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Abstract – This paper presents a novel support vector machine classifier designed for sub-pixel 

image classification (pixel/spectral unmixing). The proposed classifier generalizes the properties of 

SVMs to the identification and modeling of the abundances of classes in mixed pixels by using fuzzy 

logic. This results in the definition of a fuzzy-input fuzzy-output support vector machine (F2SVM) 

classifier that can: i) process fuzzy information given as input to the classification algorithm for 

modeling the sub-pixel information in the learning phase of the classifier, and ii) provide a fuzzy 

modeling of the classification results, allowing a relation many-to-one between classes and pixels. 

The presented binary F2SVM can address multicategory problems according to two strategies: the 

fuzzy one-against-all (FOAA) and the fuzzy one-against-one strategies (FOAO). These strategies 

generalize to the fuzzy case techniques based on ensembles of binary classifiers used for addressing 

multicategory problems in crisp classification problems. The effectiveness of the proposed F2SVM 

classifier is tested on three problems related to image classification in presence of mixed pixels hav-

ing different characteristics. Experimental results confirm the validity of the proposed sub-pixel 

classification method. 

I. INTRODUCTION 

Image classification is an important and challenging task in various application domains, including 

biomedical imaging, biometry, video-surveillance, industrial visual inspection, and remote sensing. The 

main objective of image classification is to assign to each pixel (or each object extracted from the image 

with a proper segmentation procedure) a semantic label associated with one of the information classes 

that characterize the analyzed scene. Usually image classification is addressed under the assumption that 

a given pixel can belong only to one class [1]. However, in some real problems, the geometrical resolu-

tion of the sensor is not sufficient to guarantee that the radiance measurement associated with a pixel is 

the contribution given from a single information class (object) in the scene. On the contrary, in many cas-

es, the pixel measurement is given from a mixture of the reflectance of patterns which belong to different 

classes located in the same resolution cell of the sensor. This is the case of medium resolution remote 

sensing images [2], in which it is quite common that a pixel is associated with the radiometric response of 

more than one kind of land-cover class. Another example is related to biological applications, where mul-
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tispectral fluorescence microscopy can be used for the identification of different co-localized fluorescent 

molecules that can be associated with the same resolution cell of the sensor [3]-[5]. From a slightly dif-

ferent perspective, the spectral unmixing problem has a high importance also in the analysis of hyper-

spectral images. The very high spectral resolution of this kind of data allows one a detailed characteriza-

tion of the spectral signatures of the objects present in the investigated scene. This makes it possible to 

identify the abundances of constituents of a given material within the resolution cell. In these conditions 

conventional crisp (hard) classification methods preclude a proper analysis of the image as: i) it is not 

possible to model the sub-pixel abundances of each class in output from the classifier; and ii) the training 

phase of the classifier is affected from the use of mixed pixels (and not class endmembers) that provide 

unreliable information on the reflectance of the represented class. In this scenario, the image classifica-

tion problem should be solved with a sub-pixel classification approach, where a pixel can be associated 

with multiple classes with different membership grades. 

In the literature, two main kinds of approaches have been considered for solving sub-pixel classifica-

tion problems: the ones based on linear models and the ones based on non-linear models [6]. Unmixing 

methods based on linear models assume that the radiance measured in presence of more than one infor-

mation class in a resolution cell is a linear mixture. The linearity hypothesis typically holds when end-

members are spatially localized in specific areas within the resolution cell of the sensor and do not inter-

fere among each other [6],[7]. These methods estimate the abundances of classes by deriving the parame-

ters of the linear model for each analyzed pixel [6],[7]. Approaches based on nonlinear models assume 

that the radiance measured in presence of more than one information class in a resolution cell is a nonli-

near mixture. The nonlinearity hypothesis typically holds when endmembers are scattered within the spa-

tial resolution cell of the sensor and interfere among each other [7]. Non-linear methods (which are more 

complex but in many applications also more adequate to model the nature of the sub-pixel radiance [6]) 

can be based on the definition of parametric nonlinear models [6],[7] or on the use of distribution free 

machine learning techniques [8]. This last approach is effective when it is possible to rely on a training 

set that allows one exploiting the powerful properties of machine learning for extracting the model of the 

mixture directly from the observed data. 

Linear and nonlinear techniques for sub-pixel image classification can be implemented according to 

supervised classification paradigms based on fuzzy sets. On the one hand, fuzzy classification models can 

employ fuzzy set theoretic principles to perform a soft partition of the input space where continuous class 

memberships (ranging from 0 to 1) may overlap with one another in the data space. On the other hand, in 

sub-pixel classification problems, fuzzy memberships can be used as a valuable methodological tool for 

modeling the membership grade of a pixel to a given class. In this way the fuzzy membership is not used 

for expressing uncertainty, but, according to the so-called probabilistic fuzzy-set theoretic framework, as 
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soft information for modeling the membership of each pixel to different information classes. In this paper 

we focus our attention on nonlinear sub-pixel classification based on machine-learning techniques and 

fuzzy modeling of the class membership. 

Looking at the machine learning literature, one of the most effective approaches to pattern classifica-

tion is that based on support vector machines (SVMs). The SVM formulation (developed by Vapnik) is 

based on the Structural Risk Minimization principle, which is an inductive principle for model selection 

that aims at providing a tradeoff between hypothesis space complexity (the Vapnik-Chervonenkis dimen-

sion of approximating functions) and quality of fitting the training data (empirical error) [9]-[11]. Thanks 

to this formulation, the SVM approach has excellent properties, like: i) good generalization ability; ii) 

high effectiveness in hyperdimensional feature space (important when dealing for example with hyper-

spectral images); iii) learning phase associated with the minimization of a convex cost function that guar-

antees the uniqueness of the solution; iv) possibility to be implemented in a parallel architecture (thus re-

ducing the overall computational time by an adequate parallel processing). Due to the aforementioned at-

tractive properties and their good performances, SVMs are well accepted from the scientific community 

and have applied to many image classification and recognition fields, such as remote sensing [12]-[16], 

biomedical applications, spatial data analysis [17], character recognition [18], etc. However, a major limi-

tation of standard SVM classifiers in image classification is that they produce a crisp output, i.e. they are 

based on the assumption that a given pixel can belong only to one information class. Thus, this theoreti-

cally elegant and powerful methodology cannot be used to address sub-pixel classification problems. In 

order to face this limitation, we present an approach that extends SVMs to manage sub-pixel (soft) infor-

mation in image classification by using the concepts developed in the fuzzy set theory. In the literature, 

only relatively few researchers studied the general problem of extending SVMs to fuzzy problems [19]-

[23]. Among the others, a pioneering work was proposed by Lin and Wang [19], who defined a Fuzzy 

SVM, i.e. a binary classifier capable to consider in the learning phase the uncertainty associated with each 

training pattern and to provide a crisp output like standard SVM. The basic idea is to weight the relevance 

of training patterns according to their uncertainty in the learning process. However, the Fuzzy SVM in 

[19] cannot fully exploit the fuzzy information present in the data as: i) it is able to manage the fuzzy in-

formation of an input pattern, but it cannot produce a soft output; and ii) each single pattern in the train-

ing set is considered with a weight that models the uncertainty and not a membership value to more than 

one class. In addition, only binary problems are considered and no discussion on possible generalization 

to multiclass fuzzy problems is reported. These limitations make Fuzzy SVM unsuitable to be applied to 

sub-pixel image classification. 

In this paper we define a novel Fuzzy-input Fuzzy-output Support Vector Machine classifier (called 

F2SVM) which is specifically designed for addressing image sub-pixel classification problems. F2SVM is 
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a classifier capable to learn the sub-pixel information present in a training set (fuzzy input) and to esti-

mate the membership (abundance) of each unknown pixel in the analyzed image to the classes that de-

scribe the considered problem (fuzzy output). The novelties that F2SVM presents with reference to stan-

dard SVM-based image classification methods are: i) a sub-pixel learning procedure (the membership 

grade of a pixel to a class is modeled by using a soft cost function in the training phase); ii) a sub-pixel 

decision algorithm (the output is not a crisp value, but a fuzzy membership grade that describes the abun-

dances of each pixel toward each class); iii) the generalization to the multicategory case (two strategies, 

called Fuzzy One Against All (FOAA) and Fuzzy One Against One (FOAO), are proposed for combining 

the fuzzy outputs given by a set of binary F2SVMs for addressing multicategory sub-pixel classification 

problems). Furthermore, the proposed approach simultaneously satisfies the critical sum-to-one and the 

non-negative abundance constraints [6]. It is worth noting that, although the presented F2SVM technique 

has been developed in the probabilistic fuzzy-set framework for addressing sub-pixel image classification 

problems, it introduces general concepts that can be used in other fuzzy problems dealing with uncertain-

ty modeling. 

The proposed technique was tested on three different image classification problems. The first one is a 

simulated multispectral image. The second problem deals with the analysis of real multispectral images. 

