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This chapter presents an extensive and criticalewewon the use of kernel
methods and in particular of support vector machin&VMs) in the
classification of remote-sensing (RS) data. Theptararecalls the mathematical
formulation and the main theoretical concepts eglab SVMs, and discusses
the motivations at the basis of the use of SVMgemote sensing. A review on
the main applications of SVMs in classification r@fmote sensing is given,
presenting a literature survey on the use of SVMstlie analysis of different
kinds of RS images. In addition, the most recenthiodological developments
related to SVM-based classification techniques $dre illustrated by focusing
on semisupervised, domain adaptation, and contersitive approaches.
Finally, the most promising research directionsSafM in RS are identified and
discussed.

1. Introduction

In the last two decades there have been significaptovements both in the
technology associated with the development of tbesars used in remote
sensing (RS) to acquire signals and images foihealbservation and in the
analysis techniques adopted for extracting infoionafrom these data useful for
operational applications. The modern technologwlted in the definition of
different kinds of sensors for Earth observatiogdobon different principles and
with different properties. We have observed the ettjpment of passive
multispectral and hyperspectral scanners, and eadgtistruments like Synthetic
Aperture Radar (SAR) and Lidar, as well as othstriments devoted to specific
applications. Looking at this scenario from andnisal viewpoint, we are passed
from multispectral data having relatively low spatind spectral resolution (like
the MSS of the Landsat satellites) to a new geiogratf sensors characterized



by very high geometrical resolution (VHR); (e.komhos, Quickbird, Geoeye-1,
etc.), which can acquire images with a metric ob-swetric resolution.
Hyperspectral sensors (on airborne or satellitéfgrlas) can acquire images
characterized by very high spectral resolutionhwitindreds of channels having
less than 2 nm of bandwith. The acquisition of eigh resolution SAR images
from satellite platforms has also become possh#eks to the recent TerraSar-X
and Cosmo-Skymed missions. In this context, thdleshging properties of new
generation of sensors require the definition ofel@ata analysis methods.

In this chapter we focus our attention on RS imagassification
methodologies, which are devoted to translate daufes that represent the
information present in the data in thematic magsegenting land cover types
according to the solution of a pattern recognitmmoblem. In particular, we
concentrate our attention on supervised classificatlgorithms, which require
the availability of labeled samples for the tragiof the classification model. In
this context, the availability of last generationS Rmages allowed the
development of new applications that require th@pimey of the Earth surface
with high geometric precision and a high levelliérhatic details. However, the
huge amount of data associated with these imaggsres the development of
sophisticated automatic classification techniquagsable to obtain accurate land-
cover maps in a reasonable processing time.

In the last decades, a great effort has been dvimeexploit machine
learning methods for classification of remote segémages. This has been done
by introducing the use of neural networks (NN) amote sensing (with the
pioneering work presented i) for solving many different classification tasks.
Several different paradigms and models of NN haenlused in recent years for
addressing remote sensing image classificationlgmad) ranging from standard
Multilayer Perceptron (MLP) network’, to Radial Basis Functions (RBF) neural
network * ° structured neural networKsand hybrid architectures. Also more
complex and structured architecture have been #&gldor solving specific
problems, like compound classification of multitesrsl data ’, multiple
classification systems made up of neural algorithmsetc. All these methods
share as common property the idea to perform thmileg of the classification
algorithm according to the minimization of the ergall risk, defined in different
ways. However, the last frontiers of machine leggnclassifiers in RS are
represented by methods based on the structural miskmization principle
(which allows one to effectively tune the tradeb#tween empirical risk and
generalization capability) rather than on the emagirrisk minimization. The
related statistical learning theory (formulatednir&vapnik %) is at the basis of
the support vector machine (SVM) classification rapph. SVM is a



classification technique based on kernel methods ktas been proved very

effective in solving complex classification problemin many different

application domains. In the last few years, SVMngdia significant credit also

in remote sensing applications. The pioneering woirkGualtieri in 1998

related to the use of SVM for classification of bygpectral images has been

followed from several different experiences of ottesearchers that analyzed the
theoretical properties and the empirical perforneanof SVM applied to
different kinds of classification problem&?% The investigations include
classification of hyperspectral ddta’® multispectral image¥? VHR images

2" as well as multisource and multisensor classificascenario$®*°. SVMs

revealed to be very effective classifiers and aulyethey are among the most

adequate techniques for the analysis of last ggaeraf RS data.

In all these cases the success of SVMs is dueetantportant properties of
this approach, which integrated with the effecte®n of the classification
procedure and the elegance of the theoretical dprednts, result in a very solid
classification methodology in many different RSadelassification domains. As
it will be explained in the following section, thisainly depends on the fact that
SVMs implement a classification strategy that ekploa margin-based
“geometrical” criterion rather than a purely “ssical” criterion. In other words,
SVMs do not require an estimation of the statistdiatributions of classes to
carry out the classification task, but they defthe classification model by
exploiting the concept of margin maximization.

