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Abstract—This paper presents two semisupervised one-class
support vector machine (OC-SVM) classifiers for remote sensing
applications. In one-class image classification, one tries to detect
pixels belonging to one of the classes in the image and reject the
others. When few labeled pixels of only one class are available,
obtaining a reliable classifier is a difficult task. In the particular
case of SVM-based classifiers, this task is even harder because the
free parameters of the model need to be finely adjusted, but no
clear criterion can be adopted. In order to improve the OC-SVM
classifier accuracy and alleviate the problem of free-parameter se-
lection, the information provided by unlabeled samples present in
the scene can be used. In this paper, we present two state-of-the-art
algorithms for semisupervised one-class classification for remote
sensing classification problems. The first proposed algorithm is
based on modifying the OC-SVM kernel by modeling the data
marginal distribution with the graph Laplacian built with both
labeled and unlabeled samples. The second one is based on a
simple modification of the standard SVM cost function which
penalizes more the errors made when classifying samples of the
target class. The good performance of the proposed methods is
illustrated in four challenging remote sensing image classification
scenarios where the goal is to detect one of the classes present
on the scene. In particular, we present results for multisource ur-
ban monitoring, hyperspectral crop detection, multispectral cloud
screening, and change-detection problems. Experimental results
show the suitability of the proposed techniques, particularly in
cases with few or poorly representative labeled samples.

Index Terms—Change detection, one-class classification, one-
class support vector machine (OC-SVM), semisupervised learn-
ing (SSL), support vector domain description (SVDD), target
detection.

I. INTRODUCTION

IN REMOTE sensing image classification, it is quite com-
mon to deal with reduced sets of labeled samples when

developing classifiers. Support-vector-machine (SVM)-based
classifiers excel in using the labeled information, with (regu-
larized) maximum margin classifiers also being equipped with
an appropriate loss function [1], [2]. However, applicability of
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the SVM is only possible when labeled samples of all the land-
cover classes present in the scene are available. When such
information is only available for one class of interest (or few),
other techniques should be used. In particular, high interest
has been devoted to the learning frameworks of the following:
1) anomaly detection, where one tries to identify pixels dif-
fering significantly from the background; 2) target detection,
where the target spectral signature is assumed to be known and
the goal is that of detecting pixels that match the target; and
3) one-class classification, where one tries to detect one class
and reject the others.

This paper is focused on one-class classification. In the
past, several kernel-based methods have been developed to this
purpose. The use of kernel methods offers many advantages
with regard to other approaches, as they alleviate the curse of
dimensionality in hyperspectral images, increase the robustness
of the method to noise, and allow flexible and smooth nonlinear
mappings [1]. Kernel methods in general, and kernel-based
classifiers in particular, rely on the proper definition of a kernel
(or similarity) function between samples. In particular, the one-
class SVM (OC-SVM) [3] aims at identifying samples of one
particular class while rejecting all the others. In the remote
sensing literature, the method was originally introduced for
anomaly detection [4], [5], then exercised in incomplete and
unreliable training data problems [6], and recently engineered
for change detection [7]. Nevertheless, when very few or less
representative training samples are available, the OC-SVM may
result in unreliable classification results. Thus, for dealing with
this kind of problems, OC-SVM can be reformulated in the
framework of semisupervised learning (SSL) to exploit not only
labeled but also unlabeled sample [8]–[10] information.

In this paper, we introduce two semisupervised OC-SVM
methods. The first method, named semisupervised OC-SVM
(S2OC-SVM), uses the available supervised information
(labeled) and also the data with no a priori class information
(unlabeled) to encode some knowledge about the geometry
and data distribution. The exploration of the shape of the
marginal distribution of data adds significant information in
order to better position the decision boundary. It is worth
noting that this kind of procedure can be applied to any kernel-
based classification method and results in a modification of
the measure of similarity in the kernel space according to the
geometry of the unlabeled samples. This is done by including
an additional regularization term on the geometry of both
labeled and unlabeled samples by using the graph Laplacian
[11], [12]. The second method, named biased-SVM (b-SVM),
was originally proposed for text classification in [13], and it
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Fig. 1. (Left) OC-SVM: The hyperplane separates with maximum margin all
target data from the origin by mapping all targets (blue) to the upper side of
the hyperplane and outliers (red) to the lower side. Only the green points are
needed to make predictions. xi is an outlier sample. ξi is one of the slack
variables introduced to deal with outliers that may be present in the training set.
(Right) SVDD: The hypersphere surrounds all target samples. a and R are the
center and the radius of the hypersphere, respectively.