The third problem concerns the sub-pixel classification in hyperspectral images. In all cases, the pre-

sented method increased the classification accuracy with respect to an effective machine-learning proce-

dure based on fuzzy multilayer perceptron neural networks [8]. 

The paper is organized into six sections. The next section presents the background on supervised crisp 

SVM. Section III introduces the notation and describes the proposed F2SVM in the binary case, by detail-

ing the sub-pixel learning and the sub-pixel decision procedures. Section IV presents the proposed FOAA 

and FOAO strategies for the generalization of F2SVM to multicategory problems. Section V addresses 

the design of experiments and illustrates the main concepts associated with the Fuzzy Multi-Layer Per-

ceptron (FMLP) neural network used for comparisons. The three data sets used in the experiments and 

the related results are presented in Sections VI, VII and VIII. Concluding remarks are given in Section 

IX. 

II. BACKGROUND: CRISP SUPPORT VECTOR MACHINE CLASSIFIER 

In order to define the proposed F2SVM algorithm, it is necessary to give an overview of standard crisp 

SVM. (Detailed discussions on crisp SVM can be found in [3]-[11],[24]). 

Let x∈ℜd be the pattern representing a pixel of a generic image in a d-dimensional feature space1, and 

Ω={ω1,ω2} the set of information classes that defines a binary classification problem. In the crisp formu-

lation, x can belong only to one of the classes in Ω. Let the classes ω1 and ω2 be coded with “+1” and “-
 

1  d is the number of attributes used for describing a generic pixel in the classification problem. For example, if a multispectral image is consi-
dered, d is equal to the number of available spectral channels. 
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1”, respectively. Let us assume that a training set L made up of N patterns2 is available. 

The SVM classifier attempts to separate samples belonging to the two considered classes by defining a 

maximum margin hyperplane in the original feature space (linear SVM) or in a transformed space  where 

samples are mapped for obtaining linear separability according to a nonlinear mapping function ϕ(⋅) 

(non-linear SVM) [25]. In both cases the learning of the SVM is based on the combination of two criteria: 

i) empirical error minimization, and ii) control of model complexity. The former aims at optimizing the 

classification results in terms of accuracy on the training samples; the latter controls the capacity (or flex-

ibility) of the function used for avoiding overfitting. These criteria are combined for defining the cost 

function to be minimized. 

In the case of linear SVM, the discriminat function f(x) can be written as: 

1
( ) ,

N

i
i

f x w x x b
=

= +∑  (1)

where w is a vector normal to the hyperplane and b is a constant such that b/||w||2 represents the distance 

of the hyperplane from the origin (Figure 1 shows an example of how a crisp SVM classifier works). If 

the data in the input space cannot be linearly separated, they can be projected into a higher dimensional 

feature space (i.e. a Hilbert space H) with a nonlinear mapping function ϕ(⋅) defined in accordance with 

the Cover’s theorem [26],[27]. As a consequence, the inner product between two mapped feature vectors 

becomes: 

( ) ( )
1

( ) ,
N

i
i

f x w x x bϕ ϕ
=

= +∑  (2)

The discriminant function f(x) can be derived by minimizing the following cost function, which expresses 

the above-mentioned tradeoff between empirical error minimization and solution complexity: 

( ) ( )2

1

1 1,2,...,1
2 0 0

N i i i
i i

i i

b i N
,ξ C subject to

and C

ω ϕ ξ
ψ ξ

ξ=

⎧ ⎡ ⎤⋅ + ≥ − =⎪ ⎣ ⎦= + ⎨
≥ >⎪⎩

∑
w x ,           

w    w       
      

 (3)

where C is the regularization parameter, ξi are non-negative slack variables necessary to deal with noisy 

and nonlinearly separable data (a nonzero ξi indicates that the pixel xi is misclassified because it is on the 

wrong side of the hyperplane), ωi is the label of the training pattern xi, and N is the total number of train-

ing samples. The final crisp decision function can be written as: 

( )ˆ sign fω ⎡ ⎤= ⎣ ⎦x  (4)

The primal minimization problem in (3) can be solved according to the Lagrange theory obtaining a dual 

problem in which the following convex objective function should be maximized: 

 

2  In this paper the generic pattern is defined with x and patterns used to train the classifier (pixels that belong to the training set) are indicated 
with xi,  i = 1,…, N. 
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( ) ( ) ( ) 1
1 1 1

01 ,2
0 0 1,2,...,

N
N N N i i

i i j i j i j i
i i j

i

W subject to
C and C i N

ω α
α α α α ω ω ϕ ϕ

α
=

= = =

⎧
=⎪= − ⎨

⎪ ≤ ≤ > =⎩

∑∑ ∑∑ x x        
              

 (5)

 
Figure 1.  Illustration of a crisp SVM binary classifier: separation hyperplane (solid line) and margin bounds (dashed 

lines). 
 
The Lagrangian W(α) should be maximized with respect to Lagrange multipliers αi (which are associated 

with training points xi). This problem can be solved according to Quadratic Programming (QP) methods 

[11]. Patterns associated to nonzero Lagrange multipliers are called support vectors: the ones correspond-

ing to 0<αi<C are called non-bound support vectors and fall inside the margin, while the ones corres-

ponding to αi = C are called bound support vectors and fall on the margin. These samples can be regarded 

as errors because they are associated to a nonzero ξi. Support vectors are the only patterns in the training 

set that determine the optimal hyperplane position. 

Since in non-linear SVM we do not have any knowledge on functions ϕ(⋅), the QP problem solution is 

not possible using (5). Due to the Mercer’s theorem [24],[28], by replacing the inner product with a posi-

tive defined kernel function K(⋅,⋅), it is possible to avoid representing the feature vector explicitly, i.e. 

( ) ( ) ( ), ,i j i jKϕ ϕ =x x x x  (6)

Accordingly, it is possible to prove that the discriminant function can be rewritten in the dual formulation 

as [11],[29]: 

1
( ) ( , )

N

i i i
i

f x K x x bα ω
=

= +∑  (7)

where b is calculated using the primal-dual relationship [29], and only samples with nonzero Lagrange 

multipliers αi affect the solution. Thus, the decision function is obtained by applying (4) to (7). 

The most widely used positive definite kernels that satisfy Merecer’s conditions are the following. 

• Linear kernel: 
( ),i j i jK =x x x ,x  (8)

• Polynomial Kernel: 
( ), ( 1) ,d

i j i jK d += + ∈ℜx x x ,x       (9)
• Radial Basis Function (RBF) Kernel: 
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( ) ( )2 2, exp - 2 ,i j i jK σ σ += − ∈ℜx x x x       (10)

Unlike in other classification techniques, such as Multi-Layer Perceptron Neural Networks, the Mercer 

kernel K(⋅,⋅) ensures that the objective function is convex, thus there are no local maxima in the function 

to be optimized. 

The standard SVM classifier is defined as a binary supervised classification algorithm, which can discri-

minate two different classes. In the literature, many approaches for handling multiclass problems (R>2) 

have been proposed. Among the others we recall: the One-Against-All (OAA) and One-Against-One 

(OAO) strategies [30]. Let Ω={ω1,..., ωR} be the set of R classes to be identified. In the OAA architec-

ture, R different binary SVMs are trained. Each binary classifier is aimed at distinguishing the samples of 

a generic class ωi∈Ω from the samples of all the remaining classes Ω−ωi. A given pattern is labeled ac-

cording to the class of the classifier that results in the highest output value. In the OAO architecture, one 

classifier for each pair of classes ωi and ωj (with i ≠ j) is considered. On the whole, we have R(R-1)/2 

classifiers. A given pattern is classified according to a simple majority voting algorithm [31]. We refer 

the reader to [30] for greater details on multiclass strategies. 

III. PROPOSED F2SVM FOR SUB-PIXEL CLASSIFICATION: BINARY PROBLEMS 

A. Notation 

According to the fuzzy framework, x∈ℜd can belong to different classes with given membership val-

ues. In greater detail, a pixel x belongs to a generic class ωk∈Ω with a membership grade specified by 

Mk(x), where Mk(x) is a component of the memberships vector M(x)=[M1(x),…,MR(x)], with 0≤Mk(x)≤1. 

As we use fuzzy concepts for representing the membership of a pixel to different classes, we develop the 

proposed F2SVM in the probabilistic fuzzy-set theoretic framework by imposing the following con-

straint3: 

1
( ) 1

R

k
k

M
=

=∑ x  (11)

Given this fuzzy modeling of the problem, it is always possible to assign a crisp label to a pixel by har-

dening the soft classification solution, i.e. by assigning the pixel to the class having the maximum mem-

bership value. 

In this paper we define a pixel belonging to more than one class as mixed pixel. The membership vec-

tor associated to a mixed pixel has more than one element different from zero. These patterns play an im-

portant role in the learning of F2SVM because they allow one deriving the model that describes the sub-

pixel (soft) information in the considered data set. 

