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This chapter presents an extensive and critical review on the use of kernel 
methods and in particular of support vector machines (SVMs) in the 
classification of remote-sensing (RS) data. The chapter recalls the mathematical 
formulation and the main theoretical concepts related to SVMs, and discusses 
the motivations at the basis of the use of SVMs in remote sensing. A review on 
the main applications of SVMs in classification of remote sensing is given, 
presenting a literature survey on the use of SVMs for the analysis of different 
kinds of RS images. In addition, the most recent methodological developments 
related to SVM-based classification techniques in RS are illustrated by focusing 
on semisupervised, domain adaptation, and context sensitive approaches. 
Finally, the most promising research directions on SVM in RS are identified and 
discussed. 

1. Introduction 

In the last two decades there have been significant improvements both in the 
technology associated with the development of the sensors used in remote 
sensing (RS) to acquire signals and images for earth observation and in the 
analysis techniques adopted for extracting information from these data useful for 
operational applications. The modern technology resulted in the definition of 
different kinds of sensors for Earth observation based on different principles and 
with different properties. We have observed the development of passive 
multispectral and hyperspectral scanners, and active instruments like Synthetic 
Aperture Radar (SAR) and Lidar, as well as other instruments devoted to specific 
applications. Looking at this scenario from an historical viewpoint, we are passed 
from multispectral data having relatively low spatial and spectral resolution (like 
the MSS of the Landsat satellites) to a new generation of sensors characterized 



by very high geometrical resolution (VHR); (e.g., Ikonos, Quickbird, Geoeye-1, 
etc.), which can acquire images with a metric or sub-metric resolution. 
Hyperspectral sensors (on airborne or satellite platforms) can acquire images 
characterized by very high spectral resolution, with hundreds of channels having 
less than 2 nm of bandwith. The acquisition of very high resolution SAR images 
from satellite platforms has also become possible thanks to the recent TerraSar-X 
and Cosmo-Skymed missions. In this context, the challenging properties of new 
generation of sensors require the definition of novel data analysis methods. 

In this chapter we focus our attention on RS image classification 
methodologies, which are devoted to translate the features that represent the 
information present in the data in thematic maps representing land cover types 
according to the solution of a pattern recognition problem. In particular, we 
concentrate our attention on supervised classification algorithms, which require 
the availability of labeled samples for the training of the classification model. In 
this context, the availability of last generation RS images allowed the 
development of new applications that require the mapping of the Earth surface 
with high geometric precision and a high level of thematic details. However, the 
huge amount of data associated with these images requires the development of 
sophisticated automatic classification techniques capable to obtain accurate land-
cover maps in a reasonable processing time.  

In the last decades, a great effort has been devoted to exploit machine 
learning methods for classification of remote sensing images. This has been done 
by introducing the use of neural networks (NN) in remote sensing (with the 
pioneering work presented in 1) for solving many different classification tasks. 
Several different paradigms and models of NN have been used in recent years for 
addressing remote sensing image classification problems, ranging from standard 
Multilayer Perceptron (MLP) network 1-3, to Radial Basis Functions (RBF) neural 
network 4, 5, structured neural networks 6 and hybrid architectures. Also more 
complex and structured architecture have been exploited for solving specific 
problems, like compound classification of multitemporal data 7, multiple 
classification systems made up of neural algorithms 8, 9, etc. All these methods 
share as common property the idea to perform the learning of the classification 
algorithm according to the minimization of the empirical risk, defined in different 
ways. However, the last frontiers of machine learning classifiers in RS are 
represented by methods based on the structural risk minimization principle 
(which allows one to effectively tune the tradeoff between empirical risk and 
generalization capability) rather than on the empirical risk minimization. The 
related statistical learning theory (formulated from Vapnik 10) is at the basis of 
the support vector machine (SVM) classification approach. SVM is a 



classification technique based on kernel methods that has been proved very 
effective in solving complex classification problems in many different 
application domains. In the last few years, SVM gained a significant credit also 
in remote sensing applications. The pioneering work of Gualtieri in 1998 11 
related to the use of SVM for classification of hyperspectral images has been 
followed from several different experiences of other researchers that analyzed the 
theoretical properties and the empirical performances of SVM applied to 
different kinds of classification problems 12-28. The investigations include 
classification of hyperspectral data 11-18, multispectral images 19-26, VHR images 
27, as well as multisource and multisensor classification scenarios 28-30. SVMs 
revealed to be very effective classifiers and currently they are among the most 
adequate techniques for the analysis of last generation of RS data. 

In all these cases the success of SVMs is due to the important properties of 
this approach, which integrated with the effectiveness of the classification 
procedure and the elegance of the theoretical developments, result in a very solid 
classification methodology in many different RS data classification domains. As 
it will be explained in the following section, this mainly depends on the fact that 
SVMs implement a classification strategy that exploits a margin-based 
“geometrical” criterion rather than a purely “statistical” criterion. In other words, 
SVMs do not require an estimation of the statistical distributions of classes to 
carry out the classification task, but they define the classification model by 
exploiting the concept of margin maximization. 

