
interpolated with the nearest neighbor techniqueijesfor images of returns different from the finge left value 0.
After that, the Digital Terrain Model (DTM) of tharea considered was subtracted from the elevatmge of each
return. This allowed us to correct the raw LIDARtions from the topography of the scene. In paldr subtracting
the DTM from the elevation of the first LIDAR retumwe obtained the digital Canopy Height Model (CH(gge Figure

1).

In the proposed architecture hyperspectral dataised for the identification of the tree specidse Elassification map

obtained from the classification of these datagigragated at crown level in order to have an in&dirom on the species



for each crown. In the rest of this study we foous attention only on the estimation part. We réffierreader to [25] for

more details on the classification architecturepaeld for the hyperspectral images.
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Figure 2. Architecture of the proposed system.
C. Segmentation

The rationale of this step is to identify and detite individual tree crowns. The segmentation #lgorused in this
paper is derived from the algorithm presented bypget al.in [12]. This algorithm, is divided into three masteps:

i) prefiltering; ii) seed point extraction; iii) ed region growing.

According to [12], in the prefiltering phase the KIHvas filtered with a convolution filter for emphaimg local maxima
and tree crowns. The coefficients of the filtemgsa 3x3 window are defined as follows:
1 21

2 4 2 1)
1 2 1|/16

After this phase it is necessary to identify thedspoints (which correspond to the tree tops) fidralizing the region
growing procedure. In order to consider only treegher than a given value, seeds are defined afota maxima

higher than a certain threshotiSeed A moving window of a predefined size (selectedthsy user) is used to detect

them. If W is the analysis window andi(i, j) the elevation value of the pixel at positidh j), we can write as

follows:



G
1(i, j) is a seedif {a(lr%rg\g){ ( J)] 2
[ (i, j) >thSeed

At the end of this process we obtain the set ofsted pointsS:{Sl,...,SN}, where S, identifies then-th seed point.

Figure 3 shows an example of seed points extrdoded a prefiltered CHM image.

The last phase consists in the seed region groamtjit is aimed at the identification of tree crewiSeed region
growing starts from each seed and grows iterativilpixel | (i, j) is added to the considered region if it satisfies t
conditions that take into account both the dimemsamd the shape of the crown. If we define the adetegions

R ={rl,...,rN}, wherer, identifies the region around the seed pd@pf we can write as follows:

1@ J)>P I
1(,j)0r, if D[r,+1(.j)] <thDiameter 3)
1G,j)0r, with k #n

where | is the height of the considered seed poftt)(0,1], D[rn +1(, j)] is the diameter of the considered region

including the new pixell (i, j), and thDiameter is the maximum acceptable diameter of a regiomunexperiments

we chose a window size of 5x5 anth&eedf 3 m.

The algorithm stops when no more pixels are addeshy region.



Figure 3. Example of i) seed points extracted ftbenelevation of the first LIDAR return, and ii)giens
associated with the crowns.

D. Variabledefinition

In order to make a detailed characterization ofhettee, some variables were defined and extraatech feach
segmented region from the elevation and intendignaels of the four returns available in our ddtaBeese variables
were selected according to previous studies regamtéhe literature (e.g., [13],[16]). They deserithe structure and the
characteristics of the trees. Table Il reports mrsary of the variables extracted from each reg@ome variables are
related to the distribution of the LIDAR pulses hitt the crown (e.g.,rMean”, “maximum’; “minimum?”, etc.), while
other variables model the crown geometry (e.gred”, “radius”). As an example, the variablaréd’ for the first

LIDAR return represents the surface of the regiopikels, while for the other returns represenesnitimber of pixels

for which a return is present. We extracted twdirddadius 1" is the radius of the circle with area equal todhea of

the region, while radius 2" is computed aiax + ay)/4, where a, is the length of the region along tkexis and a,

is the length of the region along thexis.

Each extracted variable is related to one or mdngsipal properties of the tree. We defined fivefadi#ént groups of

variables: i) tree height; ii) crown horizontal peaiii) crown vertical shape; iv) crown intern&lugture; and v) species.



their expected physical meaning.

