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Abstract—In this paper, we propose a simple, fast, and reliable
active-learning technique for solving remote sensing image classi-
fication problems with support vector machine (SVM) classifiers.
The main property of the proposed technique consists in its robust-
ness to biased (poor) initial training sets. The presented method
considers the 1-D output space of the classifier to identify the most
uncertain samples whose labeling and inclusion in the training set
involve a high probability to improve the classification results. A
simple histogram-thresholding algorithm is used to find out the
low-density (i.e., under the cluster assumption, the most uncertain)
region in the 1-D SVM output space. To assess the effectiveness of
the proposed method, we compared it with other active-learning
techniques proposed in the remote sensing literature using multi-
spectral and hyperspectral data. Experimental results confirmed
that the proposed technique provided the best tradeoff among
robustness to biased (poor) initial training samples, computational
complexity, classification accuracy, and the number of new labeled
samples necessary to reach convergence.

Index Terms—Active learning, cluster assumption, entropy,
hyperspectral imagery, multispectral imagery, query function,
remote sensing, support vector machines (SVMs).

I. INTRODUCTION

IN REMOTE sensing literature, several supervised methods
have been proposed for the classification of multispectral

and hyperspectral data. All these methods require labeled sam-
ples to train the classifier, and the classification results rely on
the quality of the labeled samples used for learning. Therefore,
the training samples should fully represent the statistics of
all the land-cover classes. However, the collection of labeled
samples is time consuming and costly, and the available training
samples are often not enough for an adequate learning of the
classifier. Moreover, redundant samples are often included in
the training set, thus slowing down the training step of the
classifier without adding information. In order to reduce the
cost of labeling, the training set should be kept as small as pos-
sible, avoiding redundant samples and including patterns which
contain the largest amount of information and thus can optimize
the performance of the model. Two popular machine learning
approaches for dealing with this problem are semisupervised
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learning [1], [2] and active learning [3]. Semisupervised algo-
rithms incorporate the unlabeled data into the classifier training
phase to obtain more precise decision boundaries. In active
learning, the learning process repeatedly queries unlabeled
samples to select the most informative samples and updates the
training set on the basis of a supervisor who attributes the labels
to the selected unlabeled samples. In this way, unnecessary and
redundant samples are not included in the training set, thus
greatly reducing both the labeling and computational costs.
This is particularly important for remote sensing images that
may have highly redundant pixels.

In this paper, we propose a fast active-learning technique for
solving multiclass remote sensing image classification prob-
lems with support vector machine (SVM) classifiers. The pro-
posed technique is based on the cluster assumption, which
is extensively used in the semisupervised classification but is
seldom considered in the definition of query functions in active
learning.1 In contrast to the semisupervised learning, the query
function of the proposed approach selects samples from the un-
labeled pool, which have maximum ambiguity to belong to each
class and are located in low-density regions of the kernel space.
Initially, the SVM classifier is trained with a small number
of labeled samples. After training, a histogram is constructed
in the 1-D output space of the classifier by considering the
output scores of the unlabeled samples in [−1,+1]. Since the
classifier ranks each sample from the most likely members to
the most unlikely members of a class, the samples whose output
scores fall in the valley region of the histogram (low-density
region of the kernel space) are the most uncertain/ambiguous.
Thus, we can work in the 1-D output space of the classifier to
identify the uncertain samples by finding the minimum value
on the histogram which is associated with this uncertain region.
Here, Kapur’s entropy-based histogram-thresholding technique
[5] is applied to detect this value. Then, a batch of samples
are selected from the unlabeled pool, whose output scores are
closest to the selected value. In this way, we transform the
original feature space into a 1-D space [6], thus simplifying
the query functions that looks for a threshold in the output
space. Furthermore, since the proposed technique selects the
unlabeled samples from low-density regions in the kernel space,
it is not strongly affected by the initial training samples and

1Cluster assumption: Two points are likely to have the same class label if
there is a path connecting them, passing through high-density regions only. In
other words, the decision boundary has to lie in the low-density regions of the
feature space [4].
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by the previous training results, thus allowing relatively fast
convergence also when starting with biased (poor) initial train-
ing samples. This is an important advantage in remote sensing
problems where biased training sets are often available in real
applications. Compared with existing methods, the proposed
technique is robust to the choice of initial training samples and
efficient in terms of computational complexity. Furthermore,
it is able to solve multiclass classification problem with an
accuracy that is comparable to those of standard active-learning
techniques.