The training of the proposed binary F2SVM is divided into two stages: the learning of the input and 
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the learning of the output (a preliminary version of this procedure is presented in [32]). At the end of the 

learning of the input, we obtain a classifier that computes the optimal separating hyperplane by consider-

ing the position of the training pixels in the kernel space and their fuzzy membership vectors M(xi). At 

the end of the learning of the output, the classifier estimates the fuzzy membership vector m(x) for each 

unknown pattern. 

In the next sub-sections we present the proposed learning and decision procedures in the binary case. 

B. Fuzzy Learning of the Input 

By extending and developing concepts previously presented in [19], we introduce the sub-pixel infor-

mation (fuzzy memberships) of training patterns in hyperplane computation. The goal of the proposed 

fuzzy learning method is to obtain an SVM able to learn the fuzzy information inherent in the training set 

and to manage pixels belonging to different classes with different memberships. 

Similarly to the crisp case, let us first consider a binary classification problem (R=2), where the classes 

ω1 and ω2 are coded with “+1” and “-1”, respectively. Let us assume that a training set L composed of N 

patterns is available. For each training pattern the vector of memberships M(xi) is defined as follows: 

{ }1 1 1 1( ) ( ), ( ) , ( ) ( ) 1 1,2,...,i i i i iM M M M i N+ − + −= + = =M x x  x       x x        (12)

where M+1(xi) and M-1(xi) are the abundances of the i-th pixel toward classes ω1 and ω2, respectively. If 

the components of M(xi) are both nonzero, xi is a mixed pixel. 

Let Nmixed be the number of mixed pixels in L. In the learning stage of F2SVM, each mixed training 

pattern in L should contribute to both ω1 and ω2 proportionally to its memberships to the two classes. 

However, in the notation used in Section II, each pattern in the training set should belong to a single 

class. Since mixed pixels in L do not satisfy this requirement (they have two nonzero membership val-

ues), we have to manipulate L to obtain a new training set Lf. The manipulation is a cloning operation that 

consists in duplicating each mixed pixel in L in two new patterns with the same feature vector as the orig-

inal sample. The first new pattern belongs to class ω1 with membership μj = M+1(xi), while the second 

new pattern belongs to class ω2 with membership μj+1 = M-1(xi). The unmixed pixels in L remain un-

changed in Lf and are labeled with ω1 or ω2. Lf is made up of Nf =N+Nmixed patterns identified by (zj, ωj, 

μj). zj is the feature vector characterizing the j-th pattern in training set Lf. Here zj is used instead of xj to 

distinguish patterns belonging to training set L from those belonging to training set Lf, which are implicit-

ly sorted in a different way. 

In order to include the fuzzy memberships μj in the hyperplane computation, the cost function to mi-

nimize in the computation of the fuzzy hyperplane becomes the following: 

 

3  This assumption implicitly means that we consider classification problems in which we have an exhaustive representation of classes (i.e. all 
classes present in the scene are modeled in the training set). It is worth noting that this constraint can be removed in the solution of more gen-
eral problems in which fuzzy memberships are used for modeling uncertainty, without affecting the validity of the proposed method. 
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( ) ( )2

1

1 , 1,2,...,1, 2 0 0

fN
j j j f

i j j
j j

b j N
C subject to

and C

ω ϕ ξ
ψ ξ μ ξ

ξ=

⎧ ⎡ ⎤⋅ + ≥ − =⎪ ⎣ ⎦= + ⎨
≥ >⎪⎩

∑
w z           

w    w      
      

 (13)

In this cost function, a μj value smaller than 1 (which is peculiar of mixed patterns) reduces the effect of 

the corresponding slack variable ξj such that the importance of pattern zj is decreased. It is worth noting 

that in our technique a pixel can play a role for both classes in the learning, involving an intrinsic training 

of the hyperplane position on the basis of the available sub-pixel information. In greater detail, a mixed 

pixel attends two times in the QP problem because of its duplication in Lf. The first time it appears as a 

pattern belonging to class ω1 (i.e., “+1”) weighted by the fuzzy membership M+1(xi); the second time as a 

pattern belonging to class ω2 (i.e., “-1”) weighted by the fuzzy membership M-1(xi). From a theoretical 

and conceptual point of view, this is an important difference with respect to the learning of the fuzzy 

SVM proposed in [19]. We can observe that the learning of a traditional crisp SVM can be seen as a limit 

case of the proposed F2SVM learning in the case in which there are no mixed pixels. On the contrary, if 

we consider a fuzzy training set L with Nmixed ≠ 0, the solution obtained by the F2SVM can be significant-

ly different from that yielded by a standard crisp SVM. Figure 2 shows a qualitative example in which the 

proposed fuzzy learning method is compared with the crisp SVM learning algorithm. 

 
Figure 2. Qualitative example of Fuzzy SVM learning vs. standard SVM learning. The training set includes only one 
mixed pixel belonging to classes ω1 (white) and ω2 (black) with memberships 0.6 and 0.4, respectively. In the hardened 

(crisp) version of the training set used to train crisp SVM, this pattern is assigned to class ω1. The hyperplane computed 
by the F2SVM is closer to class ω1 than the one obtained with standard SVM, as the importance of the mixed pattern in 

the QP problem is weighted by a membership lower than 1 to class ω1. 
 

It is possible to prove that the minimization of (13) is equivalent to the maximization of the following 

dual formulation obtained with the Lagrange theory [19]: 

( ) ( ) 1
1 1 1

01 ,2
0 0 1,2,...,

f

f f f

N
N N N

j j
i j i j i j i j

j j i
j j f

W K subject to
C and C j N

ω α
α α α α ω ω

α μ
=

= = =

⎧
=⎪= − ⎨

⎪ ≤ ≤ > =⎩

∑∑ ∑∑ z z      
              

 (14) 

where fuzzy memberships μj multiply directly the regularization parameter C. W(α) has to be maximized 

with respect to Lagrange multipliers αi, also. This problem can be solved according to Quadratic Pro-

gramming methods [11]. To this end, we use a modified Sequential Minimal Optimization (SMO) algo-

rithm [33],[34], which is an iterative procedure that decomposes the overall QP problem into QP sub-

problems using Osuna’s Theorem to ensure convergence [35]. At each step, SMO: i) chooses two La-

Standard SVM 
Fuzzy SVM 

Kernel space

ω1 

ω2 

Mixed 
pattern 
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grange multipliers; ii) finds the optimal values for these multipliers; and iii) updates the SVM to reflect 

the new optimal values. According to the Karush-Khun-Tucker (KKT) theorem, the Lagrange multipliers 

αi that solve (14) must satisfy the following conditions [24],[36]: 

( )( )

( )

1 0

0 0 1,2,...,
0

j j j j

j j f

j j j

b

KKT conditions C and j N
C

α ω ϕ ξ

μ ξ
μ α ξ

⎧ ⎡ ⎤⋅ + − + =⎣ ⎦⎪⎪ > ≥ =⎨
⎪ − =⎪⎩

w z

        (15)

where μj must be positive to obtain a correct interpretation of the KKT conditions (the condition 

0≤Mk(x)≤1 ensures that μj > 0). It is possible to show that in the crisp SVM, these conditions cause αj and 

αi to lie on a diagonal line in a squared box of side C [33]. According to (15), in the F2SVM we have that 

the support vectors αj and αi are bounded from μjC and μiC, respectively. Therefore, in the SMO we 

change the constraints of the problem on the basis of the fuzzy memberships: αj and αi have to lie on a 

diagonal line in a rectangular box of sides μjC and μiC, as shown in Figure 3. 

 
Figure 3. Qualitative scheme of the SMO for fuzzy learning. 

 
C. Fuzzy Learning of the Output 

The fuzzy learning of the input allows the SVM classifier modeling the sub-pixel information present 

in the available soft training set in the definition of the hyperplane. However, this does not allow the 

SVM to provide the membership of a sample in output from the classifier. In order to obtain a soft (fuzzy) 

output we should properly consider the distance of the pattern from the hyperplane given from f(x). How-

ever f(x) is an uncalibrated output. Thus, to estimate fuzzy memberships for an unknown pattern, the out-

put has to be normalized in order to take into account the learning set fuzziness. To this end, we propose 

to analyze the properties of the training patterns in L with respect to the separating hyperplane in the ker-

nel space. We can construct a diagram (see Figure 4) that plots the distances of training pixels from the 

hyperplane f(xi), with i=1,…, N, (on the abscissa axis) versus the membership M+1(xi) (on the axis of or-

dinates). As mixed pixels in the training set L are closer to the separating hyperplane than the pure pixels, 

we can model the training set sub-pixel information by inspiring to the idea proposed in [37]. In particu-

lar, we propose to model the fuzzy membership referred to class ω1 according to a sigmoid function4 de-

fined as: 

[ ]( ) 1( )
1( ) 1 A f Bo e

−⋅ +
+ = − xx  (16)

where o+1(x), is the sigmoid value referred to the unknown pattern with feature x toward class ω1. The 

αj 

αi 

μjC 

μiC μj = 0.75     ⇒  0 ≤ αj ≤ μjC = 0.75⋅ C 
 
μi = 0.5  ⇒  0 ≤ αi ≤ μiC = 0.5⋅ C 
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sigmoid shape is defined by parameters A and B: the former tunes the curve spreading (it represents the 

slope of the tangent to the sigmoid for membership equal to 0.5), the latter indicates the horizontal offset. 

