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Abstract—The repetitive acquisition of airborne Light Detec-
tion and Ranging (LiDAR) data for forest surveys is rapidly
increasing, thus making possible the forest dynamic analysis.
Moreover, the availability of multitemporal data enables the
possibility to improve the forest attribute estimates performed at
single date, especially when one LiDAR acquisition has a lower
pulse density with respect to the other. This letter presents a
novel approach that exploits the bi-temporal data information
to: (i) improve the tree detection at both dates, and (ii) identify
forest changes at single tree level. This is done by using a novel
compound approach to the detection of trees in bi-temporal data
based on the Bayes rule for minimum error. Significant geometric
features are extracted for each candidate tree-top and are used to
estimate statistical terms employed in the compound approach.
The multitemporal information is considered by estimating (in an
iterative way) the probabilities of transition, which take into ac-
count the temporal dependence between the LiDAR acquisitions.
The proposed approach is evaluated on multitemporal LiDAR
data acquired in a coniferous forest located in the Southern
Italian Alps. Experimental results confirm the effectiveness of
the compound detection that increases the overall accuracy (OA)
up to 8.6% with respect to the single-date detection.

Index Terms—Multitemporal analysis, tree-top detection, com-
pound classification, change detection, Light Detection and Rang-
ing (LiDAR), remote sensing, forestry.

I. INTRODUCTION

Airborne Light Detection and Ranging (LiDAR) has been
extensively used to perform surveys on large forests, because
of its capability of directly measure the 3-D distribution of
the trees [1]. Due to the reduction of the acquisition costs
of these data and the standardization of their processing,
repeated acquisitions are now taken more and more frequently
over large areas [2]. The availability of multitemporal LiDAR
data allows for the assessment of forest dynamics, which is
crucial for forest monitoring. Many techniques have been
developed for forest monitoring with LiDAR data [3]–[7].
In [3] the authors demonstrate the utility and huge potential
of repeated LiDAR data acquisitions for forest resource
monitoring and carbon management. Four airborne LiDAR
surveys acquired from 2002 to 2012 over a region in Scotland
were used to successfully monitor tree growth, biomass
dynamics and carbon change both at stand and tree levels.
Plot level analysis allows for quantification of average tree
height/volume growth or biomass dynamic at stand level
(e.g., 30×30 m) [4]. In contrast, several studies successfully
used tree level analysis to monitor the growth of tree height,
canopy height and crown area [5]–[7].
However, performing tree level analysis on multitemporal
LiDAR acquisitions is a complex task [8]. While in recent

years medium (e.g., 10 pulses/m2) and high pulse density
(≥ 20 pulses/m2) data are typically acquired, older data may
be characterized by low pulse densities (≤ 5 pulses/m2),
which prevent such refined multitemporal analysis. At plot
scale, different pulse densities do not heavily impact on the
estimation of forest attributes [4]. In contrast, at tree level
low pulse density acquisitions strongly affect forest dynamic
parameters estimation. Unrealistic or wrong estimates of tree
growth may be obtained due to the probability of missing
tree-tops as pulse density decreases [3], [9]. This limits the
use of old datasets for performing long-term forest analysis.
In this context, it is extremely important to define methods
that can fully take advantage of the multitemporal acquisitions
to improve the attribute estimation performed at single date
before proceeding with the forest trend analysis. In [8],
Marinelli et al. demonstrated the importance of fusing the
information of the two dates before performing the change
analysis.
In this letter, we propose an automatic fusion approach that
exploits bi-temporal LiDAR data to accurately detect the
tree-tops at both dates. The proposed method takes advantage
of the multitemporal information to: (i) improve the accuracy
of the tree detection performed at single date and (ii) detect
the presence of forest changes at tree level. This is done
by first separately detecting the trees at both dates. Then,
for each tree detected at least at one date, we perform a
morphological analysis to extract geometric features from
both scenes. Finally, a Bayesian compound decision rule
approach is used to estimate the probability that candidate
trees are correctly identified in each LiDAR acquisition.
Note that the proposed approach accurately detects the
trees only trough their tree-tops, paving way to an accurate
tree crown segmentation. The method has been tested on a
real multitemporal LiDAR dataset acquired with different
pulse densities, i.e., in 2007 (5 pulses/m2) and 2008 (0.48
pulses/m2). Simulated changes of forest cut and regrowth
were introduced to test the capability of the method to
accurately detect changes.