is based on using the standard binary SVM classifier, where
labeled samples represent the target class and unlabeled data are
treated as being the outlier class. The SVM cost function is built
such that errors committed on labeled target samples are much
more penalized than errors occurred on nontarget class. This
is because samples belonging to the outlier class show low (or
lower) certainty as they are in fact unlabeled. The performance
of the proposed S2OC-SVM and b-SVM methods is illustrated
in four different challenging problems: urban monitoring, crop
detection, cloud masking, and change detection. Results are
compared with the ones achieved by other one-class classifiers
and, when possible, by a standard binary classifier.

The rest of this paper is organized as follows. Section II
briefly reviews the formulation of the OC-SVM. Noting that
the key for obtaining successful performance is the definition of
the kernel structure and the adequate tuning of free parameters,
Section III is devoted to introduce the proposed semisupervised
version of the OC-SVM. Section IV introduces the b-SVM
method. Section V analyzes the data sets used in this paper and
presents experimental results. Section VI analyzes the obtained
results, and finally, Section VII concludes this paper.

II. OC-SVM

The OC-SVM was introduced by Schölkopf et al. as a sup-
port vector method for novelty detection [3]. Notationally, let
us consider a data set {xi}l

i=1 ∈ R
N belonging to a given class

of interest, named target class. The idea behind the OC-SVM
is to describe the target class by a function that maps most part
of it to a region where the function is nonzero. To this end, the
origin is treated as the only available member of the nontarget
class (i.e., as an outlier), and then, the problem is solved by
finding a hyperplane with maximum margin separation from
the origin. To deal with nonlinearly problems, the hyperplane is
defined in a high-dimensional Hilbert feature space H where
the samples are mapped through a nonlinear transformation
φ(·) (Fig. 1, left). To separate the data set from the origin, one
has to minimize

min
ω,ρ,ξ

{
1
2
‖ω‖2 − ρ +

1
νl

∑
i

ξi

}
∀ i = 1, . . . , l (1)

constrained to

〈ω,φ(xi)〉 ≥ ρ − ξi. (2)

Here, ω is a vector perpendicular to the hyperplane in H, and ρ
is the distance to the origin. Since the training data distribution
may contain outliers, a set of slack variables ξi ≥ 0 is intro-
duced to deal with them, as usual in the SVM framework. The
parameter ν ∈ (0, 1] controls the tradeoff between the number
of examples of the training set mapped as positive by the
decision function f(x) = sgn(〈ω,φ(xi)〉 − ρ) and having a
small value of ‖ω‖ to control model complexity.

After including restrictions (2) into (1) through the use of
Lagrange multipliers αi and deriving w.r.t. ω, the relation
between primal and dual weights is expressed as a linear
combination of the mapped samples with αi �= 0, i.e., ω =∑

i αiφ(xi). Introducing a kernel function whose elements are
defined as K(xi,xj) = 〈φ(xi),φ(xj)〉, the direct computation
of the nonlinear mapping φ(·) can be avoided, and the dual
problem becomes

min
α

⎧⎨
⎩1

2

∑
i,j

αiαjK(xi,xj)

⎫⎬
⎭ (3)

constrained to

0 ≤ αi ≤
1
νl

and
∑

i

αi = 1. (4)

After solving the dual problem, a set of model weights (αi)
is obtained, and the decision function for any test vector x∗ is
given by

f(x∗) = sgn

(∑
i

αiK(xi,x∗) − ρ

)
. (5)