Figure 5 shows a sigmoid (solid line) with A=-1 and B=0. 

 
1.0 

M+1(xi) 

f(xi) 

0.5 

Mixed 
Patterns: 

0 < M+1(xi)< 1 

Crisp 
Patterns: 

M“+1”(xi) = 1 

Crisp 
Patterns: 

M+1(xi) = 0 

 

  
1.0

M+1(xi) 

0.5

Interpolation error 
for the i-th training pattern 

 
f(xi)  

Figure 4. Membership of training patterns to class ω1 
(i.e.,“+1”) versus their distance from the hyperplane f(xi). 

Figure 5. Interpolating sigmoid and interpolation er-
rors ei for the generic training pattern xi. 

 
The values of parameters A and B that define the sigmoid that better fits the fuzzy membership beha-

viors are computed by a simple iterative algorithm that jointly optimize A and B. The algorithm minimiz-

es the overall root mean square error (RMSE) between the known fuzzy memberships of the patterns in 

the training set and the ones obtained according to (16). The algorithm stops when the error difference 

between two consecutive steps is lower than a properly defined threshold ε. By tuning ε we can control 

the precision of the algorithm and the quality of the interpolating sigmoid. At convergence, the algorithm 

finds a sigmoid (see the example in Figure 6) that models the fuzzy membership behavior toward class ω1 

according to the information present in the training set, and allows us to estimate the membership grades 

to this class of unknown pixels. Due to the sum-to-one assumption of pixel memberships (see (11)), we 

can estimate the membership degree of unknown patterns toward class ω2 by computing the curve sym-

metric to that for class ω1 (the dotted sigmoid in Figure 6) as5: 

[ ]( ) [ ] [ ]( )1( ) ( ) ( )
1 1( ) 1 ( ) 1 1 1i i iA f B A f B A f B

i io o e e e
−⋅ + ⋅ + ⋅ +

− += − = − − = +x x xx x  (17)

Combining the fuzzy learning SVM with the sigmoid applied to the decision phase we obtain the de-

sired F2SVM. The pair [o-1(x); o+1(x)] is the fuzzy output of the F2SVM, i.e. the estimated abundances 

(memberships) of an unknown pixel x to the two classes defined in the binary problem. 

It is worth noting that a hardened output can be obtained by assigning a generic unknown pattern to 

the class with the highest membership grade. However, the hardened output of F2SVM does not corres-

pond to the output of crisp SVM, except in the particular case in which B=0. In fact, only in this situation 

the sigmoid has value 0.5 when f(x)=0. Thus, membership estimation is not only a way to describe more 

deeply the classification results, but it also plays an important role in the decision process of F2SVM. 

 

4  It is worth noting that other fuzzy membership functions could be considered. 
5  In the general case in which (11) does not hold, a second sigmoid should be defined for estimating the membership grades of patterns to ω2 

according to (16). 
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Figure 6. Sigmoid adapted to training set sub-pixel (soft) information. 

 
IV. PROPOSED F2SVM FOR SUB-PIXEL CLASSIFICATION: MULTICLASS PROBLEMS 

Let us now consider a multiclass problem made up of R information classes Ω={ω1,..., ωR}. As in the 

binary case, we have to convert the original training set L in a new set Lf, in which each mixed pixel is 

replicated as many times as the number of nonzero components of its membership vector M(xi). If h 

(1≤h≤R) is the number of nonzero elements in M(xi), the mixed pattern xi is mapped into h new patterns, 

which are characterized by the feature vector of xi, a label ωk∈Ω and a single nonzero membership value 

μk∈M(xi). As mentioned in Sec. II, a multiclass problem can be faced by training a set of binary F2SVM 

classifiers and combining their decisions. We propose two strategies that generalize to the fuzzy case ar-

chitectures and decision rules developed for crisp classifiers. These strategies are described in the follow-

ing sub-sections. 

A. Fuzzy OAA (FOAA) Strategy 

The Fuzzy OAA strategy is conceptually very similar to the crisp OAA method. It requires R binary 

F2SVMs to estimate the membership vector m(x) (i.e. the abundances) of the pixel x to the considered R 

classes (see Figure 7). The generic F2SVMk,Ω-k estimates the fuzzy memberships of the input pattern to 

classes ωk and ωΩ-k (for simplicity Ω - k denotes the meta-class that groups all the information classes but 

ωk, i.e. Ω - k ≡  Ω - ωk). Each F2SVMk,Ω-k is trained using all the Nf samples in the training set Lf, which 

are split into the set k (made up of the training samples that belong to the class ωk) and the set Ω - k 

(made up of all the training samples in Lf that do not belong to class ωk). The F2SVMk,Ω-k is trained to 

separate the information class ωk from the meta-class Ω - ωk according to the algorithm presented in Sec-

tion III.B. Once the learning stage has been completed, we can fit sigmoidk,Ω-k to the fuzzy membership of 

the related training samples toward the class ωk, according to their distance from the hyperplane using the 

iterative algorithm proposed in section III.C. With the sigmoidk,Ω-k we can estimate ok,Ω-k(x), which is the 

membership grade of an unknown pattern x toward the information class ωk. It is worth noting that since 

we are not interested in the pattern membership to the meta-class Ω - k, we can use only the sigmoid re-

ferred to class ωk. 

Following this procedure for all the R F2SVMk,Ω-k we can train independently each binary classifier to 

estimate ok, Ω-k(x), for k=1,2,…,R. At the end, when all the F2SVMk,Ω-k are trained and able to compute 
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fuzzy outputs ok, Ω-k(x), we obtain the membership vector m(x) = {m1(x), m2(x), …, mR(x)} for the pattern 

x. It is worth noting that in order to guarantee that the sum-to-one constraint is satisfied we must normal-

ize the values of the outputs. 

 
 

Figure 7. Architecture of the FOAA strategy Figure 8. Architecture of the FOAO strategy. 
 

B. Fuzzy OAO (FOAO) Strategy 

In the fuzzy OAO strategy we define an architecture made up of R(R-1)/2 binary F2SVM to estimate 

the memberships toward the R categories described in the classification problem (Figure 8). The generic 

F2SVMk,l estimates the pair of values [ok,l(x); ol,k(x)]: ok,l(x) is the fuzzy membership of the input pixel x 

to class ωk against class ωl, while ok,l(x) is the fuzzy membership of the input pattern x to class ωl against 

class ωk. Each F2SVMk,l is trained using only the training samples in Lf belonging to classes ωk and ωl 

with nonzero memberships. Once the learning stage of the F2SVMk,l has been completed and the related 

optimal separating hyperplane has been defined (see section III.B), it is possible to represent the member-

ship μj of the training patterns versus their distance from the hyperplane. Figure 9.a shows an example of 

this process (white circles indicate memberships of patterns belonging to class ωk, while black circles in-

dicate memberships of patterns belonging to class ωl; dotted lines join membership values referred to the 

same pixel in L). The example points out a critical issue of this multiclass architecture, which is related to 

the fact that some patterns in the specific binary sub-problem considered involving class ωk and ωl may 

not satisfy the sum-to-one assumption, i.e., the considered binary problem is not exhaustive. In fact, in 

the FOAO architecture we consider only two information classes for each classifier, thus a mixed training 

pixel belonging to more than two classes (or to class ωk and to class ωp ≠ ωl) presents Mk(xi)+Ml(xi)≤1 

(see patterns highlighted with a dotted circle in Figure 9.a). For this reason, unlike in the binary F2SVMs 

included in the FOAA architecture, the behavior of memberships to classes ωk and ωl are not symmetric. 

This makes it necessary to fit two different sigmoids: one to estimate membership ok,l(x) to class ωk and 

the other to estimate membership ol,k(x) to class ωl. The two sigmoids can be fitted using the same itera-

tive algorithm described in Section III.C. Figure 9.b shows the two sigmoids computed for the qualitative 

example reported in Figure 9.a. 
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(a) (b) 
Figure 9. Qualitative example related to a generic F2SVMk,l in the Fuzzy OAO strategy: a) memberships of training 

pixels to classes ωk and ωl; b) sigmoids defined for deriving the output of the F2SVMk,l. 
 