In general, each variable can be related to ma® tine characteristic. In Table Il variables airedéd according to

TABLE Il. VARIABLES EXTRACTED FROM EACH SEGMENTED REGION

Return Variable Return Variable

1% maximum 3 maximum
minimum minimum
mean mean
range range
variance variance
area area
mean intensity mean intensity

2nd maximum 4t maximum
minimum minimum
mean mean
range range
variance variance
area area

mean intensity

mean intensity

mean - mean ¥
mean - mean %
mean - mean &
mean 2°— mean 8
mean 2Y— mean %
mean & — mean #

max ' — min 3¢
radius 1
radius 2

TABLE Ill. PHYSICAL MEANING ATTRIBUTED TO EACH VARIABLE.

Physical characteristic of the tree Variables
st H St it
Tree Height ist m::r:num 1> minimum
st H
Crown Horizontal Shape L area radius 2
radius 1
1% variance mean 1 — mean §
Crown Vertical Shape 1% range mean #— mean ¥

mean i - mean ¥

max ' — min 3¢

2" maximum 4™ mean
2" mean 4™ minimum
2" minimum 4" variance
2" variance 4" range
2" range 4" area
2" area mean f— mean %

Crown Internal Structure 3 maximum mean - mean %
3% mean mean - mean ¥
3 minimum mean 2¢— mean %
3 variance mean 2Y— mean %
3 range mean % — mean #
3%area max ' — min 3
4 maximum

Species 1* intensity 3¢ intensity

P 2" intensity 4" intensity
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E. Variableseection

In problems with many potentially useful predictattse selection of variables to give as input ® tegression model
becomes a critical step (e.g. [26]-[33]). The impoce of variable selection depends on many reagbesmost

important of which are: i) the degradation of thengralization ability of the regression model whecreasing the

number of parameters to estimate; ii) the nois@thiced by some variables; and iii) the high corapoal cost caused
by a large number of input variables. Thus, vagaalection becomes mandatory to improve the reigresesults both
in terms of computational complexity and generdiiaability. The goal of this selection is to fitkde smallest set of
variables that provides estimates similar (or bettethose obtained with the whole set of avadaldriables. It is worth
noting that a small set of predicting variableaultssin a simple predicting model characterizedgbwd generalization

ability.

In the literature (i.e., [21],[26]-[33]) it is pabde to find three main approaches to variable cdila: i) the filter

approaches; ii) the wrapper approaches; and i@) embedded approaches. Filter approaches perfanvahable

selection as a preprocessing step independentecaldgbrithm used for model construction. These «iofimethods are
widely used especially in the forestry communitycombination with multiple linear estimators. Wrap@pproaches
select an optimized set of variables for the spe@sétimation technique considered. They are songsticonsidered
“brute force” methods and require a very high cotapanal load, while exhibit the advantage to sekbe set of
variables that optimizes the final predictive mofeb., [21],[28],[29]). Embedded approaches inocoage the variable
selection step in the training of the algorithmisTimeans that the variable selection is performethd the definition of

the estimation model. These methods are mainly isadvanced machine leaning techniques [33].

As we explained in the introduction of this papee, focus our attention on the Support Vector Regjoesand thus we
adopted a variable selection method that can exiileicharacteristics of this estimator. From thevipus analysis, it
emerges that both wrapper and embedded approaghdseceffectively combined with SVR. For practicsdsons, and
according to previous works in the literature (el@1],[27],[28],[30]), we decided to use a wrapp®ethod. In
particular, we adopted as search algorithm the &#tgad Forward Selection and as performance meabwévean
Square Error on the test set (e.g., [22],[23]).eAth step of the selection process, we applied @ehselection for
identifying the best parameters of the SVR usimgtthining set (i.e., for the creation of the mda@eld the test set for its

evaluation.

11



For comparisons we considered also a simple fittethod based on the same search strategy and rparfoe

evaluation used in the wrapper one.

