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Abstract 

Forest inventories are important tools for the management of forests. In this context the estimation of the tree stem 

volume is a key issue. In this paper we present a system for the estimation of forest stem diameter and volume at 

individual tree level from multireturn LIDAR data. The proposed system is made up of a preprocessing module, a LIDAR 

segmentation algorithm (aimed at retrieving tree crowns), a variable extraction and selection procedure and an 

estimation module based on Support Vector Regression (which is compared with a multiple linear regression technique). 

The variables derived from LIDAR data are computed from both the intensity and elevation channels of all available 

returns. Three different methods of variable selection are analyzed, and the sets of variables selected are used in the 

estimation phase. The stem volume is estimated with two methods: i) direct estimation from the LIDAR variables; and ii) 

combination of diameters and heights estimated from LIDAR variables with the species information derived from a 

classification map according to standard height/diameter relationships. Experimental results show that the system 

proposed is effective and provides high accuracies in both the stem volume and diameter estimation. Moreover, the 

presented study provides useful indications on the effectiveness of SVR with LIDAR in forestry problems. 
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I. INTRODUCTION 

Light Detection and Ranging (LIDAR) is a powerful and effective instrument for the study of forest areas. It provides 

information on the vertical structure of forests and directly measures the tree height. From these data it is possible to 

derive many forest and tree parameters useful for forest management (e.g., [1]-[19]). In the literature, two main 

approaches on the use of LIDAR data in the study of forest areas are reported: stand and single tree approaches. In the 

stand approach, forest parameters (e.g., stem volume, basal area, etc.) are estimated on groups of trees (usually on 

circular areas of a given radius), whereas the single tree approach estimates parameters of each tree (e.g., stem height, 

diameter at breast height (DBH), stem volume). In this paper we focus our attention on the single tree approach. Many 

papers have been published in the literature on this topic and it is possible to divide them into four groups.  

The first group comprises papers focused on algorithms for single tree detection (e.g., [5],[6]). Among them we recall 

Palenichka et al. in [5] that presented an automatic tree detection technique based on a multiscale isotropic matched 

filtering and multireturn LIDAR data. The proposed algorithm exhibited a correct detection rate of more than 80% on the 

analyzed dataset. Another recent study is the one of Koch et al. in [6]. In this paper the authors proposed a technique to 

delineate automatically the single tree crowns in rasterized first return LIDAR data. The segmentation algorithm is based 

on some assumptions on the shape of trees, and on tree tops detection and searching vector technique for the delineation 

of crowns.  

In the second group we have papers that address the estimation of single tree parameters (e.g., stem diameter, stem 

volume) starting from a model-based approach based on LIDAR-derived tree height and crown diameter. In the literature 

many papers are present that adopt this approach (e.g., [7]-[12]). As an example, in [7] Zhao et al. developed methods 

for scale-invariant estimation of forest biomass using first and last return LIDAR data. The authors identified the single 

trees using the algorithm described in [8] and then applied two models based on LIDAR-derived tree height, crown 

width and crown base height. The final estimation results show an R2 of more than 0.9. Recently, Heurich in [10] 

proposed a new method for delineating individual tree crowns based on a fully automated recognition methodology and 
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first return LIDAR data. Once the tree crowns have been modeled the author estimated the tree stem diameter and 

volume of the recognized trees through a linear regression based on the above cited variables (e.g., LIDAR-derived 

height, LIDAR-derived crown radius). The experimental results showed an RMSE between 11.9 and 15.2% in the 

estimation of DBH and between 27 and 35% in the estimation of stem volume. 

In the above-mentioned papers (i.e., [7]-[12]) stem parameters are estimated starting from two specific LIDAR derived 

variables (i.e., stem height and crown diameter). A third group of papers addresses the estimation of stem parameters 

starting from a larger set of LIDAR-derived variables and including in the processing architecture also a variable 

selection phase (e.g., [13]-[16]). It is the case of Vauhkonen et al. in [13], who estimated DBH, height and volume using 

first return LIDAR data. They considered a large number of predictors, and after a selection of the most informative 

ones, estimated the stem parameters. On a validation set of 1249 trees they obtained an RMSE% of 13% and 31% for the 

estimation of the stem diameter and volume, respectively. Similarly, Chen et al. in [14] estimated basal area and stem 

volume using a set of variables derived from first and last return LIDAR pulses. The authors segmented the single trees 

using an algorithm based on tree tops detection and watershed segmentation. In the estimation of the basal area they 

obtained an R2 of 0.79 on the best model, while for the stem volume the R2 was equal to 0.80. 

Finally, the fourth group of papers refers to techniques that automatically retrieve stem attributes [17]-[19]. Among the 

studies that face this problem, we recall Bucksch et al. in [17] who present an automatic technique for the estimation of 

tree stem diameters. This technique is based on a 3-step approach and it applies a skeletonization algorithm. The 

estimation results obtained on a set of 49 trees showed a deviation from the ground measured diameters of about 10%. 

On the same topic, Kato et al. in [18] proposed a novel method called “wrapped surface reconstruction” for the definition 

of tree crowns characteristics. In greater detail, they estimated the tree height, the crown width, the live crown base, the 

height of the lowest branches, and the crown volume. They validated the estimations on a set of 55 trees obtaining R2 

values that range between 0.51 and 0.96. 