The main properties that make SVM particularly attractive in RS applications 
can be summarized as follows 31-33: 
• their intrinsic effectiveness with respect to traditional classifiers thanks to the 

structural risk minimization principle, which results in high classification 
accuracies and very good generalization capabilities (especially in 
classification problems defined in high dimensional feature spaces and with 
few training samples, which it is a typical situation in the classification of 
last generation of RS images); 

• the possibility to exploit the kernel trick to solve non-linear separable 
classification problems by projecting the data into a high dimensional feature 
space and separating the data with a simple linear function; 

• the convexity of the objective function used in the learning of the classifier, 
which results in the possibility to solve the learning process according to 
linearly constrained quadratic programming (QP) characterized from a 
unique solution (i.e., the system cannot fall into sub-optimal solutions 
associated with local minima); 



• the possibility of representing the convex optimization problem in a dual 
formulation, where only non-zero Lagrange multipliers are necessary for 
defining the separation hyperplane (which is a very important advantage in 
the case of large datasets). This is related to property of sparseness of the 
solution; 
Moreover, SVMs exhibit important advantages with respect to NN 

approaches. Among the others we recall: i) higher generalization capability and 
robustness to the Hughes phenomenon; ii) lower effort required for the model 
selection in the learning phase (i.e., they involve less control parameters and thus 
computational time for their optimum values selection) and the implicit 
automatic architecture definition; iii) optimality of the solution obtained by the 
learning algorithm. 

The objective of this chapter is to review the state of the art of SVM for the 
classification of RS data. In particular, Section II recalls the basic principles of 
SVM for pattern classification. Section III presents a literature survey about the 
most relevant papers that report studies about the application of SVM to the 
classification of different kinds of RS images and papers that propose advanced 
systems based on the SVM approach for the analysis of RS data. Along with this 
state-of-the-art review, we discuss about the operative adoption of SVM for the 
analysis of RS images and the direction of the future research on this topic. 
Finally, section IV draws the conclusion of the chapter. 

2. Support Vector Machines Classifiers 

Let us consider the problem of supervised classification of a generic d-
dimensional image I of size I J×  pixel. Let us assume that a training set 

{ , }=D X Y  made up of N pairs ( ) 1, N
i i iy =x  is available, where 

1{ | }d N
i i i == ∈ ⊂x x ℝX I  is a subset of I and 1{ } N

i iy ==Y  is the corresponding set of 
labels. For the sake of simplicity, since SVMs are binary classifiers, we first 
focus the attention on the two-class case (the general multiclass case will be 
addressed later). Accordingly, let us assume that { 1; 1}iy ∈ + − is the binary label 
of the pattern ix . The goal of the binary SVM is to divide the d-dimensional 
feature space in two subspaces, one for each class, through a separating 
hyperplane : 0H y b= 〈 ⋅ 〉+ =w x . The final decision rule used to find the 
membership of a test sample is based on the sign of the discrimination function 

( )f b= 〈 ⋅ 〉+x w x  associated to the hyperplane. Therefore, a generic pattern x  will 
be labeled according to the following rule: 
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The training of an SVM consists in finding the position of the hyperplane H, 
estimating the values of the vector w and the scalar b, according to the solution 
of an optimization problem. From a geometrical point of view, w is a vector 
perpendicular to the hyperplane H and thus defines its orientation. The distance 
of the H to the origin is b w , while the distance of a sample x  to the 
hyperplane is ( )f x w . Let us define the functional margin { }min ( )i iF y f= x , 

1,...,i N= and the geometric margin G F= w . The geometric margin 
represents the minimum Euclidean distance between the available training 
samples and the hyperplane. 

A. Training of Linear SVM - Maximal Margin algorithm. 

In the case of a linearly separable problems, the learning of an SVM can be 
performed with the maximal margin algorithm, which consists in finding the 
hyperplane H that maximizes the geometric margin G. Rescaling the hyperplane 
parameters w  and b such that the functional margin 1F = , it turns out that the 
optimal hyperplane can be determined as the solution of the following convex 
quadratic programming problem: 
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Let H1 and H2 be two hyperplane parallel to the separating hyperplane H and 
equidistant from it: 

 1

2

: ( ) 1

: ( ) 1

H f b

H f b

= 〈 ⋅ 〉+ =+
= 〈 ⋅ 〉+ = −

x w x

x w x
 (3) 

The goal of the training phase is to find the values of w  and b such that the 
geometric distance between H1 and H2 is maximized with the condition that there 
is no sample between them. Since direct handling of inequality constraints is 
difficult, Lagrange theory is usually exploited by introducing Lagrange 
multipliers 1

N
iα =  for the quadratic optimization problem. This leads to an 

alternative dual representation: 
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The Karush–Kuhn–Tucker (KKT) complementarity conditions provide useful 
information about the structure of the solution. They state that the optimal 
solution *

α , * *( , )bw should satisfy: 

 [ ]* * *( ) 1 0, 1,....,i i iy b i Nα 〈 ⋅ 〉+ − = =w x  (5) 

This implies that only input samples xi for which the functional margin is one 
(and that therefore lie closest to the hyperplane, i.e., lie on H1 or H2) are 
associated to Lagrange multipliers 0iα > . All the other multipliers *

iα are zero. 
Hence, only these samples are involved in the expression for the weight vector. It 
is for this reason that they are called support vectors (SV). Thus we can write that 

* * *

1

N

i i i i i i
i i SV

y yα α
= ∈

= =∑ ∑w x x . It is worth noting that the term b does not appear in 
the dual problem, and should be calculated making use of the primal constraints:  
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Once the values for w  and b are determined by solving the optimization 
problem, one generic test sample is classified on the basis of the sign of the 
discriminant function, that can be expressed as:  

 * *( ) i i i i i i
i SV i SV

f b y b y bα α
∈ ∈

 = 〈 ⋅ 〉+ = ⋅ + = 〈 ⋅ 〉+ 
 
∑ ∑x w x x x x x . (7) 

Note that the training samples appear only in the form of dot product. This 
property of the dual form will be exploited later to extend the formulation to 
nonlinear problems.  

