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Abstract—This letter proposes a novel strategy for reducing 

the cost of in situ sample labeling for the definition of training 
sets by active learning (AL) in the framework of supervised 
classification of remote sensing images. AL methods define a 
training set according to an iterative procedure that at each 
iteration requires the labeling of a set of new samples selected by 
the classifier. The proposed strategy can be embedded in any AL 
method in order to identify the most informative area on the 
ground where focusing each AL iteration to reduce the overall 
cost (in terms of time) of labeling. To this end at each iteration 
the most uncertain unlabeled samples are initially identified. 
Then the area on the ground (having a size predefined by the 
user) that has the highest spatial density of informative (i.e. 
uncertain and diverse) unlabeled samples is selected by the 
proposed strategy, and the AL technique is applied only to the 
samples of that area. This results in a decrease of the overall 
labeling cost with respect to that required by the use of a given 
technique in a standard way. Experimental results obtained by 
embedding the presented strategy in different literature active 
learning methods confirm its effectiveness. 
 

Index Terms— Active learning, automatic classification, in situ 
data collection, training set, clustering, remote sensing. 

I. INTRODUCTION 

ctive learning (AL) has received an increasing interest in 
the remote sensing community in the context of 

supervised classification techniques [1]-[7]. AL aims to build 
up non-redundant and effective training sets according to an 
iterative process that requires an interaction between a human 
expert and the automatic classification system. At each 
iteration, the most informative unlabeled samples for the 
considered classifier are selected; then the classification 
system interacts with a human expert to obtain the true class 
labels for the selected samples. These samples are added to the 
training set after manually labeling, and the supervised 
algorithm is retrained with the enriched training set [1]. The 
iterative process converges to an effective training set that 
includes a minimum number of very informative labeled 
samples. This is a very important result as collecting samples’ 
labels is highly costly in terms of human time and effort, and 
thus also in terms of money.  

To select the most informative batch of samples to be 
labeled, most of the AL papers presented in the remote sensing 
literature exploit two criteria [1]- [4]: the uncertainty and the 
diversity criteria. The former aims at selecting the unlabeled 

samples that have the lowest confidence to be correctly 
classified by the considered classifier. The latter identifies 
uncertain samples that are as distant as possible to each other 
in the feature space (to decrease the redundancy among the 
selected samples) [1]. The joint use of these two criteria 
results in the collection of the informative set of samples. A 
literature survey of AL methods presented in the remote 
sensing literature can be found in [3]. These methods assume 
that reduction in the number of samples being labeled 
guarantees the reduction in the total cost in terms of human 
time and effort. However, applicability of this assumption 
directly depends on the approach considered in the label 
collection process.  

In remote sensing, labeling of samples can be achieved by 
the use of different approaches: 1) in situ surveys, 2) image 
photointerpretation, or 3) hybrid strategies (both 
photointerpretation and in situ surveys) [1]. In situ surveys are 
highly expensive, yet strictly required if detailed land-cover 
classes should be recognized. The cost in this case is directly 
related to the traveling time of the human expert to the ground 
locations of the samples to be labeled. Thus, when very large 
images are considered and samples geographically distant to 
each other should be labeled, the cost can become very high. 
In these cases we can state that using the AL strategy for 
reducing the number of labeled samples cannot assure to 
achieve the minimum cost in terms of human time and effort. 
According to our knowledge, only few methods exist in the 
remote sensing literature that considers the label acquisition 
costs within the AL process [5]-[7]. In these works, the 
labeling cost is measured with respect to the time required to 
travel during the labeling process. The method presented in [5] 
initially selects the most uncertain samples, and then defines 
the shortest path to travel among these samples according to 
the traveling salesman problem. In [6], the uncertain samples 
that are closest to each other are selected by solving a 
traveling salesman problem with profits. In [7], the selection 
of cost-efficient and informative samples in terms of 
uncertainty and diversity is achieved by using a simple 
sequential forward selection strategy. Possible requirements 
on the different transportation modes (i.e., foot or car) with 
respect to the distance between samples are also considered. 
However, these methods are not efficient when very large 
images are considered due to the fact that they are based on a 
random initialization of the position on the ground from which 
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starting the labeling process. This can strongly affect the cost 
required to converge to an effective training set. Moreover, 
informative samples in the considered area can be distant to 
each other, thus increasing the total distance to travel for the 
labeling process at convergence. 
 In order to deal with the above-mentioned problems, in this 
letter we present a novel strategy that can be embedded in any 
AL method. The main goal of the proposed strategy is to 
reduce the cost of in situ sample labeling for the definition of 
an optimized training set (i.e., a training set that includes 
samples that are both highly informative and cheap to label) 
when very large areas are considered. This is achieved by 
identifying, at the beginning of each AL iteration, the most 
informative area on the ground that has the highest spatial 
density of informative (i.e. uncertain and diverse) unlabeled 
samples. After selecting the small study area by the proposed 
strategy, the considered AL technique is applied only to the 
samples of that area.   