The main properties that make SVM particularlyaadtive in RS applications
can be summarized as folloWs™
« their intrinsic effectiveness with respect to ttemfial classifiers thanks to the

structural risk minimization principle, which resilin high classification

accuracies and very good generalization capabiliti@specially in
classification problems defined in high dimensiofegture spaces and with
few training samples, which it is a typical sitaatiin the classification of
last generation of RS images);

+ the possibility to exploit the kernel trick to selwmon-linear separable
classification problems by projecting the data iateigh dimensional feature
space and separating the data with a simple lfio@ation;

« the convexity of the objective function used in tearning of the classifier,
which results in the possibility to solve the ldaghprocess according to
linearly constrained quadratic programming (QP) rabirized from a
unique solution (i.e., the system cannot fall irgob-optimal solutions
associated with local minima);



e the possibility of representing the convex optirticza problem in a dual
formulation, where only non-zero Lagrange multiidieare necessary for
defining the separation hyperplane (which is a vergortant advantage in
the case of large datasets). This is related tpeguty of sparseness of the
solution;

Moreover, SVMs exhibit important advantages withspect to NN
approaches. Among the others we recall: i) higlesregalization capability and
robustness to the Hughes phenomenon; ii) lowernteféuired for the model
selection in the learning phase (i.e., they invééss control parameters and thus
computational time for their optimum values selat}i and the implicit
automatic architecture definition; iii) optimalityf the solution obtained by the
learning algorithm.

The objective of this chapter is to review theestat the art of SVM for the
classification of RS data. In particular, Sectibmelcalls the basic principles of
SVM for pattern classification. Section Il presest literature survey about the
most relevant papers that report studies aboutapimication of SVM to the
classification of different kinds of RS images grapers that propose advanced
systems based on the SVM approach for the anay&$ data. Along with this
state-of-the-art review, we discuss about the dperadoption of SVM for the
analysis of RS images and the direction of theréuttesearch on this topic.
Finally, section IV draws the conclusion of the [ufea.

2. Support Vector Machines Classifiers

Let us consider the problem of supervised claggtific of a generia-
dimensional imageZ of size 1xJ pixel. Let us assume that a training set
D={x,)} made up of N pairs (x,y)y, is available, where
X={x|x ORY}Y, 07 is a subset af and Y={y} }, is the corresponding set of
labels. For the sake of simplicity, since SVMs haieary classifiers, we first
focus the attention on the two-class case (the rgemeulticlass case will be
addressed later). Accordingly, let us assume thaf+1; -1} is the binary label
of the patterx,. The goal of the binary SVM is to divide tldedimensional
feature space in two subspaces, one for each dhassgh a separating
hyperplane H:y=(wX)+b=0. The final decision rule used to find the
membership of a test sample is based on the sigimeodiscrimination function
f (x)=(wX)+b associated to the hyperplane. Therefore, a gepatiernx will
be labeled according to the following rule:



f(x)>0 = x[Oclass+1

(1)
f(xX)<0 = x0Oclass-1

The training of an SVM consists in finding the gimsi of the hyperplanél,
estimating the values of the vectarand the scalab, according to the solution
of an optimization problem. From a geometrical pah view, wis a vector
perpendicular to the hyperplakkand thus defines its orientation. The distance
of the H to the origin isb/|w|, while the distance of a sample to the
hyperplane isf (x)/|w| . Let us define théunctional marginF =min{y; f (x, )} ,
i=1..Nand the geometric margin G=F/|\w||. The geometric margin
represents the minimum Euclidean distance betwéen available training
samples and the hyperplane.

A. Training of Linear SVM - Maximal Margin algorith

In the case of a linearly separable problems, ¢hening of an SVM can be
performed with the maximal margin algorithm, whicbnsists in finding the
hyperplaneH that maximizes the geometric mar@i Rescaling the hyperplane
parametersy andb such that the functional margiR =1, it turns out that the
optimal hyperplane can be determined as the saolufothe following convex
guadratic programming problem:

I A
min vl @)
y {wkx )+b]=1, Oi=1,.. N

Let H; andH, be two hyperplane parallel to the separating hypeeH and
equidistant from it:

Hp: f(X)=(wX)+b=+1
H,: f(X)=(wX)+b=-1

The goal of the training phase is to find the valo¢ w andb such that the
geometric distance betweéh andH, is maximized with the condition that there
is no sample between them. Since direct handlingnefuality constraints is
difficult, Lagrange theory is usually exploited biytroducing Lagrange
multipliers a, for the quadratic optimization problem. This leats an
alternative dual representation:

3)



N 1 N N
max:{Zai TS yYaa (X X >}
a = 254 (4)
Zi'ilyiaq =0, a 20, kis<N

The Karush—Kuhn—Tucker (KKT) complementarity coiwdis provide useful
information about the structure of the solution.ef¥hstate that the optimal
solutiona”, (w",b ) should satisfy:

a’ [y (w X)+b)-1]=0, i=1..N (5)

This implies that only input samples for which the functional margin is one
(and that therefore lie closest to the hyperplaree, lie onH; or Hy) are
associated to Lagrange multipliess >0. All the other multipliersa; are zero.
Hence, only these samples are involved in the ssjoe for the weight vector. It
is for this reason that they are calkgport vector¢SV). Thus we can write that
W =) ya’x =) ya’'x . It is worth noting that the terim does not appear in
the dial probleffYand should be calculated maksegafi the primal constraints:
_max, . (w X)) i min, ., (w X)) ©6)
2

Once the values fowwv andb are determined by solving the optimization
problem, one generic test sample is classified henkasis of the sign of the
discriminant function, that can be expressed as:

9= +b={ 3 yar'x |srb= yar (5 b ™

iosv osv

b =

Note that the training samples appear only in thenfof dot product. This
property of the dual form will be exploited later éxtend the formulation to
nonlinear problems.