B. Training of Linear SVM – Soft Margin algorithm. 

The maximum margin training algorithm can not be used in many real world 
problems where the available training samples are not linearly separable because 
of noisy samples and outliers (this is very common in real RS classification 
problems). In these cases, the soft margin algorithm is used in order to handle 
nonlinear separable data. This is done by defining the so called slack variables as: 

 [( , ),( , )] max[0,1 ( )]i i i i iy b y bξ ξ= = − 〈 ⋅ 〉+x w w x  (8) 

Slack variables allow one to control the penalty associated with misclassified 
samples. In this way the learning algorithm is robust to both noise and outliers 



present in the training set, thus resulting in high generalization capability. The 
optimization problem can be formulated as follows: 
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where 0C≥  is the regularization parameter that allows one to control the penalty 
associated to errors (if C=∞  we come back to the maximal margin algorithm), 
and thus to control the tradeoff between the number of allowed mislabeled 
training samples and the width of the margin. If the value of C is too small, many 
errors are permitted and the resulting discriminant function will poorly fit with 
the data; on the opposite, if C is too large, the classifier may overfit the data 
instances, thus resulting in low generalization ability. A precise definition of the 
value of the C parameter is crucial for the accuracy that can be obtained in the 
classification step and should be derived through an accurate model selection 
phase. 

Similarly to the case of the maximal margin algorithm, the optimization 
problem (9) can be rewritten in an equivalent dual form: 
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Note that the only difference between (10) and (4) is in the constraint on the 
multipliers { } 1

N
i iα =  that for the soft margin algorithm are bounded by the 

parameter C. For this reason this problem is also known as box constrained 
problem. The KKT conditions become in this case: 
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Varying the values of the multipliers { } 1

N
i iα =  three cases can be distinguished: 

(i) if iα  = 0 ⇒  0iξ = and ( ) 1i iy b〈 ⋅ 〉+ ≥w x ;  
(ii)  if 0 i Cα< < , we have that ( ) 1i i iy b ξ〈 ⋅ 〉+ + =w x , but given that 0iξ =  we 

have that ( ) 1i iy b〈 ⋅ 〉+ =w x ; 
(iii)  if iα  = C, ⇒  ( ) 1i i iy b ξ〈 ⋅ 〉+ + =w x , but given that 0iξ ≥  we have that 

( ) 1i iy b〈 ⋅ 〉+ ≤w x . 
The KKT conditions can therefore be rewritten as: 
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Figure 1. Qualitative example of a separating hyperplane in the case of a non linear separable 
classification problem.  

 
The support vectors with multiplier i Cα =  are called bound support vectors 
(BSV) and are associated to slack variables 0iξ ≥ ; the ones with 0 i iCα< <  are 
called non bound support vectors (NBSV) and lie on the margin hyperplane H1 
or H2 ( ( ) 1i iy f =x ). 

C. Training of Non Linear SVM – Kernel Trick. 

An important improvement to the above-described methods consists in 
considering non linear discriminant functions for separating the two information 
classes. This can be obtained by transforming the input data into a high 
dimension (Hilbert) feature space '( ) dΦ ∈x ℝ  ( 'd d> ) where the transformed 
samples can be better separated by a hyperplane. The main problem is to 
explicitly choose and calculate the function '( ) dΦ ∈x ℝ  for each training samples. 
But given that the input points in dual formulation [see (10)] appear in the form 
of inner products, we can do this mapping in an implicit way by exploiting the so 
called kernel trick. Kernel methods provide an elegant and effective way of 
dealing with this problem by replacing the inner product in the input space with a 
kernel function such that: 



 ( , ) ( ( ) ( ) , 1,...,i j i jK x x i j Nφ φ= 〈 ⋅ 〉 =x x  (13) 

implicitly calculating the inner product in the transformed space.  
 

 
Figure 2. Transformation of the input data by means of a kernel function into a high dimension 
feature space.  a) Input feature space; b) kernel induced high dimensional feature space. 

 
The soft margin algorithm for nonlinear function can be represented by the 
following optimization problem: 
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And the discrimination function becomes: 
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The condition for a function to be a valid kernel is given by the Mercer’s theorem 
32. The most widely used non-linear kernel functions are the following 31:  
• homogeneous polynomial function: ( , ) ( ) ,p

i j i jk p= ⋅ ∈x x x x ℤ   

• inhomogeneous polynomial function: ( , ) ( ( )) , , 0p
i j i jk c p c= + ⋅ ∈ ≥x x x x ℤ  

• Gaussian function: 
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D. Multiclass architectures 

As stated in the previous section, SVMs are binary classifiers. However, 
several strategies have been proposed to address multiclass problems with SVMs. 
Let { }1,..., Lω ωΩ = be the set of L information classes associated with the 
different land cover types present in the study area. In order to define a multiclass 
architecture based on different binary classifiers, the general approach consists 
of: i) defining an ensemble of binary classifiers; and ii) combining them 
according to some decision rules. The definition of the ensemble of binary 
classifiers involves the definition of a set of two-class problems, each modeled 
with two groups AΩ  and BΩ  of classes. The selection of these subsets depends 
on the kind of approach adopted to combine the ensemble. In the following, we 
describe the two most widely adopted (parallel) multiclass strategies, i.e., the 
One-Agains-All (OAA) and One-Against-One (OAO) strategies. 

