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A Study on the Effectiveness of Different
Independent Component Analysis Algorithms for

Hyperspectral Image Classification.
Nicola Falco, Student Member, IEEE, Jón Atli Benediktsson, Fellow, IEEE, and Lorenzo Bruzzone, Fellow, IEEE

Abstract—This paper presents a thorough study on the per-

formances of different Independent Component Analysis (ICA)

algorithms for the extraction of class-discriminant information

in remote sensing hyperspectral image classification. The study

considers the three implementations of ICA that are most widely

used in signal processing, namely Infomax, FastICA and JADE.

The analysis aims to address a number of important issues

regarding the use of ICA in the RS domain. Three scenarios

are considered and the performances of the ICA algorithms

are evaluated and compared against each other, in order to

reach the final goal of identifying the most suitable approach to

the analysis of hyperspectral images in supervised classification.

Different feature extraction and selection techniques are used for

dimensionality reduction with ICA and are then compared to the

commonly used strategy, which is based on pre-processing data

with Principal Components Analysis (PCA) prior to classification.

Experimental results obtained on three real hyperspectral data

sets from each of the considered algorithms are presented

and analyzed in terms of both classification accuracies and

computational time.

Index Terms—Independent component analysis (ICA), hy-

perspectral images, feature extraction, dimensionality reduction

(DR), supervised classification, remote sensing.

I. INTRODUCTION

H
YPERSPECTRAL images are an important information
source for analysing and understanding the processes

that occur on the surface of our planet. Due to their capabilities
in providing highly detailed representation of the spectral
signature of the different materials present in the scene,
the processing of hyperspectral images can provide results
that are suitable for a wide range of applications. In the
Earth Observation domain, one of the major challenges is the
classification of remote sensing images, which is the process
of identifying the diverse classes of coverage of an investigated
area. In particular, the analysis of hyperspectral images is a
challenging and computationally expensive task as these data
are characterized by hundreds of narrow spectral channels of-
fering a huge quantity of often redundant spectral information.
The large number of spectral channels may result in the so
called “curse of dimensionality” (Hughes’ phenomenon) [1],
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which arises when the number of spectral features is high and
only relatively few training samples are available, affecting
the generalization capability of the classifier. To overcome
this problem, the common strategy is to select or extract a
subset of features from the original hyperspectral data set.
The resulting representation contains the useful information
while the redundant and the noisy components are discarded
after the dimensionality reduction (DR) process. Different
feature subsets can be obtained by exploiting various feature
selection/extraction techniques in accordance to the task to
be accomplished. For example, by exploiting the Karhunen-
Loève transform [2] (also known as Principal Component
Analysis (PCA)), it is possible to obtain a reduced subset
while achieving excellent data compression [3] and a good
representation in terms of minimum mean square error. Alter-
natively, the Maximum Noise Fraction approach [4] provides
a subset whose components are ordered based on the noise
fraction contained in the features. Regarding the classification
task, where the class separability is the variable that has
to be considered, techniques based on discriminant analysis
[2] are more adequate since they can exploit the available
prior information. Important techniques based on discrimi-
nant analysis are Discriminant Analysis Feature Extraction
(DAFE) [2], Decision Boundaries Feature Extraction (DBFE)
[5], projection pursuit (PP) [6] and Non-parametric Weighted
Feature Extraction (NWFE) [7]. The problem of blind source
separation appears in various signal processing fields such
as biomedical signal analysis where Independent Component
Analysis (ICA) [8] is proven to be an efficient method for
the interpretation of signals, e.g., in electroencephalography
(EEG), in electrocardiography (ECG), in electromyography
(EMG), in magnetoencephalography (MEG) and in electronys-
tagmography (ENG) [9]–[13]. ICA is a well known unsuper-
vised blind source separation technique, extensively used in
several fields, aimed at finding statistically independent com-
ponents (ICs) by only considering the observation of mixture
signals. ICA-based methods are also applied to geophysical
data processing, data mining, speech enhancement, image
recognition and wireless communications [14]. Recently, ICA
has received attention in the hyperspectral remote sensing
domain and in particular for feature dimensionality reduction
[15] and unmixing [16], [17], while applications of ICA for
classification have also been exploited [18]–[23]. In hyperspec-
tral remote sensing, ICA extracts the source components that
generate the mixed signal measured by the sensor and the in-
dependent components refer to the different classes presented
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in the scene. Several algorithms have been proposed in the
literature for implementing ICA based on the maximization
of different criteria. The different algorithms provide diverse
feature sets for classification. However, only a limited number
of studies addresses the comparative performance of these
algorithms. The available studies are in most cases related to
biomedical signals analysis [24]–[27] yielding results that are
not consistent in terms of the most efficient ICA algorithm.
All the review papers in the aforementioned domain agree
on the identification of the three most prominent algorithms,
that are Infomax [28], FastICA [29] and JADE [30]. However,
an in-depth comparative study that addresses simultaneously
fundamental questions on the properties and the efficiency of
ICA implementations for the analysis of hyperspectral remote
sensing images is still missing.

In the literature, a common approach is to apply ICA after
DR, which is usually carried out by PCA. This approach is
applied in [18], [19], where PCA is performed firstly and then
the ICA is applied to the most important principal components
with the accumulative variance of 99% and 98.58%, while the
remaining components are discarded. In other studies [21]–
[23], JADE and FastICA are used to extract subsets of ICs by
exploiting the PCA phase implemented in the algorithms for
dimensionality reduction. As mentioned before, PCA aims to
globally decorrelate the data and maximize the variance. The
main limitation of PCA is that it is based on using the global
second order statistics for the whole image. Consequently, the
sensitivity to critical classes composed of a small number
of pixels is reduced [31]. It is also well known that the
criterion for retaining a certain number of components based
on the calculation of the accumulated sum of eigenvalues is
not an effective measure in terms of class discriminant, as
demonstrated in [32]. Thus, PCA should not be used as a
pre-processing tool for classification purposes [33]. Note that,
according to the studies conducted in [8], ICA results obtained
after PCA are in general not sufficient to estimate the ICs,
since after the use of PCA only information on a subset of
orthogonal components is available. In general, some weak
ICs may be hidden in the dimensionality reduction process.
An attempt to identify a better pre-processing approach than
PCA is performed in [20], where a Noise-adjusted Principal
Components (NAPC) is used for dimensionality reduction.
The obtained results show that the principal components from
the NAPC can better maintain the object information in the
original data than those from PCA, allowing the ICA to
provide better object classification.

The aim of this work is twofold; firstly, we aim at identify-
ing an effective strategy for the extraction of class-discriminant
features with ICA. In the analysis we consider different
supervised feature extraction and selection approaches to di-
mensionality reduction (DR), which are investigated as pre-
processing before applying ICA. Secondly, we aim at address-
ing the lack in the literature of an extended comparative study
on the three most frequently used implementations of ICA
in the broader field of signal processing: Infomax, FastICA
and JADE, aiming at assessing the most efficient and reliable
methodology to follow when employing the ICA technique for
accurate and cost efficient classification of hyperspectral im-

ages. Importantly the computational cost is assessed in relation
to the number of samples used for the source estimation.

The paper is organized as follows. In Section II, the general
ICA problem is introduced, and the three different algorithms:
Infomax, FastICA and JADE are briefly presented. Section
III describes the experimental setup, explaining the strategy
adopted for each experiment. Section IV contains the experi-
mental results. Finally, conclusions and future steps are drawn
in Section V.