When all the F2SVMk,l have been trained, we can use the set of R(R-1)/2 binary F2SVMk,l to estimate 

all the pairs [ok,l(x); ol,k(x)] for an unknown pattern x. Unlike the conventional crisp OAO strategy (which 

assigns x to the class that wins the most pairwise comparisons), we have to relate the estimated pairwise 

memberships to the class memberships by adequately combining the outputs of all the binary classifiers. 

To this purpose, first the outputs [ok,l(x); ol,k(x)] of each F2SVMk,l are normalized to obtain: 

, ,( ) ( ) 1.0 , 1,2,...,k l l ko o for k l R+ = =x x             (18)

Then, the normalized memberships are represented in a squared matrix O(x) defined as: 
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 (19)

The main diagonal of the matrix is not defined for obvious reasons. Starting from the R(R-1) values in 

O(x), we should derive a vector m(x) that describes the membership of an unknown pattern x toward all 

the R information classes of the problem. This should be accomplished by jointly using the pairwise 

memberships estimated from all binary F2SVM classifiers for estimating the memberships mi(x) of the 

pattern x to class ωi. We compute m(x) by using the following iterative pairwise coupling algorithm: 

- Initialization Step {0} 

{ }0
,( ) 2 ( ) ( 1) 1,2,...,k lk

l k
m o R R  for k R

≠
= − =∑x x       (20)

{ } { } { } { }( )0 0 0 0
, ( ) ( ) ( ) ( ) , 1,2,...,k l k k lm m m for k l R and k lν = + = ≠x x x x              (21)

{ }0 ( )xkm  is the summation of the values on line k of matrix O(x) normalized with R(R-1)/2. νk,l(x) is an 

approximation of ok,l(x) according to the Bradley-Terry model for paired comparisons [38], which re-

lates the memberships estimated by the set of binary classifiers (ok,l(x) and their approximations 

νk,l(x)) to the overall membership mk(x) toward the class ωk. 

- Optimization and Updating Step {t} 
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At the t-th iteration, we apply sequentially the following equations: 

{ } { } { }1
, ,( ) ( ) ( ) ( ) 1,2,...,t t t

k lk k k l
l k l k

m m o for k Rν+

≠ ≠
← = =∑ ∑x x x x        (22)

{ } { } { }1 1 1

1
( ) ( ) ( ) 1,2,...,

Rt t t
k k l

l
m m m for k R+ + +

=
← =∑x x x        (23)

{ } { } { } { } { }( )1 1 1 1 1
, ( ) ( ) ( ) , 1,2,...,t t t t t

k l k k lm m m for k l R and k lν + + + + += + = ≠x x x              (24)
 

Equation (23) normalizes mk(x) according to the sum-to-one assumption on membership values, while 

equation (24) updates νk,l(x) using the new mk(x) computed in the optimization step. 

- Conditional Step: if the variation of each mk(x) is lower than a threshold defined by the user, the algo-

rithm stops and current m(x) is the pairwise coupling result. Otherwise the algorithm repeats the Op-

timization and Updating Step and the Conditional Step until convergence. 

At convergence, the set of νk,l(x) is the final approximation of ok,l(x) in matrix O(x). Thus, vector m(x) 

obtained by using this iterative algorithm is the membership vector that expresses the fuzzy information 

included in matrix O(x). It is possible to show that the elements mk(x) after the Initialization Step are in 

the same order as at the elements of m(x) at convergence [39]. However, values estimated during the In-

itialization Step tend to underestimate differences between memberships of the unknown pixel toward 

different classes. The pairwise coupling algorithm stretches the values of mk(x) to obtain better ok,l(x) ap-

proximations according to (21). 

C. Discussion 

The proposed FOAA and FOAO strategies have the same goal: estimating a fuzzy membership vector 

m(x) for all the unknown pixels in a multiclass problem. However, they generally do not reach the same 

numerical results and do not achieve the same overall accuracy in classification. For this reason, it is im-

portant to point out the properties and the characteristics of the two strategies: 

- The FOAA strategy requires only R binary F2SVM (each one with a single output sigmoid), while the 

FOAO architecture needs R(R-1)/2 binary F2SVMs (each one with two output sigmoids). 

- In the FOAA strategy, each F2SVMk,Ω-k is trained with all the Nf samples composing the training set Lf. 

In the FOAO strategy, the learning of each F2SVMk,l is carried out by considering the subset of Lf that 

contains only patterns belonging to classes ωk and ωl. Thus, like in the standard crisp OAA architec-

ture, the learning time required by an F2SVMk,l is generally shorter than the time taken from an 

F2SVMk,Ω-k. 

- The FOAA strategy produces directly the fuzzy membership estimation; the FOAO technique, instead, 

exploits a pairwise coupling procedure that, starting from the outputs of the F2SVMk,l, estimates the 

membership vector of each unknown pattern. Hence the classification time in the FOAO case is longer 

than in the FOAA architecture. 

- If the learning of the F2SVMs is accurate, we expect that the FOAA strategy can result in a precise 
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modeling of fuzzy memberships, due to the direct estimation of the output soft information from train-

ing data. However if a normalization is not applied to the output the sum-to-one constraint is not guar-

anteed. The application of the normalization can introduce a bias on the estimated membership grades. 

- The FOAO strategy estimates the class memberships of a pixel by exploiting the outputs of all the bi-

nary F2SVMk,l. Thus, on the one hand, it has the advantage to jointly consider all the pairwise contri-

butions in the estimation of the membership grades. On the other hand, binary classifiers associated 

with pair of classes to which the analyzed pixel does not belong contribute to the fuzzy modeling of 

the output. This may affect the accuracy of the estimate, as these classifiers are unreliable on such pix-

els6. This can become particularly critical when a high number of classes R is considered. 

Given a specific pixel unmixing problem, it is difficult to conclude on the best possible multiclass 

strategy. Such a choice depends on the number of the classes R, the number of available training samples, 

the distribution of classes in the feature space and the behavior of the abundances of pixels in the consi-

dered image. 

V. DESIGN OF EXPERIMENTS 

A. Definition of Experiments 

The first step of our experimental analysis was to test the effectiveness of the proposed F2SVM on a 

simulated classification problem. To this end an image with 2 channels including 4 different classes and 

several fuzzy samples was generated. The goal of this first experiment was to test the effectiveness of 

F2SVM in a controlled environment were a high number of labeled samples is available and uniformly 

distributed among classes. In the second step a possible application domain of F2SVM for sub-pixel anal-

ysis was considered, i.e., remote sensing image classification. To validate the proposed technique in this 

domain we used two images acquired by two remote sensing sensors having different properties. The first 

one is a very high spatial resolution multispectral image; the second one has similar spatial properties but 

is an hyperspectral image (characterized by hundreds of channels that are associated with different por-

tions of the electromagnetic spectrum). For both images a fuzzy training set (with N samples) and 2 un-

correlated fuzzy test sets were defined. The sub-pixel (fuzzy) information for each sample in the training 

and test sets was collected by a ground truth survey or by a proper photo-interpretation of the scene under 

investigation. The details about these images and the related data sets are described in the next sub-

sections. 

For all datasets in order to assess the effectiveness of the proposed F2SVMs, we analyzed the accuracy 

from both the fuzzy and the crisp perspectives. With regard to sub-pixel properties, we defined the fol-

lowing fuzzy (soft) accuracy measure: 

 

6  This issue could be addressed by considering more complex pairwise coupling algorithms that apply a preliminary thresholding to the pairwise 
output of binary F2SVMk,l [40]. 
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where Mk(xi) is the known membership degree for the i-th pixel toward class ωk (Mk(xi)∈ M(xi)), while 

mk(xi) is the estimated membership value (fuzzy output) produced by the classifier. af can assume values 

in the range between 0 and 1. It has value 1 (fuzzy classification accuracy equal to 100%) only if all 

mk(xi) are equal to the correspondent Mk(xi), whereas it has value 0 (fuzzy classification accuracy equal to 

0%) when the estimated memberships are completely different from the given abundances. With regard to 

the crisp accuracy, we computed the crisp overall accuracy derived by considering the hardened output 

of the F2SVM (given a pixel we can always convert fuzzy information in crisp information selecting the 

class with the maximum membership grade). 

As in standard crisp SVMs, the model selection of F2SVM requires to define the kernel function (and 

to estimate its parameters) and the regularization parameter C. In our experiments, for all images, we used 

a Gaussian Radial Basis Function (RBF) kernel function (which requires only the tuning of the Gaussian 

width σ) [see (10)] which is a universal kernel that includes other valid kernels as a particular case [41]. 

In all data sets input features were normalized between 0 and 1, and the spread of the kernel functions 

were fixed to be the same for all kernels. We derived the optimum parameter values (C and σ) according 

to an empirical grid-search model selection carried out with exponentially increasing sequences of values 

in the following ranges: C∈[10-1,50] and σ∈[10-4,10-2]. It is worth noting that different trials were carried 

out considering in the multiclass architectures binary F2SVMs having: i) C and σ values optimized sepa-

rately; ii) the same C and σ values. These trials resulted in similar accuracies; thus, for simplicity, in the 

paper we report the results obtained using the same values for all binary F2SVM. 