From this brief analysis of the existing literature it is clear that many papers exist on stem attributes estimation. Despite 

that only few papers explore the combination of variables extracted from multiple returns data for the estimation of tree 

parameters. Moreover from our analysis, no study addressed the problem of stem diameter and volume estimation with 

multireturn LIDAR data by using advanced machine learning techniques, like Support Vector Regression (SVR). This 

regression technique is increasingly used in remote sensing applications [20]-[23], and we expect that it can be effective 
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also in forestry as it exhibits some properties which are very important for the estimation of forest parameters, i.e., i) it 

has a good generalization capability; ii) it is effective in problems characterized by a small number of training samples 

(ill-posed problems); iii) the cost function used in the learning of the estimator is convex (i.e. it is always possible to 

derive the best solution according to quadratic programming methods); and iv) the kernel-SVR can model also strongly 

non linear relationships between the predictors and the target. This is very important to better exploit the information 

contained in LIDAR data, especially when returns different from the first one are considered. 

Thus, the goals of this paper are: i) to propose a system that, starting from a set of variables extracted from multireturn 

LIDAR data, exploits the SVR technique to estimate both tree diameter and volume; ii) to compare different variable 

selection techniques; iii) to compare the SVR technique (with two different kernel functions) with the standard multiple 

linear estimator; and iv) to compare different approaches to stem volume estimation. To achieve these goals, we adopt a 

segmentation-based method that: i) identifies single tree crowns from LIDAR data, ii) extracts and selects the most 

effective variables, and iii) estimates tree diameter and volume for each crown. 

The rest of the paper is organized as follows. In Section II materials and methods are presented. At first the data set used 

is described (Section II.A), and then Section II.B presents the architecture of the system adopted and the data 

preprocessing operations. The segmentation algorithm is illustrated in section II.C, while section II.D and II.E present 

the techniques of variables extraction and selection. The SVR estimator technique is described in section II.F. Section III 

reports experimental results. Finally, conclusions are drawn in section IV. 

 

II. MATERIAL AND METHODS 

A. Data set description 

The study area is a forest site in the Italian Alps located at Lavarone (near the city of Trento) in the Trento Province 

(Italy) (see Figure 1 for the Digital Canopy Height Model of the area). The central point of the area has the following 

coordinates: 45° 57’ 30.09” N, 11° 16’ 25.17” E. The topography of this area is complex: it includes hill sides having 

different inclinations with an altitude that ranges from 1200 to 1600 meters on the sea level. The area has a size of 

approximately 495 ha. This site is a typical Alpine forest with three main species (i.e., Norway Spruce, Silver Fir and 

European Beech) and less common species (i.e., European Larch and Scots Pine). 
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Figure 1. Digital Canopy Model of the investigated area. 

 

TABLE I. DISTRIBUTION OF REFERENCE POINTS (TREES) IN THE TRAINING, TEST AND VALIDATION SETS. THE SPECIES 

COMPOSITION OF EACH SET AND THE VALUES OF HEIGHT, DIAMETER AT BREAST HEIGHT (DBH) AND STEM VOLUME ARE 

ALSO PRESENTED (N= TOTAL NUMBER OF SAMPLES). 
 

 N % Height (m) DBH (cm) Stem Volume (m3) 
   Mean Range Mean Range Mean Range 

Training Set 174 100 26.2 7.5 – 38.1 45.2 9 – 90 2.34 0.04 – 10.93 
Silver Fir 74 42.5 26.3 7.5 – 38.0 45.8 13 – 90 2.37 0.05 – 10.93 
Norway Spruce 79 45.4 28.1 15.4 – 37.7 49.0 25 – 74 2.68 0.37 – 7.12 
Other specie 21 12.1 19.6 11.6 – 28.8 29.7 9 – 63 0.95 0.04 – 3.74 

Test Set 147 100 25.8 11.1 – 37.0 45.0 13 – 74 2.27 0.08 – 7.20 
Silver Fir 71 48.3 25.8 12.9 – 36.8 44.2 19 – 73 2.20 0.20 – 6.11 
Norway Spruce 59 40.1 27.4 15.9 – 37.0 48.6 21 – 74 2.66 0.31 – 7.20 
Other specie 17 11.6 20.6 11.1 – 29.2 36.3 13 – 60 1.21 0.08 – 3.51 

Validation Set 160 100 26.44 9.4 – 38.1 45.2 9.4 – 71 2.30 0.05 – 7.21 
Silver Fir 67 41.9 26.1 12.4 – 35.0 43.7 16 – 71 2.17 0.19 – 6.32 
Norway Spruce 79 49.4 28.3 9.4 – 38.1 49.6 9.4 – 38.1 2.72 0.05 – 7.21 
Other specie 14 8.7 17.6 12.4 – 24.5 27.7 14 – 44 0.53 0.10 – 1.47 

 

The LIDAR data were acquired on September 4th, 2007, between 11:29 AM and 12:07 AM. These data were taken by a 

sensor Optech ALTM 3100EA, with a mean density of 8.6 points per square meter for the first return. The laser pulse 

wavelength and the laser repetition rate were 1064 nm and 100 kHz, respectively. The number of recorded returns for 
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each laser pulse is up to four. A Digital Terrain Model (DTM) with a ground resolution of 1 m was derived from these 

data and it was used in the preprocessing of the LIDAR returns.  