II. INDEPENDENT COMPONENT ANALYSIS

Let us consider n mixtures of random variables
x1, x2, ..., xn which are defined as a linear combination
of n random variables s1, s2, ..., sn. The mixing model can
be written as:

xi = ai,1s1 + ai,2s2 + ...+ ai,nsn i = 1, ..., n. (1)

In terms of random vectors, the model can be rewritten as:

x = As, (2)

where x = [x1, x2, ..., xn]T is the observed vector, A is
the unknown mixing matrix with element aij , i, j = 1, ..., n
(which are real coefficients) and s = [s1, s2, ..., sn]T is the
unknown source vector. By estimating the unmixing matrix
of A, called W, the s vector that represents the independent
components (ICs) is obtained by:

s = Wx. (3)

The estimation of the ICA model is possible if the following
assumptions and restrictions are satisfied: 1) the sources are
statistically independent; 2) the independent components must
have a non-Gaussian distribution; 3) the unknown mixing ma-
trix A is assumed square and full rank. Under these conditions,
the ICA model can be rewritten as:

y = Wx � s, (4)

where W � A
−1. The problem can be solved by estimating

W to obtain y that represents the best possible approximation
of s. Nevertheless, since W and s are unknown in the ICA
model, three ambiguities necessarily hold:

1) The variances (energies) of the independent components
cannot be determined. That is because any scalar multi-
plier in one of the sources si could always be canceled
by dividing the corresponding column ai of A by the
same scalar.

2) For similar reasons, also the order of the independent
components cannot be ranked.

3) The sign cannot be determined. This means that dark
and bright regions may have the same meaning, which
is not critical in most applications.

In this paper, three different implementations of ICA are inves-
tigated for feature extraction. In particular, the analysis focus
on the Infomax, FastICA and the JADE algorithms, which
are briefly introduced in the next subsection. As mentioned
previously, the scope of this study is to present a complete
comparison among the most widely used ICA algorithms in
the remote sensing field. For the sake of scientific concreteness
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we attempted to exploit more recent implementations of ICA
that are used in the broader signal processing field. To the
best of our knowledge, one of the most recent implementation
of ICA stated to outperform FastICA is RobustICA [34].
This method is presented in the next section. However, since
the computational cost was excessively high, the method is
evaluated in only one experiment and the results are discussed
in the corresponding section.

An important issue that characterizes ICA transformation is
the non-prioritization of the ICs. Accordingly, multiple ICA
applications result in different IC sets, which are diverse both
in the order of appearance and in the content, thus making
a performance comparison inconsistent. This behaviour is
caused by the fact that ICA uses random vectors as initial
projections. Wang and Chang addressed this problem in [15]
proposing an initialization algorithm in conjunction with the
virtual dimensionality (VD) [32] to generate an appropriate
set of initial projections. The algorithm was designed for
FastICA. However, in order to exploit the original setup
without modifying the algorithms, the identity matrix of size
n×n has been chosen as a common initialization for the ICA
transformation. It is possible that in some cases the identity
matrix gives worse results than a random initialization in
terms of convergence time. The advantage in using a constant
initialization is the consistency of the obtained components
and their ordering.

A. Infomax Algorithm
Infomax [28] is based on the minimization of the mutual

information between the input and output of a neural network
with nonlinear units. The mutual information of a pair of
random variables x and y can be defined as:

I(x; y) = H(x)− H(x | y) (5)

where H(x | y) is the conditional entropy defined as:

H(x | y) = H(x, y)− H(y). (6)

Considering the entropy as a measurement of uncertainty and
the mutual information as a measurement of the dependency
between random variables, the matrix W is determined so
that the mutual information among the components of the
transformed vector yi is minimized. The convergence is quite
slow since the inverse matrix has to be computed at each
iteration.
The algorithm’s implementation used in this work is a part
of the EEGLAB toolbox [9], [35]. The algorithm performs
ICA decomposition using the logistic infomax ICA algorithm
developed in [28] with a natural gradient feature as defined
by Amary, Cichocki and Yang [36]. The algorithm performs
a sphering (whitening) of the data in order to increase the
convergence rate. This means that the unmixing matrix that is
processed becomes W = weights matrix ∗ sphere matrix.

B. FastICA Algorithm
The FastICA algorithm proposed in [8] is a very efficient

and robust method for ICA. It exploits the negentropy J , which

is a measurement of non-Gaussianity that gives a measure of
the distance from normality. It is defined as:

J(y) = H(yGaussian)−H(y) (7)

with y being a random vector, H(y) the entropy of y and
H(yGaussian) the entropy of a Gaussian random vector with
the covariance matrix equal to the one of y. Negentropy is
always nonnegative and is zero only in case of Gaussian
distribution. Because of the complexity of (7), the following
moment-based approximation has been introduced [8]:

J(y) ∝ [E{(G(y)}− E{G(v)}]2 (8)

where y is a standardized non-Gaussian variable, v is a
standardized Gaussian variable and G is a non-quadratic func-
tion. The learning rule for FastICA is based on a fixed-point
iteration scheme [29] that has been found to be considerably
faster than using gradient descent methods for solving ICA.
Before the FastICA algorithm can be applied, the input vector
data should be centered and whitened. The scheme finds the
maximum of the non-Gaussianity of w

T
x. The basic fixed-

point iteration for the estimation and decorrelation of one
single independent component is:

wi+1 ← E{xg(wT
i x)}− E{ǵ(wT

i x)}wi

wi+1 ← wi+1 −
i�

j=1

(wT
i+1wj)wj ,

(9)

where g(u) is a non-quadratic function that represents the
derivative of the non-quadratic function G in (8). The algo-
rithm converges when the old and new values of w (where w

represents one row of W), point in the same direction. The
FastICA algorithm can be used to perform projection pursuit
as well, thus providing a general-purpose data analysis method
that can be used both in an exploratory fashion and for the
estimation of independent components (or sources).
In this work, the broadly used FastICA package (version 2.5,
2005) has been used. The algorithm can estimate the ICs in
two different ways: 1) deflationary orthogonalization, which is
shown in (9), 2) symmetric orthogonalization, which is shown
in (10). The first approach performs orthogonalization using
the Gram-Schmidt method, estimating the ICs one by one,
while the second approach estimates all the ICs in parallel. In
our experiments, the second approach is used mainly for two
reasons: 1) to avoid the cumulative error in the estimation, and
2) to estimate the ICs by a parallel computation, thus making
the algorithm faster. In this case the basic fixed-point iteration
in FastICA with symmetric orthogonalization is as follows:

wi+1 ← E{xg(wT
i x)}− E{ǵ(wT

i x)}wi

W ← (WW
T )−

1
2 W with W = (w1, · · · ,wm)T .

(10)

C. Joint Approximate Diagonalization of Eigenmatrices Algo-
rithm

The Joint Approximate Diagonalization of Eigenmatrices
(JADE) is a widely used and parameter-free implementation
of ICA. In the pre-processing, a whitening transformation is
performed on the mixtures, which makes the original compo-
nents uncorrelated and thus independent in terms of second
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order statistics, and the unmixing matrix W orthogonal. The
approach exploits the concept of cumulant tensor, which can
be seen as a generalization of the covariance matrix. Let us
consider the whitened unmixing matrix W and the cumulant
tensor F(M), which is a linear symmetric operator. We can
define an eigenmatrix M such that

F(M) = λM (11)

where every eigenmatrix has the form M = wnw
T
n , where

wn is a row of the unmixing matrix W. Thus, knowing the
eigenmatrix of the tensor, it is easy to obtain the independent
components. The main problem is that the eigenvalues are not
distinct, and thus, the matrices cannot be uniquely defined.
Considering that F is a linear combination in the form wnw

T
n ,

it can be observed that the matrix W diagonalizes F(M) for
any M. This means that it is important to choose a set of n
different matrices Mi that makes the matrices WF(Mi)W

T as
diagonal as possible. The diagonality can be measured as the
sum of squares of diagonal elements and is defined as:

JJADE(W) =
�

i

�diag(WF(Mi)W
T )�2 (12)

One method of join approximate diagonalization of the F(Mi)

is to maximize JJADE . The algorithm used in the experiment
analysis was developed in [30].