The proposed method is compared with several other active-
learning methods existing in the literature by using three data
sets. The first data set is an illustrative toy example. The second
data set is a hyperspectral image acquired on the forest of
Paneveggio, close to the city of Trento (northern Italy). The
third data set is a Quickbird multispectral image acquired on
the city of Pavia (northern Italy). Experimental results show the
effectiveness of the proposed approach.

The rest of this paper is organized as follows. Section II
describes the active-learning process and briefly surveys exist-
ing active-learning methods. The proposed cluster-assumption
based active-learning approach is presented in Section III.
Section IV provides the description of the three data sets
used for experiments. Section V presents different experimental
results obtained on the considered data sets. Finally, Section VI
draws the conclusion of this work.

II. ACTIVE LEARNING

A general active learner can be modeled as a quintuple (G,
Q, S, L, and U ) [6]. G is a classifier, which is trained on the
labeled samples in the training set L. Q is a query function
used to select the most informative samples from an unlabeled
sample pool U . S is a supervisor who can assign the true class
label to the selected samples from U . Initially, the training set
L has few labeled samples to train the classifier G. After that,
the query function Q is used to select a set of samples from the
unlabeled pool U , and the supervisor S assigns a class label to
each of them. Then, these new labeled samples are included into
L, and the classifier G is retrained using the updated training
set. The closed loop of querying and retraining continues for
some predefined iterations or until a stop criterion is satisfied.
Algorithm 1 gives a description of a general active-learning
process.

Algorithm 1: Active-learning process
Step 1: Train the classifier G with the training set L (which
initially has few labeled samples).
Repeat

Step 2: Select a set of samples from the unlabeled pool U
using the query function Q.
Step 3: Assign a class label to each of the queried samples
by a supervisor S.
Step 4: Add the new labeled samples to the training set L.
Step 5: Retrain the classifier G.

Until the stop criterion is satisfied

The query function is fundamental in the active-learning
process. Several methods have been proposed in the machine
learning literature which differ only in their query functions.
A probabilistic approach is presented in [7], which is based
on the estimation of posterior probability density function.
For two-class cases, the uncertain samples are identified by
choosing the patterns whose class membership probability is
closest to 0.5. The query function proposed in [8] is designed
to minimize future errors. This approach is applied to two
regression problems where an optimal solution for minimizing
future error rates can be obtained in closed form. Unfortunately,
for most classifiers, it is not possible to calculate the expected
error rate without specific statistical models. In [9], Fukumizu
has proposed a statistical active-learning approach to train
multilayer perceptron for performing regression.

Another class of active-learning methods is based on query
by committee [10]–[12], wherein the sample that has the high-
est disagreement among the committee of classifiers is chosen
for the labeling. The algorithm theoretically guarantees the
reduction in prediction error with the number of iterations.
Variations of the query-by-committee algorithm, such as query-
by-bagging and query-by-boosting algorithms, have been pre-
sented in [13] and [14].

An interesting category of active-learning methods is based
on SVMs, which have gained significant success in many real-
world applications, including remote sensing [15]–[20]. The
SVM classifiers [21]–[23] are particularly suitable for active
learning due to their intrinsic high-generalization capabilities
and because their classification rule is characterized by a small
set of support vectors that can be easily updated over successive
learning iterations [19]. One of the most popular and effective
query heuristics for SVM active learning is to select the data
point closest to the current-separating hyperplane, which is
also referred to as marginal sampling (MS) [15]. An active-
learning strategy based on version space splitting is presented
in [17]. The algorithm attempts to select the points that split
the current version space into two halves having equal volumes
at each step. Three heuristics for approximating the aforemen-
tioned criterion are described; the simplest among them selects
the point closest to the current hyperplane [15]. In [16], a
greedy optimal strategy based on SVM is presented for active
learning.

It is important to note that most of the aforementioned
methods consider only one sample at each iteration. However,
in many problems it is necessary to speed up the learning
process by selecting batches of more than one sample at each
iteration. In [24], Mitra et al. have presented a probabilistic
active-learning approach, wherein query samples are selected
according to both the distance from the current-separating
hyperplane and a confidence factor estimated from a set of test
samples using the nearest neighbor technique. In [25], Roy and
McCallum presented an active-learning approach that queried
a batch of samples at each step by estimating the future error
rate of each sample using two different methods. In [6], an
approach that estimates the uncertainty level of each sample
according to the output score of a classifier and selects only
those samples whose outputs are within the uncertainty range
is proposed. In [26], Brinker has presented a method that
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selects a batch of samples by incorporating a diversity measure
that considers the angles between the induced classification
hyperplanes. Clustering-based active-learning approaches that
query batch of samples are discussed in [20] and [27].

