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Abstract—This letter addresses the problem of unsupervised
land-cover classification of remotely sensed multi-spectral satel-
lite images from the perspective of cluster ensembles and self-
learning. The cluster ensembles combine multiple data partitions
generated by different clustering algorithms into a single robust
solution. A cluster ensemble based method is proposed here
for the initialization of the unsupervised iterative expectation-
maximization (EM) algorithm which eventually produces a better
approximation of the cluster parameters considering a certain
statistical model is followed to fit the data. The method assumes
that the number of land-cover classes is known. A novel method
for generating a consistent labeling scheme for each clustering of
the consensus is introduced for cluster ensembles. A maximum
likelihood (ML) classifier is henceforth trained on the updated
parameter set obtained from the EM step and is further used to
classify the rest of the image pixels. The self-learning classifier,
though trained without any external supervision, reduces the
effect of data overlapping from different clusters which otherwise
a single clustering algorithm fails to identify. The clustering
performance of the proposed method on a medium resolution and
a very high spatial resolution image have effectively outperformed
the results of the individual clustering of the ensemble.

Index Terms—Image Segmentation, Clustering, Ensemble
learning.

I. INTRODUCTION

REMOTE sensing images are an important source of
information regarding the Earth surface. For many ap-

plications, the underlying land-cover information from such
images is needed. Supervised or unsupervised classification
techniques exist in the literature to generate a reliable land-
cover map of the geographical area captured in the image [1].

With respect to supervised classification, clustering is in-
herently an ill-posed problem. Given a set of data samples,
each clustering solution is equally plausible with no prior
knowledge about the underlying probability distribution of the
data. The clustering algorithms assume some model to describe
the data which in effect, is reflected in the corresponding
clustering results. If the data model does not match with the
actual distribution of the data, the clustering result becomes
erroneous. Moreover, clustering algorithms require either an
implicit or explicit initial estimation of the inherent cluster
parameters (e.g., mean, variance). An improper initialization
may lead to a unreliable clustering result.

In view of the above, it is evident that, in order to obtain
a good clustering result, some information about the data
distribution is needed. However this information is hard to
obtain, even from a domain expert. The exploratory nature of

the clustering task requires efficient and robust methods that
would benefit by combining the strength of diverse clustering
algorithms. Cluster ensemble techniques can be useful to high-
light the common cluster subspace information to be adopted
for the entire dataset by using some supervised classification
strategies. This method can be termed as self-learning based
clustering approach.

Application of ensemble-based clustering techniques are
relatively new in remote sensing. [2] has proposed a land-cover
clustering algorithm for Very High Resolution (VHR) im-
ages exploiting the advantages of the morphological attribute
profiles and ensemble clustering. K-means has been used as
the base clustering method and the diversity is introduced
in the consensus with different initializations of the cluster
centers for K-means. K-means with different cluster centroid
initializations are grouped together using the concept of cluster
alignment in [3]. [4] has proposed a cluster combination
strategy based on Support Vector Machine (SVM) and mixture
modeling with the aim of classifying land-covers in hyperspec-
tral data.

In this letter, a cluster ensemble strategy is proposed for
land-cover classification of multispectral images. The pro-
posed method differs from the previous ones because:

• It introduces diversity in the initial clustering process by
incorporating different clustering techniques which has to
be extremely different from each other in the topology
as well as the underlying theory. Thus it is expected
that the common sub-space per cluster obtained after
the ensemble method points with high confidence to the
samples that are part of the same cluster.

• It applies a novel robust information theory based cluster
mapping step to ensure consistency in the clustering re-
sults. As no single global method is followed by different
clustering techniques to assign labels to different clusters,
it is important to develop a consistency rule for the cluster
labels over the consensus to avoid false cluster matching.

The proposed method can be summarized in four steps. The
initial clusters are obtained independently for the given image
by different clustering techniques assuming that the number
of clusters is known. A novel cluster mapping technique is
followed to identify the corresponding clusters in different
clustering results. A set of reliable samples for each cluster is
identified to be used for the initialization of an iterative EM-
based retraining [5]. The EM algorithm approximates cluster
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parameters assuming that clusters are Gaussian distributed.
The final classification is obtained by an ML classifier trained
on the updated parameters produced by the EM algorithm.