Reference data were collected on the ground in summer 2007. We analyzed 481 sample trees distributed in 50 plots 

selected in order to obtain a statistical representation of the study area. Sample plots were distributed randomly across 

the analyzed forest area according to an unaligned systematic sampling design (see [24]). A square grid with cells of 250 

x 250 m was laid over an ortophoto of the area and in each square a plot was randomly inserted and classified as inside 

or outside the forest study area. 50 of these plots were interpreted as forest within the boundaries of the study area. 

Among these plots we measured parameters (e.g., height, DBH) of some trees according to the relascopic technique. 

These sample trees where then divided intro three sets: training, test and validation sets. Table I shows the distribution of 

the points in these sets, the species composition, the values of height, Diameter at Breast Height (DBH) and stem 

volume. 

 

B. Data preprocessing and architecture of the system 

Figure 2 presents the architecture of the system proposed. The goal of the system is to obtain a map of tree stem volume 

by integrating the information provided by both multireturn LIDAR data and a classification map. 

Regarding the preprocessing phase we have two steps: i) rasterization of the raw LIDAR data, and ii) subtraction of the 

Digital Terrain Model (DTM) to the elevation information of the LIDAR data. The rasterization was performed with a 

ground resolution of 1 m. The average values of elevation and intensity of each return included in a square meter were 

assigned to each pixel (we obtained two images for each return). In the first return images, pixels with no value were 

interpolated with the nearest neighbor technique, while for images of returns different from the first we left value 0. 

After that, the Digital Terrain Model (DTM) of the area considered was subtracted from the elevation image of each 

return. This allowed us to correct the raw LIDAR elevations from the topography of the scene. In particular subtracting 

the DTM from the elevation of the first LIDAR return we obtained the digital Canopy Height Model (CHM) (see Figure 

1). 

In the proposed architecture hyperspectral data are used for the identification of the tree species. The classification map 

obtained from the classification of these data is aggregated at crown level in order to have an information on the species 
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for each crown. In the rest of this study we focus our attention only on the estimation part. We refer the reader to [25] for 

more details on the classification architecture adopted for the hyperspectral images. 

 

 

Figure 2. Architecture of the proposed system. 

C. Segmentation 

The rationale of this step is to identify and delineate individual tree crowns. The segmentation algorithm used in this 

paper is derived from the algorithm presented by Hyyppä et al. in [12]. This algorithm, is divided into three main steps: 

i) prefiltering; ii) seed point extraction; iii) seed region growing.  

According to [12], in the prefiltering phase the CHM was filtered with a convolution filter for emphasizing local maxima 

and tree crowns. The coefficients of the filter using a 3x3 window are defined as follows: 
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After this phase it is necessary to identify the seed points (which correspond to the tree tops) for initializing the region 

growing procedure. In order to consider only trees higher than a given value, seeds are defined as the local maxima 

higher than a certain threshold thSeed. A moving window of a predefined size (selected by the user) is used to detect 

them. If W  is the analysis window and ),( jiI  the elevation value of the pixel at position ),( ji , we can write as 

follows: 
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At the end of this process we obtain the set of the seed points { }NssS ,...,1= , where ns  identifies the n-th seed point. 

Figure 3 shows an example of seed points extracted from a prefiltered CHM image. 

The last phase consists in the seed region growing and it is aimed at the identification of tree crowns. Seed region 

growing starts from each seed and grows iteratively. A pixel ),( jiI  is added to the considered region if it satisfies two 

conditions that take into account both the dimension and the shape of the crown. If we define the set of regions 

{ }NrrR ,...,1= , where nr  identifies the region around the seed point ns , we can write as follows: 

[ ]
( , ) *

( , ) ( , )

( , )

ns

n n

k

I i j P I

I i j r if D r I i j thDiameter

I i j r with k n

>


∈ + <
 ∉ ≠

 (3) 

where 
nsI  is the height of the considered seed point, (0,1]P∈ , [ ]),( jiIrD n +  is the diameter of the considered region 

including the new pixel ),( jiI , and thDiameter is the maximum acceptable diameter of a region. In our experiments 

we chose a window size of 5x5 and a thSeed of 3 m. 

The algorithm stops when no more pixels are added to any region. 
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Figure 3. Example of i) seed points extracted from the elevation of the first LIDAR return, and ii) regions 
associated with the crowns. 

 

D. Variable definition 

In order to make a detailed characterization of each tree, some variables were defined and extracted from each 

segmented region from the elevation and intensity channels of the four returns available in our dataset. These variables 

were selected according to previous studies reported in the literature (e.g., [13],[16]). They describe the structure and the 

characteristics of the trees. Table II reports a summary of the variables extracted from each region. Some variables are 

related to the distribution of the LIDAR pulses within the crown (e.g., “mean”, “maximum”, “minimum”, etc.), while 

other variables model the crown geometry (e.g., “area”, “radius”). As an example, the variable “area” for the first 

LIDAR return represents the surface of the region in pixels, while for the other returns represents the number of pixels 

for which a return is present. We extracted two radii: “ radius 1” is the radius of the circle with area equal to the area of 

the region, while “radius 2” is computed as ( ) 4yx aa + , where xa  is the length of the region along the x axis and  ya  

is the length of the region along the y axis. 