II. PROBLEM FORMULATION

In this section we formalize the tree detection compound
problem and define the notation used in the letter. After pre-
processing, which includes point cloud registration, normal-
ization and rasterization, we obtain two rasters Canopy Height
Models (CHMs) X1 and X2 derived from the LiDAR point
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clouds acquired at times t1 and t2, respectively. After the tree-
top detection applied separately to X1 and X2, we obtain
two sets of candidate tree-tops described by their 2-D (x, y)
coordinates that are compared and fused to obtain two sets
S1 and S2. The fusion is done differently considering two
possible cases: i) the same candidate tree-top is identified at
both dates; ii) a candidate tree-top is identified at only one
date. The first case is identified when for a candidate tree-
top detected at t1 there is a correspondent candidate tree-top
at time t2 at a 2-D Euclidean distance smaller than a given
threshold Ts [8]. In this case, each of the two candidate tree-
tops is added to the corresponding set. The second case occurs
when a candidate tree-top has not a corresponding one at the
other date; this case should be better studied by analyzing the
crown morphology at both dates. To this end, each candidate
tree-top for which no match is found at the other date is
added to both the sets S1 and S2 (i.e., the same position is
considered at both dates). The results of the fusion are two
sets of candidate tree-tops S1 =

{
s1
k

}K
k=1

and S2 =
{
s2
k

}K
k=1

where stk = (xtk, y
t
k) (t ∈ {1, 2}) represents the location of the

kth candidate tree-top at time t.
Let Ω = {ωt

0, ω
t
1}, (t ∈ {1, 2}) be the set of possible classes

at time t1 and t2, where ωt
0 and ωt

1 represent the presence and
the absence of a tree-top at time t, respectively. The aim of the
proposed approach is to exploit the multitemporal information
to perform a compound decision assigning to each candidate
tree-top in the sets S1 and S2 a class in Ω. For each pair
(s1

k, s
2
k), it is possible to identify four cases determined by

the pair of labels assigned to it: i) (ω1
0 , ω

2
0) that identifies the

presence of a tree at both dates; ii) (ω1
0 , ω

2
1) that identifies the

presence of a tree at time t1 and its absence at time t2 (i.e.,
forest cut); iii) (ω1

1 , ω
2
0) that represents the absence of a tree

at time t1 and its presence at time t2 (i.e., forest regrowth);
iv) (ω1

1 , ω
2
1) that represent the absence of trees at both dates.

III. PROPOSED TREE DETECTION COMPOUND APPROACH

A. Bayesian Framework to Compound Tree Detection

Let f tk, (t ∈ {1, 2}) be the set of geometric features
extracted for the kth tree-top at time t used to determine if
a tree-top belongs to ω0 or ω1 at time t. Let us focus the
attention on the kth pair of candidate tree-tops pixel (s1

k, s
2
k)

described by the set of features (f1
k , f

2
k ). The Bayesian decision

rule for compound classification identifies the optimal pair of
labels (ω1

b , ω
2
e) (with b, e ∈ {0, 1}) by maximizing the joint

posterior probability that models the temporal correlation:

(s1
k, s

2
k) ∈ (ω1

b ,ω
2
e) if

(ω1
b , ω

2
e) = argmax

ω1
i ,ω

2
j∈Ω

{P (ω1
i , ω

2
j |f1

k , f
2
k )} (1)

where P (ω1
i , ω

2
j |f1

k , f
2
k ) is the joint conditional posterior prob-

ability of the pair of classes (ω1
i , ω

2
j ) given the feature vectors

of the kth tree-top (f1
k , f

2
k ). The pair of classes (ω1

b , ω
2
e) that

maximizes (1) is the same that maximizes:

