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An Effective Strategy to Reduce the Labeling
Cost in the Definition of Training Sets
by Active Learning

Begiim Demi, Member, |IEEE, Luca Minellc, Lorenzo Bruzzor, Fellow, IEEE

Abstract—This letter proposes a novel strategy for reducing
the cost ofin situ sample labeling for the definition of training
sets by active learning (AL) in the framework of spervised
classification of remote sensing images. AL methoddefine a
training set according to an iterative procedure tlat at each
iteration requires the labeling of a set of new saples selected by
the classifier. The proposed strategy can be embeed in any AL
method in order to identify the most informative area on the
ground where focusing each AL iteration to reducehe overall
cost (in terms of time) of labeling. To this end atach iteration
the most uncertain unlabeled samples are initiallyidentified.
Then the area on the ground (having a size predefd by the
user) that has the highest spatial density of infanative (i.e.
uncertain and diverse) unlabeled samples is seledteby the
proposed strategy, and the AL technique is appliednly to the
samples of that area. This results in a decrease tfie overall
labeling cost with respect to that required by theuse of a given
technique in a standard way. Experimental results otained by
embedding the presented strategy in different litemture active
learning methods confirm its effectiveness.

Index Terms— Active learning, automatic classification,jn situ
data collection, training set, clustering, remote ensing.

I. INTRODUCTION
ctive learning (AL) has received an increasingriesgé in

samples that have the lowest confidence to be dtyre
classified by the considered classifier. The laftantifies
uncertain samples that are as distant as possit#adh other
in the feature space (to decrease the redundanongrie
selected samples) [1]. The joint use of these tuiteria
results in the collection of the informative setsaimples. A
literature survey of AL methods presented in thenate
sensing literature can be found in [3]. These nathassume
that reduction in the number of samples being kbel
guarantees the reduction in the total cost in teomBuman
time and effort. However, applicability of this asgption
directly depends on the approach considered in ldbel
collection process.

In remote sensing, labeling of samples can be aetibdy
the use of different approaches:ih)situ surveys, 2) image
photointerpretation, or 3) hybrid strategies (both
photointerpretation anih situ surveys) [1].In situ surveys are
highly expensive, yet strictly required if detailézhd-cover
classes should be recognized. The cost in this isagieectly
related to the traveling time of the human expethe ground
locations of the samples to be labeled. Thus, wesyp large
images are considered and samples geographicaligndito
each other should be labeled, the cost can becamyehigh.
In these cases we can state that using the AlLegirafor

the remote sensing community in the context ofeducing the number of labeled samples cannot asgur

supervised classification techniques [1]-[7]. Almaito build
up non-redundant and effective training sets adogrtb an
iterative process that requires an interaction betwa human
expert and the automatic classification system. e&ch

iteration, the most informative unlabeled samples the

considered classifier are selected; then the dies$on

system interacts with a human expert to obtaintthe class
labels for the selected samples. These samplesdesl to the
training set after manually labeling, and the suged

algorithm is retrained with the enriched trainirgf §l]. The

iterative process converges to an effective trginset that
includes a minimum number of very informative |augl
samples. This is a very important result as callgcsamples’
labels is highly costly in terms of human time affbrt, and

thus also in terms of money.

To select the most informative batch of samplesbé&o
labeled, most of the AL papers presented in theotersensing
literature exploit two criteria [1]- [4]: the undaimty and the
diversity criteria. The former aims at selecting tlnlabeled

achieve the minimum cost in terms of human time eifiokt.
According to our knowledge, only few methods exstthe
remote sensing literature that considers the lalbglisition
costs within the AL process [5]-[7]. In these waqrkhe
labeling cost is measured with respect to the tietgiired to
travel during the labeling process. The methodegiresl in [5]
initially selects the most uncertain samples, drehtdefines
the shortest path to travel among these samplexrdiog to
the traveling salesman problem. In [6], the undersamples
that are closest to each other are selected byingola
traveling salesman problem with profits. In [7]ethelection
of cost-efficient and informative samples in terno$
uncertainty and diversity is achieved by using enpsé
sequential forward selection strategy. Possiblaiirements
on the different transportation modes (i.e., footcar) with
respect to the distance between samples are afsideoed.
However, these methods are not efficient when \arge
images are considered due to the fact that thepased on a
random initialization of the position on the grounoim which
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starting the labeling process. This can stronglgcifthe cost
required to converge to an effective training $éareover,
informative samples in the considered area caniftard to
each other, thus increasing the total distanceateet for the
labeling process at convergence.