Each extracted variable is related to one or more physical properties of the tree. We defined five different groups of 

variables: i) tree height; ii) crown horizontal shape; iii) crown vertical shape; iv) crown internal structure; and v) species. 
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In general, each variable can be related to more than one characteristic. In Table III variables are divided according to 

their expected physical meaning. 

TABLE II.  VARIABLES EXTRACTED FROM EACH SEGMENTED REGION. 

Return Variable Return Variable 
1st  maximum 3rd maximum 
 minimum  minimum 
 mean  mean 
 range  range 
 variance  variance 
 area  area 
 mean intensity  mean intensity 
2nd maximum 4th maximum 
 minimum  minimum 
 mean  mean 
 range  range 
 variance  variance 
 area  area 
 mean intensity  mean intensity 
 mean 1st – mean 2nd  max 1st – min 3rd 
 mean 1st – mean 3rd  radius 1 
 mean 1st – mean 4th  radius 2 
 mean 2nd – mean 3rd   
 mean 2nd – mean 4th   
 mean 3rd – mean 4th   

 

TABLE III.  PHYSICAL MEANING ATTRIBUTED TO EACH VARIABLE. 

Physical characteristic of the tree Variables  

Tree Height 
1st maximum 
1st mean 

1st minimum 

Crown Horizontal Shape 
1st area 
radius 1 

radius 2 

 

Crown Vertical Shape 
1st variance 
1st range 
mean 1st – mean 2nd 

mean 1st – mean 3rd 

mean 1st – mean 4th 

max 1st – min 3rd 

Crown Internal Structure 

2nd maximum 
2nd mean 
2nd minimum 
2nd variance 
2nd range 
2nd area 
3rd maximum 
3rd mean 
3rd minimum 
3rd variance 
3rd range 
3rd area 
4th maximum 

4th mean 
4th minimum 
4th variance 
4th range 
4th area 
mean 1st – mean 2nd 

mean 1st – mean 3rd 

mean 1st – mean 4th 

mean 2nd – mean 3rd 

mean 2nd – mean 4th 

mean 3rd – mean 4th 

max 1st – min 3rd 

Species 
1st intensity 
2nd intensity 

3rd intensity 
4th intensity 
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E. Variable selection 

In problems with many potentially useful predictors, the selection of variables to give as input to the regression model 

becomes a critical step (e.g. [26]-[33]). The importance of variable selection depends on many reasons, the most 

important of which are: i) the degradation of the generalization ability of the regression model when increasing the 

number of parameters to estimate; ii) the noise introduced by some variables; and iii) the high computational cost caused 

by a large number of input variables. Thus, variable selection becomes mandatory to improve the regression results both 

in terms of computational complexity and generalization ability. The goal of this selection is to find the smallest set of 

variables that provides estimates similar (or better) to those obtained with the whole set of available variables. It is worth 

noting that a small set of predicting variables results in a simple predicting model characterized by good generalization 

ability. 

In the literature (i.e., [21],[26]-[33]) it is possible to find three main approaches to variable selection: i) the filter 

approaches; ii) the wrapper approaches; and iii) the embedded approaches. Filter approaches perform the variable 

selection as a preprocessing step independent on the algorithm used for model construction. These kinds of methods are 

widely used especially in the forestry community in combination with multiple linear estimators. Wrapper approaches 

select an optimized set of variables for the specific estimation technique considered. They are sometimes considered 

“brute force” methods and require a very high computational load, while exhibit the advantage to select the set of 

variables that optimizes the final predictive model (e.g., [21],[28],[29]). Embedded approaches incorporate the variable 

selection step in the training of the algorithm. This means that the variable selection is performed during the definition of 

the estimation model. These methods are mainly used in advanced machine leaning techniques [33]. 

As we explained in the introduction of this paper, we focus our attention on the Support Vector Regression and thus we 

adopted a variable selection method that can exploit the characteristics of this estimator. From the previous analysis, it 

emerges that both wrapper and embedded approaches can be effectively combined with SVR. For practical reasons, and 

according to previous works in the literature (e.g., [21],[27],[28],[30]), we decided to use a wrapper method. In 

particular, we adopted as search algorithm the Sequential Forward Selection and as performance measure the Mean 

Square Error on the test set (e.g., [22],[23]). At each step of the selection process, we applied a model selection for 

identifying the best parameters of the SVR using the training set (i.e., for the creation of the model) and the test set for its 

evaluation.  
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For comparisons we considered also a simple filter method based on the same search strategy and performance 

evaluation used in the wrapper one. 

 

F. Non linear ε-Insensitive Support Vector Regression 

In this section we briefly summarize the main principles of the non-linear and multiple ε-Insensitive Support Vector 

Regression (ε-SVR) algorithm used in our estimation system. For more details on the SVR theory we refer to [34]. 