F. Non linear e-Insensitive Support Vector Regression

In this section we briefly summarize the main pipfes of the non-linear and multipkelnsensitive Support Vector

RegressiongSVR) algorithm used in our estimation system. iRore details on the SVR theory we refer to [34].

Let {(xi,yi ),i =2L...,T} be a training set, whera; 000¢ is the d-dimensional vector of selected input variables,
y; 00 is the target tree attribute to be estimated, &ni the number of training samples. The rationélhe SVR is
to map the original variable space into a highenadisional spaceb(x) using a non linear transformation functi@,

and to find a linear regression functidr(x) in this new space, as:

f (x)=(w®(x))+b @)
wherew 00 is the weight vectorb O O is the bias, am@w@b(x)) represents the dot product betwebhand CD(X) .
This function (f (x)) should have at most deviatiarfrom the real targetsy;, for all the training samples and, at the

same time, should be as flat as possible. In otleds, we neglect errors smaller thamhereas we penalize errors

larger thare (s-insensitive tube), and we seek a smal{flatness).

The optimal functionf (x) can be obtained solving the following constraingdimization problem:

Ly 2
min< = |w| }
wbé| 2

y, —(wi(x;)+b)< e, Ti=1..T ®)

(we(x, )+b)-y <&, Oi=1..T
The main assumption in (5) is that a functidifx) exists for each{(xi,yi ),i =L...,T} with precisione. In many

problems this assumption does not hold or we waatlow for some errors in order to increase theegalization ability
of the estimator. To this purpose, we can introdheeconcept of soft margin, rewriting the minintiaa problem in (5)

as:

12



;
"Li”{illwllz ey fe+é)

whi |2 i=1

y, —(wid(x, )+b)<se+¢;, Ti=1..T (6)

(wi(x, )+b)-y, <e+¢, Oi=1..T
¢, =20 0i=1..T

The variables{;,J; are called slack variables and are used to cangheepatterns outside of theinsensitive tube.

They have been introduced in order to cope witlemtise infeasible constraints of the original ojtiaion problem.
The values of the slack variables depend on thé &frpenalization function adopted: linear or quaidr (see Figure 4
for an example of linear penalization functior}. is a regularization constant that should be tuimethe model

selection phase in order to reach the best tradeetiveen the smoothness of the functib(x) and the tolerance to the

errors (due to the patterns outside ¢hesensitive tube).

Figure 4.e-insensitive tube of a linear SVR with a linear alation function (figure source: [34]).

This minimization problem can be rewritten in aldieamulation and solved according to standard meéshof quadratic
programming based on the Lagrange multiplie¥s)( In the case of a linear penalty function, weaabthe following

Lagrangian function:
T T

L(‘*1ﬂ*)=2yﬁ(ﬂi —ai*)—£Z(ai +a;)_%ii("'i _ai*Xaj _”;)K(waj) @)

i=1 i=1

where K(xi,xj)=<q>(>g) @p(xj)> is a kernel function. This function satisfies tlercer theorem [35] and allows us to

replace the dot product among the transformationtfunscb(.). This is very important as the kernel functionsidvthe

need to know explicitly the transformation funcﬁ;@h(.). Common examples of kernel functions are:

13



1. Linear kernel functionK(xi,xj): X X -

2. Gaussian kernel function (RBFk(xi,xj)=exp(—\xi -, ‘2/272) , where g? is the spread of the Gaussian.

Thus, the minimization problem in the dual formidatbecomes:

m(;elx{ L (u o )}

> (e -af)=0 ®)

i=1

O<a <C, Oi=1,..T
0<a <C, Oi=1,..T

The final estimation function in the original varia space is given by:
f(x):Z(ai—af)yiK(xi,x)+b ©)
iU
The setU represents the set of training patterns correspgno the Lagrangian multipliers different fromraeOnly

these patterns, defined asipport vectors(SVs), affect the definition of the estimation &tion. The Lagrangian
multipliers a; and ai* (with i=1,...,T) allow us to define the contribution that each @ves to the estimation function.

From a geometrical viewpoint the SVs are the trajrpatterns outside of theinsensitive tube.