The paper is organized into five sections. Section II 
introduces the proposed strategy to AL. Section III describes 
the considered data sets and illustrates the design of 
experiments. Section IV shows the experimental results. 
Finally, Section V draws the conclusion of this work. 

II. PROPOSED STRATEGY FOR ACTIVE LEARNING 

In this section, we introduce the proposed novel strategy 
aimed to optimize the cost in terms of human time and effort 
in the definition of a training set by in situ ground survey with 
AL. Given a generic AL method, the proposed strategy aims at 
identifying at each AL iteration the area on the ground having 
the highest density of informative unlabeled samples. This is 
done to select a small yet informative portion of the image 
(i.e., the study area) on which running the AL method. The 
objective of selecting a small portion of the image is to restrict 
the area to be analyzed on the ground for labeling the samples 
during the AL process, and thus to reduce the traveling time, 
while considering very informative samples. This is done by 
guaranteeing that the selected area contains highly informative 
samples for the considered classifier.  In this way, particularly 
for very large images, we expect that the total human effort 
and time for labeling the samples can be significantly reduced. 
It is worth noting that our aim is not to propose a new AL 
method, but to present a novel strategy to properly reduce the 
cost of sample labeling within any AL method. 

The proposed strategy assumes that the most informative 
portion of the image for AL is the one that contains the highest 
density of both uncertain and diverse samples. To select this 
portion we define two steps: i) assessment of the spatial 
density and diversity of the most uncertain samples in 
different small portions of the image, and ii) selection of the 
portion in which the density of both diverse and uncertain 
samples is high. To examine the entire image the steps of the 
proposed strategy are conducted on a moving window 
approach. Each step is explained in detail in the following: 
Step 1-Assessment of the spatial density and diversity of the 
most uncertain samples in the entire image: Initially the m-
most uncertain unlabeled samples are selected by the 
considered AL method. Then, in order to assess the spatial 
density of these uncertain samples, thus to localize candidate 

small areas for AL, we apply to the entire image a square 
shaped spatial moving window (having a size w predefined by 
the user). Then, for each portion (i.e., window) 

,  1,2,...,jP j n= , where jP  is j-th portion of the entire image, 

the spatial density of uncertain samples ,  1,2,...,unc
jD j n= , is 

estimated as 

      1,2,...,
junc

j

j

X
D j n

P
= =                                                     (1) 

 

where jX  is the set of uncertain samples located in the 

portion jP ,  is the cardinality function and n is the total 

number of portions being analyzed. The portions that have low 
density of uncertain samples are rejected, whereas the other 
ones are remained. To this end the density unc

jD  of each 

portion is compared with a threshold T. If unc
jD T> , jP  will 

be remained due to its high density on uncertain samples. On 
the contrary, if unc

jD T< , jP  will be rejected. The size w of 

the moving window should be defined by the human expert 
according to the considered application as well as the 
geographical characteristics of the study area. 
Then, the spatial density ,  1,2,...div

jD j l=  of diverse uncertain 

samples located in the remained spatial portions 
,  1,2,...,jP j l=  is analyzed (l n≤  is the total number of 

remained portions). This is achieved by using a clustering 
method due to the fact that samples assigned to different 
clusters can be considered as diverse samples and vice versa. 
Accordingly, a clustering method is applied to the most 
uncertain samples located in the remaining portions of the 
image. After applying the clustering, the set ,  1,2,...jC j l=  of 

cluster labels, where jC  is the set of cluster labels for jP , are 

obtained. Then, each portion is analyzed in order to assess the 
diversity of uncertain samples included in it. This is achieved 

according to the number jC  of different cluster labels in the 

set jC . The total number jC  of different cluster labels is 

simply estimated as the sum of the diverse cluster labels in 

jC , and thus div
j jD C= . If jC  is high, the portion jP  is 

assumed as highly informative and vice versa. Here, we use 
the kernel k-means technique [8] for clustering due to its 
already proven effectiveness also in AL problems [1], [3]. 
Nonetheless, any clustering technique can be exploited. 
 