Active-learning methods have been scarcely considered in
remote sensing image classification. Some preliminary works
about the use of active learning for remote sensing image
classification problems can be found in [19], [28], and [29].
In [19], an MS-based approach that selects the most uncertain
sample for each binary SVM by using one-against-all (OAA)
architecture to solve n-class (n > 1) problems is presented. In
[28], two batch-mode active-learning techniques for multiclass
remote sensing image classification problems are proposed.
The first technique is MS by closest support vector (MS-cSV),
which considers the smallest distance of the unlabeled samples
to the n hyperplanes (associated to the n binary SVMs in an
OAA architecture) as the uncertainty value. At each iteration,
the most uncertain unlabeled samples, which do not share
the closest support vector, are added to the training set. The
second technique, which is called entropy query by bagging
(EQB), is based on the selection of unlabeled samples ac-
cording to the maximum disagreement between a committee
of classifiers. The committee is obtained by bagging: First,
different training sets are drawn with replacement from the
original training data. Then, each training set is used to train
the OAA SVM architecture to predict the different labels for
each unlabeled sample. Finally, the entropy of the distribution
of the different labels associated to each sample is calculated
to evaluate the disagreement among the classifiers on the
unlabeled samples. The samples with maximum entropy (i.e.,
those with maximum disagreement among the classifiers) are
added to the current training set. In [29], an active-learning
technique is presented, which selects the unlabeled sample
that maximizes the information gain between the a posteriori
probability distribution estimated from the current training set
and the training set obtained by including that sample into
it. The information gain is measured by the Kullback–Leibler
divergence.

III. PROPOSED METHOD

Here, we present a fast active-learning technique based on
the cluster assumption for solving remote sensing image classi-
fication problems with SVM classifier. The choice to use SVMs
depends on their solid mathematical and statistical foundation
and excellent performance in many real-world applications.
Before describing the proposed technique, in the next section
we briefly recall basic concepts related to SVM classification
and introduce notation. For details, we refer to [22] and [30].

A. Support Vector Machine

Let us assume that a training set consists of N labeled sam-
ples (xi, yi)

N
i=1, where xi ∈ �d denotes the training samples

and yi ∈ {+1,−1} denotes the associated labels (which model
classes ω1 and ω2). The goal of a binary SVM is to find out a
hyperplane that separates the d-dimensional feature space into
two subspaces (one for each class).

An interesting feature of SVMs is related to the possibility to
project the original data into a higher dimensional feature space
via a kernel function K(., .), which satisfies the Mercer condi-
tions [30]. The training phase of the classifier can be formulated
as an optimization problem by using the Lagrange optimization
theory, which leads to the following dual representation:

Maximize :

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαjK(xixj)

Subject to :

N∑
i=1

yiαi = 0

0 ≤ αi ≤ C

i = 1, 2, . . . , N

where αi denotes the Lagrangian multipliers, and C is a reg-
ularization parameter that allows one to control the penalty
assigned to errors. The solution to the SVM learning problem is
a global maximum of a convex function. The decision function
f(x) is defined as

f(x) =
∑

xi∈SV

αiyiK(xi, x) + b (1)

where SV represents the set of support vectors. The training
pattern xi is a support vector if the corresponding α1 has
a nonzero value. For a given test sample x, the sign of the
discriminant function f(x) defined in (1) is used to predict its
class label.

B. Cluster-Assumption Based Active Learning

1) Basic concept: In the proposed approach, we estimate the
uncertainty of each sample according to the output score
of the SVM classifier [6]. Initially, the classifier is trained
with the few available (and possibly biased) labeled sam-
ples. After training, a histogram is constructed in the 1-D
output space of the classifier by considering the output
scores of the samples in [−1,+1]. In the histogram, the
region of interest is quantized into N mutually exclusive
intervals called bins. We assume that all bins have equal
widths (uniform quantization). The probability to have
the output in a given bin is given by the number of
samples whose output scores fall in that bin divided
by the total number of samples in the histogram (i.e.,
the samples given as input to the classifier). Since the
classifier ranks samples from the most likely members
to the most unlikely members of a class, according to
the cluster assumption (the decision boundary has to
lie in low-density regions [4] of the kernel space), the
samples whose output scores fall in the valley region
of the histogram are the most uncertain. Thus, we can
work in the 1-D output space of the classifier to iden-
tify the uncertain samples by finding a threshold on the
histogram which is passing through this valley region,
as shown in Fig. 1. This avoids the complexity of the
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Fig. 1. Transformation of the original feature space into the 1-D classifier
output space.

design of the query function in the original feature space
which may have complicated decision regions and, thus,
boundaries. To detect a proper threshold on the histogram,
any thresholding technique existing in the pattern recog-
nition literature can be used [31]. In this paper, we used
Kapur’s entropy-based histogram-thresholding technique
[5], which is briefly described as follows.