B. Training of Linear SVM — Soft Margin algorithm.

The maximum margin training algorithm can not becusy many real world
problems where the available training samples atdimearly separable because
of noisy samples and outliers (this is very commorreal RS classification
problems). In these cases, the soft margin algorihused in order to handle
nonlinear separable data. This is done by defitliegso called slack variables as:

¢I(xi, ¥i), (w, b)]=¢ =max(0,}y (WLX )+ b)] (8)

Slack variables allow one to control the penaltgoagated with misclassified
samples. In this way the learning algorithm is itie both noise and outliers



present in the training set, thus resulting in higimeralization capability. The
optimization problem can be formulated as follows:

min| St +c e |
(W) +b)21-&, £20,0i=1,.. N

where C=0 is the regularization parameter that allows oneotatrol the penalty
associated to errors (€= we come back to the maximal margin algorithm),
and thus to control the tradeoff between the numberalidwed mislabeled
training samples and the width of the margin. & tlalue ofC is too small, many
errors are permitted and the resulting discrimirfanttion will poorly fit with
the data; on the opposite, @ is too large, the classifier may overfit the data
instances, thus resulting in low generalizatioditgbiA precise definition of the
value of theC parameter is crucial for the accuracy that camliained in the
classification step and should be derived throughaecurate model selection
phase.

Similarly to the case of the maximal margin aldurit the optimization
problem (9) can be rewritten in an equivalent daah:

(9)

N

N 1 N
m;’ax:{Zai —EZZMY]@% (X % >}
i=1 i=1 j=1

(10)
N — .
> yia =0, 0<q <C, Kis<N

Note that the only difference between (10) andi¢4)n the constraint on the
multipliers {ai}i“il that for the soft margin algorithm are bounded thg
parameterC. For this reason this problem is also known as bomstrained
problem. The KKT conditions become in this case:

{ai [y (WX )+b)-1+£]=0, i=1,..)
&(a -C)=0, i=1,..]

Varying the values of the muItipIier{zri}iN=l three cases can be distinguished:
() if o, =0= &=0andy,((wk )+hb)=1;
(i) if O<a;<C, we have thaty,((w¥;)+b)+& =1, but given thaté =0 we
have thaty, ((w; ) +hb)=1;
(i) if a0 = C, = y(wk)+b)+¢& =1, but given that§=0 we have that
y (WD) +b)<1.
The KKT conditions can therefore be rewritten as:

(11)



a=0 =y f(x)=21
0<a <G =y f(x)=1 (12)
a=C =yf(x)sl

+1 -1

e © Training patterns o
@® © Support Vectors

Figure 1. Qualitative example of a separating hptagre in the case of a non linear separable
classification problem.

The support vectorswith multiplier a; =C are calledbound support vectors
(BSV) and are associated to slack variabfgs0; the ones withO<a, <C, are
callednon bound support vecto(®iBSV) and lie on the margin hyperplaHe
orH, (y, f(x)=1).

C. Training of Non Linear SVM — Kernel Trick.

An important improvement to the above-described hods$ consists in
considering non linear discriminant functions feparating the two information
classes. This can be obtained by transforming tiputi data into a high
dimension (Hilbert) feature spac®(x)OR® (d'>d) where the transformed
samples can be better separated by a hyperplare.midin problem is to
explicitly choose and calculate the functidfx)JR® for each training samples.
But given that the input points in dual formulatifsee (10)] appear in the form
of inner products, we can do this mapping in anlicitpvay by exploiting the so
called kernel trick. Kernel methods provide an atdgand effective way of
dealing with this problem by replacing the inneogurct in the input space with a
kernel function such that:



K06, %) =((@x)@x; )y 0,j=1...N (13)

implicitly calculating the inner product in the tisformed space.
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Figure 2. Transformation of the input data by meafres kernel function into a high dimension
feature space. a) Input feature space; b) kendelced high dimensional feature space.

The soft margin algorithm for nonlinear functionnche represented by the
following optimization problem:

mfx{izjl:ai ‘%IZN;,JZN;V. yiaa; kg X )} 1)
Zi'ilyiai =0, 0<a, <C and %i<N
And the discrimination function becomes:
f(x)=> ya k(xX)+b (15)

iosv
The condition for a function to be a valid kerreefiven by the Mercer’s theorem
%2 The most widely used non-linear kernel functiansthe following'™:
* homogeneous polynomial functiok:x; (x;, = &; ) p0Z
* inhomogeneous polynomial functiok(x;,x;)=(c+(x X;))?, pJZ,c=0

il

+ Gaussian functionk(x;,x;)=e 2* , ¢OR




D. Multiclass architectures

As stated in the previous section, SVMs are binary iflass However,
several strategies have been proposed to addresslassliicoblems with SVMs.
Let Q={a,....cx}be the set ofL information classes associated with the
different land cover types present in the study arearder to define a multiclass
architecture based on different binary classifiers,gbeeral approach consists
of: i) defining an ensemble of binary classifiers; aifjd combining them
according to some decision rules. The definition of ¢émsemble of binary
classifiers involves the definition of a set of two-classbfems, each modeled
with two groupsQ, and Q, of classes. The selection of these subsets depends
on the kind of approach adopted to combine the ensembtee following, we
describe the two most widely adopted (parallel) multiclasgegiies, i.e., the
One-Agains-Al{OAA) andOne-Against-On¢OAO) strategies.