For the simulated data set the effectiveness of the F2SVM was evaluated according to a 3-fold cross 

validation (CV) approach. The best parameter values that maximize the average overall accuracy on the 3 

folds alternately used as test set were selected. Concerning remote sensing data sets, model selection was 

performed according to a 2-fold CV on test sets. In this case, since the number of available labeled fuzzy 

samples was small, we defined a training set with a sufficient number of samples for a reliable learning of 

the classifier, and two additional test sets with a smaller number of samples for validation. The classifier 

was first trained on the training set, and the optimal parameters were selected as those that maximizes the 

average accuracy on the test sets. Other approaches to model selection can be considered like leave-one-

out, radius-margin bounds, span bounds [42],[43], etc. 

B. Reference technique: Fuzzy Multi-Layer Perceptron Neural Networks 

In order to understand the validity of the proposed F2SVM, we compared the accuracies provided by 

this technique with those yielded by a Fuzzy Multi-Layer Perceptron (FMLP) neural network applied to 

pixel unmixing [8]. We selected this classifier because it is a widely used neuro-fuzzy inductive learning 
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algorithm, in which fuzzy set theoretic concepts are combined with a mechanism of learning from data. 

FMLPs have been applied with success to many fields, included problems of spectral unmixing (sub-

pixel classification) in the analysis of remote sensing images [8]. For this reason they represent a valuable 

reference for the proposed F2SVM on the considered data set. Many different implementation of FMLP 

neural networks have reported in the literature, which are characterized by different complexity, efficien-

cy, and computational speed. The FMLP technique we considered incorporates fuzzy set theoretic con-

cepts in both input and output stages: the input vector consists of membership values to information 

classes, while the output vector is defined in terms of fuzzy class membership values (i.e. soft output val-

ues). 

We considered a fully connected feedforward neural network architecture composed of an input layer, 

one (or more) hidden layers, and one output layer. In our experiments we used as many neurons in the in-

put layer as the number of features that characterize each pixel; the output layer consisted of a number of 

neurons equal to the number of classes. Input neurons just propagate input features to the next layer. As 

activation function of the neurons in the hidden layers and in the output layer, we used the sigmoid func-

tion. It is worth noting that the adopted architecture models the soft output of the FMLP classifier accord-

ing to a sigmoid function and no additional transformation are considered. This is motivated from the 

choice to carry out experiments in which the soft outputs of the proposed F2SVM classifier and of the 

reference one are modeled by the same function. The learning of the FMLP algorithm was carried out ac-

cording to an error backpropagation algorithm applied to a cost function based on the MSE error. The er-

ror on each training pattern to each class was properly weighted according to the corresponding fuzzy 

memberships. An adaptive learning rate was considered in the error backpropagation algorithm [8].  

Different FMLP architectures were analyzed in our experiments on the two considered data sets. The 

numbers of hidden layers and neurons in the hidden layers were determined according to a tradeoff be-

tween complexity of representation and generalization ability of the net, according to standard empirical 

rules [8],[44]. We analyzed architectures with one or two hidden layers, and for each architecture we car-

ried out three trials with different values of the initial weights. Finally, for each data set, we selected the 

architecture and the trial that resulted in the highest fuzzy accuracy on the test set. 

VI. EXPERIMENTAL RESULTS: SIMULATED DATASET 

The simulated dataset is an image of 256×256 pixels with 2 channels and represents a 4-classes classi-

fication problem (R=4). The spatial distribution of classes in the image was designed such that there exist 

boundaries between all possible pairs of classes. Along these boundaries a set of fuzzy samples were in-

troduced that simulate the gradual transition from a class to the other. From this image two different 

fuzzy problems were generated that show a different noise level. The first problem is represented by the 

simulated 2-channel image with the addition of a Gaussian noise characterized by a standard deviation σN 
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= 15, while the second one was obtained by adding a Gaussian noise with σN = 25. Figure 10.a shows the 

first channel of the most noisy image and Figure 10.b a detail of it, where the mixed-pixel region between 

class 1 and 4 is visible. 

 
(a) (b) 

Figure 10. Simulated 256×256 pixels image corrupted by a Gaussian noise with σN 
= 25: (a) first channel, (b) zoom of the detail in white square. 

The effectiveness of the proposed method was tested on 7008 randomly selected labeled pixels. 

Among them there are 5088 pure pixels (patterns that belong only to one information class) equally dis-

tributed among classes, and 1920 mixed pixels (patterns that have memberships to more than one class). 

Mixed pixels have membership values different from zero for two classes, with values in the set {0.25, 

0.5, 0.75}. They are almost uniformly distributed among all the possible pairs of abundances. For each 

class there are 960 mixed pixels (each mixed pattern is considered one time for each class it belongs to). 

The set of labeled patterns was used for model selection according to a 3-fold CV strategy. The three 

folds are made of 2110, 2458 and 2440 pixels and were built preserving the relative frequency that pure 

and mixed pixels show in the whole set. 

First of all we carried out the model selection for both the proposed F2SVM (FOAA and FOAO archi-

tectures) and the FMLP neural network on both simulated data sets. Table I summarizes the optimum pa-

rameter values for the three classifiers, i.e. the ones that resulted in the highest average accuracy on the 3 

folds when used as test set. The same parameter values were used for all the binary F2SVMs making up 

each multiclass architecture. With regard to the FMLP neural network, the learning was carried out with 

the error back-propagation algorithm with learning rate equal to 0.001. 

 
 

TABLE I 
OPTIMUM PARAMETER VALUES OBTAINED WITH THE 3-FOLD CV (SIMULATED DATA SET) 

Classification technique Parameter σN= 15 σN= 25 

F2SVM (FOAA) 
C 0.01 0.01 
σ 0.5 0.3 

F2SVM (FOAO) 
C 2.51 3.98 
σ 0.1 0.1 

FMLP # neurons 16 20 
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TABLE II 
OVERALL CLASSIFICATION ACCURACIES PROVIDED BY THE PROPOSED F2SVM (WITH THE FOAA AND FOAO ARCHITECTURES) 

AND BY THE FMLP CLASSIFIER WITH THE 3-FOLD CV (SIMULATED DATA SET). 

Classification 
technique 

σN= 15 σN= 25 
Overall fuzzy 
accuracy (%) 

Overall crisp 
accuracy (%) 

Overall fuzzy 
accuracy (%) 

Overall crisp 
accuracy (%) 

F2SVM (FOAA) 82.94 85.71 80.52 83.92 
F2SVM (FOAO) 80.82 86.00 77.55 84.01 

FMLP 80.47 83.79 77.21 82.08 
 

Table II reports for all the classifiers the fuzzy and crisp accuracies obtained in average on the 3 folds 

with the parameter values reported in Table I. From an analysis of Table II, it is possible to observe that 

the F2SVM approach exhibited a higher overall fuzzy accuracy than the FMLP neural network. The over-

all fuzzy accuracy improvement achieved using the FOAA strategy is of about 2.5% for the simulated da-

ta set with σN= 15, while it is higher than 3% for the image with σN= 25 (in both cases it is of about 0.5% 

with the FOAO strategy). The improvement in the overall crisp accuracy is also around 2%. In this classi-

fication problem the overall fuzzy accuracy achieved using the FOAA strategy is higher than the one ob-

tained with the FOAO strategy (we obtained a difference of about 1-3%). 

It is worth noting that the aforementioned results are interesting as they point out the superiority of the 

proposed F2SVM on the fuzzy MLP in a quite simple problem with few classes and a proper number of 

fuzzy samples. In other words, this is a set up where the main properties of SVM are not fully exploited. 

VII. EXPERIMENTAL RESULTS: MULTISPECTRAL IMAGE 

The first remote sensing data set used in the experiments is associated with a very high geometrical reso-

lution image acquired by the QuickBird satellite on the city of Pavia (Italy) (see Figure 11). This satellite 

takes a panchromatic high resolution image (60cm) and, simultaneously, a multispectral image made up 

of four spectral bands, with lower geometric resolution (2.4m). This means that one pixel in the multis-

pectral image is mapped into sixteen pixels in the panchromatic image, as shown in Figure 12. We used 

the high spatial resolution of the panchromatic image for manually defining the fuzzy training set (which 

is given as input to the classifier in the learning phase) and the 2 test sets (which are used for accuracy as-

sessment according to a 2-fold validation strategy) with sub-pixel information for the multispectral im-

age. In greater detail, for each pixel in the multispectral image, we defined a ground truth membership 

vector analyzing the labels of the corresponding sixteen pixels in the panchromatic image. For example, a 

pixel in the multispectral image that corresponds to twelve pixels of road and to four pixels of red roof in 

the panchromatic image was assigned in the training set to the class “road” with membership 0.75 and to 

the class “red roof” with membership 0.25. This time consuming process for definition of reference data 

was carried out with high precision in order to obtain a reliable benchmark for assessing the effectiveness 

of the proposed sub-pixel classification technique. On this data set we defined R=11 information classes, 

a training set of N=376 samples, and two test sets of 159 and 228 samples, respectively. Patterns belong-
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ing to the three sets were extracted from different portions of the image in order to obtain as more uncor-

related as possible data sets. We assumed an exhaustive knowledge and representation of information 

classes present on the ground. It is worth noting that the problem complexity is very high because the ra-

tio between R and N is small and training patterns are not uniformly distributed among classes. 