2) Entropy-based histogram thresholding: In Kapur’s
method, an optimal threshold is determined based on the
concept of entropy, as described in [5]. Let ω1 and ω2 be
two classes and H be the histogram of N bins generated
by considering the output scores of the SVM classifier.
Let pi(i = 1, . . . , N) be the probability of the ith bin.
Assuming a threshold t, t ∈ {1, 2, . . . , N}, the entropies
of the classes ω1 and ω2 (denoted as Eω1

(t) and Eω2
(t),

respectively) are computed as follows:

Eω1
(t) = −

t∑
i=0

pi
Pω1

(t)
log2

(
pi

Pω1
(t)

)

Eω2
(t) = −

N∑
i=t+1

pi
Pω2

(t)
log2

(
pi

Pω2
(t)

)
(2)

where Pω1
(t) =

∑t
i=0 pi and Pω2

(t) = 1− Pω1
(t). To

select a threshold on the histogram that separates the
two classes ω1 and ω2 in the output space (i.e., that
passes through the valley region of the histogram), we
compute the entropy of classes ω1 and ω2 by assuming
all possible values of the threshold t. Then, the optimal
threshold t0 is selected by maximizing the total entropy
Eω1

(t) + Eω2
(t), i.e.,

t0 = arg max
t∈(1,2,...,N)

{Eω1
(t) + Eω2

(t)} . (3)

3) Multiclass active-learning algorithm: As stated before,
SVMs are binary classifiers. However, several strategies
have been proposed to address multiclass problems with
SVMs. In order to define a multiclass architecture based
on different binary classifiers, the general approach con-
sists of defining an ensemble of binary classifiers and
combining them according to a given decision rule [23].
The design of the ensemble of binary classifiers involves
the definition of a set of two-class problems, each one
modeled with two groups of classes. The two most com-
monly adopted strategies for designing the ensemble are
the one against all (OAA) and the one against one (OAO)
[23]. In this paper, we adopt the OAA strategy, which is
based on a parallel architecture made up of n SVMs, one

for each information class. Each SVM solves a two-class
problem defined by one information class against all the
others.

In the proposed technique, we consider each binary SVM
classifier and separately select q (with q greater or equal to
one) uncertain samples on the basis of the proposed query
function. The q selected samples are those that, in U , have
output scores closest to the detected threshold of the histogram
generated by the output of the classifier. The threshold for
each binary SVM is automatically detected by applying the
entropy-based histogram-thresholding method described ear-
lier. In greater detail, if we have n classes, n binary SVMs
are initially trained with the current training set, and then, the
functional distance fi(x)(i = 1, . . . , n) is calculated for each
binary SVM and for all the unlabeled samples x ∈ U . Then,
the related histogram Hi is generated by considering the output
score value in [−1,+1]. Thus, each binary SVM classifier
generates a separate histogram considering its output score
values. Then, a threshold ti is selected for each histogram Hi

by applying the entropy-based technique. Considering the ith
binary SVM classifier, the q uncertain samples whose output
score is the closest to the threshold ti are selected. If, for a
given classifier, there are no patterns whose output scores are
in [−1,+1], then the process of extraction of unlabeled pattern
is stopped for that classifier. Thus, a total of h ≤ q × n samples
are chosen from the n binary SVM classifiers by considering
only their uncertainty measure (h is lower than q × n if at
least one sample is selected by more than one binary SVM or
if there is at least one binary SVM which selects less than q
samples). It is worth noting that a possible alternative would
be to analyze also the diversity of samples for selecting the q
patterns according to literature methods [26], [28]. Nonetheless,
this would increase the computational time of the algorithm.
Since our main goal is to have a fast technique, we prefer
to avoid the use of this additional computation. The process
is iterated until a stop criterion (which can be related to the
stability of accuracy or to its value) is satisfied. Algorithm 2
describes the details of the proposed technique. It is worth
noting that, in the multiclass case, when the OAA architecture
is used, each binary SVM has potentially different low-density
regions in the input (and then in the kernel) feature space, which
are associated with the boundaries between the different pair
of data classes. Nonetheless, this is not a problem with the
proposed technique because the use of initial training samples
(even if biased) locates the SVM hyperplane close the decision
boundary between the considered class and all the others and
thus close to the corresponding low-density region. This is then
implicitly mapped into the SVM output space that is considered
by the proposed algorithm for selecting samples.