The letter is organized as follows. Section II details the
proposed unsupervised cluster ensemble based land-cover clas-
sification technique. Experimental details are mentioned in
Section III. Section IV concludes the paper with discussion.

II. PROPOSED UNSUPERVISED LAND-COVER
CLASSIFICATION ALGORITHM

A. Self- Training based Unsupervised Classification

Let X = {x1,1, x1,2, . . . xR,S} represent a multi-spectral
remotely sensed satellite image with R×S pixels where each
pixel xr,c ∈ Rd in spectral domain. Let Ω = {ω1, ω2, . . . , ωN}
represent N land-cover classes characterizing the geographical
area represented by image X . Let us assume that N is already
known, whereas the class labels are not. Otherwise some
iterative validation techniques from the literature [6] can be
employed to estimate N given X .

In the context of the Bayes decision rule, a given pixel xr,c
is assigned to a specific land-cover class ωk according to:

xr,c ∈ ωk ⇔ argmax
ωl∈Ω

{P (ωl)p(xr,c|ωl)} (1)

P (ωl) and p(xr,c|ωl) represent the prior probability and
the conditional probability density function for the lth land-
cover class, respectively. The training of the Bayes classifier
consists of estimating the true prior probability and conditional
probability function that describe a given land-cover class.
This requires highly reliable samples for each land-cover class
to be identified for the estimation of the underlying statistical
distribution of the classes. Since the true distribution of a given
class is unknown, a common practice is to model it by a known
distribution like Gaussian, Poisson function, etc. However, in
the current scenario, no training data are initially available.
The proposed method exploits cluster ensemble technique
for identifying a set of samples belonging to each cluster
with high confidence. These samples are used to initialize
an unsupervised EM algorithm that estimates the true cluster
statistical parameters.

The proposed unsupervised land-cover classification method
is composed of four major steps:

• Cluster the image independently into N clusters by M
clustering algorithms which are selected being drastically
different from each other and being weak learners.

• A label matching for the clusters is followed in order
to obtain a consistency in the cluster labels produced by
different clustering methods.

• Assuming that a cluster can be modeled by a Gaussian
function, initial estimate of its mean vector and the co-
variance matrix is obtained by identifying a set of reliable
samples belonging to each cluster. The parameters are
updated by using the iterative EM algorithm.

• A ML classifier is modeled on the updated parameters
that is used for classifying the image.

B. Obtain the individual clustering results

The ensemble clustering technique requires first to cluster
the dataset into N clusters by M diverse clustering methods.
The diversity in the clustering techniques has been established
here by selecting kernel K-means, normalized graph-cut, fuzzy
c-means and K-medoid clustering techniques. They are weak
learners in the sense that:
• K-means inherently considers that the clusters are hyper-

spherical or hyper-ellipsoidal in shape.
• FCM is based on the weighted average of all the points

that approximates the cluster mean. It eventually leads
the local means to the global mean of all the samples.

• Graph based clustering methods depend on the under-
lying graph topology. If the topology changes, the graph
Laplacian also changes which affects the clustering result.

• K-medoid is related to K-means but is based on the
medoid-shift algorithm which is robust to outliers.

Both K-means and FCM are sensitive to outliers. Hence,
these methods are not likely to perform well in all the
scenarios, however a proper combination of them is expected
to improve their individual performance. Clustering techniques
other than the ones listed above can be considered. The
value of M has to be selected as a trade-off between the
improvement of the accuracy of the final clustering results
and the complexity of the system. Commonly small values of
M satisfies the criterion.

Given X and N and set M = 3, let {α1, α2, . . . , αN},
{β1, β2, . . . , βN} and {γ1, γ2, . . . , γN} represent the cluster
label sets of X . The cluster labels are inconsistent in the sense
that for a given i, αi, βi and γi may not represent the same
land-cover class. A cluster mapping step is necessary to solve
this label ambiguity.