1) One-Against-All: the one-against-all (OAA) strategy represents the earliest 
and one of the most common multiclass approach used for SVMs. It involves a 
parallel architecture made up of L SVMs, one for each class (Figure 3). Each 
SVM solves a two-class problem defined by one information class against all the 
others, i.e.,  
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Figure 3 Block diagram of the One-Against-All multiclass architecture 
 



The winner-takes-all rule is used for the final decision, i.e., the winning class 
is the one corresponding to the SVM with the highest output (discriminant 
function value). 

2) One-Against-One: the main problem of the OAA strategy is that the 
discrimination between an information class and all the others often leads to the 
estimation of complex discriminant functions. In addition, a problem with 
strongly unbalanced prior probabilities should be solved by each SVM. The idea 
behind the one-against-one (OAO) strategy is that of a different reasoning, in 
which simple classification tasks are made possible thanks to a parallel 
architecture made up of a large number of SVMs. The OAO strategy involves 

( 1) /2L L−  SVMs, which model all possible pairwise classifications. In this case, 
each SVM carries out a binary classification in which two information classes iω  
and jω  are analyzed against each other by means of a discriminant function 

( )ijf x . Consequently, the grouping becomes: 
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Before the decision process, it is necessary to compute for each class iω ∈Ω  a 
score function ( )iS x  , which sums the favorable and unfavorable votes expressed 
for the considered class 
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The final decision in the OAO strategy is taken on the basis of the winner-
takes-all rule, which corresponds to the following maximization: 
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Figure 4 Block diagram of the One-Against-One multiclass architecture 
 

Other multiclass architectures proposed in the literature are the Directed 
Acyclic Graph SVM (DAGSVM) 34 and different approaches based on binary 
hierarchical trees (BHT) 16,35.  

3. SVM for the classification of RS Data 

In the last decade many studies have been published in the RS literature on 
the application of SVM classifiers to the analysis of RS data. Table 1 (which is 
not exhaustive) presents some relevant papers about the applications of SVM to 
the classification of RS data, providing a short description of the study and the 
kind of data used for the experimental analysis. The SVM approach has been first 
applied to the classification of hyperspectral data 11, which require the classifier 
to operate in large dimensional feature spaces. Supervised classification of 
hyperspectral images is a very complex methodological problem due to many 
different issues, among which we recall the typical small value of the ratio 
between the number of training samples and the number of available spectral 
channels, which results in the so-called course of dimensionality (Hughes 
phenomenon) 36. Thanks to the structural risk minimization principle and the 
margin-based approach, SVMs represent an effective choice for the classification 
of this specific kind of data. Several papers 11-18 confirm the effectiveness of 
SVMs in the classification of hyperspectral images, which outperform other 
classification algorithms both in terms of classification accuracy and 



generalization ability. In particular, in 16 it is found that SVMs are much more 
effective than other conventional nonparametric classifiers (i.e., the RBF neural 
networks and the K-NN classifier) in terms of classification accuracy, 
computational time, stability to parameter setting, and generalization ability. In 
15, the SVM approach was compared with neural networks and fuzzy methods on 
six hyperspectral images acquired with the 128-band HyMap spectrometer. The 
authors of the study concluded that SVMs yield better outcomes than neural 
networks regarding accuracy, simplicity, and robustness. In 17, SVMs were 
compared with other kernel-based methods, i.e., with regularized radial basis 
function NN, kernel Fisher discriminant analysis, and regularized AdaBoost. The 
results obtained on an AVIRIS dataset show that SVMs are more beneficial, 
yielding better results than other kernel-based methods, ensuring sparsity and 
lower computational cost. 

Nevertheless, SVMs revealed adequate for the analysis of many different 
kinds of RS data, i.e., multispectral imagery and SAR imagery (with different 
resolutions) and LIDAR data. Several papers present a comparison between 
SVM and other supervised algorithms applied to the classification of different 
kinds of RS images 20, 23, 25, 30. In 20, for instance, the authors compared the 
accuracies obtained by the classification of a Landsat Thematic mapper (TM) 
scene with four different supervised classifiers, i.e., SVM, maximum likelihood 
(ML), MLP neural networks (NN), and decision tree classifier (DTC). The 
obtained results show that SVM was in general sharply more accurate than ML 
and DTC, and more accurate than NN in most of the cases. In 21, the SVM 
algorithm was applied to the classification of ASTER data acquired in an urban 
area of Beer Sheva, Israel. Field validations show that the classification is 
reliable for urban studies with high classification accuracy. In 23, the SVM 
classifier, as well as the well-known ML classifier and a context-based classifier 
based on Markov random fields, were applied to the automatic land cover 
classification of a Landsat TM image taken on the Tenerife Island. The authors 
found that SVM was more accurate than the other classification algorithms, but 
the classification map was not completely satisfying when investigated visually. 
In the experimental analysis conducted in 25, it is observed that SVM leaded to 
slightly higher classification accuracies than (MLP) NN. For both classifiers, the 
accuracy depends on factors such as the number of hidden nodes in the case of 
NN, and kernel parameters in the case of SVM. Thus, the model selection phase 
is fundamental for obtaining good results, but the training time required by the 
SVM is less than the one taken by NN.  