D. RobustICA
RobustICA [34] is a recent method for deflationary ICA,

in which the kurtosis is the general contrast function to be
optimized. The method performs the optimization by a com-
putationally efficient technique based on an optimal step size
(adaption coefficient). The technique computes algebraically
(i.e., without iterations) the step size globally optimizing the
kurtosis in the search direction at each extracting vector
update. In the derivation of the algorithm, no-simplifying
assumptions concerning specific type of sources (real or com-
plex, circular or noncircular, sub-Gaussian or super-Gaussian)
are involved. The method presents a number of advantages
with significant practical impact when compared to other
kurtosis-based algorithms such as the original FastICA and
its variants:

• Prewhitening is not required, so that the performance
limitations it imposes can be avoided and the sequential
extraction (deflation) can be carried out, e.g., via linear
regression.

• Sub-Gaussian or super-Gaussian sources can be extracted
in the order specified by the user if the Gaussianity
character of the sources is known in advance.

• The optimal step-size technique provides some robustness
to the presence of saddle points and spurious local
extrema in the contrast function.

• In the experimental analysis performed in [34], the
method shows a very low computational cost measured
in terms of source extraction quality versus number of
operations, even without prewhitening.

For further details about the implementation, it is suggested
referring to the paper [34].

III. EXPERIMENTAL SETUP

A. Design of Experiments and Investigations
The analysis presented in this paper aims at identifying

which ICA implementation provides better results in terms of
classification accuracy and computational cost. This is studied
in three scenarios:

1) Low-dimensional space: This represents the most com-
mon scenario in remote sensing image analysis, where
ICA is exploited. In general a small subset of features
is obtained by performing dimensionality reduction on
a high-dimensional feature space. The ICs are then ex-
tracted by processing the reduced subset. In the analysis
we consider the use of a number of feature extraction
and feature selection methods used for dimensionality
reduction. The obtained results are compared against
the general case in which PCA is exploited for feature
reduction. The goal is to analyze and compare the
performance of the three ICA algorithms applied to
different subsets of features, identifying which pair of
ICA algorithm and feature reduction technique gives the
best classification accuracy.

2) High-dimensional space: The performance of ICA is
evaluated by considering the entire data set. The ob-
tained feature space is then reduced by selecting the
most informative features by exploiting a supervised
feature selection algorithm. These features are then used
in classification. The aim is to investigate the effective-
ness of the ICA algorithms in extracting useful inde-
pendent components directly from the original feature
space, without initially projecting the data into a smaller
subspace.

3) Spatial downsampling: In this scenario the ICA is ap-
plied to subsets of image samples obtained by spatially
downsampling the original image. The goal is to inves-
tigate how the performance of the ICA is affected by
decreasing the number of samples used for the source
estimation, and thus if it is possible to achieve clas-
sification accuracies that are similar to those obtained
by using the entire data set. The exploitation of a
reduced spatial subset would also positively affect the
computational time of the ICA.

In the analysis, based on the above scenarios three experi-
ments are designed as described below.

1) Experiment I - Low-dimensional space: As discussed
in Section I, hyperspectral images are usually pre-processed
by reducing the feature space in order to decrease the com-
putational cost, discard redundant information and mitigate
the noise contribution. Regarding the use of ICA for feature
reduction, the most common strategy in remote sensing image
analysis is to apply the PCA technique to the original image
followed by the ICA. PCA is used to extract the high-variance
components while filtering out the low-variance components.
It is worth noting that the use of PCA is encouraged by
the fact that it is implemented in the ICA as part of the
algorithm for whitening purposes (see Section II), where the
user can decide to perform the dimensionality reduction by
choosing the number of components to be retained. However,
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the PCA transformation provides a subset of components
that after selection does not preserve class-separability. This
also affects the independent components. In this experiment a
different strategy is proposed and investigated. The aim is to
provide a reduced feature set where the class-information is
preserved and used as input to the ICA, avoiding the use of the
PCA-based reduction approach. To this purpose, considering
the context of supervised classification, the dimensionality
reduction is performed by exploiting three supervised fea-
ture selection and extraction techniques, namely the Steepest
Ascent (SA) search algorithm (in which the Jeffries-Matusita
distance is used as the criterion function in feature selection),
the Local Fisher Discriminant Analysis (LFDA), and the
Non-parametric Weighted Feature Extraction (NWFE). The
strategy adopted in the experiment consists of three steps:
a) dimensionality reduction; b) application of the ICA to the
obtained feature subset; c) evaluation in terms of classifi-
cation accuracy of the effectiveness of the extracted ICs in
discriminating the classes. The procedure is repeated for every
ICA algorithm, considering different subsets of the retained
components, starting from a minimum of 5 components up
to 40 components. In the paper, the different strategies are
referred as DR-approach-ICA, where DR-approach is one
of the feature extraction/selection techniques aforementioned
(e.g., in the case of NWFE the strategy would be NWFE-
ICA). The background information on the feature extraction
and feature selection approaches that are used in this work is
provided in Section III-C.

2) Experiment II - High-dimensional space: Experiment
II aims at investigating the effectiveness of the independent
components obtained by considering the entire original hy-
perspectral data set, without performing any feature reduction
(which reduces both redundancy and noise but may introduce
information loss). The strategy adopted in the experiment is
defined as follows: a) ICA is applied to the entire data set
and all the components are retained; b) the most informative
components are selected by applying the SA feature selection
algorithm; c) the effectiveness of the subset is assessed in
terms of classification accuracy. Also, in this case we take
advantage of the training samples in order to select the
best independent components. As already mentioned in Sec-
tion III-A1, JADE’s computation load is extremely high when
the dimensionality of the feature space becomes large. This is
due to the fact the JADE implementation has to estimate the
initial vector of n eigenmatrices whose dimension is n×n (see
Section II-C), where n is the number of the sources to estimate.
When n increases, the size of the initial projection increases
as the cube of n, requiring the availability of a significant
quantity of physical memory. For these reasons, JADE is not
used in this experiment and in general it should be avoided
when a high-dimensional space is considered.

3) Experiment III - Spatial downsampling: The third ex-
periment aims at investigating the effectiveness of the ICA in
extracting informative components when applied to a down-
sampled data set (i.e., only a portion of the total number
of pixels is analyzed). The analysis consists of seven sub-
experiments. In the first three sub-experiments the sampling
rate is decreased by three different integer factors: 2, 3, 4.

In the last four sub-experiment, different sizes of training
samples are considered. The experiment has been conducted
considering both scenarios 1 and 2, i.e., low-dimensional space
and high-dimensional space, respectively. However, the results
obtained from the analysis of the Botswana and Hekla data
sets in high-dimensional space are very poor, especially when
Infomax is used. Thus, for this scenario, only the results
obtained by using FastICA performed on the Salinas data set
are reported.