1. EXPERIMENTAL RESULTS
A. Design of experiments
We define two main experiments. In the first one estimate the stem diameters with the proposeasysind then
combine them with both the stem height (directhame&ed by the LIDAR) and the species informaticgri(eed from a
classification map) in order to retrieve the stamlumne. In the second experiment, we estimate & sblume directly
from the LIDAR variables. For both experiments wedstigated three different variable selection meésh(SFS with
multiple linear estimator, SFS with SVR estimatad dinear kernel function, and SFS with SVR estonatnd RBF

kernel function) and different estimators (multififeear, SVR with linear and RBF kernel functiohj.the following we

14



denote the SVR with linear kernel function with taeronym SVR-linear, and the SVR with RBF kerneidtion with
SVR-RBF.
In the learning of the SVR algorithm we performegria search for the values of the parame®rsC and of the RBF

kernel width ). The grid search range was defined in the neididmut of the values derived from the following

C:ma{

£=3p,

empirical equations [36]:

y+3p,/.|y-3p,

j (10)

log(T)
T (11)

where 9 is the mean value of the targets of the trainieg ®, is their standard deviation, anl the size of the
training set.

As mentioned in the data description section, widdd the available reference data in three setsiimg (174 points),
test (147 points) and validation (160 points) séte training set was used for the variable saladind the learning of
the estimation algorithm, the test set was usedhf@rmodel selection, and the validation set fer fihal estimation of

performances in order to asses the generalizakiityaof the estimators.

B. Results

Let us consider the results of the first experim@rable IV presents the results obtained for thémedion of stem
diameters using different variable subsets andnastirs. The order in which variables are presergdtie selection
order. One can observe that more than half of #r@ables selected in all the three models are etetdafrom the first
return. These variables are chosen at the firgt stéhe selection. In particular, the variablé' tnaximurt is the first
variable selected in all the models. It explainswhb0% of the variance (53%, 54% and 54% in theethmodels,
respectively). This variable, together with theiahle “1°' meari was selected by all the three algorithms. Theee t
variables and the variablel® minimuni are related to the tree height and hence to tem sliameter. Among the
selected variables there is then a group of vaatiat is connected with the crown internal stmec(*3™ variance,
“2" mear, “2" range, “4™ maximurh, and “4™ meari), a variable that can be linked to the crown ieaitshape (1™

mean — ¥ meari), and one to the speciesl{“intensity).
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Comparing the sets selected by the three methaglsamnote that they select almost the same vasiabhis points out
that the use of a slow selection procedure likeothe that exploits the SVR in the framework of apper method does
not necessarily select variables with physical rivegndifferent from those of the ones selectedhayfaster technique

based on multiple linear estimator.

Regarding the estimation algorithms, SVR-RBF predidhe highest accuracy even if the difference i other

estimators is small. In greater detail, all theethestimators provided similar results with all theee variables sets
considered. This is probably due to the fact thatutariables considered are linearly related todiaeneter and thus a
simple multiple linear estimator is enough to abtgood results. From the results one can alsolsde ds expected,

each estimator provided the highest accuracy wihesélection was performed on the basis of the sstirator.

Concerning the estimation errors, it is worth ngtihat the MAE is small (about 6 cm on an averaaaesof diameters
equal to approximately 45 cm). Moreover the estiomatis unbiased as the mean error is almost zerallirthe

configurations considered.

A first conclusion that it is possible to draw frahese results is that with the considered varglles not necessary to
use complex and non linear techniques for the asiim of stem diameters. In particular, by usingimple linear
estimator in both phases of selection and estimatics possible to obtain results comparable ts¢hprovided by the

more complex SVR, yet with a significantly lowemgputational cost.

Figure 5 shows a scatterplot of the observed edipted diameters obtained by using the SVR-RBRrtiggie for both
variable selection and estimation for the test aatidation sets. The correlation between estimated measured
diameters is good. The’Rn the test and validation samples consideredtiegés of about 0.63. This’Rs the same
that we obtain if we plot the observed height vianters. This shows that the height explains tlagority of the
variability in diameter.