C. Cluster mapping

The cluster correspondence problem is solved here by a
novel approach based on the Kullback-Leibler (KL) divergence
cluster similarity and majority voting rule. The cluster map-
ping algorithm (Algorithm 1) is executed thrice considering
each of the {αi}Ni=1, {βj}Nj=1 and {γk}Nk=1 independently as
the base. In each case, the clustering results of the non-base
methods are compared to the base one and cluster triplets
are formed according to cluster similarity. A majority voting
is applied to select for each cluster, the winner triplet of
the consensus. For two discrete probability distributions R
and Q representing the marginal data distributions of two
different clusters and assuming that both of them are Gaussian
distributed, the non-symmetric KL-divergence from R to Q is
measured according to (2). KL divergence is a measure of
relative entropy of two distributions over the same random
variable. It further takes into account the degree of overlapping
of the underlying datasets. The non-symmetrical divergence
measure e.g. KL divergence is employed as the goal is to
calculate the similarity of each clustering result with the results
of the base clustering method. A small KL divergence signifies
high similarity between the corresponding data distributions
(clusters). A high value means the clusters are significantly
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different from each other.

KL(R,Q) = Σ
i

ln

∣∣∣∣R(i)

Q(i)

∣∣∣∣R(i) (2)

For instance, let us consider {αi}Ni=1 as the base. The best
possible and unique βj and γk (1 ≤ j, k ≤ N) for each αi
(1 ≤ i ≤ N) are identified using the KL-divergence measure.
Given {αi}Ni=1 and {βj}Nj=1, the algorithm proposed for the
one-to-one mapping between the corresponding individual
clusters is mentioned in Algorithm 2. Given D, a N × N
matrix storing the pairwise KL-divergence among the clusters
in {αi}Ni=1 and {βj}Nj=1, the proposed algorithm tries to
identify the matching cluster pair with the minimum KL
divergence value at each iteration. Those pairs are omitted
and the algorithm continues for the remaining clusters until
all the assignments are performed.

Hence, for a given αi, two pairs (αi, βj) and (αi, γk) are
formed and the triplet (αi, βj , γk) is defined by the union
of(αi, βj) and (αi, γk). A total of 3N triplets are formed
by considering {αi}Ni=1, {βj}Nj=1 and {γk}Nk=1 as the base
independently. Among them, for each αi, (1 ≤ i ≤ N),
the winner triplet containing αi is selected by applying the
majority voting rule among all the triplets containing αi. In
case of the tie situation, for a given αi, the triplet with the
best average intra-cluster similarity is selected. This stage can
alternatively be carried out with βj , (1 ≤ j ≤ N) or γk,
(1 ≤ k ≤ N).

Algorithm 1 Input: {αi}Ni=1, {βj}Nj=1 and {γk}Nk=1

Output: The unique consistent label assignment among
{αi}Ni=1, {βj}Nj=1 and {γk}Nk=1

1: Temp = {{αi}Ni=1, {βj}Nj=1 and {γk}Nk=1}
2: for m ∈ Temp do
3: Compare m and the remaining two clustering results

from Temp independently using Algorithm 2.
4: For each cluster in m, a triplet with two clusters from

the other two clustering results are formed.
5: end for
6: Considering {αi}Ni=1 as the base, for all the individual
αi’s, all the winner triplets of a majority voting on all
the triplets are identified. Ties are resolved on the higher
similarity measure basis.

Algorithm 2 Input: {αi}Ni=1, {βj}Nj=1

Output: The unique label mappings between {αi}Ni=1 and
{βj}Nj=1

1: Compute the KL distance for each possible {α}, {β} pair
and store it into DN×N .

2: Remove from D the element corresponding to the mini-
mum KL distance. Let i1, i2 denote the row and column
indices of the minimum value.

3: α(i1) and β(i2) are declared to form an identical pair.
4: Repeat steps 2 and 3 until D is empty.

Once the cluster mapping is performed, the next step is
to identify the common set of samples per triplet. These

samples are the highly reliable candidates of the corresponding
unknown land-cover which the triplet represents, as they have
been recognized to belong to the same cluster.