In order to deal with the above-mentioned problemghis
letter we present a novel strategy that can be dddzkin any
AL method. The main goal of the proposed strategyoi

reduce the cost df situ sample labeling for the definition of

an optimized training set (i.e., a training settthecludes
samples that are both highly informative and chieafabel)
when very large areas are considered. This is eetlidy
identifying, at the beginning of each AL iteratiaiine most
informative area on the ground that has the higlkestial
density of informative (i.e. uncertain and diversjabeled
samples. After selecting the small study area leypitoposed
strategy, the considered AL technique is appliety ¢m the
samples of that area.

The paper is organized into five sections. Sectlbn
introduces the proposed strategy to AL. Sectiorddscribes
the considered data sets and illustrates the desifin

experiments. Section IV shows the experimental lt®su

Finally, Section V draws the conclusion of this wor

Il. PROPOSELCSTRATEGY FORACTIVE LEARNING

In this section, we introduce the proposed novehtsgy

aimed to optimize the cost in terms of human timd effort

in the definition of a training set by situ ground survey with
AL. Given a generic AL method, the proposed stratEqs at
identifying at each AL iteration the area on thewgrd having
the highest density of informative unlabeled samplknis is
done to select a small yet informative portion loé¢ image
(i.e., the study area) on which running the AL noethThe
objective of selecting a small portion of the imag&o restrict
the area to be analyzed on the ground for labéliegsamples
during the AL process, and thus to reduce the liraydime,

while considering very informative samples. Thidne by
guaranteeing that the selected area contains hiigldgmative

samples for the considered classifier. In this wagrticularly
for very large images, we expect that the total anreffort
and time for labeling the samples can be signiflgaeduced.
It is worth noting that our aim is not to proposenew AL

method, but to present a novel strategy to propedyce the
cost of sample labeling within any AL method.

small areas for AL, we apply to the entire imagsqaare
shaped spatial moving window (having a sizpredefined by
the user). Then, for each portion (i.e., window)
P, j=12,..n, where P, isj-th portion of the entire image,

the spatial density of uncertain samplB$®, j=1,2,...n, is
estimated as

)|

unc —
D™=

P

where X, is the set of uncertain samples located in the

(1)

portion P, | | is the cardinality function and is the total
number of portions being analyzed. The portions lilage low
density of uncertain samples are rejected, whetteasother
ones are remained. To this end the dendty® of each

portion is compared with a threshold If D™ >T, P will
be remained due to its high density on uncertampées. On
the contrary, ifD"™ <T, P will be rejected. The sizev of
the moving window should be defined by the humapeeix

according to the considered application as well ths
geographical characteristics of the study area.

Then, the spatial densit", j =1,2,.1 of diverse uncertain
samples located in the remained spatial
P,j=12,.l is analyzed (<n is the total number of

remained portions). This is achieved by using asteling
method due to the fact that samples assigned ferelift
clusters can be considered as diverse samplesiemd/ersa.
Accordingly, a clustering method is applied to theost
uncertain samples located in the remaining portiohghe

image. After applying the clustering, the €&t, j =1,2,..1 of
cluster labels, wheré:j is the set of cluster labels chrj , are

obtained. Then, each portion is analyzed in ordexssess the
diversity of uncertain samples included in it. Tsachieved

according to the numb&Tj of different cluster labels in the

set C,. The total numberc_j of different cluster labels is
simply estimated as the sum of the diverse clustieels in
C,, and thusD}"V:C_j. If C_J is high, the portionP, is
assumed as highly informative and vice versa. Heeeuse

portion of the image for AL is the one that consaihe highest
density of both uncertain and diverse samples. élecs this
portion we define two steps: i) assessment of tpatial
density and diversity of the most uncertain sampies
different small portions of the image, and ii) stien of the
portion in which the density of both diverse andcenain

already proven effectiveness also in AL problemf [3].
Nonetheless, any clustering technique can be arploi

Sep 2-Selection of the most informative portion of the image:

The second step of the proposed strategy is devotedlect
the final portion of the image in which we have thighest
spatial density of the diverse and uncertain sasple

samples is high. To examine the entire image tepssof the accordingly, thev-th portion that has the highest diversity
proposed strategy are conducted on a moving Windoe maximum number of different cluster labets)selected

approach. Each step is explained in detail in ¢tlewing:

Sep 1-Assessment of the spatial density and diversity of the
most uncertain samples in the entire image: Initially the m-
most uncertain unlabeled samples are selected gy
considered AL method. Then, in order to assessspatial
density of these uncertain samples, thus to loealendidate

as the best portion of the image as
v=argmax D"

rgma{ 0"}
th

)

If there ard<l portions having the same highest spatial density

of the diverse uncertain samples, thth portion having the

portions



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATIONNUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

highest density of uncertain samples is selectethadfinal
best portion of the image, i.e.,

September 2011 (see Figure 1). The selected testissia
section of 4000x4700 pixels with a spatial resolutof 2 m.
For this data set, the available ground referereeptes are
representative of the five land cover classes, (nater, urban,
field, forest, shadow). They were randomly dividedlerive a

After selecting the best portion of the image to bwalidation set of 231 samples (which is used fordeio
investigated, the considered AL method is applied f selection), a test set of 8210 samples (which isdufr
collecting a batchX of h samples from this portion. If the accuracy assessment) and an unlabeled sampled 368®

v=arg ma>{ D}‘”°} (3

j=1,2,..t

considered AL method only includes an uncertaimtegon,
the most uncertain samples are directly selecteth fthis
portion according to their already estimated uraiety values
at the first step of the proposed strategy. In otherds, it is
not required to re-estimate these uncertainty \&lb®wever,
if the considered AL method includes also the diitgr
criterion, it will be applied to the most uncertasamples
located in the selected portion of the image foe fmal
selection of the diverse and uncertain samplesn ThHeese
samples are labeled by the human expert on thendrand
added to the current training set. Algorithm 1 siwarimes the
single AL iteration considering our proposed siygte

Algorithm 1: AL with the Proposed Strategy

Input:

samples. The 0.8% of the samples of each classhén t
unlabeled samples set were randomly selected dgl ini
training samples for a total of 63 samples, andrédst were
considered as unlabeled samples. The second dassaspan-
sharpened image acquired by the Quickbird multispkc
sensor on the city of Trento in October 2005. Télected test
site is a section of 2066x3100 pixels with a spagaolution
of 0.7 m. For this data set, the available grouefitrence
samples are representative of the five land colasses (i.e.,
water, road, field, forest, bare soil). They wesndomly
divided to derive a validation set of 195 sampkesest set of
2902 samples, and an unlabeled samples set of 268ples.
The 2% of the samples of each class in the unldbsdenples
set were randomly selected as initial training dasfor a
total of 57 samples, and the rest were considesathkbeled

m (number of samples selected on the basis of thejamples.

uncertainty)

h (batch size)

T (threshold)

k (total cluster number)

w (moving window size)

Output:

X (set of unlabeled samples to be included in thaitrg set)

1. Select themmost uncertain samples on the basis of

considered AL method.
2. Analyze the spatial densiy;™, j =1,2,...n of them-most

uncertain samples withimdifferent portions of the image.

3. Select thé<=n portions that have a density higher thHan

and reject the others.

4. Apply the kernek-means to the samples included in the

remainingl <=n portions.
5. Estimate the densit",
in each of thd < n selected sub-images.

6. Select the best portion of the image accordin@} or (3).

j=1,2,.1 of the diverse samples

Figure 1. True color composite of the Trento Geolg set

B. Design of experiments and parameter setting

7. Select the batcK of h samples from the selected portion of

the image on the basis of the considered AL method.

The steps of AL are iterated until the desired nembf
samples is labeled, i.e., the upper bound of tre¢ @o terms
of time spent on the ground) for labeling the sawpis
achieved. When the AL process is completed, thegéna
classified by the considered classifier. It is wonbting that
proposed strategy is general and can be embeddaulyirL
method as well as any classifier.