(ω1
b , ω

2
e) = argmax

ω1
i ,ω

2
j∈Ω

{
p(f1

k , f
2
k |ω1

i , ω
2
j )P (ω2

j |ω1
i )P (ω1

i )

p(f1
k , f

2
k )

}
(2)

where the joint density p(f1
k , f

2
k ) can be neglected since it is

not dependent on (ω1
i , ω

2
j ). In the considered tree-top detection

problem, it is reasonable to assume temporal class-conditional
independence since the feature vector f tk depends only on the
characteristics of the CHM at time t. This allows us to rewrite:

p(f1
k , f

2
k |ω1

i , ω
2
j ) = p(f1

k |ω1
i )p(f2

k |ω2
j ) (3)

where p(f1
k |ω1

i ) and p(f2
k |ω2

j ) are the single-date class-
conditional density functions. By substituting (3) into (2)
and applying some simple statistic, we obtain the following
decision rule:

(ω1
b , ω

2
e) = argmax

ω1
i ,ω

2
j∈Ω

{
P (ω1

i |f1
k )P (ω2

j |f2
k )P (ω2

j |ω1
i )

P (ω2
j )

}
(4)

Note that the considered compound approach has been widely
employed to classify multitemporal images. To apply the
Bayesian decision rule for compound classification, we need
to estimate all the terms involved in (4) in an unsupervised
way. In the considered implementation, we estimate P (ω2

j ),
P (ω1

i |f1
k ) and P (ω2

j |f2
k ) on the basis of a model translated in

a set of rules which are applied to the feature vectors (f1
k , f

2
k ).

P (ω2
j |ω1

i ) is estimated using an iterative algorithm which does
not require any a priori knowledge about probabilities of
transitions. The estimation approach is described in the next
subsection.

B. Rule-Based Approach to the Probability Estimation

Although LiDAR data allow for relatively accurate tree-
top identification results, detection errors are unavoidable due
to upper branches that may lead to false local maxima (i.e.,
commission errors) or missed smooth tree-tops (i.e., omission
errors). Accordingly, we perform a geometric analysis that
allows us to evaluate how prominent the candidate tree-top
is with respect to the surrounding local maxima. We use
this analysis to compute an estimate of the likelihood of a
candidate to be a real tree-top.

Let us focus on the kth candidate tree-top stk which has pixel
location (x1

k, y
1
k) and (x2

k, y
2
k) in X1 and X2, respectively.

To model the geometric characteristics of s1
k and s2

k in the
CHMs, we analyze the tree crown profiles along the four main
directions (0◦, 45◦, 90◦, 135◦) centered in the candidate tree-
top position (see Fig. 1). For each crown profile (made up of
the CHM pixels values belonging to the considered direction)
we detect the local maximum (i.e., highest height value of the
profile). Let f tk = {dtk,l}4l=1 be the feature vector made up
of the four 2-D Euclidean distances computed in the (x, y)
plane between the candidate tree-top position (xtk, y

t
k) and the

positions of the local maxima, extracted separately at time t1
and t2 for the kth tree-top stk. To estimate the prior and the
posterior probabilities of the classes {ω1

i , ω
2
j } at time t1 and

t2 we use a set of rules applied to f1
k and f2

k , respectively. In
particular, we compute the likelihood that stk is a tree-top as
follows:

`tk =

{
0.1 R = 0

R · 0.25 1 ≤ R ≤ 4
, with R =

∣∣l : dtk,l ≤ Td
∣∣ (5)
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where | · | is the cardinality of the set (the number of indexes
l for which dtk,l satisfies the condition) and Td is a threshold
on the distance between the local maximum and the candidate
tree-top that allows us to model the prominence of the candi-
date tree-top. Fig. 1 shows a qualitative example of feature
extraction where for each profile, dtk,l is computed as the
distance of the orange dot (local maximum) from the candidate
tree-top. In Fig. 1a (true tree-top) 3 profiles present their local
maxima in the tree-top location (`tk = 0.75), whereas in Fig.
1b (false tree-top) only one profile corresponds to candidate
the tree-top location (`tk = 0.25).