Step 2-Selection of the most informative portion of the image: 
The second step of the proposed strategy is devoted to select 
the final portion of the image in which we have the highest 
spatial density of the diverse and uncertain samples. 
Accordingly, the v-th portion that has the highest diversity 
(i.e., maximum number of different cluster labels) is selected 
as the best portion of the image as  

{ }
1,2,...,

arg max div
j

j l
v D

=
=                                                                   (2) 

 

If there are t<l portions having the same highest spatial density 
of the diverse uncertain samples, the v-th portion having the 
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highest density of uncertain samples is selected as the final 
best portion of the image, i.e.,  

 

{ }
1,2,...

arg max unc
j

j t
v D

=
=                                                                  (3) 

 

After selecting the best portion of the image to be 
investigated, the considered AL method is applied for 
collecting a batch X of h samples from this portion. If the 
considered AL method only includes an uncertainty criterion, 
the most uncertain samples are directly selected from this 
portion according to their already estimated uncertainty values 
at the first step of the proposed strategy. In other words, it is 
not required to re-estimate these uncertainty values. However, 
if the considered AL method includes also the diversity 
criterion, it will be applied to the most uncertain samples 
located in the selected portion of the image for the final 
selection of the diverse and uncertain samples. Then, these 
samples are labeled by the human expert on the ground and 
added to the current training set. Algorithm 1 summarizes the 
single AL iteration considering our proposed strategy: 
 

Algorithm 1: AL with the Proposed Strategy 
Input: 
m (number of samples selected on the basis of their 
uncertainty) 
h (batch size) 
T (threshold) 
k (total cluster number) 
w (moving window size) 
Output:  
X (set of unlabeled samples to be included in the training set) 
1. Select the m-most uncertain samples on the basis of 
considered AL method. 
2. Analyze the spatial density ,  1,2,...,unc

jD j n=  of the m-most 

uncertain samples within n different portions of the image. 
3. Select thel n<=  portions that have a density higher than T 
and reject the others.  
4. Apply the kernel k-means to the samples included in the 
remaining l n<=  portions.  

5. Estimate the density ,  1,2,...div
jD j l=  of the diverse samples 

in each of the l n≤  selected sub-images. 
6. Select the best portion of the image according to (2) or (3). 
7. Select the batch X of h samples from the selected portion of 
the image on the basis of the considered AL method.  
 

 

The steps of AL are iterated until the desired number of 
samples is labeled, i.e., the upper bound of the cost (in terms 
of time spent on the ground) for labeling the samples is 
achieved. When the AL process is completed, the image is 
classified by the considered classifier. It is worth noting that 
proposed strategy is general and can be embedded in any AL 
method as well as any classifier. 

III.  DATA SET DESCRIPTION AND DESIGN OF EXPERIMENTS 

A. Data set description 

Experimental analyses are conducted on two multispectral 
data sets. The first data set is an image acquired by the 
GeoEye multispectral sensor on the city of Trento (Italy) in 

September 2011 (see Figure 1). The selected test site is a 
section of 4000×4700 pixels with a spatial resolution of 2 m. 
For this data set, the available ground reference samples are 
representative of the five land cover classes (i.e., water, urban, 
field, forest, shadow). They were randomly divided to derive a 
validation set of 231 samples (which is used for model 
selection), a test set of 8210 samples (which is used for 
accuracy assessment) and an unlabeled samples set of 7638 
samples. The 0.8% of the samples of each class in the 
unlabeled samples set were randomly selected as initial 
training samples for a total of 63 samples, and the rest were 
considered as unlabeled samples. The second data set is a pan-
sharpened image acquired by the Quickbird multispectral 
sensor on the city of Trento in October 2005. The selected test 
site is a section of 2066×3100 pixels with a spatial resolution 
of 0.7 m. For this data set, the available ground reference 
samples are representative of the five land cover classes (i.e., 
water, road, field, forest, bare soil). They were randomly 
divided to derive a validation set of 195 samples, a test set of 
2902 samples, and an unlabeled samples set of 2688 samples. 
The 2% of the samples of each class in the unlabeled samples 
set were randomly selected as initial training samples for a 
total of 57 samples, and the rest were considered as unlabeled 
samples.  