Figure 11. Panchromatic image (1024x1024 pixels) acquired by the QuickBird satellite on the city of Pavia, Italy (mul-
tispectral data set). 

 
Table III shows the number of pure pixels and mixed pixels included in the training and test sets (each 

mixed pattern is considered one time for each class it belongs to). Table IV presents the membership 

grades of all the mixed pixels for which reference data are available. From an analysis of the tables it is 

possible to observe that mixed pixels are distributed among 5 classes (i.e. road, red roof, trees. shadow, 

grey roof) with different abundances, whereas 6 classes contain exclusively pure pixels. This points out 

the complexity of the benchmark considered. 

 

 
(a) (b) 

Figure 12. Relationship between the geometrical resolution of (a) the panchromatic image and (b) the multispectral im-
age (multispectral data set).
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TABLE III 
NUMBER OF PURE AND MIXED PIXELS INCLUDED IN THE TRAINING AND TEST SETS (MULTISPECTRAL DATA SET) 

Class 
Number of pixels 

Training set Test set 1 Test set 2 
Pure Mixed Pure Mixed Pure Mixed 

Grass (ω1) 51 0 20 0 38 0 
Road (ω2) 49 48 13 28 22 26 
Water (ω3) 13 0 5 0 2 0 
Red roof (ω4) 28 51 12 31 18 32 
Trees (ω5) 65 29 26 11 31 17 
Shadow (ω6) 16 79 8 36 21 54 
White roof (ω7) 14 0 4 0 4 0 
Light grey roof (ω8) 6 0 4 0 5 0 
Grey roof (ω9) 10 1 6 0 5 2 
Dark roof (ω10) 12 0 6 0 13 0 
Black roof (ω11) 8 0 2 0 3 0 

 
TABLE IV 

MEMBERSHIP GRADES OF ALL MIXED PIXELS FOR WHICH REFERENCE DATA ARE AVAILABLE (MULTISPECTRAL DATA SET) 

Number 
of pixels 

Membership 
grade Number 

of pixels 

Membership 
grade Number 

of pixels 

Membership 
grade Number 

of pixels 

Membership 
grade 

ω4 ω6 ω5 ω4 ω2 ω6 ω2 ω4 
5 12.50 87.50 5 6.25 93.75 6 18.75 81.25 5 12.50 87.50 
5 31.25 68.75 5 18.75 81.25 8 31.25 68.75 8 31.25 68.75 
3 37.50 62.50 3 25.00 75.00 6 43.75 56.25 6 43.75 56.25 
3 43.75 56.25 4 31.25 68.75 3 50.00 50.00 8 50.00 50.00 
9 50.00 50.00 3 37.50 62.50 4 56.25 43.75 5 56.25 43.75 
5 56.25 43.75 3 43.75 56.25 6 62.50 37.50 6 68.75 31.25 
5 62.50 37.50 5 50.00 50.00 4 68.75 31.25 4 75.00 25.00 
7 68.75 31.25 5 56.25 43.75 4 75.00 25.00 4 81.25 18.75 
10 75.00 25.00 3 62.50 37.50 3 81.25 18.75 4 87.50 12.50 
4 81.25 18.75 5 68.75 31.25 5 87.50 12.50    
8 87.50 12.50 4 75.00 25.00  ω6 ω9  ω2 ω5 
   3 81.25 18.75 3 12.50 87.50 3 50.00 50.00 
   6 93.75 6.25       

 
First of all we carried out the model selection for both the proposed F2SVM and the FMLP neural net-

work. The optimum parameter values for the FOAA strategy resulted C=20 and σ =5·10-3, while for the 

FOAO strategy were C=28 and σ =78·10-3. The same values were used for all the binary F2SVMs making 

up each multiclass architecture. With regard to the FMLP neural network, the classifier that resulted in 

the highest overall accuracy on the test set was made up of one hidden layer with 16 nodes (learning rate 

equal to 0.001). Table V reports the highest fuzzy and crisp accuracies obtained in average on the two test 

sets and on training set for all the classifiers. From an analysis of this table, it is possible to observe that 

the F2SVM approach exhibited a sharply higher overall fuzzy accuracy than the FMLP neural network. In 

greater detail, considering the test sets, the overall fuzzy accuracy improvement achieved using the 

FOAA strategy is of about 16% (it is of about 11% with the FOAO strategy). The improvement in the 

overall crisp accuracy is smaller. This can be explained by the fact that on this data set, although the 

FMLP modeled the fuzzy membership values of pixels with a significantly lower accuracy than the 

F2SVM, it preserved the proportions of the membership grades to the different classes in output from the 

classifier, thus obtaining relatively good crisp accuracies after hardening. In this classification problem 
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the overall fuzzy accuracy achieved using the FOAA strategy is higher than the one obtained with the 

FOAO strategy (we obtained a difference of about 12% on the training set, and of about 5% on the aver-

age accuracy of test sets). This is probably due to the problem complexity involved from the high number 

of classes, which decreases the effectiveness of the Pairwise Coupling algorithm (as discussed in Sec. 

IV.C there are too many unreliable pairwise contributions in the computation of the membership grades 

of each pixel). 

 
TABLE V 

OVERALL CLASSIFICATION ACCURACIES PROVIDED BY THE PROPOSED F2SVM (WITH THE FOAA AND FOAO ARCHITECTURES) 
AND BY THE FMLP CLASSIFIER (MULTISPECTRAL DATA SET). 

Classification technique Overall fuzzy accuracy (%) Overall crisp accuracy (%) 
Training set Average on Test sets Training set Average on Test sets 

F2SVM (FOAA) 85.59 78.81 91.09 82.86 
F2SVM (FOAO) 73.91 73.52 86.04 84.44 

FMLP 63.41 62.81 83.76 82.89 
 

    
Figure 13. Classification map obtained by the hardened output of OAO-F2SVM (multispectral data set). 

The crisp classification map obtained by hardening the output of the F2SVM classifier is reported in 

Figure 13. A comparison between this map and the one obtained by the FMLP neural network (not re-

ported for space constraints) confirms the quantitative results and points out the good precision of the 

F2SVM output. Similar conclusions can be drawn by a qualitative analysis of the abundances (fuzzy) 

maps (not reported for space constraints). 

VIII. EXPERIMENTAL RESULTS: HYPERSPECTRAL IMAGE 

The second remote sensing data set used for F2SVM validation is made up of an hyperspectral image 

with 115 spectral channels acquired in different parts of the electromagnetic spectrum by the airborne 

ROSIS sensor. The image represents the San Felice lagoon area, near Venice (Italy), which is characte-

rized from the presence of salt-marsh vegetation. Although the spatial resolution of each pixel is high also 

on this image (i.e., 1m), the species spatial variability results very high (in the scale of tens of centime-

ters) due to the particular kind of ecosystem. This peculiarity of salt-marsh vegetation makes this dataset 

Grass 
Road 
Water 
Red roof 
Shadow 
Trees 
White roof 
Light grey roof 
Grey roof 
Dark roof 
Black roof 
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particularly suitable for testing the robustness of the proposed sub-pixel classification algorithm [45]. The 

goal of this image classification problem is to describe the land-covers according to the identification of 

six information classes (R=6) associated with four different vegetation species [Spartina Maritima (ω1), 

Liboneum Narbonese (ω2), Juncus Maritimus (ω3), Sarcocornia Fruticosa (ω4)], Bare Soil (ω5), and Water 

(ω6). Figure 14 shows a false color composition of three spectral channels of the image. From the availa-

ble 115 spectral bands, we selected the 17 more informative bands (D = 17) by excluding 35 noisy chan-

nels and then applying a feature-selection procedure based on the Jeffries-Matusita distance and the 

Steepest Ascent search method [46]. 