B. ICA Parameter Tuning
In the experimental analysis, an implementation of each ICA

algorithm based on MATLAB (The MathWorks, Inc.) scripting
language is used.

1) Infomax: as mentioned in the Section II, the initial
weight matrix is initialized as an identity matrix. The training
stops when the weight-change goes below the predefined
threshold value, which is set by default at 10−6 when n < 33
and 10−7 otherwise, or after a maximum number of ICA
training steps of 512.

2) FastICA: different parameters need to be tuned. The
non-quadratic function g(u) is set as tanh(au) with a = 1,
which is proven a good approximation of negentropy [8]. In
order to avoid a random initialization, an identity matrix of
size n× n is given in input as initial guess. In this work, the
symmetric ortogonalization is chosen for the reasons explained
in Subsection II-B. The algorithm stops when the convergence
is reached, meaning that the weight-change is less than 10−4,
or when the maximum number of iterations, which is set at
1000, is reached.

3) JADE: this technique is parameter free, i.e., no tuning is
needed. The only experimental parameter that can be tuned is
related to the stopping criterion, which is thresholded at 10−6

by default.
4) RobustICA: the method requires the tuning of few

parameters. Two different approaches of deflation are possi-
ble: 1) via ortogonalization, 2) via linear regression. In this
work deflationary ortogonalization is used. The threshold for
statistical-significant termination test is set at 10−4, while
1000 is the maximum number of possible iterations for each
extracted source.

C. Feature Reduction
This section provides a briefly introduction to the feature

reduction techniques used in this work.
1) Steepest Ascent (SA) Feature Selection: The supervised

feature selection is based on the sub-optimal Steepest As-
cent search algorithm using as criterion function the Jeffries-
Matusita distance. The strategy is based on the search for
constrained local extremes in a discrete binary space. More
information can be found in [37].

2) Local Fisher Discriminant Analysis (LFDA): It is a
linear supervised dimensionality reduction method. It com-
bines the ideas of Fisher’s Discriminant Analysis (FDA) [38]
and Locality Preserving Projections (LPP) [39]: between-class
separability is maximized while within-class local structure
is preserved. LFDA has an analytic form of the embedding
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matrix and the solution can be easily computed just by
solving a generalized eigenvalue problem. Therefore, LFDA is
scalable to large data sets and computationally reliable. More
information can be found in [40].

3) Nonparametric Weighted Feature Extraction (NWFE):
the NWFE algorithm [7] takes advantage of the desirable char-
acteristics of DAFE and Nonparametric Discriminant analysis
(NDA) [41], while avoiding their shortcomings. DAFE is fast
and easy to apply, but it is able to extract only L−1 features,
with L the number of classes. This limitation reduces the
performance particularly when the difference in mean values
of classes is small. NDA focuses on training samples near the
required decision boundary, but it does not perform well when
either the covariance matrices of the classes are not equal. The
main idea of NWFE is to assign different weights to every
sample to compute the weighted means and to define new
nonparametric between-class and within-class scatter matrices
to obtain more than L− 1 features.

4) Principal Component Analysis (PCA): it is one of the
most widely exploited unsupervised approaches in feature
reduction. The basic idea of PCA is to find the linearly
transformed components that provide the maximum amount
of variance possible. Usually the first few components account
for a large proportion of the total variance of data and are used
to reduce the dimensionality of the original data. However, all
components are needed to accurately reproduce the correlation
coefficients within the original image. PCA is an unsupervised
technique and as such does not include label information for
the data.

In the experiments, the software MultiSpec (Purdue Re-
search Foundation) has been used for the NWFE technique,
while MATLAB has been used for all the others feature
reduction approaches.

D. Classification

1) Support Vector Machine: For each experiment, the
performance is reported in terms of classification accuracy,
kappa coefficient and the computational time required for the
convergence of the ICA. The individual ICA algorithms are
compared and analyzed using the three performance measures.
For classification purposes an SVM classifier was exploited
considering a Radial Basis Function (RBF) kernel. The algo-
rithm exploited is the SVM presented in [42]. The regulariza-
tion parameter C and the kernel parameter γ are estimated by
exploiting a grid-search using a 10-fold cross-validation. This
means that the training set is first divided into 10 subsets of
equal size, and then each subset is tested using the classifier
trained on the remaining 9 subsets. In order to identify the
best parameters, exponentially growing sequences of C and γ
are considered. In particular, C = {10−2, 10−1, ..., 104} and
γ = {2−3, 2−2, ..., 24}. In this work, the LIBSVM [42] library
developed for MATLAB, which employs the one-against-one
multiclass strategy, was used.

2) Random Forest: In the experiment II, the classification
results obtained by using SVM are compared to the ones
obtained by using Random Forest (RF) [43] classifier. This
experiment is an exploratory one, in order to validated the

role of the classifier in the entire process. Having seen that
the pattern of the classifiers behaviours follow similar trends,
without loss of generality we conducted the entire experimen-
tal design using the SVM classifier. On the contrary of SVM,
random forest does not require any parameter tuning. In this
work, an implementation developed for MATLAB was used
[44].

E. Description of the Data Sets

The experimental analysis has been carried out on three real
hyperspectral data sets characterized by different spatial and
spectral resolutions, and are described below.

1) Salinas Valley, California (Salinas): the data set has
been acquired over Salinas Valley, California, in 1998. The
acquisition has been done by using the AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) sensor, which uses
four spectrometers. The original data set is composed of 224
bands with a spectral range between 0.43 and 0.86 µm. The
image has a size of 512 × 217 pixels with a spatial resolution
of 3.7 m. In this study, the corrected data set is considered by
discarding the 20 water absorption bands: [108-112], [154-
167], 224. The ground reference data contains 16 classes
of interest (which are described in Table I). A false color
composition of the data set and the reference map are shown
in Figs. 1a and 1b. For this data set, the training set used in
the experiments is made up of 15% randomly selected samples
from each class.

2) Hekla volcano, Iceland (Hekla): the data set was col-
lected in June 17 1991 on the active Hekla volcano, which
is located in south-central Iceland, by the 224-band AVIRIS
sensor. Due to the failure of the near-infrared spectrometer
(spectrometer 4) during the data acquisition, 64 channels
appeared blank. After discarding the noisy and the blank
channels, the final data set included 157 spectral channels. The
image has dimensions of 600 × 560 pixels with a geometric
resolution of 20 m. It shows mainly lava flows from different
eruptions and older hyaloclastites (formed during subglacial
eruptions). The ground reference data contains 12 classes of
interests, which are described in Table I. Figs. 1c and 1d show
a false color composition of the image and the reference map,
respectively. More information about the data set can be found
in [45]. The training set used here was generated by a random
selection of 50 samples from each class.

3) Okavango Delta, Botswana (Botswana): the data set was
collected over the Okavango Delta, Botswana in 2001-2004 by
the Hyperion sensor on EO-1. It acquires data at 30 m resolu-
tion over a 7.7 km strip in 242 bands covering the 400-2500
nm portion of the spectrum with a spectral resolution of 10
nm. Uncalibrated and noisy bands that cover water absorption
features were removed, and the remaining 145 bands were
included as candidate features: [10-55], [82-97], [102-119],
[134-164], [187-220]. The considered image is composed of
256 × 1476 pixels. The ground reference data represent 14
land cover types in seasonal swamps, occasional swamps, and
drier woodlands located in the distal portion of the Delta. The
data set and the reference map are shown in Figs. 1e and 1f,
respectively, while Table I provides information related to the
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(a) (b)

(c)

(d) (e) (f)

Fig. 1. Hyperspectral images (in false color) and the related reference maps. (a), (b) Salinas data set. (c), (d) Hekla data set. (e), (f) Botswana data set.