There exists in the literature an alternative and, under some
conditions, equivalent formulation of the OC-SVM called sup-
port vector domain description (SVDD) which was originally
introduced by Tax and Duin [14]. SVDD, instead of finding
a hyperplane separating the samples of the target class from
the origin with maximum separation, tries to find a hyper-
sphere with minimum volume surrounding only the target class
samples. In this way, all samples lying inside the hypersphere
belong to the target class, whereas the samples lying outside are
outliers (Fig. 1, right). The problem is defined as

min
R,a

{
R2 +

1
νn

∑
i

ξi

}
∀ i = 1, . . . , l (6)

subject to

‖φ(xi) − a‖2 ≤ R2 + ξi ∀ i = 1, . . . , l (7)

ξi ≥ 0 ∀ i = 1, . . . , l. (8)

It can be shown that, when working with isotropic kernels
(for example, the radial basis function (RBF) Gaussian kernel)
and normalized data, both formulations yield the same solu-
tions [3].
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III. PROPOSED S2OC-SVM

In this section, we pay attention to the appropriate definition
of the kernel under semisupervised criteria. Essentially, we
propose to deform the kernel using the graph Laplacian. This
idea was originally presented in [11] for the inductive SVM and
has been recently presented for kernel orthogonal subspace pro-
jection target detection [15]. Here, it is applied to the OC-SVM.

A. Learning a Suitable Kernel From Unlabeled Samples

The performance of any kernel method strongly depends on
the adequate definition of the kernel structural form, which
can be casted as a similarity measure among samples. Tradition-
ally, the kernel form has been chosen to be either linear
(K(xi,xj) = 〈xi,xj〉), polynomial (K(xi,xj) = (〈xi,xj〉 +
1)d, d ∈ Z

+), or RBF (K(xi,xj) = exp(−‖xi − xj‖2/2σ2),
σ ∈ R

+) to fulfill Mercer’s conditions. However, despite the
good performance offered, by imposing such “ad hoc” signal
relations, the underlying data structure is obviated. To properly
define a suitable kernel, unlabeled information and geometrical
relationships between labeled and unlabeled samples may be
useful to “deform” the core measure of distance, i.e., to estimate
a likelihood kernel according to the unlabeled data structure that
modifies the assumed prior kernel encoding signal relations.

B. Deforming the Kernel With the Graph Laplacian

For the formulation of the S2OC-SVM, let us consider the
data set {xi, yi}l+u

i=1 , where xi ∈ R
N and y ∈ {+1,−1}, made

up of l labeled samples and u unlabeled samples, l + u = n.
For the first l samples, the label is known, yi = 1. For the next
u samples, the label is unknown.

The classical kernel-based learning approach is based on
solving the regularization problem given by

f = arg min
h∈H

{
1
l

l∑
i=1

V (h,xi, yi) + γA‖h‖2
H

}
(9)

where V (·) is a loss function (hinge loss for the SVM), ‖h‖H
is the norm of the classification function h in the reproducing
kernel Hilbert space (RKHS), and γA controls the complexity
of function h. The Representer Theorem [16] states that a
solution can be found in the form f(x) =

∑l
i=1 αiK(x,xi).

Graph-based SSL methods, based on the manifold assump-
tion1, define a nearest neighbor graph using all data (labeled
and unlabeled), with edge weights Wij > 0 for neighbors and 0
otherwise, and then solve the following regularization problem:

f = arg min
h∈H

{
1
l

l∑
i=1

V (h,xi, yi) + γA‖h‖2
H

+
γI

n2

n∑
i=1

n∑
j=1

Wij (h(xi) − h(xj))
2

}
(10)

1In the manifold assumption, the classification function is assumed to be
smooth with respect to the underlying marginal data distribution, which is
estimated using labeled and unlabeled data.

where γI controls the complexity of the function h according
the intrinsic geometry of the data. Comparing (9) and (10), we
can see that the difference with the graph-based SSL problem
is the introduction of the last regularization term based on the
nearest neighbor graph.