In order to estimate the tree stem volume we usedltameters derived by the selection and estimdtésed on SVR-
RBF, and the tree heights provided by LIDAR measgngts. The estimation was carried out by usingdstah
height/diameter relationships adopted for the esion of the tree stem volume in forest inventariElsese equations
estimate the volume combining the tree diametertrére height and the species information. We dened as height of

a tree the variablel® maximurh, as diameter the one estimated with the SVR-RBTe, as species that extracted from a
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classification map of the considered area. Tablem®/ VI show the results obtained on the stem velestimation. As
it is possible to see, the results in terms of MMSE and R are good, and in particular they are much betterpared
to the ones of the diameters. This was expectaleasontribution of the tree height to the volunadue is much higher
than that of the diameter(s) one. It is worth ngtihat in terms of total volume there is a undémestion of the volume

for both the test and validation sets.

TABLE IV. MEAN ABSOLUTE ERRORMAE), MEAN SQUARE ERRORMSE) AND COEFFICIENT OF VARIATION(R?) OF THE
ESTIMATES OBTAINED ON THE TEST AND VALIDATION SETSJSING DIFFERENT VARIABLE SETS AND ESTIMATORS

Variables Selection Estimator Test points Validation points

selected method MAE MSE R MAE MSE R

1°' maximum _ linear 6.34 68.99 0.621  7.16 78.85  0.589
1'mean SFS with -

1intensity linear SVR-inear  6.29 69.03  0.625  7.00 75.44  0.608
st i

érdT;?;n;e?j mean - estimator o RBF 630 6924 0621 698 7790  0.595
st B

1 maximum linear 6.42 69.77  0.617  7.28 7971  0.585
1> mean ]

> mean SFS with

1%t intensit SVR-linear SVR-linear 6.20 67.78 0.630 7.15 78.24 0.594
e y estimator

3" variance

ond range SVR-RBF 6.35 67.52 0.631 7.13 79.09 0.588
1% maximum , linear 6.41 7017 0615  7.20 79.45  0.586
1% mean SFS with

15" minimum SVR-RBF SVR-linear 6.28 68.86 0.625 7.12 78.97 0.591
4" maximum estimator

4" mean SVR-RBF 620 6770 0630 717 7819 0593
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Figure 5. Observed vs. predicted diameters foBthetrees of the test and validation sets.

Figure 6 shows the distribution of the observedths.predicted volume for the test and validatiets st is possible to
see that the Rs of about 0.7, with a significant increase coregato that obtained in the diameter estimatioB3)p.
From the scatterplot it is possible to note anrogeneity in the residuals variance. This behag#@r be related to our
variable selection algorithm. We minimized the M8ttis the areas where the majority of the obsewatare localized
have an advantage in the estimation process. ®fiavor confirms the results reported in other lsimivorks (e.g.,

[10]).

TABLE V. MEAN ABSOLUTE ERRORIMAE), MEAN SQUARE ERRORMSE) AND COEFFICIENT OF VARIATION(R?) OF THE
ESTIMATES OBTAINED ON THE TEST AND VALIDATION SET$OR THE STEM VOLUME THE ESTIMATION WAS CARRIED OUT
WITH STANDARD HEIGHT/DIAMETER RELATIONSHIPS USING THE DIAMETERS ESTIMATE WITH LIDAR VARIABLES AND AS
HEIGHT THE VARIABLE “ 15" MAXIMUM".
MAE MSE R
Test Set 0.59 0.66 0.726
Validation Set 0.65 0.82 0.674

TABLE VI. TREE STEM VOLUME ESTIMATIONS OBTAINED ON THE TEST AN VALIDATION SETS WITH THE PROPOSED SYSTEM
(ESTIMATED VOLUME) AND WITH GROUND COLLECTED MEASUREREFERENCE VOLUMB.

Reference Volume (M Estimated Volume (f)

Total Mean Total Mean
Test Set 330.676 2.250 311.647 2.120
Validation Set 368.613 2.304 350.937 2.193
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Figure 6. Observed vs. predicted volume for the t8B&&s of the test and validation sets.