1) One-Against-Allthe one-against-all (OAA) strategy represents the efrlies
and one of the most common multiclass approach use8\Mbfs. It involves a
parallel architecture made up bfSVMs, one for each class (Figure 3). Each
SVM solves a two-class problem defined by one informatiass against all the
others, i.e.,

Q,=w
{QA =Q-w (16)
B~ d
SVM 1 f.()
{w.0-w} !
T
| swm2 £%) 3
{mer_wz} <
]
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SVM 3 £,(%) < .
" T {n.0-0} 5 "
£
=
SVM L fu(x)
— {o,Q-w}

Figure 3 Block diagram of th@ne-Against-Alimulticlass architecture



Thewinner-takes-alrule is used for the final decision, i.e., the winning <las
is the one corresponding to the SVM with the highest wufdiscriminant
function value).

2) One-Against-Onethe main problem of the OAA strategy is that the
discrimination between an information class and all the othfées leads to the
estimation of complex discriminant functions. In additian problem with
strongly unbalanced prior probabilities should beethlby each SVM. The idea
behind theone-against-ondOAQO) strategy is that of a different reasoning, in
which simple classification tasks are made possible thdaoks parallel
architecture made up of a large number of SVMs. TA® Gtrategy involves
L(L-2)/2 SVMs, which model all possible pairwise classificatidnghis case,
each SVM carries out a binary classification in which imformation classesy
and w are analyzed against each other by means of a disaninfunction

f; (x) . Consequently, the grouping becomes:
{Qﬁm

17
o (17)

Before the decision process, it is necessary tpooator each clasg)1Q a
score functionS (x) , which sums the favorable and unfavorable voxpsessed
for the considered class

L
S(x)=2_sgn[f )] (18)
E
The final decision in the OAO strategy is takentba basis of thevinner-
takes-allrule, which corresponds to the following maximiaat

xOw = w=argmax § &) (19)

i=1,..L
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Figure 4 Block diagram of th®@ne-Against-Onenulticlass architecture

Other multiclass architectures proposed in theditee are the Directed
Acyclic Graph SVM (DAGSVM)* and different approaches based on binary
hierarchical trees (BHTf*

3. SVM for the classification of RS Data

In the last decade many studies have been publish#te RS literature on
the application of SVM classifiers to the analysisRS data. Table 1 (which is
not exhaustive) presents some relevant papers #teatpplications of SVM to
the classification of RS data, providing a shoaliption of the study and the
kind of data used for the experimental analysi® $WM approach has been first
applied to the classification of hyperspectral datavhich require the classifier
to operate in large dimensional feature spaceserSiged classification of
hyperspectral images is a very complex methodaddgicoblem due to many
different issues, among which we recall the typisalall value of the ratio
between the number of training samples and the eurob available spectral
channels, which results in the so-called coursediofiensionality (Hughes
phenomenony®. Thanks to the structural risk minimization priplei and the
margin-based approach, SVMs represent an effectivee for the classification
of this specific kind of data. Several papéts® confirm the effectiveness of
SVMs in the classification of hyperspectral imagedich outperform other
classification algorithms both in terms of classfion accuracy and



generalization ability. In particular, itf it is found that SVMs are much more
effective than other conventional nonparametrissifeers (i.e., the RBF neural
networks and theK-NN classifier) in terms of classification accuracy
computational time, stability to parameter settiaggd generalization ability. In
' the SVM approach was compared with neural netsvarid fuzzy methods on
six hyperspectral images acquired with the 128-kdphlap spectrometer. The
authors of the study concluded that SVMs yield dretiutcomes than neural
networks regarding accuracy, simplicity, and robess. In'’, SVMs were
compared with other kernel-based methods, i.eh wégularized radial basis
function NN, kernel Fisher discriminant analysisdaegularized AdaBoost. The
results obtained on an AVIRIS dataset show that S\@vk more beneficial,
yielding better results than other kernel-basedhodd, ensuring sparsity and
lower computational cost.

Nevertheless, SVMs revealed adequate for the amabfsmany different
kinds of RS data, i.e., multispectral imagery a®RSmagery (with different
resolutions) and LIDAR data. Several papers presembmparison between
SVM and other supervised algorithms applied to dlassification of different
kinds of RS imaged® ?* % |n ?° for instance, the authors compared the
accuracies obtained by the classification of a kahd'hematic mapper (TM)
scene with four different supervised classifiers,, iSVM, maximum likelihood
(ML), MLP neural networks (NN), and decision trelassifier (DTC). The
obtained results show that SVM was in general $hanore accurate than ML
and DTC, and more accurate than NN in most of tges. In*, the SVM
algorithm was applied to the classification of A&¥Hata acquired in an urban
area of Beer Sheva, Israel. Field validations shbat the classification is
reliable for urban studies with high classificatiaocuracy. In*, the SVM
classifier, as well as the well-known ML classifaard a context-based classifier
based on Markov random fields, were applied to a@ldomatic land cover
classification of a Landsat TM image taken on tleadrife Island. The authors
found that SVM was more accurate than the othessiflaation algorithms, but
the classification map was not completely satigiyivhen investigated visually.
In the experimental analysis conductedinit is observed that SVM leaded to
slightly higher classification accuracies than (MININ. For both classifiers, the
accuracy depends on factors such as the numbedadér nodes in the case of
NN, and kernel parameters in the case of SVM. Tthesmodel selection phase
is fundamental for obtaining good results, but titaning time required by the
SVM is less than the one taken by NN.