The training set and the two test sets were defined on the basis of a ground truth data collection procedure 

focused on the analysis of sub-pixel information. This data collection was carried out in the framework of 

the European project Hysens 2000 [45]. Several Region Of Interests (ROIs) were identified with a size of 

at least 3×3 pixels. The ROI boundaries were positioned according to the use of either differential GPS or 

laser theodolite. To assign membership grades to the ground truth points, an accurate analysis was carried 

out by independent operators according to the Braun-Blanquet visual method [47]. This analysis was 

supported by several high resolution (i.e., 2mm) digital photographs acquired within ROIs. Table VI re-

ports the number of pure and mixed pixels included in the mentioned sets (each mixed pattern is consi-

dered one time for each class it belongs to). The fractional abundances of information classes within the 

defined ROIs are summarized in Table VII. From an analysis of the table, it is possible to observe that 

mixed pixels are distributed (with different abundances) among the four considered vegetation classes 

and the Bare Soil class. In greater detail, we can note that all the samples of classes Liboneum Narbonese 

(ω2) and Juncus Maritimus (ω3) are mixed samples. Class Water (ω6), instead, does not share any pattern 

with the other classes. It is worth noting that from the viewpoint of the distribution of the soft informa-

tion, this problem is less complex than that associated with the multispectral data set presented in the pre-

vious section. However, it is challenging as a relatively high number of features are provided as input to 

the classifier. 

As in the previous data set, we derived the parameter values that resulted in the highest average accu-

racy on the test sets for all the classifiers. The best parameters of F2SVM using FOAA strategy were 

σ=5·10-4 and C=13. The highest accuracy using the FOAO strategy was obtained with C=3.5 and σ=7·10-

4. Concerning the architecture of the FMLP neural network used for comparison, the highest overall fuzzy 

accuracy on the test set was obtained with one hidden layer made up of 16 nodes. The learning was car-

ried out with the error back propagation algorithm with learning rate equal to 0.001. 

Table VIII reports fuzzy and crisp accuracies obtained for training and test sets. By analyzing the ta-

ble, one can observe that the proposed F2SVM (with both the FOAA and the FOAO architectures) signif-

icantly increased both the fuzzy and crisp accuracies yielded by the FMLP neural network classifier. 
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Figure 14. False color composition of three spectral channels of the ROSIS image acquired on the Venice lagoon, Italy 
(hyperspectral data set). 

 

TABLE VI 
NUMBER OF PURE AND MIXED PIXELS INCLUDED IN THE TRAINING AND TEST SETS (HYPERSPECTRAL DATA SET) 

Class 
Number of pixels 

Training set Test set 1 Test set 2 
Pure Mixed Pure Mixed Pure Mixed 

Spartina Maritima (ω1) 27 38 9 18 16 24 
Liboneum Narbonese (ω2) 0 645 0 277 0 347 
Juncus Maritimus (ω3) 0 556 0 237 0 347 
Sarcocornia Fruticosa (ω4) 43 129 19 57 28 82 
Bare Soil (ω5) 79 154 35 65 51 154 
Water (ω6) 199 0 84 0 122 0 

 
We obtained the best result using the FOAA multiclass strategy, which increased both the fuzzy over-

all accuracy and the crisp overall accuracy provided in average by the FMLP on the test sets of about 

11% and 12%, respectively. This points out the effectiveness of the proposed approach, that provided a 

significantly better modeling of the sub-pixel information than the FMLP neural classifier. F2SVM shows 

both good learning capabilities (we observed an improvement of about 17% in the fuzzy training accura-

cy and 16% in the crisp training accuracy) and good generalization capabilities (as proved by the accura-

cies on test sets). 

The crisp classification map obtained by hardening the output of the F2SVM classifier is reported in 

Figure 15. A comparison between this map and the one obtained by the FMLP neural network (not re-

ported for space constraints) confirms the quantitative results and points out the high precision of the 
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F2SVM output. Similar conclusions can be drawn by a qualitative analysis of the abundance (fuzzy) 

maps. 

TABLE VII 
MEMBERSHIP GRADES OF ALL MIXED PIXELS FOR WHICH REFERENCE DATA ARE AVAILABLE (HYPERSPECTRAL DATA SET) 

Number 
of pixels 

Membership grade Number 
of pixels 

Membership grade 
ω2 ω5 ω1 ω2 

77 0.50 0.50 80 0.90 0.10 
 ω2 ω3  ω2 ω4 

221 0.40 0.60 69 0.90 0.10 
64 0.30 0.70 199 0.10 0.90 

108 0.20 0.80  ω5 ω3 
396 0.90 0.10 57 0.40 0.60 
55 0.10 0.90 239 0.20 0.80 

 
TABLE VIII 

OVERALL CLASSIFICATION ACCURACIES PROVIDED BY THE PROPOSED F2SVM WITH THE FOAA AND FOAO ARCHITECTURES 
AND BY THE FMLP CLASSIFIER (HYPERSPECTRAL DATA SET) 

Classification technique Overall fuzzy accuracy (%) Overall crisp accuracy (%) 
Training set Average on Test sets Training set Average on Test sets 

F2SVM (FOAA) 88.67 82.02 95.31 89.37 
F2SVM (FOAO) 84.01 77.62 95.63 89.01 

FMLP 72.07 71.07 79.32 78.43 
 

 
Figure 15. Classification map obtained by the hardened output of the F2SVM (hyperspectral data set). 

 

IX. DISCUSSION AND CONCLUSION 

In this paper, a novel Fuzzy-input Fuzzy-output SVM (F2SVM) technique for binary and multicate-

gory pixel unmixing in image classification has been proposed. The proposed F2SVM technique is able to 
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learn the sub-pixel information inherent a fuzzy training set and to estimate the abundances (fuzzy mem-

berships) of unknown pixels to different classes. The presented classifier explicitly manages in a nonli-

near way sub-pixel information associated with each pixel, both in binary problems and in multicategory 

problems (thanks to the proposed multiclass strategies FOAA and FOAO). This is a very important prop-

erty in image classification problems, as in many applications the geometrical resolution of the sensor is 

not sufficient for guaranteeing that pixels represent only the radiometric response of a single information 

class present in the investigated scene. In this critical situation, on the one hand, standard crisp classifiers 

do not allow to properly modeling the complexity of the signal associated with the images and thus pro-

vide unreliable outputs; on the other hand, the use of a crisp learning strategy for mixed pixels misleads 

the classifier on the true radiometric properties of classes during the training phase. 

Besides the global architecture of the classifier and the idea to exploit the SVM approach to solve 

spectral unmixing problems, the main specific novelties of the proposed F2SVM are the following: 

i. The use of input fuzzy membership information to model the sub-pixel abundances of unknown 

patterns in the learning of SVM; 

ii. The proposed fuzzy output estimation method (which is based on adapted sigmoid functions that 

relate pattern distances from the hyperplane with the estimated membership behavior); 

iii. The multiclass FOAA and FOAO strategies (which generalize to the fuzzy case the standard OAA 

and OAO techniques). 

It is worth noting that the proposed F2SVM has all the desirable properties of the crisp supervised 

SVM approach, i.e.: i) convexity of the cost function used in the learning of the classifier; ii) robustness 

to the effects of the Hughes phenomenon when dealing with a high-dimensional feature space; iii) sparsi-

ty of the solution that results in very good generalization capabilities; iv) possibility to be implemented in 

parallel architectures. 

Experimental results obtained on three data sets associated with images having different properties 

confirm the effectiveness of the proposed F2SVM, which provided sharply higher fuzzy accuracies (espe-

cially in the case of real remote sensing image classification problems) than a FMLP neural network and 

satisfactory abundance maps. These results were expected due to the aforementioned properties of 

F2SVM and point out that the proposed technique seems very promising for sub-pixel image classifica-

tion. 

With regard to the presented multiclass strategies, in all our experiments the highest fuzzy accuracies 

were obtained by the FOAA strategy, which outperformed the FOAO method. This is due to the fact that 

the FOAO architecture estimates the fuzzy memberships of a pixel by considering the outputs of all the 

pairwise classifiers, thus including in the estimation also binary classifiers associated with classes that 

have no relationships with the pixel. This results in the use of unreliable outputs in the final computation 



 

28 

of the memberships, thus mitigating the potential advantage of the joint processing of the output of all bi-

nary classifiers in the computation of the class abundances. 

The main drawback of the proposed method is the need of having as input to the classifier soft infor-

mation about labeled samples for which the fuzzy memberships (abundances) to the different classes 

should be known. This information is available (or can be collected) in some application domains, whe-

reas it is difficult to have in others. Another limitation of the proposed technique is associated with the 

relatively high computational load required from the learning of the classifier. As in standard supervised 

crisp SVM, this time is mainly due to the model selection phase, which requires to test many combina-

tions of the values of the regularization parameter C and the kernel parameters for an adequate modeling 

of the considered problem. Nonetheless, this computational load is not higher than that required from 

other machine learning classifiers (e.g. the considered FMLP neural network).  

Future developments of this work are devoted: i) to address the main drawback related to the FOAO 

strategy for multiclass problems by adaptively selecting for each pixel the relevant binary classifiers to 

include in the Pairwise Coupling processing; ii) to apply the F2SVM technique to other image classifica-

tion problems by considering different application domains, and iii) to include in the sub-pixel classifica-

tion procedure also the use of the information present in the spatial neighborhood system of each pixel. 
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