We use the likelihood measure as an approximation of the
posterior probabilities, i.e., P (ωt

0|f tk) = `tk and P (ωt
1|f tk) =

1 − `tk. According to the considered set of rules, the prior
probabilities can be estimated as P (ω2

0) =
∣∣k : `2k ≥ T`

∣∣ /K
and P (ω2

1) =
∣∣k : `2k < T`

∣∣ /K where T` is a threshold on the
likelihood.

C. Iterative Compound Tree Detection Algorithm

In this step, we estimate the elements of the 2 × 2 matrix
of probabilities of transitions at each iteration n:

Mn =

[
P (ω2

0 | ω1
0) P (ω2

1 | ω1
0)

P (ω2
0 | ω1

1) P (ω2
1 | ω1

1)

]
(6)

where the matrix element mn
ij represents the probability that

a pixel belongs to the class ω1
i at time t1 and to the class

ω2
j at time t2 at the nth iteration. Note that P (ω2

0 |ω1
0) models

the probability that a tree detected in X1 is still a tree in
X2, P (ω2

0 |ω1
1) models the appearance of new trees, P (ω2

1 |ω1
0)

represents the probability that a tree is no more present in X2

(e.g., forest cut) and P (ω2
1 |ω1

1) represents the probability that
the candidate tree-top is actually not a tree-top at both dates. To
estimate the probabilities of transition from the multitemporal
LiDAR dataset under analysis, we considered the following
iterative procedure:

1) Initialization: the posterior probabilities P (ω1
i |f1

k ) and
P (ω2

j |f2
k ) and the prior probability P (ω2

j ) are estimated ac-
cording to the morphological approach described in III-B. For
the initialization we assume the independence of the classes
ω2
j , (j ∈ {0, 1}) at time t2 and ω1

i (i ∈ {0, 1}) at time t1.
Accordingly, the probabilities of transition is initialized as
follows:

M0 =

[
P (ω2

0) P (ω2
1)

P (ω2
0) P (ω2

1)

]
(7)

where the apex 0 indicates the initial iteration. By considering
the above initialization, the compound classification results
in the assignment of the label ∈ {ωt

0, ω
t
1}, (t ∈ {1, 2}) that

maximizes Equation (4) for each stk, (t ∈ {1, 2}).
2) nth Iteration: the result obtained at iteration n−1, can be

used to compute the estimate of the probabilities of transition
at iteration n, according to the following equation:

mn
ij =

∣∣k : s1
k assigned to ω1

i ∧ s2
k assigned to ω2

j

∣∣
|k : s1

k assigned to ω1
i |

(8)

where ∧ is the and operator. Note that the estimates of
P (ω1

i |f1
k ),P (ω2

j |f2
k ) and P (ω2

j ) do not change with the iter-
ations. This is because their values are based on the feature
vectors (as shown in III-B) that do not vary with the iterations.

Low High

(a) (b)

Fig. 1. Example of features extraction for: (a) true tree-top; (b) false tree-top.
The lines represent the 4 profiles and the orange dots represent position of
the maximum along each profile. The blue circle has a radius equal to Td.
The lines are red if dtk,l > Td and green if dtk,l ≤ Td. In (a) 3 out of the 4
maximum positions correspond to the tree-top location, whereas in (b) only
1 out of the 4 maximum positions correspond to the tree-top location.

3) Stop Criterion: the iterative compound tree detection al-
gorithm stops when the largest difference among the estimates
of all probabilities of transitions between two consecutive
iterations is lower than a certain threshold ε:

max
i∈{0,1},j∈{0,1}

{mn
ij −mn−1

ij } < ε (9)

At the end of the procedure, the compound detection result
identifies the tree-top obtained for both t1 and t2. It is worth
noting that the considered formulation allows us to detect:
(i) the presence of the tree-tops in the multitemporal CHMs
separately, and (ii) the forest changes at tree level.