Instead of solving (10) directly, we will modify (or deform)
the original kernel K in order to adapt it to the underlying dis-
tribution geometry, defining a new kernel K̃. The new problem
to be solved becomes

f̃ = arg min
h∈H̃

{
1
l

l∑
i=1

V (h,xi, yi) + γA‖h‖2
H̃

}
. (11)

We can now see that (9) and (11) are the same, but solved
with different kernels, and thus in different RKHS. The solution
of (11) is equally obtained as a kernel expansion using only
labeled samples

f̃(x) =
l∑

i=1

αiK̃(x,xi). (12)

In order to deform K and adapt it to the geometry of the
underlying distribution, we first define H̃ as RKHS. Let V
be a linear space with positive semidefinite inner product,
and let S : H → V be a bounded linear operator. Defining H̃
to be the space with the same functions as H, but modified
inner product 〈f, g〉H̃ = 〈f, g〉H + 〈Sf, Sg〉V , makes H̃ a valid
RKHS (interested readers can see the proof in [11]).

In the specific considered problem, it is needed that S and
V depend on the data. Therefore, let V be R

N , and define S
as the evaluation map S(f) ≡ f = (f(x1), . . . , f(xn)). Thus,
using a symmetric semidefinite matrix M, the seminorm in
R

N can be written as ‖Sf‖2
V = fTMf . With such a norm, the

regularization problem in (11) becomes

f̃ = arg min
h∈H

{
1
l

l∑
i=1

V (h,xi, yi) + γA

(
‖h‖2

H + hTMh
)}

(13)

where h includes both labeled and unlabeled data and the
matrix M encodes smoothness w.r.t. the graph or manifold.
Comparison between (10) and (13) reveals that (13) solves, in
fact, an SSL problem, but with the advantage that it can be
indirectly set out using (11) and solved using (12).

The geometry of the data is included through M, defined
proportional to the graph Laplacian L, i.e., M = γL, where γ ∈
[0,∞) is a free parameter that controls the “deformation” of the
kernel. To incorporate the geometry information of the mani-
fold, we build a graph G using labeled and unlabeled pixels.
The graph Laplacian of G is a matrix defined as L = D − W,
where W is the adjacency matrix, whose elements wij are a
measure of the similarity between pixels xi and xj calculated
using a distance function, and D is a diagonal matrix whose
elements are defined as dii =

∑n
j=1 wij , and they represent the

degree of each one of the n vertices of the graph G.
The graph Laplacian L measures the variation of the func-

tion f along the graph built upon all labeled and unlabeled
samples. It is worth noting that, by fixing γ = 0, the original
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TABLE I
SUMMARY OF THE MAIN CHARACTERISTICS OF THE FOUR DATA SETS USED IN THE EXPERIMENTS.
BACKGROUND PIXELS ARE UNKNOWN OR INVALID AND CANNOT BE USED IN THE EXPERIMENTS

(undeformed) kernel is obtained. Therefore, in the limit case,
the deformed kernel leads to the same results as the unmodi-
fied one.

The S2OC-SVM is obtained by replacing the nondeformed
kernel in (3) with the modified one whose elements can be
computed as

K̃(xi,xj) = K(xi,xj) − Kx
�
i (I + MK)−1MKxj (14)

where K is the complete kernel matrix formed with the
l labeled plus the u unlabeled samples, Kxi = [K(x1,xi),
. . . ,K(xn,xi)]T, and I is the identity matrix. The deformed
kernel fulfills Mercer’s conditions, being a valid kernel [11].
Moreover, any kernel-based method can easily incorporate in-
formation provided by unlabeled samples with this deformation
mechanism.

Solving the new problem is computationally equivalent to the
original supervised one. However, two more free parameters
need to be adjusted: the number of neighbors in the graph
Laplacian k and the amount of deformation γ. Moreover, the
new kernel (14) has to be computed, which implies a matrix
inversion of size (l + u) × (l + u). Note that this inversion
scales exponentially with the number of samples. Therefore,
one pays the cost of including more unlabeled samples to better
model the data marginal distribution. To stem this problem, the
number of unlabeled samples should be kept as small as pos-
sible. However, when dealing with nonrepresentative training
samples, a significant amount of unlabeled samples are needed
to improve classification accuracy. In order to effectively handle
the matrix inversion problem, it is possible to use techniques
that avoid the direct calculation of the inverse matrix, such as
the Nyström method [17] or the incomplete Cholesky factoriza-
tion [18].