SVM can be particularly effective also in the asédyof very high resolution
(VHR) images. The typical poor spectral resolutidn/HR images requires the



extraction of additional features (e.g., textured ageometric measures) to
characterize the objects present in the scene uiesstigation and to
discriminate different land-cover classes. Diffarfeatures modeling objects at
different scales are generally necessary for amuate characterization of the
information classe&’, thus resulting in classification problems chazgized by
large dimensional feature spaces (with some aredogith the problems related
to the classification of hyperspectral image). Shaly proposed i’ points out
that SVM can be effectively applied to the classifion of VHR images using a
feature extraction block that aims at adaptivelydelimg the spatial context of
each pixel according to a hierarchical multilevegmentation of the scene. A
similar approach can also be adopted for the jolassification of SAR and
optical data with SVM, as presented?h In ¥, an analysis is proposed on the
joint use of hyperspectral and LIDAR data for tHessification of complex
forest areas. The experimental results obtained® i show that SVMs are
effective for combining multisensor data in comptassification problems and
outperforms other more traditional classifiers.

Table 1 — Selected papers related to the applicatidcSVM to classification of different kinds of
RS data

Authors Description RS data

In this paper, the authors introduce SVM for thasslfication| AVIRIS (224
J. A. Gualtieri | of RS data. In particular they applied SVM to hygperctral data spectral
and S. Chettri | acquired by NASA's AVIRIS sensor and the commeigial bands) and
13 available AISA sensor. The authors discuss the simiess of| AISA (20-40
SVM to the course of dimensionality (Hughes phenoong. bands)

This paper addresses the problem of the classditaof
hyperspectral remote sensing images by SVMs. Thioe
propose a theoretical discussion and experimentalysis
aimed at understanding and assessing the potéatiadf SVM
classifiers in hyperdimensional feature spacesnTthey assess
the effectiveness of SVMs with respect to converatideature- AVIRIS (224
F. Melgani, L. | reduction-based approaches and their performanaes | tral
Bruzzone'® hypersubspaces of various dimensionalities. Taagustuch an Epe((:j ra

analysis, the performances of SVMs are compareu thidse of ands)
two other nonparametric classifiers (i.e., radiakib function
neural networks and the K-nearest neighbor claskifiFour
different multiclass strategies are analyzed anmipaoed: the
one-against-all, the one-against-one, and two fibieal tree-
based strategies.

This paper presents the framework of kernel-basethads in
the context of hyperspectral image classificatitiustrating
G. Camps- from a general viewpoint the main characteristitgifferent | AVIRIS (224
Valls, L. kernel-based approaches and analyzing their piepert the| spectral

Bruzzone'’ hyperspectral domain. In particular, we assessopegnce of| bands)

regularized radial basis function neural networkRed-
RBFNN), standard support vector machines (SVMs)ndde




Fisher discriminant (KFD) analysis, and regulariZethBoost
(Reg-AB).

In this paper, an approach for multiclass classiifon of
airborne sensor data by a single SVM analysis &uated

; ’ o - ; Airborne
against a series of classifiers that are widelyduseremote Thematic
sensing, with particular regard to the effect afirting set size Mapper

G..M. Foody on classification accuracy. In'additio_n to the_S\;tMa_ | atmy @1
A"Méthurlgy same datasets were cl_assn‘led using a discrimiaaalysis, spectral
’ decision tree, and multilayer perceptron neuralvoek. For bands, spatia
each classification technique, accuracy was pedytivelated resolu{ion of
with the size of the training set. In general, thest accurate 5m)
classifications were derived from the SVM
approach.
This paper introduces the theory of SVM and prosidm (Spatially
C. Huang, experimental evaluation of its accuracy, stabilapd training degraded)
L.S. Davis, speed in deriving land cover classifications fromte8ite Landsat
J.R.G. images. SVM algorithm is compared with other sufzed Thematic
Townshend® | algorithms: maximimum likelihood (ML) classifier, eoral M ™
network classifier, and decision tree classifier. apper (TM)
Advanced
This paper presents a study on the mapping of ufb@paceborne
G Zhu.D. G envirpnments using ASTER data an(_j_SV!\/I-based cleasifn The_rm_al
Bl'umbérgél " | algorithms. A case study of the (_:Iassmcgtlorjrté area of Beer Emission and
Sheva, Israel is presented. Field validation shahet the| Reflectance
classification is reliable and precise. Radiometer
(ASTER)
L. Su, M. J. This paper present a study on mapping and mongotie Multi-angle
Chopping, A. | desert environment using SVM for the analysis ofitMangle Imagin
Rango, J. V. | Imaging Spectro-Radiometer (MISR) RS data. Mangpe%trg_
Martonchik, classification experiments have been implementeéini the Radiometer
D. P. C. Peterg optimal combination of MISR multi-angle data for xmaizing (MISR)
2 the classification accuracy.
This paper presents three different approaches he| t
J. Keuchel, S. | classification of satellites images: maximum likelbd
Naumann, M. | classifier, SVM, and iterated conditional model NIT to Landsat 5 TM
Heiler, A. perform contextual classification using Markov ramd field
Siegmund®® model. The classification algorithms were appliecdatLandsat
5 TM image of Tenerife, the largest of the canatgrid.
This paper presents a study on the comparison bat@/M
and NN for the classification of RS data. An expental
B. Dixon. N analysis is cgrried on Lanc_isat 5 TM data, _acqu"rnahe South
C;andadé’5 ’ West of Florida. The obtalneq_results conflrmed_ﬂa\iM and| Landsat5 TM
NN outperform the traditional ML classifier. SVM
classification resulted slightly more accurate thi but SVM
required much less computational effort in thenireg phase.
This paper proposes a system for the classificabibr'vVHR
images. The proposed system is made up of two biaaks: 1)
L Bruzzone. | & fe_ature-extraction block that aims at adaptivnzigd_el_the o
L: Carlin?’ " | spatial context of each pixel according to a hiheoal | Quickbird

multilevel segmentation of the scene and 2) a ifleatSon
block based on SVM. Experimental results on VHR ges|

confirm the effectiveness of the proposed system.