I1l. DATA SET DESCRIPTION ANDDESIGN OFEXPERIMENTS

A. Data set description

Experimental analyses are conducted on two multisple
data sets. The first data set is an image acquiredhe
GeoEye multispectral sensor on the city of Trertaly) in

In the experiments, we used the Support Vector lhech
(SVM) classifier with Radial Basis Function (RBFgrkel.
We considered an one-against-all architecture rdilyi SVMs
for addressing out multiclass problems [9]. Theuealfor the
regularization paramete€ and the spreads of the RBF

kernel were chosen performing a grid-search moelelcion
only at the first iteration of the AL process aggested in [1].

In the experiments, the siag of the moving window was
defined by limiting the human expert’s travelingaro 1 ki

for the first data set, whereas that of the seatatd set was
set to 0.1 krh As a result, for both data sets the moving
window sizew was 500x 50C pixels. In our experiments, we
selected the total cluster numiteas the total number of land-
cover classes present in the data sets k=&.,for both data
sets). The value oh (number of uncertain samples selected at
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the first step of the proposed strategy) was seteegual to
200. In the experiments, at each iteration of thephocess,
h=5 samples were added to the current trainingveletreas
the thresholdT is set equal to the batch size All
experimental results are provided as the averagaracies of
ten trials that are obtained according to ten ahitandomly
selected training sets.

4

the MCLU-ECBD-S and EQB-S lead to the highest aacies
for all the iterations and significantly outperfarthe MCLU-
ECBD and EQB, respectively. As an example, the MELU
ECBD provides an accuracy of 90.95% when 14 houwes a
spent for the collection of ground reference ddtawever, the
accuracy obtained by the proposed MCLU-ECBD-S ia th
same time is 93.73% (see Figure 3.a). Moreoverptbposed

We applied the proposed strategy to two of the moMCLU-ECBD-S provides an accuracy of 94.02% spend8g

effective state of the art AL methods presentethenremote
sensing literature, i.e. the Multiclass-Level Unagtty with

hours, whereas the standard MCLU-ECBD requires @ifrsh
to achieve a similar accuracy. The similar perfaroes are

Enhanced Clustering Based Diversity (MCLU-ECBD)also observed when comparing the EQB-S with thedstal
technique [1] and the Entropy Query by Bagging (EQBEQB (see Figure 3.b). Moreover, by analyzing tlyeiié one

technique [2]. The MCLU-ECBD technique selects thest
informative unlabeled samples by the MCLU strategyd
then assesses the diversity of the most uncersanples by a
kernel-clustering technique. [1]. The EQB techniqssesses

can observe that the proposed MCLU-ECBD-S and EQB-S
reach convergence in a smallest time with respeddCLU-
ECBD and EQB, respectively. These results demdestithe
importance of proposed strategy for optimizing dedinition

the uncertainty of samples according to the maximuwf the training sets with the lowest sample lalgeloost in
disagreement between a committee of classifierse Tiherms of traveling time.

disagreement among classifiers is evaluated bgtiwpy of
the distribution of the different labels obtaingdébcommittee
of classifiers [2]. The results of EQB are obtaidieihg the
number of EQB predictors to eight and selecting t&toap
samples containing 75% of initial training patterishese
values have been suggested in [2]. It is worth exsping that
the MCLU-ECBD technique analyzes both the uncetyaind

diversity of samples, whereas the EQB techniquey onl

evaluates the uncertainty of samples. In our erpatts, the

results obtained by the ECBD-MCLU and EQB technsque

when applied with the proposed strategy are deneted
MCLU-ECBD-S and EQB-S, respectively. In order tawh
the effectiveness of the MCLU-ECBD-S and EQB-S,hage
compared the results with those obtained withoimgushe
proposed strategy (i.e., using the standard ECBD-W@nd
EQB). All the results are provided as learning rateves,
which show the average classification accuracy ugerthe
total time spent during the labeling process. &ieling time
of all the methods was calculated using the sanpeoaph
proposed in [6], where the shortest path to trambng the
selected samples is defined according to the irayel
salesman problem. In our experiments, we set thecitge of
traveling by supervisor to 6 km/hours, whereastitne taken
by the supervisor to assign a label to each samageset to 2
minutes.