Let us now consider the results of the second éxeet aimed at estimating the stem volume direfttdyn the extracted
LIDAR variables.

Table VII shows the estimates of the stem volumeausing different variable subsets and differeningstors. All the
selection algorithms identified the variableS' maximur and “1' mean — % meari. The first one is the tree height,
while the second one is connected with the versbalpe of the crown. The remaining variables differeach selection
method. The selection based on multiple lineanetir chooses only variables based on theeturn, and in particular
variables connected with the crown vertical sh&d& tnean — 2 meari, “1% mean — % mear, “1% mean — % meari
and “1* variancé). The selection based on SVR selects variablegidited among all the four returns and all the
categories considered.

These results show us that many of the variablasidered are connected with the stem volume. Itiqodarr, some of
them have a strong linear relation (e.g., thoseeoted with tree height and crown vertical shaplgreas others have
a non linear relation (like the crown horizontahgh and the crown internal characteristics). Asetau, the latter are

selected only by a non linear model (SVR-RBF).
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TABLE VII. MEAN ABSOLUTE ERRORIMAE), MEAN SQUARE ERRORMSE) AND COEFFICIENT OF VARIATION(R?) OF THE
ESTIMATES OBTAINED ON THE TEST AND VALIDATION SETSJSING DIFFERENT VARIABLE SETS AND ESTIMATORS

Variables Selection . Test Validation
selected method Estimator MAE MSE R MAE  MSE =3
1% maximum , linear 0.69 0.76 0.643 0.76 0.89 0.79
1 mean-"mean  SFS with :
1% mean-2 mean linear SVR-linear 0.68 0.74 0.652 0.74 0.89 0.79
st 1
mean-#mean  estimator o o ooC 0.67 0.69 0661  0.68 0.87 0.76
1 variance
1% maximum , linear 0.69 0.77 0.636 0.77 0.91 0.83
15; mean-% mean SFS with
tl .
4 mean SVR-lin SVR-linear 0.69 0.71 0.661 0.75 0.93 0.86
3 minimum estimator
1% mean-4' mean SVR-RBF 0.66 0.64 0.681 0.71 0.88 0.77
1% maximum linear 0.70 0.77 0.639 0.78 0.91 0.83
1% mean-% mean SES with
15t minimum wi SVR-linear 0.68 0.72 0.651 0.74 0.92 0.85
4" range SVR-RBF
o : 9. estimator
1%intensity SVR-RBF 0.60 0.49 0.715 0.71 0.86 0.74
radius 1

One can observe that also in this case the sabestised on SVR-RBF combined with the SVR-RBF edtimgrovided
the best results on both the test and validatitsm @€ is of 0.71 on the test set compared to an avera@e85 of the
other methods). It is also worth noting that theénestions based on the SVR have always higher ac@as than those
based on the linear estimator even if in some gonditions the differences are relatively small .(eirg the selection
based on linear estimator results obtained witkdirestimator and SVR with linear kernel functioa quite similar).
Table VIII reports the total and mean predictedumeé in ni for the test and validation sets, compared tootheerved

ones. As one can see, the total and mean valuegideesimilar for both the sets.

TABLE VIII. TREE STEM VOLUME ESTIMATION OBTAINED ON THE TEST ANDYALIDATION SETS WITH THE PROPOSED
SYSTEM(PREDICTED VOLUME) AND WITH GROUND COLLECTED MEASURESOBSERVED VOLUME).

Observed Volume (M Predicted Volume (f)

Total Mean Total Mean
Test Set 330.676 2.250 325.601 2.215
Validation Set 368.613 2.304 362.693 2.267

Figure 7 shows the distribution of the observedin@ vs. the predicted one with the SVR-RBF algarifior the test

and validation sets.
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Figure 7. Observed vs. predicted volume for the t8&&s of the test and validation sets.