As a final remark, we point out that the proposed technique
is conceptually significantly different from MS [15]. In the
MS, the samples closest to the discriminant hyperplane defined
at the considered iteration are selected, whereas the proposed
technique looks for low-density regions in the output space
of the SVM for selecting uncertain samples. The proposed
approach is similar to MS only if the SVM hyperplane at
the initial iteration is in the low-density region of the SVM
output space.
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Fig. 2. Toy data set: The points represented with circles denote the initial
training samples.

Algorithm 2: Proposed fast cluster-assumption based
active-learning technique
Step 1: Train n binary SVMs by using a small number of
labeled samples. Let fi(.) be the decision function of the
ith binary SVM classifier.
Repeat

Step 2: h = 0.
For i = 1 to n

If Cardinality(|fi(x)| ≤ 1) > q
Step 3: For the ith binary SVM classifier, generate
the corresponding histogram Hi by considering the
output score of the unlabeled samples x ∈ U , whose
output value fi(x) ∈ [−1,+1].
Step 4: Detect the threshold ti from the histogram Hi

by using the entropy-based histogram-thresholding
technique.
Step 5: For the ith binary SVM classifier, select the q
samples from the pool U , whose output scores are
closest to the threshold ti.
Step 6: h = h+ q.

Else
Step 7: For the ith binary SVM classifier, select the
samples from the pool U , whose output scores
fi(x) ∈ [−1,+1].
Step 8: h = h+ Cardinality(|fi(x)| ≤ 1).

End if
End for

Step 9: Assign true labels to the h selected samples, and
update the training set.
Step 10: Retrain the n binary SVMs by using the updated
training set.

Until the stop criterion is satisfied.

IV. DATA SET DESCRIPTION

Three data sets were used in the experiments. The first one
is a toy data set which is made up of three linearly separable
classes, as shown in Fig. 2. It contains 43 samples, and only
three samples (one from each class) are chosen as initial

TABLE I
NUMBER OF SAMPLES OF EACH CLASS IN THE INITIAL TRAINING

SET (L), IN THE TEST SET (TS) AND IN THE POOL (U )
FOR THE PANEVEGGIO DATA SET

TABLE II
NUMBER OF SAMPLES OF EACH CLASS IN THE INITIAL TRAINING SET

(L), IN THE TEST SET (TS) AND IN THE POOL (U )
FOR THE PAVIA DATA SET

training samples; the remaining 40 samples are in the unlabeled
pool U .

The second data set is made up of a hyperspectral image
acquired on the forest of Paneveggio, near the city of Trento
(northern Italy) in July 2008. It consists of 12 partially overlap-
ping images acquired by an AISA Eagle sensor in 126 bands
ranging from 400 to 990 m with a spectral resolution of about
4.6 nm and a spatial resolution of 1 m. The size of the full
image is 2199 × 2965 pixels. The available labeled samples
were collected by ground survey. These samples were randomly
split into a training set T of 4052 samples and a test set TS
(to compute the classification accuracy of the algorithms) of
2673 samples. First, only few samples (2.5%) were randomly
selected from T as the initial training set L, and the rest were
considered as unlabeled samples stored in the unlabeled pool
U . Table I shows the land-cover classes and the related number
of samples used in the experiments.

The third data set is a Quickbird multispectral image ac-
quired on the city of Pavia (northern Italy) in June 2002. It
has four pan-sharpened multispectral bands and a panchromatic
channel with a spatial resolution of 0.7 m. The image size
is 1024 × 1024 pixels. The available labeled samples were
collected by photointerpretation. These samples were randomly
split into a training set T of 5707 samples and a test set
TS of 4502 samples. First, only few samples (1.25%) were
randomly selected from T as the initial training set L, and the
rest were stored in the unlabeled pool U . Table II shows the
land-cover classes and the related number of samples used in
the experiments.

V. EXPERIMENTAL RESULTS

A. Design of Experiments

In our experiments, we adopted an SVM classifier with
radial basis kernel functions. The SVM parameters {σ,C}
were derived by applying the cross-validation technique. C is
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Fig. 3. Toy example showing a linear classification problem with three classes. The samples represented with circles denote the training samples selected by the
(a) proposed, (b) RS, (c) MS, (d) MS-cSV, and (e) EQB methods after the (upper part of the figure) first and (lower part of the figure) fourth iterations.

a parameter controlling the tradeoff between model complexity
and training error, while σ is the spread of the Gaussian kernel.
The cross-validation procedure aims at selecting the best values
for the parameters of the initial SVM.