D. Identification of the set of reliable samples per triplet

Given a triplet (αi, βj , γk), the common set of samples
which belong to all the three individual clustering results are
obtained by performing the set intersection operation on the
samples with labels αi, βj and γk, independently. The specific
samples which are very close to the centroid of the common
set represent the set of highly reliable samples for the cluster.
To select these highly reliable set of samples, the maximum
pairwise Euclidean distance within the common set of samples
is calculated. The specific subset of samples lying within the
sphere rooting at the centroid and having a radius of δ% of the
maximum pairwise Euclidean distance have high memberships
of belonging to that cluster. Euclidean distance is considered
here as it is well-known in finding the distance between two
feature vectors. Same process is repeated for all the triplets
found from the Algorithm 1. A small δ provides more reliable
samples. Let Tr = {Tr1,Tr2, . . . ,TrN} denote the set of
reliable samples for each cluster found in this step.

E. Classification by ML classifier and EM retraining

This step produces the clustering of X using an ML
classifier retrained with the EM algorithm. The training of
ML classifier requires the estimation of the class prior and the
class conditional probabilities. As it is a very common practice
in the remote sensing community, here we consider that each
class is modeled with a Gaussian density function. This is a
reasonable assumption when dealing with multispectral images
acquired by passive sensors as the pixels follow the rule
of large numbers and group in Gaussian clusters [5]. Under
this assumption, the estimation of the class-wise probability
terms of (1) reduces to the estimation of the mean, covariance
matrix and the class prior probabilities. Let us consider a given
cluster label ωi representing the triplet (αi, βj , γk) where
ωi ≈ αi ≈ βj ≈ γk correspond to the common land-cover
class given by the clustering algorithms. θi = {µi,Σi, P (ωi)},
(1 ≤ i ≤ N ) represents the set of cluster parameters (mean,
covariance matrix, class prior) initialized from Tr. The values
of the parameters in θ can be updated using the iterative
EM algorithm considering the image X as a mixture of N
Gaussian functions using the equations:

P l+1
i (ωi) =

1

R× S
∑

xr,s∈X

P l(ωi)p
l(xr,s|ωi)

P l(xr,s)
(3)

µl+1
i =

∑
xr,s∈X

P l(ωi)p
l(xr,s|ωi)

P l(xr,s)
xr,s∑

xr,s∈X
P l(ωi)pk(xr,s|ωi)

P l(xr,s)

(4)

Σl+1
i =

∑
xr,s∈X

P l(ωi)p
l(xr,s|ωi)(xr,s−µl+1

i )2

Pl(xr,s)∑
xr,s∈X

P l(ωi)pl(xr,s|ωi)
P l(xr,s)

(5)

where l represents the lth iteration. In EM, at each iteration,
the estimated new values of the parameters provide an increase
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of the log-likelihood function until a local maxima is reached.
Once the updated θ is obtained for each class ωi, the Bayes
rule of (1) is used to classify all the remaining samples of X
to produce the final classification map.

III. EXPERIMENTAL RESULTS

The effectiveness of the proposed unsupervised land-cover
classification technique has been analyzed on two datasets. The
land-cover classification accuracy of the proposed self-training
based unsupervised classifier has been compared with the ones
produced by the clustering methods used for the ensemble
independently, i.e., the proposed method has been applied
in the limit case by considering single clustering method
in the EM initialization phase (Section II-B). None of the
four clustering methods resulted in reliable training samples
because of cluster overlapping, thus the performance of the
ML classifier is poor. In addition the proposed method has
been compared with the cluster ensemble strategy proposed
in [3]. 5 different versions of the traditional K-means with
different cluster centroid initializations have been considered
in [3]. In order to select a set of highly reliable samples for
each cluster, δ was set to 25.

In order to assess the robustness of the cluster mapping
process, M was set to 3 and all the combinations of three
clustering algorithms out of four have been tested. The ef-
fectiveness and robustness of the proposed method is proven
by reporting the average classification accuracy obtained after
EM+ML classification over all possible trials. A good classifi-
cation accuracy implies that the cluster mapping step performs
well, on failure of which poor accuracy would be recorded,
instead.