C. Discussion

By analyzing the results of the two experimentis jtossible to draw some interesting conclusioirstli, the estimates
of the stem volume obtained with the two considexpproaches are accurate in both cases, with f®agh based on
stem diameter estimation that provides better tegulterms of estimation accuracy and coeffic@rdetermination (we
have higher values of?Pon both the test and validation sets: i.e., 07@ @67 vs. 0.71 and 0.65, respectively). These
results show the effectiveness of the proposedesysBy comparing Tables VI and VIII one can obsetivat the
approach based on stem diameter estimation unifeatss the total volume more than the approachdoasehe direct
volume estimation (even if the results are onlghtliy different).

Another interesting observation regards the cormsparibetween the estimation results of stem dianstdrvolume
starting from LIDAR variables. It seems that thengidered variables are more correlated with stelarwe than with
diameter. In the estimation of stem diameters #éables selected are quite similar for all thenestors considered,;
thus the results of the different estimators amy g@milar. This is not the case of volume estimatiwhere the variables
selected differs from an estimator to another.drtipular SVR-RBF (a complex non linear estimas®lects a pool of

variables with different physical meanings reachiigher accuracies with respect to other estimators
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By analyzing the variables selected, one can saetliiere are some variables strongly correlated tdgth the volume
and the diameter, like the ones related to treghtteA variable belonging to this set is presenalinselection results.
This is quite obvious as the tree height is strpmglated to both diameter and volumd®{'maximurh explains more
than half of the variance in both cases). Regarthiegother variables, it seems that those relaigtig crown internal
structure are those more correlated to the diamktdact almost one third of the selected varialdelong to this set.
On the contrary, it seems that variables relatethéohorizontal and vertical shape of the crownndb provide much
information in this context. Considering the estiima of stem volume, the situation is quite diffeteln this case we
have very different variables sets changing thamesbr considered. It is worth noting that the stiten performed by
the SVR-RBF provides variables belonging to evexly 8oreover, in this case the variables selectedhk linear
estimator belong all to thé'teturn showing that probably these are the onfiabtes that have a linear correlation with
the volume.

Comparing the variables selected in this study witinks previously presented in the literature oae note that for the
estimation of stem diameter a linear relationstépueen LIDAR-derived height and LIDAR-derived crodiameter is
commonplace (e.g., [7]-[12]). Among the papers ths#t an approach based on a variable selectioeguos, the most
common variables are: LIDAR-derived tree heightneovariables linked to the crown shape (e.g., cravea, crown
exterior volume) and percentiles of LIDAR heighis.our case the LIDAR-derived height is always presin our
models (1* maximum); also variables linked to the crown shape andctire are always present in our selection (e.g.,
“1mean- 2 mean”, “2™ range”).

In the literature the stem volume is widely computierough standard relationships between LIDARa=tiheight and
stem diameter (as in the first approach that weptsdh). In the cases where it is directly estimdteth LIDAR data, the

predictors are similar of diameters.

V. CONCLUSION

In this paper a system for the exploitation of dise multireturn LIDAR data for the estimation oée¢ stem diameter
and volume is presented. The system proposed ie npadf four different blocks: preprocessing, segtagon, variable

extraction and selection, and estimation. We ptteseand analyzed different kinds of variables etaad from LIDAR
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data, different variable selection algorithms aiffecent estimation techniques. From the experimergsults we can

draw the following conclusions:

the proposed system is effective for the estimatibinee stem diameter and volume;

the approach to the estimation of stem volume basethe estimation of stem diameter seems to benthst
effective. The results in terms of MAE, MSE and &e better if compared to the direct estimatiorsteim
volume;

the estimation accuracy is maxima when using tmeeseegression technique in both the phases ofhlaria
selection and estimation;

when the relationship between the variables anddtgets can be approximated as linear, a simpisaor
(like the multiple linear regressor) provides résegbmparable to complex non-linear estimator® (8% R);

a non-linear regression model (like SVR with RBRri& function) provides always better results when

compared to other estimators (like multiple linesgression).

As a future development of the proposed systemplar: i) to improve the estimation of diameters sidaring other

variables; ii) to compare the results of the SVRhvather non-linear multiple parametric regressiEchniques; and iii)

to analyze the impact of the posting density (nunatb&.IDAR measures per square meter) on the esibmaesults.
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