IV. EXPERIMENTS AND RESULTS

A. Dataset Description

To evaluate the effectiveness of the proposed tree-top
detection compound method, we considered a bi-temporal
LiDAR dataset acquired in a coniferous forest located at Parco
Naturale Paneveggio - Pale di San Martino, Trento, Southern
Italian Alps. The coordinates of the central point of the area
are 46◦17′47,60′′ N, 11◦45′29,98′′ E. The area extends for
368 Ha and the altitude ranges between 1536 m and 2065 m.
The dominant species are Norway Spruce and Silver Fir. The
first LiDAR survey was done specifically for forest analysis on
September 4th, 2007 with the Optech ALTM3100EA instru-
ment by guaranteeing a mean pulse density of 5 pulses/m2.
For each laser pulse four returns were recorded. A digital
terrain model (DTM) of the investigated area, with a spatial
resolution of 1 m, was extracted from the LiDAR data. The
second LiDAR survey was conducted over the whole Province
of Trento between October 2007 and December 2008 with
an Optech ALTM 3100C. The pulse density was about 0.48
pulses/m2. For each emitted pulse, both first and last returns
were recorded.
The experimental analysis was conducted on 16 circular
forest plots (20 m radius) randomly spread over the area,
where ground data are available. The position with respect
to the center of the sample plot, the tree-top height and the
species were recorded for each surveyed tree. The point cloud
registration was performed using the Iterative Closest Point
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(ICP) algorithm. For details please refer to [8]. The tree-top
detection was performed using a Level Set Method [10]. Both
the LiDAR acquisitions were rasterized at 0.5 m resolution.For
the directional analysis of the crown area around the tree-tops,
the length of each profile (from end to end) was 2.5 m. The
threshold values Ts, Td and T` were set equal to 1.5, 0.75
and 0.3, respectively, while ε was set equal to 0.001. Cut of
trees and forest regrowth phenomena were simulated to test
the robustness of the proposed approach in detecting forest
changes. The simulation was done by manually replacing
trees (at times t1 and t2) from the CHM with terrain. We
simulated (between t1 and t2) around 10% of cut trees and
10% of planted trees. Note that few non-simulated changes
were already present. The numerical results are presented in
terms of Omission Errors (OE), Commission Errors (CE) and
Overall Accuracy (OA).

B. Results

The results obtained with the proposed method were com-
pared with: (i) the tree-top detection performed independently
at each single date and (ii) the merging of the tree-tops
separately detected at both dates. Tables Ia and Ib show the
numerical results in terms of CE, OE and OA obtained at times
t1 and t2, respectively. As expected, the OE value at time
t1 is quite similar for the single date case and the proposed
compound approach due to relatively high pulse density of the
t1 LiDAR acquisition. However, even though most of the OE
trees cannot be easily identified in the CHM (e.g., they are
partially covered by other higher trees), the proposed method
reduces the OE without increasing the CE errors. In contrast,
the merging technique shows a significant increase of CE
errors due to the fact that the merging is not able to detect
changes and thus all the trees not present at t1 but present
at t2 are counted as tree-tops also at t1. The OA shows that
the proposed method has better results compared to the single
date case.
Considering time t2 (Table Ib), the OA produced by the
proposed method is sharply higher than that of the single
date case, thus proving the importance of the multitemporal
information. Indeed, due to the low density of the t2 ac-
quisition, there is a high number of tree-tops missed by the
LiDAR sensor which leads to a high number of OE when
only the information of the single date is used. By using
the multitemporal information the proposed approach uses
the information of the high density data to reduce the OE
but also the CE. The merging is capable of recovering more
missed trees with respect to the proposed method. However,
this comes at the cost of a strong increase of the number of
CE, which at the end leads to a decrease of the OA.
Fig. 2 shows the map of detected trees results for 4 plots,
where the set of fused tree-tops are overlapped on the CHMs of
time t1 and t2 and represented with different colors, according
to the type of multitemporal transition. The qualitative analysis
confirms the results obtained from the quantitative view point.
The method accurately identifies all the changes (i.e., tree cuts
(ω1