SVM can be particularly effective also in the analysis of very high resolution 
(VHR) images. The typical poor spectral resolution of VHR images requires the 



extraction of additional features (e.g., texture and geometric measures) to 
characterize the objects present in the scene under investigation and to 
discriminate different land-cover classes. Different features modeling objects at 
different scales are generally necessary for an adequate characterization of the 
information classes 27, thus resulting in classification problems characterized by 
large dimensional feature spaces (with some analogies with the problems related 
to the classification of hyperspectral image). The study proposed in 27 points out 
that SVM can be effectively applied to the classification of VHR images using a 
feature extraction block that aims at adaptively modeling the spatial context of 
each pixel according to a hierarchical multilevel segmentation of the scene. A 
similar approach can also be adopted for the joint classification of SAR and 
optical data with SVM, as presented in 29. In 30, an analysis is proposed on the 
joint use of hyperspectral and LIDAR data for the classification of complex 
forest areas. The experimental results obtained in 29-30 show that SVMs are 
effective for combining multisensor data in complex classification problems and 
outperforms other more traditional classifiers. 

Table 1 – Selected papers related to the application of SVM to classification of different kinds of 
RS data 

Authors Description RS data 

J. A. Gualtieri 
and S. Chettri 
13 

In this paper, the authors introduce SVM for the classification 
of RS data. In particular they applied SVM to hyperspectral data 
acquired by NASA’s AVIRIS sensor and the commercially 
available AISA sensor. The authors discuss the robustness of 
SVM to the course of dimensionality (Hughes phenomenon). 

AVIRIS (224 
spectral 
bands) and 
AISA (20-40 
bands) 

F. Melgani, L. 
Bruzzone 16 

This paper addresses the problem of the classification of 
hyperspectral remote sensing images by SVMs. The authors 
propose a theoretical discussion and experimental analysis 
aimed at understanding and assessing the potentialities of SVM 
classifiers in hyperdimensional feature spaces. Then, they assess 
the effectiveness of SVMs with respect to conventional feature-
reduction-based approaches and their performances in 
hypersubspaces of various dimensionalities. To sustain such an 
analysis, the performances of SVMs are compared with those of 
two other nonparametric classifiers (i.e., radial basis function 
neural networks and the K-nearest neighbor classifier). Four 
different multiclass strategies are analyzed and compared: the 
one-against-all, the one-against-one, and two hierarchical tree-
based strategies.  

AVIRIS (224 
spectral 
bands) 

G. Camps-
Valls, L. 
Bruzzone 17 

This paper presents the framework of kernel-based methods in 
the context of hyperspectral image classification, illustrating 
from a general viewpoint the main characteristics of different 
kernel-based approaches and analyzing their properties in the 
hyperspectral domain. In particular, we assess performance of 
regularized radial basis function neural networks (Reg-
RBFNN), standard support vector machines (SVMs), kernel 

AVIRIS (224 
spectral 
bands) 



Fisher discriminant (KFD) analysis, and regularized AdaBoost 
(Reg-AB).  

G..M. Foody, 
A. Mathur 19 

In this paper, an approach for multiclass classification of 
airborne sensor data by a single SVM analysis is evaluated 
against a series of classifiers that are widely used in remote 
sensing, with particular regard to the effect of training set size 
on classification accuracy. In addition to the SVM, the 
same datasets were classified using a discriminant analysis, 
decision tree, and multilayer perceptron neural network. For 
each classification technique, accuracy was positively related 
with the size of the training set. In general, the most accurate 
classifications were derived from the SVM 
approach. 

Airborne 
Thematic 
Mapper 
(ATM) (11 
spectral 
bands, spatial 
resolution of 
5m) 

C. Huang, 
L.S. Davis, 
J.R.G. 
Townshend 20 

This paper introduces the theory of SVM and provides an 
experimental evaluation of its accuracy, stability, and training 
speed in deriving land cover classifications from satellite 
images. SVM algorithm is compared with other supervised 
algorithms: maximimum likelihood (ML) classifier, neural 
network classifier, and decision tree classifier.  

(Spatially 
degraded) 
Landsat 
Thematic 
Mapper (TM) 

G. Zhu, D. G. 
Blumberg 21 

This paper presents a study on the mapping of urban 
environments using ASTER data and SVM-based classification 
algorithms. A case study of the classification of the area of Beer 
Sheva, Israel is presented. Field validation shows that the 
classification is reliable and precise. 

Advanced 
Spaceborne 
Thermal 
Emission and 
Reflectance 
Radiometer  
(ASTER) 

L. Su, M. J. 
Chopping, A. 
Rango, J. V. 
Martonchik, 
D. P. C. Peters 
22 

This paper present a study on mapping and monitoring the 
desert environment using SVM for the analysis of Multi-angle 
Imaging Spectro-Radiometer (MISR) RS data. Many 
classification experiments have been implemented to find the 
optimal combination of MISR multi-angle data for maximizing 
the classification accuracy. 

Multi-angle 
Imaging 
Spectro-
Radiometer  
(MISR) 

J. Keuchel, S. 
Naumann, M. 
Heiler, A. 
Siegmund 23 

This paper presents three different approaches to the 
classification of satellites images: maximum likelihood 
classifier, SVM, and iterated conditional model (ICM) to 
perform contextual classification using Markov random field 
model. The classification algorithms were applied to a Landsat 
5 TM image of Tenerife, the largest of the canary Island. 

Landsat 5 TM 

B. Dixon, N. 
Candade 25 

This paper presents a study on the comparison between SVM 
and NN for the classification of RS data. An experimental 
analysis is carried on Landsat 5 TM data, acquired in the South 
West of Florida. The obtained results confirmed that SVM and 
NN outperform the traditional ML classifier. SVM 
classification resulted slightly more accurate than NN, but SVM 
required much less computational effort in the training phase. 