This paper presents a strategy for the joint diaasion of

multiple segmentation levels from multisensor imggeising

SAR and optical data. The two datasets are separpte

segmented at different scale levels and indepelydelaissified .
\B/éxvgslr(e’ S. by two S_Vlv_l-based class!fi_ers. The fl_Jsion strategy):_hsgd on '\Sﬂxgtggzc;sé
Linden?® the application of an addntnonal_glasaﬁer, whigtkes in input Landsat 5 T™M

the soft output of the pre-classified results af ttvo datasets|

The obtained experimental results show that thefulise

combination of multilevel-multisensor data is fédei with

machine learning techniques like SVM and Randorador

In this paper, the authors propose an analysis®ijoint use of]

hyperspectral and light detection and ranging (LR)Alata for

the classification of complex forest areas. In tgedetail, they| Hyperspectral
M. Dalponte present: 1) an adva_mced system for t_h_e jo_int usypérspectral (126 spectral
L'Bruzzone’ gnd L_IDA_R data in comp_lex classification prqb_lena; an | bands) and
ahd D ' investigation on the _effectlveness of the very pisimg SVM LIDA_R (mean
Gianeile3° and Gaus;nan ML with Ieave-one-ou; covariance #lyor for densny of 5.6

the analysis of forest areas characterized frongla tumber of| points per

species; and 3) an analysis of the effectivenessliféérent | square meter)

LIDAR returns and channels for increasing the df@sgion

accuracy obtained with hyperspectral images.

The RS literature related to SVM is not limitectihe use of this approach on
different data and different application domainecéntly, more advanced SVM-
based classifiers have been developed for facingptax problems related to the
properties of remote sensing images. A list ofvathe papers that introduced
advanced techniques based on SVM for the clasgdicaf RS data is reported
in Table 2. These papers represent the most réaedtin some cases on-going)
research activities in this field and give insigiiout the research direction for
the next years.

In this context, it is worth mentioning the sempewvised SVM classifiery”

3 which are devised for addressing ill-posed pnuisieharacterized by a very
small ratio between the number of available trgjréamples and the number of
features by reinforcing the learning procedure \lin use of unlabeled samples.
It is worth noting, that even if SVMs have very dogeneralization capability,
they cannot model the classification problem wheryfew training samples are
available (“strongly” ill-posed problems). In thesases, the exploitation of the
unlabeled samples to enrich the information oftthaing samples can result in
a significant improvement in the model estimatiofhe first work on
Semisupervised SVM in RS was presentell'iff The presented semisupervised
SVM (SVM) is based on transductive inference that explaispecific iterative
algorithm which gradually searches a reliable s#jrag hyperplane in the kernel
space with a process that incorporates both latziddunlabeled samples in the
training phase. 1%, an VM classification technique is proposed, where the



learning phase is performed by optimizing the aijecfunction directly in the
primal formulation (without exploiting the dual mgsentation that can be
obtained with Lagrange multipliers). ffi, the Laplacian SVM techniqu® is
introduced in the RS community. This technique &slopn additional
regularization term on the geometry of both labeded unlabeled samples by
using the graph Laplacian. This method follows a-iterative optimization
procedure in contrast to most transductive learnieghods and provides out-of-
sample predictions in contrast to graph-based agpes. Experimental results
confirm the effectiveness of*@&M techniques for solving ill-posed remote-
sensing classification problems. In gener/’8 provides higher accuracy and
better generalization ability than standard supediSVM. In this respect, a
more detailed picture of the status on the reseanctie application of *¥M to
hypedimensional problems can be founéin

Other studies address the inclusion of the spatiatext information of the
single pixel in the SVM classification process. Tuis end,* proposes a
framework for applying the maximum a posteriori (MpPestimation principle in
remote sensing image segmentation, which incorpsratontextual and
geometrical information in the SVM classificatioropess by means of Markov
random field (MRF). Irf®, the use of composite kernels is introduced inatem
sensing to adopt different kernel functions forfatiént subsets of features to
combine spatial and spectral information in an affe way. In*’, a context-
sensitive semisupervised SVM is proposed, whichlodéep the contextual
information of the pixels during the learning phase order to improve the
robustness to possible mislabeled training pattésmich are not unlikely to be
present in the reference data due to differentkifcerrors that may occur in the
collection of labeled samples). This is achievecbading to both the design of a
semisupervised procedure and the definition of mtecdual term in the cost
function associated with the learning of the cliéessi In the experimental
analysis, the authors also studied the robustoesssiabeled training patterns of
some widely used supervised and semisupervisedifitasion algorithms (i.e.,
conventional SVM, progressive semisupervised SViaxivhum Likelihood,
and k-Nearest Neighbor). Thanks to their high generabmatapability, SVM-
based approaches resulted more robust than otiesifatation approaches (e.g.,
statistical approaches) to the presence of migatehining patterns.