 
Figure 1. True color composite of the Trento GeoEye data set 

 
B. Design of experiments and parameter setting 

In the experiments, we used the Support Vector Machine 
(SVM) classifier with Radial Basis Function (RBF) kernel. 
We considered an one-against-all architecture of binary SVMs 
for addressing out multiclass problems [9]. The values for the 
regularization parameter C and the spread γ  of the RBF 

kernel were chosen performing a grid-search model selection 
only at the first iteration of the AL process as suggested in [1]. 
In the experiments, the size w of the moving window was 
defined by limiting the human expert’s traveling area to 1 km2 

for the first data set, whereas that of the second data set was 
set to 0.1 km2. As a result, for both data sets the moving 
window size w was 500 500×  pixels. In our experiments, we 
selected the total cluster number k as the total number of land-
cover classes present in the data sets (i.e., k=5 for both data 
sets). The value of m (number of uncertain samples selected at 
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the first step of the proposed strategy) was selected equal to 
200. In the experiments, at each iteration of the AL process, 
h=5 samples were added to the current training set, whereas 
the threshold T is set equal to the batch size h. All 
experimental results are provided as the average accuracies of 
ten trials that are obtained according to ten initial randomly 
selected training sets.  

We applied the proposed strategy to two of the most 
effective state of the art AL methods presented in the remote 
sensing literature, i.e. the Multiclass-Level Uncertainty with 
Enhanced Clustering Based Diversity (MCLU-ECBD) 
technique [1] and the Entropy Query by Bagging (EQB) 
technique [2]. The MCLU-ECBD technique selects the most 
informative unlabeled samples by the MCLU strategy, and 
then assesses the diversity of the most uncertain samples by a 
kernel-clustering technique. [1]. The EQB technique assesses 
the uncertainty of samples according to the maximum 
disagreement between a committee of classifiers. The 
disagreement among classifiers is evaluated by the entropy of 
the distribution of the different labels obtained by a committee 
of classifiers [2]. The results of EQB are obtained fixing the 
number of EQB predictors to eight and selecting bootstrap 
samples containing 75% of initial training patterns. These 
values have been suggested in [2]. It is worth emphasizing that 
the MCLU-ECBD technique analyzes both the uncertainty and 
diversity of samples, whereas the EQB technique only 
evaluates the uncertainty of samples. In our experiments, the 
results obtained by the ECBD-MCLU and EQB techniques 
when applied with the proposed strategy are denoted as 
MCLU-ECBD-S and EQB-S, respectively. In order to show 
the effectiveness of the MCLU-ECBD-S and EQB-S, we have 
compared the results with those obtained without using the 
proposed strategy (i.e., using the standard ECBD-MCLU and 
EQB). All the results are provided as learning rate curves, 
which show the average classification accuracy versus the 
total time spent during the labeling process. The labeling time 
of all the methods was calculated using the same approach 
proposed in [6], where the shortest path to travel among the 
selected samples is defined according to the traveling 
salesman problem. In our experiments, we set the velocity of 
traveling by supervisor to 6 km/hours, whereas the time taken 
by the supervisor to assign a label to each sample was set to 2 
minutes. 

IV. EXPERIMENTAL RESULTS  

A. Results: GeoEye Data Set  

The small areas selected by the proposed strategy for this data 
set at the first five AL iterations are shown in Figure 2. From 
the figure, one can see that the selected areas contain the 
highest spatial concentration of samples of the urban, field and 
forest classes. This is due to the fact that these samples have 
the lowest confidence on their correct class label (thus are 
much more informative from the AL point of view) compared 
to those of water and shadow classes.  

Figure 3 shows the behavior of the average (on 10 trials) 
classification accuracies versus the time obtained by the 
proposed MCLU-ECBD-S and the standard MCLU-ECBD 
(see Figure 3.a), as well as the proposed EQB-S and standard 
EQB (see Figure 3.b). From the figure, one can observe that 

the MCLU-ECBD-S and EQB-S lead to the highest accuracies 
for all the iterations and significantly outperforms the MCLU-
ECBD and EQB, respectively. As an example, the MCLU-
ECBD provides an accuracy of 90.95% when 14 hours are 
spent for the collection of ground reference data. However, the 
accuracy obtained by the proposed MCLU-ECBD-S in the 
same time is 93.73% (see Figure 3.a). Moreover, the proposed 
MCLU-ECBD-S provides an accuracy of 94.02% spending 23 
hours, whereas the standard MCLU-ECBD requires 48 hours 
to achieve a similar accuracy. The similar performances are 
also observed when comparing the EQB-S with the standard 
EQB (see Figure 3.b). Moreover, by analyzing the figure one 
can observe that the proposed MCLU-ECBD-S and EQB-S 
reach convergence in a smallest time with respect to MCLU-
ECBD and EQB, respectively. These results demonstrates the 
importance of proposed strategy for optimizing the definition 
of the training sets with the lowest sample labeling cost in 
terms of traveling time. 