Let ( ){ }Tiyii ,...,1,, =x  be a training set, where d
i ℜ∈x  is the d-dimensional vector of selected input variables, 

ℜ∈iy  is the target tree attribute to be estimated, and T  is the number of training samples. The rationale of the SVR is 

to map the original variable space into a higher dimensional space ( )xΦ  using a non linear transformation function Φ , 

and to find a linear regression function ( )xf  in this new space, as: 

( ) ( ) bf +Φ⋅= xwx  (4) 

where dℜ∈w  is the weight vector, ℜ∈b  is the bias, and ( )xΦ⋅w  represents the dot product between w and ( )xΦ . 

This function ( ( )xf ) should have at most deviation ε from the real targets iy  for all the training samples and, at the 

same time, should be as flat as possible. In other words, we neglect errors smaller than ε whereas we penalize errors 

larger than ε (ε-insensitive tube), and we seek a small w (flatness). 

The optimal function ( )xf  can be obtained solving the following constrained minimization problem: 

( )( )
( )( )










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
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ii
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,...,1,

,...,1,
2
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ε
ε

ξ

xw

xw

w

 (5) 

The main assumption in (5) is that a function ( )xf  exists for each ( ){ }Tiyii ,...,1,, =x  with precision ε. In many 

problems this assumption does not hold or we want to allow for some errors in order to increase the generalization ability 

of the estimator. To this purpose, we can introduce the concept of soft margin, rewriting the minimization problem in (5) 

as: 
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The variables *, ii ζζ  are called slack variables and are used to consider the patterns outside of the ε-insensitive tube. 

They have been introduced in order to cope with otherwise infeasible constraints of the original optimization problem. 

The values of the slack variables depend on the kind of penalization function adopted: linear or quadratic (see Figure 4 

for an example of linear penalization function). C  is a regularization constant that should be tuned in the model 

selection phase in order to reach the best trade-off between the smoothness of the function ( )xf  and the tolerance to the 

errors (due to the patterns outside the ε-insensitive tube). 

 

Figure 4. ε-insensitive tube of a linear SVR with a linear penalization function (figure source: [34]). 

 

This minimization problem can be rewritten in a dual formulation and solved according to standard methods of quadratic 

programming based on the Lagrange multipliers (iα ). In the case of a linear penalty function, we obtain the following 

Lagrangian function: 

( ) ( ) ( ) ( )( ) ( )∑ ∑∑∑
= = ==

−−−+−−=
T

i

T

i

T

j
jijjiiii

T

i
iii KyL

1 1 1

***

1

** ,
2

1
, xxαα ααααααεαα  (7) 

where ( ) )()(, jiji xxK Φ⋅Φ=xx  is a kernel function. This function satisfies the Mercer theorem [35] and allows us to 

replace the dot product among the transformation functions ( ).Φ . This is very important as the kernel functions avoid the 

need to know explicitly the transformation functions ( ).Φ . Common examples of kernel functions are: 
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1. Linear kernel function: ( ),i j i jK = ⋅x x x x . 

2. Gaussian kernel function (RBF): ( ) ( )2 2, exp 2i j i jK σ= − −x x x x , where 2σ  is the spread of the Gaussian. 

Thus, the minimization problem in the dual formulation becomes: 

( ){ }
( )

*

*
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*

max ,

0

0 , 1,...,

0 , 1,...,
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α α

α
α

=





 − =

 ≤ ≤ ∀ =
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L
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α α

 (8) 

The final estimation function in the original variable space is given by: 

( ) ( ) ( ) bKyf i
Ui

iii +−=∑
∈

xxx ,*αα  (9) 

The set U  represents the set of training patterns corresponding to the Lagrangian multipliers different from zero. Only 

these patterns, defined as support vectors (SVs), affect the definition of the estimation function. The Lagrangian 

multipliers iα  and *
iα  (with i=1,…,T) allow us to define the contribution that each SV gives to the estimation function. 

From a geometrical viewpoint the SVs are the training patterns outside of the ε-insensitive tube. 

 

III. EXPERIMENTAL RESULTS 

A. Design of experiments 

We define two main experiments. In the first one we estimate the stem diameters with the proposed system and then 

combine them with both the stem height (directly measured by the LIDAR) and the species information (derived from a 

classification map) in order to retrieve the stem volume. In the second experiment, we estimate the stem volume directly 

from the LIDAR variables. For both experiments we investigated three different variable selection methods (SFS with 

multiple linear estimator, SFS with SVR estimator and linear kernel function, and SFS with SVR estimator and RBF 

kernel function) and different estimators (multiple linear, SVR with linear and RBF kernel function). In the following we 
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denote the SVR with linear kernel function with the acronym SVR-linear, and the SVR with RBF kernel function with 

SVR-RBF. 

In the learning of the SVR algorithm we performed a grid search for the values of the parameters ε , C  and of the RBF 

kernel width γ . The grid search range was defined in the neighborhood of the values derived from the following 

empirical equations [36]: 









−+= yy yyC ρρ 3,3max

__

 (10) 

T

T
y

)log(
3ρε =  (11) 

where 
_

y  is the mean value of the targets of the training set, yρ  is their standard deviation, and T  the size of the 

training set. 