A. Medium Resolution Sardinia Dataset

The first study area considered in the experiments was
acquired by the Thematic Mapper (TM) sensor of the LandSat
5 satellite in September 1995. Though the image consists
of 7 bands but in the experiments conducted, band 6 has
been neglected due to its lower geometrical resolution. The
selected test site is a section of 412 × 493 pixels of a scene
including the area surrounding the Lake Mulargia on the Island
of Sardinia (Italy). Figure 1(a) depicts the band 4 of the
image. 5 natural land-cover classes can be identified from
the image, i.e. Pasture, Forest, Urban, Water and Vineyard.
A burned area class has additionally been simulated in the
image to increase the complexity [7]. Test samples have been
selected by photo-interpretation for all the classes and the
corresponding reference map is used to assess the clustering
accuracy. Radial Basis Function (RBF) kernel function has
been used along with Kernel K-means. The kernel neighbor-
hood parameter has been set empirically. A typical value of the
kernel parameter found is 7.5× 10−4 which provides the best
separation of the clusters in term of the inter-cluster distance.
The cluster centroids and medoids for Kernel K-means, FCM
and K-medoids and the membership matrix for FCM have
been initialized heuristically. The proposed mapping algorithm
is efficient in properly identifying clusters which are heavily
overlapped with each other, i.e. Pasture, Vineyard and Urban.

(a) (b)

Fig. 1: (a)The band 4 of the simulated Sardinia Dataset (b)The
NIR band of the QuickBird Dataset

The performance of the aforementioned clustering techniques
are depicted in Table I. It can be observed that, for all the
clustering methods, the class-wise accuracies of Pasture and
Vineyard classes are very low (44.12% to 62.77% and 52.47%
to 64.10%, respectively). This is due to the fact that these
two classes have similar spectral signatures, e.g. they are
heavily overlapped. The Urban class has slight overlapping
with these two classes in different spectral bands. The land-
cover mapping accuracy produced by Kernel K-means is
the best individual clustering result (79.04%). The proposed
clustering technique produces an average overall accuracy of
86.45% which is far better than the one achieved by each
clustering method independently. Sharp improvement in the
clustering accuracies mainly for the Pasture and the Vineyard
classes can be observed. Though some of the samples of
the Urban class which are within the class boundaries of
Pasture and Vineyard are wrongly misclassified, hence the
clustering accuracy of the Urban class has degraded to a minor
extent by the proposed method with respect to the individual
clustering results. The proposed method also outperforms the
ensemble method of [3] by a considerable margin (> 4%).
In a supervised scenario, where true labeled samples from
each classes are considered to train a ML classifier [7], a
generalization accuracy of 96.24% has been observed. The
performance of the proposed self-training based ML classifier
is very close to that of the supervised ML classifier. In
addition, the proposed method demonstrated to be robust with
respect to the use of different clustering algorithms since the
maximum variation of both class-wise and overall accuracy is
of about ±.03% and ±.0029% respectively.

B. High Resolution QuickBird Dataset

The second study area considered here is a high resolution
4-band QuickBird image of a typical suburban area of a city
in India of size 2000× 2000. The test site is an urban fringe
consisting of Lake, Pool, Vegetation, Field, Road, Shadow,
Bright Roof, Dark Roof and Mountain. Test samples have been
collected for all the classes and the corresponding reference
map is prepared for the validation purpose. Figure 1(b) depicts
the near-infra-red band of the study area. The cluster mapping
technique is successful in identifying similar clusters from
the three clustering results given all the land-cover classes
are more or less overlapped with each other in the spectral
domain. The clustering accuracies are mentioned in Table II.
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TABLE I: Comparison of the class-wise and overall accuracies in % (Sardinia Dataset).