Landsat 5 TM 

L. Bruzzone, 
L. Carlin 27 

This paper proposes a system for the classification of VHR 
images. The proposed system is made up of two main blocks: 1) 
a feature-extraction block that aims at adaptively model the 
spatial context of each pixel according to a hierarchical 
multilevel segmentation of the scene and 2) a classification 
block based on SVM. Experimental results on VHR images 
confirm the effectiveness of the proposed system. 

Quickbird 



B. Waske, S. 
Van der 
Linden 29 

This paper presents a strategy for the joint classification of 
multiple segmentation levels from multisensor imagery, using 
SAR and optical data. The two datasets are separately 
segmented at different scale levels and independently classified 
by two SVM-based classifiers. The fusion strategy is based on 
the application of an additional classifier, which takes in input 
the soft output of the pre-classified results of the two datasets. 
The obtained experimental results show that the useful 
combination of multilevel-multisensor data is feasible with 
machine learning techniques like SVM and Random forest.  

Multitemporal 
SAR data and 
Landsat 5 TM 

M. Dalponte, 
L. Bruzzone, 
and D. 
Gianelle 30 

In this paper, the authors propose an analysis on the joint use of 
hyperspectral and light detection and ranging (LIDAR) data for 
the classification of complex forest areas. In greater detail, they 
present: 1) an advanced system for the joint use of hyperspectral 
and LIDAR data in complex classification problems; 2) an 
investigation on the effectiveness of the very promising SVM 
and Gaussian ML with leave-one-out covariance algorithm for 
the analysis of forest areas characterized from a high number of 
species; and 3) an analysis of the effectiveness of different 
LIDAR returns and channels for increasing the classification 
accuracy obtained with hyperspectral images. 

Hyperspectral 
(126 spectral 
bands) and 
LIDAR (mean 
density of 5.6 
points per 
square meter) 

 
The RS literature related to SVM is not limited to the use of this approach on 

different data and different application domains. Recently, more advanced SVM-
based classifiers have been developed for facing complex problems related to the 
properties of remote sensing images. A list of relevant papers that introduced 
advanced techniques based on SVM for the classification of RS data is reported 
in Table 2. These papers represent the most recent (and in some cases on-going) 
research activities in this field and give insight about the research direction for 
the next years. 

In this context, it is worth mentioning the semi-supervised SVM classifiers 37-

43, which are devised for addressing ill-posed problems characterized by a very 
small ratio between the number of available training samples and the number of 
features by reinforcing the learning procedure with the use of unlabeled samples. 
It is worth noting, that even if SVMs have very good generalization capability, 
they cannot model the classification problem when very few training samples are 
available (“strongly” ill-posed problems). In these cases, the exploitation of the 
unlabeled samples to enrich the information of the training samples can result in 
a significant improvement in the model estimation. The first work on 
Semisupervised SVM in RS was presented in 37, 38. The presented semisupervised 
SVM (S3VM) is based on transductive inference that exploits a specific iterative 
algorithm which gradually searches a reliable separating hyperplane in the kernel 
space with a process that incorporates both labeled and unlabeled samples in the 
training phase. In 39, an S3VM classification technique is proposed, where the 



learning phase is performed by optimizing the objective function directly in the 
primal formulation (without exploiting the dual representation that can be 
obtained with Lagrange multipliers). In 40, the Laplacian SVM technique 41 is 
introduced in the RS community. This technique adopts an additional 
regularization term on the geometry of both labeled and unlabeled samples by 
using the graph Laplacian. This method follows a non-iterative optimization 
procedure in contrast to most transductive learning methods and provides out-of-
sample predictions in contrast to graph-based approaches. Experimental results 
confirm the effectiveness of S3VM techniques for solving ill-posed remote-
sensing classification problems. In general S3VM provides higher accuracy and 
better generalization ability than standard supervised SVM. In this respect, a 
more detailed picture of the status on the research on the application of S3VM to 
hypedimensional problems can be found in 43. 

Other studies address the inclusion of the spatial-context information of the 
single pixel in the SVM classification process. To this end, 44 proposes a 
framework for applying the maximum a posteriori (MAP) estimation principle in 
remote sensing image segmentation, which incorporates contextual and 
geometrical information in the SVM classification process by means of Markov 
random field (MRF). In 45, the use of composite kernels is introduced in remote 
sensing to adopt different kernel functions for different subsets of features to 
combine spatial and spectral information in an effective way. In 47, a context-
sensitive semisupervised SVM is proposed, which exploits the contextual 
information of the pixels during the learning phase, in order to improve the 
robustness to possible mislabeled training patterns (which are not unlikely to be 
present in the reference data due to different kinds of errors that may occur in the 
collection of labeled samples). This is achieved according to both the design of a 
semisupervised procedure and the definition of a contextual term in the cost 
function associated with the learning of the classifier. In the experimental 
analysis, the authors also studied the robustness to mislabeled training patterns of 
some widely used supervised and semisupervised classification algorithms (i.e., 
conventional SVM, progressive semisupervised SVM, Maximum Likelihood, 
and k-Nearest Neighbor). Thanks to their high generalization capability, SVM-
based approaches resulted more robust than other classification approaches (e.g., 
statistical approaches) to the presence of mislabeled training patterns. 