TABLE I
CLASSES AND NUMBERS OF TRAINING AND TEST SAMPLES FOR EACH DATA SET.

Salinas Data Set Hekla Data Set Botswana Data Set

No. Class Training Test Class Training Test Class Training Test

1 Broccoli green weeds 1 301 1708 Andesite lava moss cover 50 973 Water 54 216
2 Broccoli green weeds 2 558 3168 Scoria 50 500 Hippo grass 20 81
3 Fallow 296 1680 Hyperclatite formation 50 634 Floodplain grasses1 50 201
4 Fallow rough plow 209 1185 Andesite lava 1980 III 50 1446 Floodplain grasses2 43 172
5 Fallow smooth 401 2277 Rhyolite 50 354 Reeds1 53 216
6 Stubble 593 3366 Andesite lava 1980 I 50 658 Riparian 53 216
7 Celery 536 3043 Andesite lava 1991 II 50 360 Firescar2 51 208
8 Grapes untrained 1690 9581 Andesite lava 1991 I 50 2689 Island interior 40 163
9 Soil vineyard develop 930 5273 Firn and glacier ice 50 408 Acacia woodlands 62 252
10 Corn senesced green weeds 491 2787 Andesite lava 1970 50 292 Acacia shrubland 49 199
11 Lettuce romaine 4 weeks 160 908 Lava with Tephra and Scoria 50 650 Acacia grasslands 61 244
12 Lettuce romaine 5 weeks 289 1638 Snow 50 663 Short mopane 36 145
13 Lettuce romaine 6 weeks 137 779 - - - Mixed mopane 53 215
14 Lettuce romaine 7 weeks 160 910 - - - Exposed soil 19 76
15 Vineyard untrained 1090 6178 - - - - - -
16 Vineyard vertical trellis 271 1536 - - - - - -

classes. More information about the data set can be found
in [46]. The training set used here is generated by random
selection of 20% of samples from each class.

For each data set, the training samples and the test samples
are generated in such way that the two sets results mutually
exclusive (i.e., no shared samples between the two sets).

IV. EXPERIMENTAL RESULTS

In this section we will present and discuss in depth the
results of the experiments described above.

A. Experiment I: Low-dimensional space

The results of the analysis conducted in experiment I are
depicted in Fig. 2. The taxonomy is based on the different
DR approaches, showing for each of them the behaviour

of the classification accuracy for the three ICA algorithms
considering different subsets of components. Table II reports
the best results obtained by the ICA algorithms for each
strategy, showing the number of retained components, the
overall accuracy (OA), the kappa coefficient (k) and the
computational time (CPU time).

For the Salinas data set (Figs. 2, first column), the strategy
LFDA-ICA obtains the best classification accuracy. In this
case, all the ICA algorithms perform similarly in terms of
classification accuracy and number of components required.
JADE algorithm outperforms the others in terms of overall
accuracy, which reaches a score of 95.48%. However, in
terms of computational cost, FastICA requires about 30%
less with respect to JADE and 60% less CPU time with
respect to Infomax. NWFE-ICA appears to be the second best
strategy. Fig. 2g shows that JADE and FastICA provide very
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Infomax FastICA JADE

Fig. 2. Experiment I: comparison of the overall classification accuracy obtained by Infomax, FastICA and JADE for different DR strategies (SA-ICA, LFDA-
ICA, NWFE-ICA, PCA-ICA) and different number of features: (first column) Salinas data set; (second column) Hekla data set; (third column) Botswana data
set.

similar trends, obtaining as highest OA 94.99% and 95.07%,
respectively, while the performance of Infomax are strongly
affected when increasing the number if ICs. All the ICA
algorithms obtain the highest accuracy with 20 components.
In terms of computational cost, JADE requires about 20% less
CPU time than FastICA and about 75% less than Infomax.
In the case of the PCA-ICA strategy, the maximum accuracy
obtained by JADE is 95.10% (25 ICs). This requires an

higher CPU time than FastICA and Infomax, which provided
as highest OA 94.28% and 94.62%, respectively (20 ICs).
However, considering the global trend shown in Fig. 2j JADE
provides the best classification accuracies with respect to
FastICA and Infomax. Also in the case of SA-ICA, JADE
provides in general a better global trend with respect to the
other two ICAs. In terms of computational time, JADE and
FastICA require equal CPU time, while Infomax results to be
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TABLE II
CLASSIFICATION RESULTS OBTAINED IN EXPERIMENT I (FIG. 2). ONLY THE BEST RESULTS ARE REPORTED. CLASSIFICATION RESULTS OBTAINED ON

THE ORIGINAL SPECTRAL CHANNELS ARE GIVEN FOR COMPARISON. ”NO. FEAT.” DENOTES THE NUMBER OF FEATURE RETAINED, ”OA (%)” DENOTES
PERCENTAGE OVERALL ACCURACY, ”K” INDICATES THE KAPPA COEFFICIENT AND ”TIME” GIVES THE COMPUTATIONAL TIME IN SECONDS.

SA-ICA LFDA-ICA NWFE-ICA PCA-ICA

Spectr. Infomax FastICA JADE Infomax FastICA JADE Infomax FastICA JADE Infomax FastICA JADE

Sa
lin

as

No. feat. 204 15 15 20 20 20 20 15 15 15 20 20 25
OA (%) 94.55 93.68 93.87 94.23 95.30 95.39 95.48 94.58 94.99 95.07 94.28 94.62 95.10
k 0.91 0.93 0.93 0.94 0.90 0.95 0.95 0.94 0.94 0.95 0.93 0.93 0.95
Time (s) 12.70 7.20 7.22 17.17 7.10 10.56 14.33 4.52 3.57 17.54 7.91 29.70

H
ek

la

No. feat. 157 5 5 5 10 10 10 5 5 5 10 5 10
OA (%) 93.89 89.65 89.93 90.06 90.88 90.96 91.14 94.57 94.79 94.81 90.64 90.43 91.21
k 0.80 0.88 0.88 0.86 0.90 0.90 0.90 0.94 0.94 0.94 0.89 0.89 0.90
Time (s) 44.71 2.38 1.62 34.90 3.40 3.95 26.91 1.42 0.58 32.96 1.87 3.85