To assess the effectiveness of the proposed approach, we
compared it with four other methods: 1) simple random sam-
pling (RS); 2) MS; 3) MS-cSV; and 4) EQB. The last two
methods have been recently presented in remote sensing liter-
ature [28]. In the RS approach, at each iteration, a batch of h
samples are randomly selected from the unlabeled pool U and
included into the training set. MS is the most popular approach
in the active-learning literature. In this approach, at each iter-
ation, only the single pattern which is closest to the decision
hyperplane is selected. However, in the case of remote sensing
image classification with SVM, the inclusion of a single sample
per iteration is not reasonable. To include several samples per
iteration, we implemented the MS approach by considering the
multiclass OAA SVM architecture. For each binary SVM, at
each iteration, the batch of q uncertain samples closest to the
decision hyperplane are selected (thus, h ≤ q × n unlabeled
samples are selected). The MS-cSV approach considers the
smallest distance of the unlabeled samples to the n decision hy-
perplanes (associated to the n binary SVMs) as the uncertainty
value. At each iteration, the h most uncertain samples (which
do not share the closest support vector) are added to the training
set. The EQB selects the h most uncertain samples according to
the maximum disagreement between a committee of classifiers.
The results of EQB are obtained by fixing the number of EQB
predictors to eight and selecting bootstrap samples containing
75% of the initial training patterns.

The multiclass SVM with the standard OAA architecture
has been implemented using the LIBSVM library (for Matlab
interface) [32]. All the active-learning algorithms presented in
this paper have been implemented in Matlab.

To show the effectiveness of the proposed technique, in the
next section, we present the results of five different experi-
ments. In the first and second experiments, we compared the
accuracy of the proposed technique with those of the other
aforementioned techniques by using one toy data set and two

TABLE III
OVERALL CLASSIFICATION ACCURACY (OA) PRODUCED BY THE

DIFFERENT TECHNIQUES AT DIFFERENT ITERATIONS (TOY DATA SET)

real data sets. The third experiment shows the robustness of
the proposed approach when biased initial training samples are
considered. The computational load of the different methods is
analyzed in the fourth experiment. Finally, the fifth experiment
shows the accuracy of the proposed technique by varying the
batch size.

B. Analysis of Results

In order to understand the potential of the proposed tech-
nique, in the first experiment, we compared the different active-
learning methods by using the toy data set described in the pre-
vious section. Initially, only three samples, one from each class,
are chosen for the training (see Fig. 2), and three additional
samples are selected at each iteration of active learning. The
process is iterated four times to have 15 samples in the training
set at the convergence. Fig. 3 shows the unlabeled samples
(represented with circles) which are selected by different active-
learning methods after the end of the first and fourth iterations.
From this figure, one can see that, for example, at the initial
stage of the training, the proposed technique selects samples
that are more representative of the general problem than the
other techniques. For a quantitative analysis, Table III reports
the classification accuracy obtained by the proposed, RS, MS,
MS-cSV, and EQB methods at different iterations. From that
table, one can see that the proposed technique obtained 100%
classification accuracy after the first iterations (i.e., by using
only six labeled samples), while the other most effective tech-
niques (i.e., the MS, the MS-cSV, and the EQB) need at least
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Fig. 4. Average classification accuracies over 20 runs provided by the pro-
posed, RS, MS, MS-cSV, and EQB methods for the Paneveggio data set.

TABLE IV
AVERAGE OVERALL CLASSIFICATION ACCURACY (OA), ITS STANDARD

DEVIATION (s), AND KAPPA ACCURACY OBTAINED ON 20 RUNS FOR

DIFFERENT TRAINING DATA SIZES (PANEVEGGIO DATA SET)

two iterations (i.e., nine samples) to achieve the same accuracy.
In other words, although this is a simple example, starting from
a suboptimal training set, the proposed technique, owing to the
low-density criterion, reaches the convergence decreasing of
33% the number of new labeled samples with respect to the
other literature methods.