Clusters samples KK-means Ncut FCM K-medoid Method of [3] Proposed method
Cluster1 (Pasture) 470 53.80 56.65 44.12 62.77 54.55 72.37 ±1.97
Cluster2 (Forest) 128 93.71 93.08 94.33 91.67 94.70 98.72 ±0.00
Cluster3 (Urban) 408 92.43 95.69 90.91 88.90 87.29 90.14 ±1.60
Cluster4 (Water) 804 100.00 100.00 100.00 100.00 100.00 100.00 ±0.00

Cluster5 (Vineyard) 179 64.10 52.47 60.68 57.65 70.14 65.97 ±1.55
Cluster6 (Burned area) 176 96.65 95.65 96.52 94.78 85.47 96.55 ±0.00

Overall 2165 79.04 74.32 72.85 74.26 81.62 86.45 ±0.29

TABLE II: Comparison of the class-wise and overall accuracies in % (QuickBird Dataset).

Land Cover samples KK-means Ncut FCM K-medoid Method of [3] Proposed method
Cluster1 (Lake) 729 81.44 83.48 86.18 80.54 83.14 93.81 ±0.00
Cluster2 (Pool) 891 95.89 96.88 91.33 93.70 92.25 96.31 ±0.00

Cluster3 (Vegetation) 93 85.37 85.69 84.19 84.17 82.51 89.95 ±0.00
Cluster4 (Field) 36 90.81 89.79 89.78 91.29 85.23 96.59 ±0.00
Cluster5 (Road) 94 62.28 59.43 72.61 62.28 61.62 86.45 ±0.00

Cluster6 (Shadow) 264 95.12 92.28 95.07 95.12 93.17 96.15 ±0.00
Cluster7 (Bright Roof) 489 90.88 91.18 95.33 92.44 84.17 95.28 ±0.00
Cluster8 (Dark Roof) 100 66.74 58.11 68.18 63.31 68.78 79.15 ±0.00
Cluster9 (Mountain) 150 69.51 73.42 67.21 67.22 71.16 84.83 ±0.00

Overall 2864 82.27 81.41 84.12 81.39 80.22 91.41 ±0.00

It can be observed from the results that the proposed method
produces an improvement of more than 7% in the clustering
accuracy (that becomes 91.41 % in average) compared to the
best individual clustering result (i.e., 84.12%). Particularly,
subtle enhancement can be observed for the Road, Dark Roof
and the Mountain classes which have substantial overlapping
in different spectral bands. The performance of the method of
[3] is 80.22% due to the inability of K-means in handling
overlapping data irrespective of centroid initializations. In
addition, the proposed method demonstrated to be robust with
respect to the use of different clustering algorithms since the
overall accuracy is highly stable when the clustering ensemble
changes with negligible variation in the class-wise accuracies.

The performance of a supervised ML classifier on a set of
labeled samples per class produces a classification accuracy
of 97.23%. The details of the training set used for this
purpose can be obtained in [8]. The proposed unsupervised
ML classifier comes close to the upper bound.

IV. CONCLUSION

This letter proposes an unsupervised classification method
for the multispectral remotely sensed images. A novel con-
sensus clustering technique is proposed to map the results
of several clustering algorithms. The outcome of the cluster
ensemble is further used to initialize the class-wise statistical
parameters for a self-learning based ML classifier. Initially
the image is clustered using three diverse clustering methods.
The proposed cluster mapping technique imposes consistency
to the different clustering outcomes. A set of highly reliable
samples per cluster are selected to initialize the cluster param-
eters for a EM based parameter retraining method considering
the image as a mixture of Gaussian functions. Experimental
results prove that the proposed framework is invariant to the
underlying clustering techniques and can correspond correct
clusters given that the clustering algorithms are efficient in
detecting the clusters substantially. The subsequent ML+EM
based classification would go totally wrong if the cluster

mapping fails to provide correct mappings for all the clusters.
The performance of the proposed system comes very close
to the one of the supervised ML classification but without
the need of costly training data collection. It is scalable to
larger datasets containing many clusters as the running time
of the proposed ensemble technique is quadratic to the number
of clusters (for finding the inter-cluster divergence). A graph
based method for label matching for all the clustering results
is now considered as a future endeavor of the current work.
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