As mentioned in the data description section, we divided the available reference data in three sets: training (174 points), 

test (147 points) and validation (160 points) sets. The training set was used for the variable selection and the learning of 

the estimation algorithm, the test set was used for the model selection, and the validation set for the final estimation of 

performances in order to asses the generalization ability of the estimators. 

 

B. Results 

Let us consider the results of the first experiment. Table IV presents the results obtained for the estimation of stem 

diameters using different variable subsets and estimators. The order in which variables are presented is the selection 

order. One can observe that more than half of the variables selected in all the three models are extracted from the first 

return. These variables are chosen at the first step of the selection. In particular, the variable “1st maximum” is the first 

variable selected in all the models. It explains about 50% of the variance (53%, 54% and 54% in the three models, 

respectively). This variable, together with the variable “1st mean” was selected by all the three algorithms. These two 

variables and the variable “1st minimum” are related to the tree height and hence to the stem diameter. Among the 

selected variables there is then a group of variables that is connected with the crown internal structure (“3rd variance”, 

“2nd mean”, “ 2nd range”, “ 4th maximum”, and “4th mean”), a variable that can be linked to the crown vertical shape (“1st 

mean – 2nd mean”), and one to the species (“1st intensity”). 
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Comparing the sets selected by the three methods one can note that they select almost the same variables. This points out 

that the use of a slow selection procedure like the one that exploits the SVR in the framework of a wrapper method does 

not necessarily select variables with physical meanings different from those of the ones selected by the faster technique 

based on multiple linear estimator. 

Regarding the estimation algorithms, SVR-RBF provided the highest accuracy even if the difference with the other 

estimators is small. In greater detail, all the three estimators provided similar results with all the three variables sets 

considered. This is probably due to the fact that the variables considered are linearly related to the diameter and thus a 

simple multiple linear estimator is enough to obtain good results. From the results one can also see that, as expected, 

each estimator provided the highest accuracy when the selection was performed on the basis of the same estimator. 

Concerning the estimation errors, it is worth noting that the MAE is small (about 6 cm on an average value of diameters 

equal to approximately 45 cm). Moreover the estimation is unbiased as the mean error is almost zero in all the 

configurations considered. 

A first conclusion that it is possible to draw from these results is that with the considered variables it is not necessary to 

use complex and non linear techniques for the estimation of stem diameters. In particular, by using a simple linear 

estimator in both phases of selection and estimation it is possible to obtain results comparable to those provided by the 

more complex SVR, yet with a significantly lower computational cost. 

Figure 5 shows a scatterplot of the observed vs. predicted diameters obtained by using the SVR-RBF technique for both 

variable selection and estimation for the test and validation sets. The correlation between estimated and measured 

diameters is good. The R2 on the test and validation samples considered together is of about 0.63. This R2 is the same 

that we obtain if we plot the observed height vs. diameters. This shows that the height explains the majority of the 

variability in diameter. 

In order to estimate the tree stem volume we used the diameters derived by the selection and estimation based on SVR-

RBF, and the tree heights provided by LIDAR measurements. The estimation was carried out by using standard 

height/diameter relationships adopted for the estimation of the tree stem volume in forest inventories. These equations 

estimate the volume combining the tree diameter, the tree height and the species information. We considered as height of 

a tree the variable “1st maximum”, as diameter the one estimated with the SVR-RBF, and as species that extracted from a 



 
 

 

 

17 
 

classification map of the considered area. Tables V and VI show the results obtained on the stem volume estimation. As 

it is possible to see, the results in terms of MAE, MSE and R2 are good, and in particular they are much better compared 

to the ones of the diameters. This was expected as the contribution of the tree height to the volume value is much higher 

than that of the diameter(s) one. It is worth noting that in terms of total volume there is a underestimation of the volume 

for both the test and validation sets. 

 

TABLE IV.  MEAN ABSOLUTE ERROR (MAE), MEAN SQUARE ERROR (MSE) AND COEFFICIENT OF VARIATION (R2) OF THE 

ESTIMATES OBTAINED ON THE TEST AND VALIDATION SETS USING DIFFERENT VARIABLE SETS AND ESTIMATORS. 
 

Test points Validation points Variables 
selected 

Selection 
method 

Estimator 
MAE MSE R2 MAE MSE R2 

linear 6.34 68.99 0.621 7.16 78.85 0.589 

SVR-linear 6.29 69.03 0.625 7.00 75.44 0.608 

1st maximum 
1st mean 
1st intensity 
1st mean – 2nd mean 
3rd variance 

SFS with 
linear 
estimator 

SVR-RBF 6.30 69.24 0.621 6.98 77.90 0.595 

linear 6.42 69.77 0.617 7.28 79.71 0.585 

SVR-linear 6.20 67.78 0.630 7.15 78.24 0.594 

1st maximum 
1st mean 
2nd mean 
1st intensity 
3rd variance 
2nd range 

SFS with  
SVR-linear 
estimator 

SVR-RBF 6.35 67.52 0.631 7.13 79.09 0.588 

linear 6.41 70.17 0.615 7.20 79.45 0.586 

SVR-linear 6.28 68.86 0.625 7.12 78.97 0.591 

1st maximum 
1st mean 
1st minimum 
4th maximum 
4th mean 

SFS with  
SVR-RBF 
estimator 

SVR-RBF 6.20 67.70 0.630 7.17 78.19 0.593 
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Figure 5. Observed vs. predicted diameters for the 307 trees of the test and validation sets. 