IV. EXPERIMENTAL RESULTS

A. Results: GeoEye Data Set

The small areas selected by the proposed stratedhis data
set at the first five AL iterations are shown irgliie 2. From
the figure, one can see that the selected areasicothe

highest spatial concentration of samples of thawyfield and

forest classes. This is due to the fact that tlsaseples have
the lowest confidence on their correct class lgalis are

much more informative from the AL point of view)ropared

to those of water and shadow classes.

Figure 3 shows the behavior of the average (onriaGs)
classification accuracies versus the time obtaibgdthe
proposed MCLU-ECBD-S and the standard MCLU-ECB
(see Figure 3.a), as well as the proposed EQB-Sstamdiard
EQB (see Figure 3.b). From the figure, one can miesthat

gl Ll P
l’ll‘ sl - ~

Figure 2. Example of the selectedareas by theqsmpstrateg at the first 5
iterations of AL for one trial. The number of Aleation is given on the left
corner of the selected area.

B. Results: Quickbird Data Set

For this data set, due to the space limitations repert only

the qualitative results. Figure 4 shows the resulffitgined by
the MCLU-ECBD-S and the standard MCLU-ECBD (see
Figure 4.a); and the EQB-S and standard EQB (sgerd-i
4.b), respectively. By analyzing the figure, one adbserve
that also on this data set the MCLU-ECBD-S and E®)B-
result in the highest accuracies for all the itera. As an
example, the MCLU-ECBD provides an accuracy of 9%0
when 4 hours are spent for the collection of grotefdrence
data. However, the accuracy obtained by the prabb&el U-
ECBD-S in the same time is 92.99% (see Figure 4.a).
Moreover, the proposed MCLU-ECBD-S provides an
accuracy of 94.20% spending 8 hours for the labéction
process, whereas the standard MCLU-ECBD requires 19
hours to achieve a similar accuracy. Similar betx@vare also
observed when comparing the EQB-S with standard .EQB
Moreover, by analyzing the figure one can see (it

E;)roposed the MCLU-ECBD-S and EQB-S, again, reach
C

onvergence in a smallest time compared to the MEGBD
and EQB, respectively.
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Figure 3. Average overall classification accurabtamed by (a) the proposed
MCLU-ECBD-S and the standard MCLU-ECBD; (b) the pwsed EQB-S
and the standard EQB for the Trento GeoEye dataTbet dashed line “All
training samples” shows the accuracy obtained dioty all unlabeled
samples in the training set after manual labeling.
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Figure 4. Average overall classification accurabtamed by (a) the proposed
MCLU-ECBD-S and the standard MCLU-ECBD method; th¢ proposed
EQB-S and the standard EQB for the Trento QuickHdath set. The dashed
line “All training samples” shows the accuracy obéa including all
unlabeled samples in the training set after malabaling.

It is worth noting that on this data set the diéfezes on the
accuracies obtained with and without exploiting pneposed
strategy are not as high as those obtained onrtheopis data
set. This is mainly due to the fact the proposedtegy is
more effective for large images due to larger nunddesmall

5

areas available for AL.

V. CONCLUSIONS

In this paper, a novel strategy has been presdoteéducing
the cost of the definition of training sets ilysitu survey with
AL methods. The proposed strategy identifies atheAt
iteration a small portion of the analyzed image.(iof the area
on the ground) that contains the highest spatiatentration
of informative (i.e., uncertain and diverse) unlabesamples.
Then the considered AL method is applied to thepdasnof
that area. In this way, focusing on small areasirtgathe
highest density of informative unlabeled sampleis, possible
to limit the traveling time required for the humanrpert for
defining the final training set. It is worth emplzsg that the
proposed strategy is general and can be used withA4
method as well as with any classifier.

The proposed strategy has been applied to tworeliffelata
sets simulating thin situ label collection process. It has been
implemented by using two effective AL methods takemm
the literature, i.e. the MCLU-ECBD and the EQB. &l
experiments the results show that the proposetegirallows
one to significantly reduce the cost of the coltatt of
reference samples to reach the target classificatiguracy.
As a final remark, we point out that the proposedtegy is
very promising for possible operational applicatiotue to
crucial ability to significantly reduce the samjpédeling cost
in terms of human time and effort. As a future depment of
this work, we plan to develop a tool with an intex based on
the proposed strategy, to implement it with differeAL
techniques and then to test it for real label ctitle on the
ground.
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