The second experiment was carried out to compare the per-
formance of the proposed method with those of the four tech-
niques described in the previous section on real remote sensing
data. For the Paneveggio data set, initially, only 101 labeled
samples were included in the training set, and 20 samples were
selected at each iteration of active learning. The whole process
was iterated 20 times, resulting in 501 samples in the training
set at convergence. The process was repeated for 20 trials
to reduce the random effect on the results. Fig. 4 shows the
average overall classification accuracies provided by different
methods versus the number of samples included in the training
set at different iterations. One can see that the proposed active-
learning technique always produces slightly better classification
accuracy than the MS method and similar accuracy compared
with the MS-cSV technique. It is worth noting that, since the
proposed technique selects the informative samples from the
low-density regions of the kernel space, it converges faster
than the MS-based approach, particularly when biased (poor)
training samples are available. For a quantitative analysis,
Table IV reports the mean (OA), standard deviation (s), and
kappa accuracies obtained on 20 runs at three different itera-
tions (i.e., with a different number of training samples). From
this table, one can seen that the standard deviation of the
proposed approach is always smaller than those of the other
techniques. This confirms the better stability of the proposed
method versus the choice of initial training samples.

Fig. 5. Average classification accuracies over 20 runs provided by the pro-
posed, RS, MS, MS-cSV, and EQB methods for the Pavia data set.

TABLE V
AVERAGE OVERALL CLASSIFICATION ACCURACY (OA), ITS STANDARD

DEVIATION (s), AND KAPPA ACCURACY OBTAINED ON 20 RUNS FOR

DIFFERENT TRAINING DATA SIZES (PAVIA DATA SET)

For the Pavia data set, the initial training set had only 70
samples. In each round of query h = 24, additional samples
were selected from the unlabeled pool U and added to the
training set. This process of selection and training was repeated
up to 11 iterations, thus including about 334 samples in the
final training set. The process was repeated 20 times with
different initial training samples to reduce the random effect
on the results. Fig. 5 shows the average overall classification
accuracy over 20 runs versus the number of samples included
in the training set at different iterations. From this figure, it is
clear that the proposed technique provided similar classification
accuracy compared with the best technique (MS-cSV) and also
converged faster than the MS and EQB methods. For a quan-
titative analysis, Table V reports the average overall accuracy,
its standard deviation, and the kappa accuracies obtained over
20 runs at different iterations of the aforementioned learning
process. From this table, one can observe that the standard devi-
ation of the proposed approach is always smaller or comparable
to the best one. This confirms also on this data set the stability
of the proposed method with respect to the choice of the initial
training samples.

As mentioned earlier, most of the active-learning approaches
select the uncertain samples depending on the current decision
hyperplane. If the initial training samples are biased, i.e., they
do not provide precise representation of the classification prob-
lem, then they may fail to select proper informative samples at
the initial stage of learning. On the other hand, the proposed
technique selects the uncertain samples from the low-density
region in the kernel space (according to the cluster assumption),
and thus, it is less dependent on the quality of the initial training
samples. To show the validity of the aforementioned state-
ment, in the third experiment, we started the active-learning
process with biased initial training samples. To this end, for



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 6. Average classification accuracies provided by the proposed, RS, MS,
MS-cSV, and EQB methods for the (a) Paneveggio and (b) Pavia data sets by
starting with biased labeled samples.

the Paneveggio and Pavia data sets, the initial training sets
were defined by taking only 10 and 16 labeled samples (two
samples for each class), respectively, which are not sufficient
to model the actual decision boundary of the classifier. Please
note that, in this experiment, our aim is to show that, during the
first few iterations, the proposed technique based on the cluster
assumption performs much better than the other techniques
when the available initial training samples are biased, and not
to solve the classification problem by considering such a few
samples. Thus, for simplicity, the SVM parameters computed
in the second experiment were used here. Fig. 6(a) and (b)
shows the average classification accuracies versus the num-
ber of samples included in the training set at each iteration
obtained by different methods for the Paneveggio and Pavia
data sets, respectively. From these figures, one can see that the
proposed technique always provided higher classification accu-
racies compared to the other methods at the initial stage of the
learning process. From a different perspective, it can achieve
the same accuracy of the other techniques with a significantly
smaller number of samples. This confirms the robustness of the
proposed technique to biased (poor) initial training samples.