 
Figure 6 shows the distribution of the observed vs. the predicted volume for the test and validation sets. It is possible to 

see that the R2 is of about 0.7, with a significant increase compared to that obtained in the diameter estimation (0.63). 

From the scatterplot it is possible to note an heterogeneity in the residuals variance. This behavior can be related to our 

variable selection algorithm. We minimized the MSE, thus the areas where the majority of the observations are localized 

have an advantage in the estimation process. This behavior confirms the results reported in other similar works (e.g., 

[10]). 

 

TABLE V. MEAN ABSOLUTE ERROR (MAE), MEAN SQUARE ERROR (MSE) AND COEFFICIENT OF VARIATION (R2) OF THE 

ESTIMATES OBTAINED ON THE TEST AND VALIDATION SETS FOR THE STEM VOLUME. THE ESTIMATION WAS CARRIED OUT 

WITH STANDARD HEIGHT/DIAMETER RELATIONSHIPS USING THE DIAMETERS ESTIMATED WITH LIDAR  VARIABLES AND AS 

HEIGHT THE VARIABLE “1ST
 MAXIMUM”. 

 MAE MSE R2 
Test Set 0.59 0.66 0.726 
Validation Set 0.65 0.82 0.674 

 
TABLE VI.  TREE STEM VOLUME ESTIMATIONS OBTAINED ON THE TEST AND VALIDATION SETS WITH THE PROPOSED SYSTEM 

(ESTIMATED VOLUME) AND WITH GROUND COLLECTED MEASURES (REFERENCE VOLUME). 
Reference Volume (m3) Estimated Volume (m3)  
Total Mean  Total Mean  

Test Set 330.676 2.250 311.647 2.120 
Validation Set 368.613 2.304 350.937 2.193 
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Figure 6. Observed vs. predicted volume for the 307 trees of the test and validation sets. 

 

Let us now consider the results of the second experiment aimed at estimating the stem volume directly from the extracted 

LIDAR variables. 

Table VII shows the estimates of the stem volume by using different variable subsets and different estimators. All the 

selection algorithms identified the variables “1st maximum” and “1st mean – 3rd mean”. The first one is the tree height, 

while the second one is connected with the vertical shape of the crown. The remaining variables differ for each selection 

method. The selection based on multiple linear estimator chooses only variables based on the 1st return, and in particular 

variables connected with the crown vertical shape (“1st mean – 2nd mean”, “ 1st mean – 3rd mean”, “ 1st mean – 4th mean” 

and “1st variance”). The selection based on SVR selects variables distributed among all the four returns and all the 

categories considered. 

These results show us that many of the variables considered are connected with the stem volume. In particular, some of 

them have a strong linear relation (e.g.,  those connected with tree height and crown vertical shape), whereas others have 

a non linear relation (like the crown horizontal shape and the crown internal characteristics). As expected, the latter are 

selected only by a non linear model (SVR-RBF). 
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TABLE VII.  MEAN ABSOLUTE ERROR (MAE), MEAN SQUARE ERROR (MSE) AND COEFFICIENT OF VARIATION (R2) OF THE 

ESTIMATES OBTAINED ON THE TEST AND VALIDATION SETS USING DIFFERENT VARIABLE SETS AND ESTIMATORS. 
Test Validation Variables 

selected 
Selection 
method 

Estimator 
MAE MSE R2 MAE MSE R2 

linear 0.69 0.76 0.643 0.76 0.89 0.79 

SVR-linear 0.68 0.74 0.652 0.74 0.89 0.79 

1st maximum 
1st mean-2nd mean 
1st mean-3rd mean 
1st mean-4th mean 
1st variance 

SFS with 
linear 
estimator 

SVR-RBF 0.67 0.69 0.661 0.68 0.87 0.76 

linear 0.69 0.77 0.636 0.77 0.91 0.83 

SVR-linear 0.69 0.71 0.661 0.75 0.93 0.86 

1st maximum 
1st mean-3rd mean 
4th mean 
3rd minimum 
1st mean-4th mean 

SFS with  
SVR-lin 
estimator 

SVR-RBF 0.66 0.64 0.681 0.71 0.88 0.77 

linear 0.70 0.77 0.639 0.78 0.91 0.83 

SVR-linear 0.68 0.72 0.651 0.74 0.92 0.85 

1st maximum 
1st mean-3rd mean 
1st minimum 
4th range 
1st intensity 
radius 1 

SFS with  
SVR-RBF 
estimator 

SVR-RBF 0.60 0.49 0.715 0.71 0.86 0.74 

 

One can observe that also in this case the selection based on SVR-RBF combined with the SVR-RBF estimator provided 

the best results on both the test and validation sets (R2 is of 0.71 on the test set compared to an average of 0.65 of the 

other methods). It is also worth noting that the estimations based on the SVR have always higher accuracies than those 

based on the linear estimator even if in some configurations the differences are relatively small (e.g., in the selection 

based on linear estimator results obtained with linear estimator and SVR with linear kernel function are quite similar). 