 
 

 
Figure 2. Example of the selected areas by the proposed strategy at the first 5 
iterations of AL for one trial. The number of AL iteration is given on the left 
corner of the selected area. 
 

B. Results: Quickbird Data Set 

For this data set, due to the space limitations, we report only 
the qualitative results. Figure 4 shows the results obtained by 
the MCLU-ECBD-S and the standard MCLU-ECBD (see 
Figure 4.a); and the EQB-S and standard EQB (see Figure 
4.b), respectively. By analyzing the figure, one can observe 
that also on this data set the MCLU-ECBD-S and EQB-S 
result in the highest accuracies for all the iterations. As an 
example, the MCLU-ECBD provides an accuracy of 90.05% 
when 4 hours are spent for the collection of ground reference 
data. However, the accuracy obtained by the proposed MCLU-
ECBD-S in the same time is 92.99% (see Figure 4.a). 
Moreover, the proposed MCLU-ECBD-S provides an 
accuracy of 94.20% spending 8 hours for the label collection 
process, whereas the standard MCLU-ECBD requires 19 
hours to achieve a similar accuracy. Similar behaviors are also 
observed when comparing the EQB-S with standard EQB. 
Moreover, by analyzing the figure one can see that the 
proposed the MCLU-ECBD-S and EQB-S, again, reach 
convergence in a smallest time compared to the MCLU-ECBD 
and EQB, respectively. 
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(a) 

 
(b) 

Figure 3. Average overall classification accuracy obtained by (a) the proposed 
MCLU-ECBD-S and the standard MCLU-ECBD; (b) the proposed EQB-S 
and the standard EQB for the Trento GeoEye data set. The dashed line “All 
training samples” shows the accuracy obtained including all unlabeled 
samples in the training set after manual labeling. 

  

 
(a) 

 
(b) 

Figure 4. Average overall classification accuracy obtained by (a) the proposed 
MCLU-ECBD-S and the standard MCLU-ECBD method; (b) the proposed 
EQB-S and the standard EQB for the Trento Quickbird data set. The dashed 
line “All training samples” shows the accuracy obtained including all 
unlabeled samples in the training set after manual labeling. 
 
It is worth noting that on this data set the differences on the 
accuracies obtained with and without exploiting the proposed 
strategy are not as high as those obtained on the previous data 
set. This is mainly due to the fact the proposed strategy is 
more effective for large images due to larger number of small 

areas available for AL. 

V. CONCLUSIONS 

In this paper, a novel strategy has been presented for reducing 
the cost of the definition of training sets by in situ survey with 
AL methods. The proposed strategy identifies at each AL 
iteration a small portion of the analyzed image (i.e., of the area 
on the ground) that contains the highest spatial concentration 
of informative (i.e., uncertain and diverse) unlabeled samples. 
Then the considered AL method is applied to the samples of 
that area. In this way, focusing on small areas having the 
highest density of informative unlabeled samples, it is possible 
to limit the traveling time required for the human expert for 
defining the final training set. It is worth emphasizing that the 
proposed strategy is general and can be used with any AL 
method as well as with any classifier. 

The proposed strategy has been applied to two different data 
sets simulating the in situ label collection process. It has been 
implemented by using two effective AL methods taken from 
the literature, i.e. the MCLU-ECBD and the EQB. In all 
experiments the results show that the proposed strategy allows 
one to significantly reduce the cost of the collection of 
reference samples to reach the target classification accuracy. 
As a final remark, we point out that the proposed strategy is 
very promising for possible operational applications due to 
crucial ability to significantly reduce the sample labeling cost 
in terms of human time and effort. As a future development of 
this work, we plan to develop a tool with an interface based on 
the proposed strategy, to implement it with different AL 
techniques and then to test it for real label collection on the 
ground. 
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