The fourth experiment deals with the computational time
required by the different techniques using the experimental
setting (i.e., number of initial training samples, batch size, iter-
ation number, etc.) described in the second experiment. All the
experiments were carried out on a PC [INTEL(R) Core(TM)2
Duo 2.0 GHz with 2.0 GB of RAM]. Fig. 7(a) and (b) shows the

Fig. 7. Computational times taken by the proposed, RS, MS, MS-cSV, and
EQB techniques at each iteration for the (a) Paneveggio and (b) Pavia data sets.

computational time (in seconds) versus the number of training
samples (i.e., of iterations) required by the proposed, RS, MS,
MS-cSV, and EQB techniques for the Paneveggio and Pavia
data sets, respectively. From these figures, one can see that,
in our implementations (which could be further optimized but
without changing the relative results), the computational time
required by the proposed approach is almost similar to the com-
putational time taken by the MS approach. On the contrary, the
computational time taken by the MS-cSV and EQB techniques
is higher compared to that of the proposed technique. From
Fig. 7(a) and (b), one can see that, when the number of training
samples increases (i.e., the number of SVs also increases), the
MS-cSV technique takes much time to find out the uncertain
samples which are closest to the distinct SVs. The RS method
was obviously the most efficient in terms of computational load.
Nonetheless, it resulted in the lowest classification accuracy.

The last experiment was devoted to analyze the performance
of proposed technique by varying the value of the batch size
h. To this end, for the Paneveggio data set, h was varied in the
range 10, 15, 20, and 25, while for the Pavia data set, the value
of h was varied in the range 16, 24, 32, and 40 (i.e., for each
binary SVM, the number of selected uncertain samples q was
varied in the range 2, 3, 4, and 5). Fig. 8(a) and (b) shows the
classification accuracies versus the values of h obtained for the
Paneveggio and Pavia data sets, respectively. From the analysis
of the figures, one can conclude that the final accuracy of the
proposed method does not significantly depend on the batch
size. Finally, we carried out different trials for assessing the
stability of the proposed technique, varying the width of the
histogram bins. The results of all these trials (which are not
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Fig. 8. Average classification accuracy provided by the proposed approach
considering different values of batch size h for the (a) Paneveggio and (b) Pavia
data sets.

repeated for space constraints) pointed out the insensitivity of
the proposed algorithm to the width of the histogram bins.

On the basis of all the aforementioned experiments, we can
conclude that, on the two considered remote sensing data sets,
the proposed technique provided the best tradeoff among ro-
bustness to biased (poor) initial training samples, computational
complexity, classification accuracy, and the number of new
labeled samples necessary to reach convergence.

VI. DISCUSSION AND CONCLUSION

In this paper, we have presented a simple, fast, and reliable
active-learning technique based on the cluster assumption for
solving remote sensing image classification problems with
SVM classifier. The proposed technique works in the 1-D
output space of the SVM classifier to identify the uncertain
samples. Since the classifier ranks samples from the most likely
members to the most unlikely members of a class, according to
the cluster assumption (which implies that the decision bound-
ary has to lie in the low-density regions of the kernel space),
the samples whose output scores fall in the valley region of the
histogram are the most uncertain. Thus, the uncertain samples
can be identified by finding a threshold on the histogram that
identifies this valley region. Then, a batch of samples whose
output scores are closest to that threshold are selected from the
unlabeled pool. This makes the proposed technique relatively
less dependent on both the choice of the initial training samples
and the classification results at the previous iteration. This

also involves faster convergence than the other techniques. It
is worth noting that the robustness to biased (poor) training
samples is a significant advantage in remote sensing problem
where often available initial training samples do not model
precisely the classification problem.

In the proposed technique we transform the original feature
space into a 1-D space, thus simplifying the query function
computation, which is based on looking for a threshold in the
SVM output space. Thus, compared with existing methods, the
proposed method is also efficient in terms of computational
complexity. In addition, it can be applied to both binary and
multiclass problems.

To empirically assess the effectiveness of the proposed
method, we compared it with other active-learning approaches
existing in the remote sensing literature using a toy data set and
both a hyperspectral image and a multispectral image. By this
comparison, we observed that the proposed method provides
comparable accuracy to those achieved by the most effective
techniques presented in the remote sensing literature (i.e., the
MS-cSV and EQB methods) but with an increased robustness
to biased initial training samples and a sharp reduction of the
computational time. Thus, in our experiments, the proposed
algorithm provided the best tradeoff among robustness to biased
initial training samples, computational complexity, classifica-
tion accuracy, and the number of new labeled samples necessary
to reach convergence.

As a final remark, we point out that, although the perfor-
mances of the proposed method were satisfactory, the method
does not include any diversity criterion for selecting multiple
samples. Thus, an interesting future activity would be to design
the proposed query function by considering also a diversity cri-
terion [26]. This should be done by defining a diversity criterion
that can be implemented in a fast algorithm for avoiding to lose
one of the most important properties of the proposed method,
which is the low computational load.
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