Table VIII reports the total and mean predicted volume in m3 for the test and validation sets, compared to the observed 

ones. As one can see, the total and mean values are quite similar for both the sets. 

 

TABLE VIII.  TREE STEM VOLUME ESTIMATION OBTAINED ON THE TEST AND VALIDATION SETS WITH THE PROPOSED 

SYSTEM (PREDICTED VOLUME) AND WITH GROUND COLLECTED MEASURES (OBSERVED VOLUME). 
Observed Volume (m3) Predicted Volume (m3)  
Total Mean  Total Mean  

Test Set 330.676 2.250 325.601 2.215 
Validation Set 368.613 2.304 362.693 2.267 

 

Figure 7 shows the distribution of the observed volume vs. the predicted one with the SVR-RBF algorithm for the test 

and validation sets. 
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Figure 7. Observed vs. predicted volume for the 307 trees of the test and validation sets. 

 

C. Discussion 

By analyzing the results of the two experiments it is possible to draw some interesting conclusions. Firstly, the estimates 

of the stem volume obtained with the two considered approaches are accurate in both cases, with the approach based on 

stem diameter estimation that provides better results in terms of estimation accuracy and coefficient of determination (we 

have higher values of R2 on both the test and validation sets: i.e., 0.72 and 0.67 vs. 0.71 and 0.65, respectively). These 

results show the effectiveness of the proposed system. By comparing Tables VI and VIII one can observe that the 

approach based on stem diameter estimation underestimates the total volume more than the approach based on the direct 

volume estimation (even if the results are only slightly different). 

Another interesting observation regards the comparison between the estimation results of stem diameter and volume 

starting from LIDAR variables. It seems that the considered variables are more correlated with stem volume than with 

diameter. In the estimation of stem diameters the variables selected are quite similar for all the estimators considered; 

thus the results of the different estimators are very similar. This is not the case of volume estimation, where the variables 

selected differs from an estimator to another. In particular SVR-RBF (a complex non linear estimator) selects a pool of 

variables with different physical meanings reaching higher accuracies with respect to other estimators. 
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By analyzing the variables selected, one can see that there are some variables strongly correlated with both the volume 

and the diameter, like the ones related to tree height. A variable belonging to this set is present in all selection results. 

This is quite obvious as the tree height is strongly related to both diameter and volume (“1st maximum” explains more 

than half of the variance in both cases). Regarding the other variables, it seems that those related to the crown internal 

structure are those more correlated to the diameter. In fact almost one third of the selected variables belong to this set. 

On the contrary, it seems that variables related to the horizontal and vertical shape of the crown do not provide much 

information in this context. Considering the estimation of stem volume, the situation is quite different. In this case we 

have very different variables sets changing the estimator considered. It is worth noting that the selection performed by 

the SVR-RBF provides variables belonging to every set. Moreover, in this case the variables selected by the linear 

estimator belong all to the 1st return showing that probably these are the only variables that have a linear correlation with 

the volume. 

Comparing the variables selected in this study with works previously presented in the literature one can note that for the 

estimation of stem diameter a linear relationship between LIDAR-derived height and LIDAR-derived crown diameter is 

commonplace (e.g., [7]-[12]). Among the papers that use an approach based on a variable selection procedure, the most 

common variables are: LIDAR-derived tree height, some variables linked to the crown shape (e.g., crown area, crown 

exterior volume) and percentiles of LIDAR heights. In our case the LIDAR-derived height is always present in our 

models (“1st maximum”); also variables linked to the crown shape and structure are always present in our selection (e.g., 

“1st mean- 2nd mean”, “2nd range”). 

In the literature the stem volume is widely computed through standard relationships between LIDAR-derived height and 

stem diameter (as in the first approach that we adopted). In the cases where it is directly estimated from LIDAR data, the 

predictors are similar of diameters. 

IV. CONCLUSION 

In this paper a system for the exploitation of discrete multireturn LIDAR data for the estimation of tree stem diameter 

and volume is presented. The system proposed is made up of four different blocks: preprocessing, segmentation, variable 

extraction and selection, and estimation. We presented and analyzed different kinds of variables extracted from LIDAR 
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data, different variable selection algorithms and different estimation techniques. From the experimental results we can 

draw the following conclusions: 

i. the proposed system is effective for the estimation of tree stem diameter and volume; 

ii.  the approach to the estimation of stem volume based on the estimation of stem diameter seems to be the most 

effective. The results in terms of MAE, MSE and R2 are better if compared to the direct estimation of stem 

volume; 

iii.  the estimation accuracy is maxima when using the same regression technique in both the phases of variable 

selection and estimation; 

iv. when the relationship between the variables and the targets can be approximated as linear, a simple estimator 

(like the multiple linear regressor) provides results comparable to complex non-linear estimators (like SVR); 

v. a non-linear regression model (like SVR with RBF kernel function) provides always better results when 

compared to other estimators (like multiple linear regression). 

As a future development of the proposed system, we plan: i) to improve the estimation of diameters considering other 

variables; ii) to compare the results of the SVR with other non-linear multiple parametric regression techniques; and iii) 

to analyze the impact of the posting density (number of LIDAR measures per square meter) on the estimation results. 
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