B
ot

sw
an

a No. feat. 145 10 10 5 15 20 15 10 10 10 10 10 10
OA (%) 93.42 93.32 93.28 93.74 90.44 91.28 91.82 94.43 94.00 94.47 93.89 93.93 94.24
k 0.93 0.93 0.93 0.93 0.90 0.91 0.91 0.94 0.94 0.94 0.93 0.94 0.94
Time (s) 26.90 2.50 0.49 47.50 35.08 18.02 42.28 9.51 3.01 39.58 4.65 4.45

the slowest. Considering the results obtained for Hekla data
set (see Figs. 2, second column), the NWFE-ICA approach
provides the best results achieving classification accuracies 4%
higher than all the other strategies. All the three ICAs provide
the best performance when 5 components are retained. The
obtained OAs are very close to each other, however, in terms
of computational cost, JADE requires about 60% less than
FastICA and more than 95% less than Infomax. The LFDA-
ICA strategy provides the best OA when 10 components are
considered, with an accuracy which is slightly higher than
the one obtained with the PCA-ICA. On the other hand,
considering different subsets of components, PCA-ICA shows
a better trend than the LFDA-ICA. In terms of computational
time, JADE and FastICA require similar computational time,
which is about 80% less than Infomax. The SA-ICA strategy
provided similar (and in some cases better) results with
respect to the LFDA-ICA even thought it is the approach that
gave the lowest maximum classification accuracy. Each ICA
algorithm reached its best performance with 5 components.
JADE and FastICA obtained very close results in terms of
both OA and CPU time, while Infomax provided a slightly
lower OA requiring a much higher computational time. In the
analysis of the Botswana data set (Figs. 2, third column), the
best accuracies are obtained when applying NWFE-ICA and
PCA-ICA. The former provided the highest accuracy when
10 components were considered, where JADE and Infomax
provided a slightly higher accuracy than FastICA. However,
the computational time required by JADE is about 50% less
than FastICA and 90% less than Infomax. A similar analysis
can be done for both PCA-ICA and SA-ICA strategies. LFDA-
ICA approach provided the lowest classification accuracy with
respect to the other strategies. Also in this case, the three
ICA algorithms obtain very similar classification accuracies,
while the computational time required by JADE is about 50%
and 60% smaller than that required by the FastICA and the
Infomax, respectively. In general the use of feature extraction
algorithms for pre-processing achieves higher classification
accuracies than to using feature selection. The reason might be
that a better minimization of the noise contribution is achieved

when the feature extraction algorithms are employed. Consid-
ering the best results reported in the Table II (highlighted in
gray), for each data set JADE achieved accuracies that are
slightly higher than those of the other ICA algorithms. The
highest improvement was achieved in case of Botswana, where
JADE outperformed Infomax improving the OA by 1.38%.
In terms of computational time required to achieve the best
classification accuracy, the JADE’s performance is comparable
to the one obtained by FastICA. Infomax resulted in general
the worst performing technique, both from the computational
time and the classification accuracy points of view.

In this experiment, another technique that was recently
proposed in the neuroscience field, RobustICA [34], has been
used. In [34], RobustICA is presented and compared to the
kurtosis-based FastICA, considering the deflationary orthogo-
nalization (i.e., the components are extracted one by one). The
study is applied to the biomedical problem of atrial activity
(AA) extraction in atrial fibrillation (AF) electrocardiograms
(ECGs). In that context, RobustICA was claimed to be more
efficient than FastICA in providing better sources with a lower
computational cost. In [47] RobustICA was compared to JADE
for ECG artifacts removal from Electroencephalogram (EEG)
signals. Also in this case, RobustICA was preferred than
JADE. Even if the scope of the study is not to exploit all
the existing implementations but only the most widely used
in the remote sensing field, an exploratory experiment was
carried out using the aforementioned implementation. Taking
into account these results, the algorithm is tested and com-
pared to the best cases (i.e., LFDA-ICA for Salinas, NWFE-
ICA for Hekla and Botswana). Fig. 3 shows the comparison
between the ICA algorithms, while the best obtained results
are reported in Table III From the experimental analysis, it
can be seen that in terms of classification accuracies, the
performance of RobustICA is in line with the ones obtained by
FastICA, Infomax and JADE approaches, providing the best
accuracy among the other ICA algorithms in case of Botswana.
However, the required computational cost is much higher,
resulting in a extremely slow computational time (especially
in case of Botswana), which seems to increase linearly with
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Infomax FastICA JADE RobustICA

Fig. 3. Experiment I: comparison of the overall classification accuracy and computational cost obtained by Infomax, FastICA, JADE and RobustICA versus
the number of features, considering the best DR strategies: (first column) LFDA-ICA for Salinas data set, (second column) NWEFE-ICA for Hekla data set;
(third column) NWFE-ICA for Botswana data set.

TABLE III
CLASSIFICATION RESULTS OBTAINED IN EXPERIMENT I CONSIDERING ROBUSTICA ALGORITHM AND THE BEST DR STRATEGIES (FIG. 3). ONLY THE

BEST RESULTS ARE REPORTED. ”NO. FEAT.” INDICATES THE NUMBER OF FEATURE RETAINED, ”OA (%)” DENOTES PERCENTAGE OVERALL ACCURACY,
”K” GIVES THE KAPPA COEFFICIENT AND ”TIME” GIVES THE COMPUTATIONAL TIME IN SECONDS.

Salinas: LFDA-ICA Hekla: NWFE-ICA Botswana: NWFE-ICA

Infomax FastICA JADE RobustICA Infomax FastICA JADE RobustICA Infomax FastICA JADE RobustICA

No. feat. 20 20 20 25 5 5 5 10 10 10 10 15
OA (%) 95.30 95.39 95.48 95.35 94.57 94.79 94.81 94.25 94.43 94.00 94.47 94.59
k 0.90 0.95 0.95 0.95 0.94 0.94 94 0.94 0.94 0.94 0.94 0.94
Time (s) 17.17 7.10 10.56 688.74 26.91 1.42 0.58 529.01 42.28 9.51 3.01 1151.5

the number of extracted components. This methods have been
used in neuroscience field but never in remote sensing field.
However, the nature and the properties of the hyperspectral im-
ages are different from signals analyzed in neuroscience field.
Considering the obtained results and because of the significant
computational cost required even when feature reduction is
performed in pre-processing, the use of these techniques does
not seem appropriate for hyperspectral images. Thus it will
not be considered further in the experimental analysis.

B. Experiment II: High-dimensional space
Following the design of the experiment I, also in this case

the overall accuracies are entirely depicted in Fig. 4, while
the best results are reported in Table IV. This Table shows
for each chosen algorithm (in this case only Infomax and
FastICA), the number of retained components, the overall
accuracy (OA), the kappa coefficient (k) and the computational
time, which is the estimation cost of the ICA on the entire
original data set. Both of the results obtained by using SVM

and RF classifiers are reported. From the analysis of the
results obtained by using SVM, it can be noticed that FastICA
outperforms Infomax for all the three data sets, increasing the
OA by 2.16% in the case of Salinas and by 1.33% in the
case of Botswana. In the case of Hekla the results are quite
similar, showing a little improvement of 0.56% for FastICA.
The kappa coefficient follows a similar trend as well. FastICA
requires a CPU timewhich is one order of magnitude less
with respect to Infomax, confirming the superiority of the
fixed-point algorithm. The use of the entire data set, without
performing dimensionality reduction, assures that there is no
information loss in the process, as it may happen when any
feature extraction/selection technique is used. Considering the
case of Salinas, the selection of 35 ICs provided an OA
of 94.12%, which is quite close to the one obtained in the
first experiment by the SA-ICA approach (94.23%) (see in
Table II). However by applying ICA to the entire data set there
is no noise reduction, the extracted components carry noise
which affects the final classification results. This becomes
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Fig. 4. Experiment II: comparison of the overall classification accuracy obtained by Infomax and FastICA versus the number of features by using (top row)
SVM, and (bottom row) RF, for Salinas, Hekla and Botswana data sets.

TABLE IV
CLASSIFICATION RESULTS OBTAINED IN EXPERIMENT II. ONLY THE BEST RESULTS ARE REPORTED. ”NO. FEAT.” INDICATES THE NUMBER OF FEATURE

RETAINED, ”OA (%)” DENOTES PERCENTAGE OVERALL ACCURACY, ”K” GIVES THE KAPPA COEFFICIENT AND ”TIME” GIVES THE COMPUTATIONAL
TIME IN SECONDS.