0 , ω
2
1) and planting of trees (ω1

1 , ω
2
0)). Moreover, almost all

the trees that are present at both dates are correctly identified

as unchanged.
Table II shows the error matrix related to the transitions
obtained by the proposed compound method. The proposed
approach identifies almost all the changed trees. The tree-tops
wrongly identified as changed (i.e., the 22 pixels identified as
(ω1

0 , ω
2
1)) are trees clearly visible at one date but not well

represented by the CHM at the other date. Therefore the
compound approach identifies this variation of the posterior
probability as a change. Note that the candidate tree-tops that
are CE at both dates are identified as trees at both dates or as
changed trees (i.e., 11 pixels identified as (ω1

0 , ω
2
0), 2 pixels

identified as (ω1
0 , ω

2
1) and 14 pixels identified as (ω1

1 , ω
2
0))

. This is due to two main reasons: (i) at least at one date
they have a high P (ωt

0|f tk) (due to a local maximum present
in the CHM caused typically by rasterization errors); (ii) the
Level Set Method detects few CE and therefore P (ω2

1 |ω1
1) has

typically very low values (or is equal to 0).

TABLE I
OMISSION ERRORS (OE), COMMISSION ERRORS (CE) AND

OVERALL ACCURACY (OA) OBTAINED IN TERMS OF NUMBER (#)
AND PERCENTAGE (%): (a) AT TIME t1; (b) AT TIME t2 . THE

PROPOSED COMPOUND METHOD (COMPOUND) IS COMPARED
WITH THE TREE-TOP DETECTION OBTAINED ON THE SINGLE

ACQUISITION (SINGLE DATE) AND THE SIMPLE INTEGRATION OF
THE TREE-TOPS DETECTED IN BOTH DATES (MERGE).

(a)

Approach
Trees OE CE OA

# # % # % %

Single Date 487 79 16.2 5 1 82.9
Merge 487 66 13.6 74 15.2 75
Compound 487 68 14 5 1 85.2

(b)

Approach
Trees OE CE OA

# # % # % %

Single Date 484 111 22.9 30 6.2 72.6
Merge 484 65 13.4 79 16.3 74.4
Compound 484 79 16.3 15 3.1 81.2

V. CONCLUSION

In this letter, we have proposed a novel automatic approach
to the accurate tree detection on multitemporal LiDAR data
which is based on a compound approach. The compound

TABLE II
ERROR MATRIX RELATED TO CLASS TRANSITIONS OBTAINED BY THE

PROPOSED COMPOUND APPROACH.

Reference
(ω1

0 , ω
2
0) (ω1

0 , ω
2
1) (ω1

1 , ω
2
0) (ω1

1 , ω
2
1)

C
om

po
un

d (ω1
0 , ω

2
0) 334 1 0 11

(ω1
0 , ω

2
1) 22 55 0 2

(ω1
1 , ω

2
0) 0 0 60 14

(ω1
1 , ω

2
1) 0 0 0 0
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Low High

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Example of compound tree detection maps in 4 plots: (a-d) t1 CHMs; (e-h) t2 CHMs. The colored dots represent the tree-top positions with the color
representing the type of transition.

approach allows us to model temporal dependence of a tree-
top at the two dates. This modeling can be used not only to
improve the tree-top detection but also to detect changes at tree
level (tree cuts and forest regrowth). The experimental results
showed that the use of the proposed compound approach
improves the tree-top detection compared to what we obtain
using only the single date information. This is clearly visible
on the lower density data since in that case the exploitation
of the richer information content of the higher density data
through the compound model is effectively used to recover a
significant number of trees. The results showed that the gain
in terms of OA achieved on the low density data compared
to the single date detection is of 8.6% (i.e., from an OA of
72.6% to an OA of 81.2 %). The analysis also pointed out that
simple merging of the two sets of tree-tops is not sufficient
to achieve satisfactory results since the merging is not able
to detect the changes. This leads to a significant increase of
the CE. In contrast, the proposed method solves this problem
by automatically handling the detection of forest changes at
single tree level. As future work, we plan to test the method on
different multitemporal LiDAR datasets and to investigate new
geometric features which can further increase the accuracy of
the approach.
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