The study in 48 addresses the problem of automatic updating the land-cover 
maps by using RS images periodically acquired over the same investigated area 
under the hypothesis that a reliable ground truth is not available for all the 
considered acquisitions. The problem is modeled under the domain-adaptation 
framework by introducing a novel method designed for land-cover map updating, 



which is based on a domain-adaptation SVM (DASVM) technique. Given two 
RS images I1 and I2 acquired over the same area at different times (t1 and t2, 
respectively), the goal of the DASVM is to obtain an accurate classification of I2 

by exploiting the labeled training samples from reference image I1 and the 
unlabeled samples from the new image I2. The DASVM algorithm is based on an 
iterative process, which starts by training an SVM classifier with the original 
training samples of I1 and gradually introduces semilabeled samples of I2 and 
erases the original training samples. At convergence a final classification 
function ruled only by semilabeled samples at time t2 is obtained. In addition, the 
authors propose a circular accuracy assessment strategy for the validation of the 
results obtained by domain-adaptation classifiers when no reference data for the 
considered image I2 are available. 

Another recent and promising approach to the analysis RS data is associated 
with active learning 49-50, which allows an interactive classification of RS images. 
The active learning approach is based on the iteration on three different 
conceptual steps. In the first step the learning process queries unlabeled samples 
to select the most informative ones; in the second step the supervisor (e.g., the 
user) provides a label to the selected samples interacting with the system; and in 
the third step the learner updates the classification rule by retraining with the 
updated training set. In 49, it is noted that SVMs are particularly suited to active 
learning since they are characterized by a small set of support vectors (SVs) 
which can be easily updated over successive learning iterations. Moreover, one 
of the most efficient query functions is based on the selection of the sample 
closest to the separating hyperplane defined at the considered iteration. For 
additional information about recent developments in kernel methods for the 
analysis of RS images, we refer the reader to 51. 

Table 2 – Relevant papers about advanced techniques based on SVM for the classification of RS 
data 

Authors Description 

L. Bruzzone, 
M. Chi, M. 
Marconcini 38 

This paper introduces a semisupervised classification method that 
exploits both labeled and unlabeled samples for addressing ill-posed 
problems with SVMs. The proposed method exploit specific iterative 
algorithms which gradually search a reliable separating hyperplane in 
the kernel space with a process that incorporates both labeled and 
unlabeled samples in the training phase. The authors propose a novel 
modified transductive SVM classifier designed for addressing ill-
posed remote-sensing problems, which has the following properties: 
1) it is based on a novel transductive procedure that exploits a 
weighting strategy for unlabeled patterns, based on a time-dependent 
criterion; 2) is able to mitigate the effects of suboptimal model 



selection (which is unavoidable in the presence of small-size training 
sets); and 3) can address multiclass cases. 

M. Chi, L. 
Bruzzone 39 

This paper addresses classification of hyperspectral remote-sensing 
images with kernel-based methods defined in the framework of 
semisupervised SVM (S3VMs). In particular, the authors analyzed the 
critical problem of the nonconvexity of the cost function associated 
with the learning phase of S3VMs by considering different (S3VMs) 
techniques that solve optimization directly in the primal formulation 
of the objective function. As the nonconvex cost function can be 
characterized by many local minima, different optimization 
techniques may lead to different classification results. The presented 
techniques are compared with S3VMs implemented in the dual 
formulation in the context of classification of real hyperspectral 
remote sensing images.  

L. Gomez-
Chova, G. 
Camps-Valls, 
J. Munoz-
Mari, J. Calpe 
40 

This letter presents a semisupervised method based on kernel 
machines and graph theory for remote sensing image classification. 
The support vector machine (SVM) is regularized with the 
unnormalized graph Laplacian, thus leading to the Laplacian SVM 
(LapSVM). The method is tested in the challenging problems of 
urban monitoring and cloud screening, in which an adequate 
exploitation of the wealth of unlabeled samples is critical. 

A. A. Farag, R. 
M. Mohamed, 
A. El-Baz 44 

This paper proposes a complete framework for applying the maximum 
a posteriori (MAP) estimation principle in remote sensing image 
segmentation. The MAP principle provides an estimate for the 
segmented image by maximizing the posterior probabilities of the 
classes defined in the image. The posterior probability can be 
represented as the product of the class conditional probability (CCP) 
and the class prior probability (CPP). For the CCP, a supervised 
algorithm which uses the SVM density estimation approach is 
proposed. For the CPP estimation, Markov random field (MRF) is a 
common choice which incorporates contextual and geometrical 
information in the estimation process.  

G. Camp-
Valls, L. 
Gomez-Chova, 
J. Muñoz-
Marí, J. Vila-
Francés, and J 
Calpe-
Maravilla 45 

This letter presents a framework of composite kernel machines for 
enhanced classification of hyperspectral images. This novel method 
exploits the properties of Mercer’s kernels to construct a family of 
composite kernels that easily combine spatial and spectral 
information. This framework of composite kernels demonstrates: 1) 
enhanced classification accuracy as compared to traditional 
approaches that take into account the spectral information only: 2) 
flexibility to balance between the spatial and spectral information in 
the classifier; and 3) computational efficiency.  

M. 
Marconcini, G. 
Camps-Valls, 
L. Bruzzone 46 

This letter presents a novel composite semisupervised SVM for the 
spectral–spatial classification of hyperspectral images. In particular, 
the proposed technique exploits the following: 1) unlabeled data for 
increasing the reliability of the training phase when few training 
samples are available and 2) composite kernel functions for 
simultaneously taking into account spectral and spatial information 



included in the considered image. Experiments carried out on a 
hyperspectral image pointed out the effectiveness of the presented 
technique, which resulted in a significant increase of the classification 
accuracy with respect to both supervised SVMs and progressive 
semisupervised SVMs with single kernels, as well as supervised 
SVMs with composite kernels. 