The study in*® addresses the problem of automatic updating the-daver
maps by using RS images periodically acquired tlversame investigated area
under the hypothesis that a reliable ground trstmat available for all the
considered acquisitions. The problem is modeledeurtide domain-adaptation
framework by introducing a novel method designaddad-cover map updating,



which is based on a domain-adaptation SVM (DASVEYHhnique. Given two
RS imaged; andl, acquired over the same area at different tiniesu{d t,,
respectively), the goal of the DASVM is to obtaim @curate classification &f
by exploiting the labeled training samples fromerefice imagd; and the
unlabeled samples from the new imagerhe DASVM algorithm is based on an
iterative process, which starts by training an S¥idssifier with the original
training samples of; and gradually introduces semilabeled samples; @nd
erases the original training samples. At convergeac final classification
function ruled only by semilabeled samples at tigie obtained. In addition, the
authors propose a circular accuracy assessmeteggtréor the validation of the
results obtained by domain-adaptation classifignerwno reference data for the
considered imagk are available.

Another recent and promising approach to the ai®aRS data is associated
with active learning®>® which allows an interactive classification of R$ages.
The active learning approach is based on the iterabn three different
conceptual steps. In the first step the learnimggss queries unlabeled samples
to select the most informative ones; in the secstep the supervisor (e.g., the
user) provides a label to the selected sampleraittieg with the system; and in
the third step the learner updates the classifinatule by retraining with the
updated training set. Iff, it is noted that SVMs are particularly suitedattive
learning since they are characterized by a smalloBesupport vectors (SVs)
which can be easily updated over successive legiiténations. Moreover, one
of the most efficient query functions is based ba telection of the sample
closest to the separating hyperplane defined atctvesidered iteration. For
additional information about recent developmentskamel methods for the
analysis of RS images, we refer the readét.to

Table 2 — Relevant papers about advanced technlwaged on SVM for the classification of RS
data

Authors Description

This paper introduces a semisupervised classificathethod tha
exploits both labeled and unlabeled samples foresdihg ill-posed
problems with SVMs. The proposed method exploitcHjmeiterative
algorithms which gradually search a reliable sefpagehyperplane in
L. Bruzzone, | the kernel space with a process that incorporates kabeled ang
M. Chi, M. unlabeled samples in the training phase. The asifhi@pose a nove
Marconcini®® | modified transductive SVM classifier designed fatdeessing ill-
posed remote-sensing problems, which has the folgpywroperties:
1) it is based on a novel transductive procedur #xploits a
weighting strategy for unlabeled patterns, basea time-dependen
criterion; 2) is able to mitigate the effects ofbeptimal model

—




selection (which is unavoidable in the presencenoéll-size training
sets); and 3) can address multiclass cases.

This paper addresses classification of hyperspgentraote-sensing
images with kernel-based methods defined in thendraork of

semisupervised SVM @8Ms). In particular, the authors analyzed the
)

critical problem of the nonconvexity of the cosnhétion associate
with the learning phase of'®Mis by considering different (§Ms)

M. Chi, L. techniques that solve optimization directly in frémal formulation

Bruzzone® of the objective function. As the nonconvex cosaction can be
characterized by many local minima, different omt&tion
techniques may lead to different classificatiorutiss The presente
techniques are compared witt’V#s implemented in the dual
formulation in the context of classification of felyperspectra
remote sensing images.
This letter presents a semisupervised method basedkernel

L. Gomez- . L i
machines and graph theory for remote sensing incagesification.

Chova, G. . . . .
The support vector machine (SVM) is regularized hwithe

Camps-Valls, ! . . :

3 Munoz- unnormalized graph Laplacian, thus leading to tl@lacian SVM

Mari, J. Calpe
40

(LapSVM). The method is tested in the challengimgbfems of
urban monitoring and cloud screening, in which atecmate
exploitation of the wealth of unlabeled samplesriscal.

A. A. Farag, R.
M. Mohamed,
A. El-Baz*

This paper proposes a complete framework for apgltiie maximunm
a posteriori (MAP) estimation principle in remotensing image
segmentation. The MAP principle provides an est@métr the
segmented image by maximizing the posterior prdiigsi of the
classes defined in the image. The posterior prdibabtan be
represented as the product of the class conditipra@dability (CCP)
and the class prior probability (CPP). For the C@Psupervised
algorithm which uses the SVM density estimation rapph is
proposed. For the CPP estimation, Markov randoid {i®IRF) is a
common choice which incorporates contextual and nmgacal
information in the estimation process.

G. Camp-
Valls, L.
Gomez-Chova,
J. Mufioz-
Mari, J. Vila-
Francés, and J
Calpe-
Maravilla *®

This letter presents a framework of composite Kemachines for|
enhanced classification of hyperspectral imagess Tibvel method
exploits the properties of Mercer's kernels to d¢nmg a family of
composite kernels that easily combine spatial arpbctsal
information. This framework of composite kernelsramstrates: 1
enhanced classification accuracy as compared tdititiaal
approaches that take into account the spectratnvg#ton only: 2)
flexibility to balance between the spatial and sf@dnformation in
the classifier; and 3) computational efficiency.

M.

Marconcini, G.
Camps-Valls,
L. Bruzzone'®

This letter presents a novel composite semisupEaviVM for the
spectral-spatial classification of hyperspectraages. In particular
the proposed technique exploits the following: h)abeled data fo
increasing the reliability of the training phase emhfew training
samples are available and 2) composite kernel iomet for

simultaneously taking into account spectral andiapaformation

—



included in the considered image. Experiments edrmout on a
hyperspectral image pointed out the effectivendsthe presentec
technique, which resulted in a significant increakthe classification
accuracy with respect to both supervised SVMs armbrpssive
semisupervised SVMs with single kernels, as wellsapervised
SVMs with composite kernels.