Salinas Hekla Botswana

Infomax FastICA Infomax FastICA Infomax FastICA

SVM
No. feat. 30 35 25 20 25 20
OA (%) 91.96 94.12 82.05 82.58 85.33 86.67
k 0.91 0.93 0.80 0.80 0.84 0.86

RF
No. feat. 30 40 35 40 35 35
OA (%) 90.43 91.89 81.73 79.41 83.06 84.60
k 0.89 0.91 0.79 0.77 0.82 0.83

Time (s) 2253.16 281.22 3694.57 2506.31 3028.29 337.19

more evident in the experimental results obtained for the Hekla
and Botswana data sets, in which the accuracies are quite low
with respect to the ones obtained in the first experiment.

Considering the results obtained by using RF, the overall
accuracies are in general lower than the ones of SVM. How-
ever, the obtained results follow a similar trend of the ones
obtained with SVM in case of Salinas and Botswana, where
FastICA outperform Infomax, while in case of Hekla, Infomax
is the one that obtained the highest overall accuracy.

C. Experiment III: Spatial downsampling

In this experiment the performances of the ICA algorithms
are investigated and compared when a spatial downsampling
of the ICA’s imput data is performed. The analysis presents
the results obtained by considering two scenarios.

1) Low-dimensional space: In this experiment, the three
ICA algorithms were tested on the three different data sets
taking into account only the DR-approach-ICA strategies that
gave the best results in terms of accuracies in the experiment I
(see Table II), i.e., the LFDA-ICA in case of Salinas data set,
and the NWFE-ICA in the case of both Hekla and Botswana
data sets. Table V reports the number of samples employed
in the experiment. None (all samples) denotes the case in
which the entire image is considered. This coincides with
the results obtained in experiment I, and they are reported
here for comparison. Ds2x, Ds3x, Ds4x denote a decrease of
the sampling rate of a factor 2, 3 and 4, respectively. Train
1 denotes the initial training sets, i.e., 15% of the ground
truth samples in the case of Salinas, 50 samples for each
class in case of Hekla, and 20% of the ground truth in case
of Botswana. Train 2 denotes 10% of the ground truth in
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Fig. 5. Experiment III in low dimensional scenario: comparison of the overall classification accuracy provided by (first column) Infomax, (second column)
FastICA, (third column) JADE, for different number of samples on Salinas data set. Top row shows the results obtained by exploiting the first approach (i.e,
the same number of training samples are given as input to both the ICA and the classifier), while the middle row shows the ones obtained by exploiting the
second approach (i.e, the number of the training samples given as input to the ICA varies, while the one in input to the classifier remains the same). The
bottom row shows the computational time related to the first approach.

case of Salinas, 40 samples for each class in the case of
Hekla, and 15% of the ground truth samples in the case of
Botswana. Train 3 denotes 5% of the ground truth in case of
Salinas, 30 samples for each class in the case of Hekla, and
10% of the ground truth samples in the case of Botswana.
Train 4 denotes 2% of the ground truth in case of Salinas,
10 samples for each class in the case of Hekla, and 5%
of the ground truth samples in the case of Botswana. For
an easier interpretation of the global behaviours of the ICA
algorithms, the results are reported as graphs in Figs. 5-7,
which show the OAs and the computational time obtained
when different downsampling factors and training samples are
considered. For a more exhaustive analysis of the effect of the
reduction of the training samples on the performance of the
ICA algorithms, two different approaches are considered. The
first approach takes into account a real life situation, where
the same number of training samples for the classifier and

TABLE V
EXPERIMENT III: DESCRIPTION OF THE DATA SET CONSIDERED IN TERMS

OF NUMBERS OF THE SAMPLES.

Downsampling Salinas Hekla Botswana

None (all samples) 111104 336000 377856
Ds2x 55552 168000 188928
Ds3x 37035 112000 125952
Ds4x 27776 84000 94464
Train 1 8112 600 644
Train 2 5403 480 482
Train 3 2697 360 323
Train 4 1075 120 161

the ICA is considered, In this case, the observed variation of
the classification accuracy trend is caused of the degradation
of both the ICs and the effectiveness of the classifier. In the
second approach, the number of the training samples in input
to the ICA varies, while the one in input at the classifier (which
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Fig. 6. Experiment III in low dimensional scenario: comparison of the overall classification accuracy provided by (first column) Infomax, (second column)
FastICA, (third column) JADE, for different number of samples on Hekla data set. Top row shows the results obtained by exploiting the first approach (i.e,
the same number of training samples are given as input to both the ICA and the classifier), while the middle row shows the ones obtained by exploiting the
second approach (i.e, the number of the training samples given as input to the ICA varies, while the one in input to the classifier remains the same). The
bottom row shows the computational time related to the first approach.

coincides with the original training set (i.e., Train. 1)), remains
the same. Even if this strategy is unusual, it permits us to
evaluate the real effect of the reduction of the training samples
on the performance of the ICA. For each of the Figs. 5, 6 and
7, the top row reports the results obtained considering the first
approach, the middle row reports the results obtained by the
second approach and the bottom row shows the log-lin plots
of the computational times (plotted in logarithmic scale on
the y-axis) for each of the sub-experiment reported in the top
row. The analysis is done for different numbers of components
(plotted in linear scale on the x-axis) retrieved each time.

Focusing on the Salinas data set, the performances of
each ICA technique, obtained by applying a downsampling
of a factor 2, are very close to the ones obtained by using
all the samples. Similarly, the computational times required
for the convergence are similar. Improvements in the overall
accuracy, and especially in the computational time, are more

evident when higher factors are considered. In particular, when
Infomax is used, the best OA (95.48%) is obtained when
the sampling rate is decreased by a factor 3 and 4. While
the OAs are quite similar, the computational times improve
with respect to the case in which all the samples are used.
For example the computational time decreased to 6.47 s by
using only the training samples, achieving an OA of 95.46%.
Considering FastICA, the best OA (95.43%) was achieved by
applying a downsampling of a factor 4, while the obtained
computational time was 2.31 s. For JADE, the highest OA
(95.53%) is obtained by reducing the sample rate by a factor
3, halving the computational time (5.74 s) with respect to the
case when the entire data set is used (10.56 s).

Analyzing the results obtained for the Hekla data set, the
downsampling reduces the computational times. For Infomax,
6.25 s is the computational time reached with a downsampling
of a factor 4, which is a much lower compared to the 26.91
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Fig. 7. Experiment III in low dimensional scenario: comparison of the overall classification accuracy provided by (first column) Infomax, (second column)
FastICA, (third column) JADE, for different number of samples on Botswana data set. Top row shows the results obtained by exploiting the first approach
(i.e, the same number of training samples are given as input to both the ICA and the classifier), while the middle row shows the ones obtained by exploiting
the second approach (i.e, the number of the training samples given as input to the ICA varies, while the one in input to the classifier remains the same). The
bottom row shows the computational time related to the first approach.

s obtained in the experiment I. While time improved, the OA
resulted 94.83%. The classification performances obtained by
using the FastICA remain the same for all the sub-experiments,
while the computational time decreased from 1.42 s (obtained
in the experiment I) to 0.80 s. The JADE algorithm improved
the computational time, which decreased from 0.58 s to 0.036
s when using only the training samples, achieving an OA of
95.00%, which is slightly higher than the previous OA of
94.81%.