L. Bruzzone, 
C. Persello 47 

This paper presents a novel context-sensitive semisupervised SVM 
(CS4VM) classifier, which is aimed at addressing classification 
problems where the available training set is not fully reliable, i.e., 
some labeled samples may be associated to the wrong information 
class (mislabeled patterns). Unlike standard context-sensitive 
methods, the proposed CS4VM classifier exploits the contextual 
information of the pixels belonging to the neighborhood system of 
each training sample in the learning phase to improve the robustness 
to possible mislabeled training patterns. This is achieved according to 
both the design of a semisupervised procedure and the definition of a 
novel contextual term in the cost function associated with the learning 
of the classifier. In order to assess the effectiveness of the proposed 
CS4VM and to understand the impact of the addressed problem in real 
applications, the authors also present an extensive experimental 
analysis carried out on training sets that include different percentages 
of mislabeled patterns having different distributions on the classes. In 
the analysis they also study the robustness to mislabeled training 
patterns of some widely used supervised and semisupervised 
classification algorithms (i.e., conventional SVM, progressive 
semisupervised SVM, Maximum Likelihood, and k-NN) 

L. Bruzzone, 
M. Marconcini 
48 

In this paper, the authors address automatic updating of land-cover 
maps by using remote-sensing images periodically acquired over the 
same investigated area under the hypothesis that a reliable ground 
truth is not available for all the considered acquisitions. The problem 
is modeled in the domain-adaptation framework by introducing a 
novel method designed for land-cover map updating, which is based 
on a domain-adaptation SVM technique. In addition, a novel circular 
accuracy assessment strategy is proposed for the validation of the 
results obtained by domain-adaptation classifiers when no ground-
truth labels for the considered image are available. 

D. Tuia, F. 
Ratle, F. 
Pacifici, A. 
Pozdnoukhov, 
M. Kanevski, 
F. Del Frate, 
D. Solimini, 
W. J. Emery 50 

In this paper, an active learning method is proposed for the semi-
automatic selection of training sets in remote sensing image 
classification. The method adds iteratively to the current training set 
the unlabeled pixels for which the prediction of an ensemble of 
classifiers based on bagged training sets show maximum entropy. 
This way, the algorithm selects the pixels that are the most uncertain 
and that will improve the model if added in the training set. The user 
is asked to label such pixels at each iteration. Experiments were 
carried out using SVM. 



4. Discussion and Conclusion 

In this chapter we presented a review on SVMs in the classification of 
remote-sensing data, recalling their theoretical formulation, and discussing the 
motivations at the basis of their use in remote sensing. We presented a literature 
survey about the adoption of SVMs for the analysis of different kinds of RS 
images. We observed a large variety of studies published on the use of SVMs for 
the analysis of different kinds of RS data, which confirm that SVMs represent a 
valuable and effective tool for the analysis of RS data and can be used in many 
different applications in the context of RS. We observed that one of the most 
appealing properties of SVM for the classification of RS data is its high 
generalization capability and robustness to the Hughes effect, which allow SVMs 
to operate in large dimensional feature spaces with few training samples. For this 
reason, SVMs represent an effective choice for the classification of hyperspectral 
data. Nevertheless, the SVM approach turned out to be particularly effective also 
in the classification of very high resolution (VHR) images, which typically 
require the extraction of several additional features to characterize and 
discriminate the different land-cover classes. Thus, both the classification of 
VHR and hyperspectral images typically result in classification problems 
characterized by large dimensional feature spaces. Moreover, thanks to its 
distribution-free approach and the capability to cope with strongly non-linear 
problems by means of the kernel function, SVMs are a valuable tool also for the 
classification of data acquired by different information sources. 

In addition, we pointed out the most recent works about the development of 
advanced SVM-based techniques for the analysis of RS data. Among these 
developments, we recall semisupervised and domain-adaptation SVM, 
techniques based on SVM that exploit the spatial-context information, and active 
learning methods. Semisupervised SVMs have shown to be effective in 
exploiting both labeled and unlabeled samples for the learning of the 
classification algorithm, further augmenting the generalization capability and the 
robustness to the Hughes phenomenon with respect to standard supervised SVM. 
Domain-adaptation SVM resulted effective for addressing the problem of 
automatic updating land-cover maps by using RS images periodically acquired 
over the same investigated area. Context-sensitive techniques based on SVM 
have been proposed for both regularizing the classification map (exploiting the 
context information in the classification phase) or for improving the robustness to 
mislabeled training samples (using the context information in the learning phase 
of the algorithm). Another promising approach is active learning, which allows 



one an interactive analysis of RS data, by driving the user to label unlabeled 
samples that are selected by a query function as most informative. 

We can conclude that the SVM approach showed to be very promising for the 
classification of RS data and recent works demonstrate that SVM can be used as 
basis for the development of advanced techniques for solving specific RS 
problems or for exploiting particular properties of the RS data. However, still 
effort should be devoted to the development of advanced techniques that can 
effectively extract useful information from the rich and complex data acquired by 
the last generation of RS sensors. Moreover, effort is required also for applying 
the SVM-based approaches developed in the research activities in real-world RS 
problems. Indeed, at the present, the most of the real problems related to RS 
image classification are still solved with standard classifiers (like maximum 
likelihood or k-NN) that, even if simple, cannot guarantee the accuracy and 
generalization capabilities of SVMs in complex problems. 
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