L. Bruzzone,
C. Perselld”

This paper presents a novel context-sensitive sgraisised SVM
(CS'VM) classifier, which is aimed at addressing clisation
problems where the available training set is ndiy fteliable, i.e.,
some labeled samples may be associated to the wnéorgnation
class (mislabeled patterns). Unlike standard cadrdersitive
methods, the proposed &8/ classifier exploits the contextual
information of the pixels belonging to the neighmod system o
each training sample in the learning phase to ingitbe robustnes
to possible mislabeled training patterns. Thiscisieved according to
both the design of a semisupervised procedure ladefinition of a
novel contextual term in the cost function assedatith the learning
of the classifier. In order to assess the effeatwss of the propose
CS'VM and to understand the impact of the addresseblgm in real
applications, the authors also present an extensigerimental
analysis carried out on training sets that incldifgerent percentage
of mislabeled patterns having different distribngmn the classes.

the analysis they also study the robustness toabetd training
patterns of some widely used supervised and seevgispd
classification algorithms (i.e., conventional SVMjrogressive
semisupervised SVM, Maximum Likelihood, akdNN)

[

o
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L. Bruzzone,
M. Marconcini
48

In this paper, the authors address automatic upglaii land-cover
maps by using remote-sensing images periodicaliyiaed over the
same investigated area under the hypothesis thatiable ground
truth is not available for all the considered asdigns. The problem
is modeled in the domain-adaptation framework biyontucing a
novel method designed for land-cover map updaitvtgch is based
on a domain-adaptation SVM technique. In additeomovel circular
accuracy assessment strategy is proposed for tidatan of the
results obtained by domain-adaptation classifieremwno ground
truth labels for the considered image are available

D. Tuia, F.
Ratle, F.
Pacifici, A.
Pozdnoukhov,
M. Kanevski,
F. Del Frate,
D. Solimini,
W. J. Emery®

In this paper, an active learning method is progdo® the semi-
automatic selection of training sets in remote s@nsimage
classification. The method adds iteratively to thuerent training se
the unlabeled pixels for which the prediction of ensemble of
classifiers based on bagged training sets show rmaxi entropy.
This way, the algorithm selects the pixels thattaeemost uncertain
and that will improve the model if added in thdnag set. The use
is asked to label such pixels at each iterationpeirents were
carried out using SVM.

=




4. Discussion and Conclusion

In this chapter we presented a review on SVMs ia thassification of
remote-sensing data, recalling their theoreticafdation, and discussing the
motivations at the basis of their use in remotesisgn We presented a literature
survey about the adoption of SVMs for the analyfidifferent kinds of RS
images. We observed a large variety of studiesighdyd on the use of SVMs for
the analysis of different kinds of RS data, whicmfirm that SVMs represent a
valuable and effective tool for the analysis of &&a and can be used in many
different applications in the context of RS. We eved that one of the most
appealing properties of SVM for the classificatioh RS data is its high
generalization capability and robustness to thehdagffect, which allow SVMs
to operate in large dimensional feature spaces feithtraining samples. For this
reason, SVMs represent an effective choice foctassification of hyperspectral
data. Nevertheless, the SVM approach turned obetparticularly effective also
in the classification of very high resolution (VHRhages, which typically
require the extraction of several additional feasurto characterize and
discriminate the different land-cover classes. Thasth the classification of
VHR and hyperspectral images typically result irassification problems
characterized by large dimensional feature spab&seover, thanks to its
distribution-free approach and the capability tpeavith strongly non-linear
problems by means of the kernel function, SVMsak&luable tool also for the
classification of data acquired by different infation sources.

In addition, we pointed out the most recent worswd the development of
advanced SVM-based techniques for the analysis $fd&ta. Among these
developments, we recall semisupervised and dongaptation SVM,
techniques based on SVM that exploit the spatiatexd information, and active
learning methods. Semisupervised SVMs have shownbeo effective in
exploiting both labeled and unlabeled samples foe tearning of the
classification algorithm, further augmenting thexgmrlization capability and the
robustness to the Hughes phenomenon with respstandard supervised SVM.
Domain-adaptation SVM resulted effective for addmeg the problem of
automatic updating land-cover maps by using RS é@saggeriodically acquired
over the same investigated area. Context-sendiégkniques based on SVM
have been proposed for both regularizing the dieaion map (exploiting the
context information in the classification phasefarimproving the robustness to
mislabeled training samples (using the contextrm&gion in the learning phase
of the algorithm). Another promising approach isiveclearning, which allows



one an interactive analysis of RS data, by drivimg user to label unlabeled
samples that are selected by a query function &$ imformative.

We can conclude that the SVM approach showed tehepromising for the
classification of RS data and recent works dematesthat SVM can be used as
basis for the development of advanced techniquessédving specific RS
problems or for exploiting particular propertiestbe RS data. However, still
effort should be devoted to the development of aded techniques that can
effectively extract useful information from thehiend complex data acquired by
the last generation of RS sensors. Moreover, efforéquired also for applying
the SVM-based approaches developed in the reseatifities in real-world RS
problems. Indeed, at the present, the most of ¢aé problems related to RS
image classification are still solved with standaldssifiers (like maximum
likelihood or k-NN) that, even if simple, cannot guarantee theuwszy and
generalization capabilities of SVMs in complex devbs.
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