For Botswana data set, the downsampling does not improve
the performances of JADE, which achieved a slightly lower
OA (94.28 % with 15 components) than the one obtained
in the experiment I (94.47% with 10 components), with a
computational time that slightly increased to 4.1 s. A different
behaviour can be noticed for Infomax and FastICA. Both of
them decreased the computational cost, which was reduced
by 77% (from 42.28 s to 9.57 s) for Infomax, and by 50%

(from 9.51 s to 4.81 s) for FastICA, without decreasing the
classification accuracies (from 94.43% to 94.51% for Infomax,
and from 94.00% to 94.05% for FastICA).

Comparing the only variation in the number of training
samples, it can be seen that a decrease of the number of
training samples in the first approach (top row) strongly affects
the classification accuracy. The analysis performed by varying
only the number of training samples given as input to the ICA
(middle row), keeping constant the number of the training
samples in input to the classifier, shows that the quality
of the extracted ICs is not affected, providing similar trend
of classification accuracy for a different number of training
samples. This result points out that a variation in the number
of the training samples affects more incisively the classifier
rather than the ICA performance. In terms of computational
time, decreasing the number of training samples coincides in
general with a decrease of the computational cost. This is more
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TABLE VI
CLASSIFICATION RESULTS OBTAINED IN EXPERIMENT III CONSIDERING THE HIGH DIMENSIONAL SCENARIO. THE RESULTS ARE RELATED TO SALINAS
DATA SET BY USING FASTICA. ”NO. FEAT.” INDICATES THE NUMBER OF FEATURE RETAINED, ”OA (%)” DENOTES PERCENTAGE OVERALL ACCURACY,

”K” GIVES THE KAPPA COEFFICIENT AND ”TIME” GIVES THE COMPUTATIONAL TIME IN SECONDS.

Downsampling x 2 Downsampling x 3 Downsampling x 4 Only training samples
(55552 samples) (37035 samples) (27776 samples) (8112 samples)

No. feat. OA (%) k OA (%) k OA (%) k OA (%) k

5 69.25 0.65 65.98 0.62 65.36 0.61 62.48 0.57
10 87.53 0.86 85.32 0.84 85.22 0.84 84.13 0.82
15 92.43 0.92 89.57 0.88 90.39 0.89 90.45 0.89
20 93.55 0.93 90.91 0.90 91.35 0.90 91.57 0.91
25 93.72 0.93 92.17 0.91 92.06 0.91 91.59 0.91
30 93.78 0.93 92.01 0.91 92.63 0.91 91.27 0.90
35 94.21 0.94 92.62 0.92 91.34 0.90 90.57 0.90
40 93.97 0.93 91.17 0.90 90.89 0.90 90.15 0.90

Time (s) 102.84 84.57 208.88 161.46

evident in the case of Infomax and FastICA, while in case of
JADE the computational cost increases with the number of
retained components.

In general, it can be stated that when dimensionality reduc-
tion is performed, downsampling as a pre-processing approach
can contribute to the improvement of the computational time
of the ICA algorithms without decreasing the overall classi-
fication accuracy. This finding is significant, especially when
the computational time is an important aspect of the analysis,
as is the case of the analysis of hyperspectral images.

2) High-dimensional space: The results reported in Ta-
ble VI show the performances of ICA when a spatial down-
sampling of the image is performed before applying ICA
in the high-dimensional space scenario are considered. The
convergence capability of the ICA is strongly affected by the
decreased number of input samples when applied to the entire
image, while it fails to converge when very few input samples
are considered. For this reason we consider only the results
obtained by using the first five data sets described in Table V.
For similar reasons, only the results obtained by applying
FastICA on Salinas data set are reported. Table VI reports the
OA and the k coefficient for different subsets of features, while
the computational time is referred to the total time requested
for the extraction of all the ICs (i.e., 204 ICs). It can be
seen that performing a downsampling of factor a 2 (meaning
that half of the total number of samples are discarded),
the obtained overall classification accuracy (94.21%) is quite
similar to the one achieved by considering all the samples
(94.12%, see Table IV), whereas the computational time for
extracting the ICs decreases by 63, 4%. However, when the
downsampling factor increases, the performance of the ICA
decreases, i.e., the classification accuracy decreases while the
required computational time to converge increases.

V. DISCUSSION AND CONCLUSION

In this paper a detailed comparison among three widely
used ICA algorithms (i.e., Infomax, FastICA and JADE) for
hyperspectral image classification was presented. The analysis
took into account different scenarios in order to compare
and identify the best strategy for extracting class-discriminant
components based on the use of ICA. The ICA algorithms
were tested in both low and high dimensional spaces.

In the first scenario, ICA algorithms were tested performing
dimensionality reduction with alternative strategies rather than
the PCA (which usually is implemented in conjunction with
the ICA algorithms and used for retaining a certain num-
ber of components). Supervised feature selection/extraction
techniques have been exploited and compared to the case in
which PCA is used. The results of the analysis point out
that the exploitation of prior information in feature extraction
methods for dimensionality reduction allows ICA algorithms
to provide better feature sets which led to more accurate
classifications. In this scenario, which is the most common
in the analysis of hyperspectral images, JADE was the ICA
approach that provided the best performance in terms of
classification accuracy, while it provided results comparable
to the ones obtained by FastICA in terms of computational
time (in many cases it was faster). Infomax resulted in general
to be the worst in terms of both computational time and
classification accuracy.

The second scenario was aimed at investigating the perfor-
mance of ICA when the entire data set is considered. Using the
entire data set, without applying any dimensionality reduction,
assures that no information is lost before performing the ICA.
The analysis in this scenario showed that FastICA outperforms
Infomax both in terms of computational time and classification
accuracy. In this case, JADE could not be exploited since it
requires a massive computational load when the number of
estimated components becomes high. When the entire data
set is considered, there is theoretically no information loss.
However, the full set of selected components is more noisy,
thus affecting the classification results.

The third scenario showed that the reduction of the number
of samples on which applying ICA can in general improve the
ICA convergence speed, without decreasing the classification
accuracies. The approach is more effective in low dimen-
sional spaces, where there are no issues with the Hughes’
phenomenon, especially when the number of training samples
given as input to both the ICA algorithm and the classifier
are chosen properly. Indeed, the experiments showed that
SVM is more affected by a decrease of the number of the
training samples than the ICA, which can provide “good” ICs
even when few samples are exploited for the transformation.
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This observation becomes very important in applications for
which the computational time and the number of available
samples are crucial aspects. Consequently, the inclusion of
the analysis of prior information in computational efficient
strategies should foster the development of new ICA-based
methodologies for the analysis of large hyperspectral remote
sensing images.

APPENDIX

ACCURACY ASSESSMENT

From the analysis of the confusion matrix of the clas-
sification result it is possible to derive useful parameters
that indicate how good the obtained classification is. The
parameters that are used in this work are the overall accuracy
and the kappa coefficient.

Overall Accuracy

The overall accuracy (OA) represents the number (or per-
centage) of pixels that are correctly classified. Considering
a total of C classes, the OA is mathematically defined as
the ratio between the total number of corrected pixels for
each class, Ni (which are summed along the major diagonal),
divided by the total number of referenced pixels that are being
tested, T :

OA =

�C
i Ni

T
. (13)

Kappa Coefficient

The kappa coefficient (or kappa statistic) provides a measure
of overall classification quality by comparing the agreement
against the one expected by chance. It is mathematically
defined as follows:

k =
mo −mc

1−mc
, (14)

where mo represents the proportion of correct agreement in
the test set, and mc is the proportion of agreement that
is expected by chance. The possible values range from +1
(perfect agreement) via 0 (no agreement above that expected
by chance) to -1 (complete disagreement).
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