IV. b-SVM

The second proposed one-class classifier is the b-SVM. This
classifier was originally proposed in [13] for text classification
using only target and unlabeled data. The roots of the b-SVM
are in [19], where it is stated that if the sample size is large
enough, minimizing the number of unlabeled samples classified
as targets while correctly classifying the labeled target samples
will give an accurate classifier.

Let us consider again the data set {xi}l+u
i=1 ∈ R

N made up
of l labeled samples and u unlabeled samples (n = l + u).
The l labeled samples all belong to the same class: the target

class. Concerning unlabeled samples, they are treated by the
algorithm as being all outliers, although their class is unknown.
This characteristic makes b-SVM a sort of semisupervised
classifier. Under these assumptions, the b-SVM formulation is
defined as

min
ω,ξ

{
1
2
‖ω‖2 + Ct

l∑
i=1

ξi + Co

l+u∑
i=l+1

ξi

}

∀ i = 1, . . . , n (15)

subject to

〈ω,φ(xi)〉 ≥ 1 − ξi (16)

where ξi ≥ 0 are slack variables and Ct and Co are the costs
assigned to errors on target and outlier (unlabeled) classes,
respectively. The two cost values should be adjusted to fulfill
the goal of classifying the target class correctly while, at the
same time, trying to minimize the number of unlabeled samples
classified as target class. To achieve this goal, Ct should have a
large value, as initially we trust our labeled training set, and Co

should have a small value, because it is unknown whether the
unlabeled samples are actually targets or outliers.

V. EXPERIMENTAL RESULTS

This section presents the experimental results obtained with
the proposed S2OC-SVM and b-SVM and compares them
against two classical one-class methods and, when outlier sam-
ples are available in the data sets, also against the standard
binary SVM.

A. Data Description

Experiments in multisource (optical and radar) urban
monitoring, hyperspectral crop detection, multispectral cloud
screening, and multispectral change detection illustrate the
capabilities of the proposed methods in different remote sensing
applications. In the following, a description of the four data sets
is given, and Table I summarizes their main characteristics.

1) Multisource Urban Monitoring: For the first set of ex-
periments, we used images from the Urban Expansion Moni-
toring project [20], [21]. The considered test site was Naples
(Italy), where images from ERS2 SAR and Landsat Thematic
Mapper (TM) sensors were acquired in 1999 (Fig. 2). The avail-
able features were seven TM bands, two SAR backscattering
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Fig. 2. RGB image composition of the Naples image using Landsat bands 3,
2, and 1. The red square surrounds the 400 × 400 area used in our experiments.

Fig. 3. RGB composition of the data acquired over the KSC by the NASA
AVIRIS instrument. Thirteen classes were identified and labeled; they are
superimposed in the image.

intensities (0–35 days), and the SAR interferometric coherence.
Since these features come from different sensors, the first step
was to perform a specific processing and conditioning of optical
and SAR data and to coregister all images [20], [21]. After
preprocessing, all features were stacked at a pixel level.

2) Hyperspectral Crop Detection: The second data set
comes from the National Aeronautics and Space Administra-
tion (NASA) AVIRIS instrument that acquired data over the
Kennedy Space Center (KSC), Florida, U.S., in 1996. The
AVIRIS sensor acquires 224 bands of 10-nm width with center
wavelengths from 400 to 2500 nm. The data were acquired from
an altitude of 20 km and have a spatial resolution of 18 m.
After removing low SNR and water absorption bands, a total of
176 bands remained for further analysis. The data set has
13 classes representing the various land cover types present
in the KSC area. The reader is referred to http://www.
csr.utexas.edu/ for further detail on this data set. Fig. 3 shows
an RGB composition with the labeled classes highlighted. For
our experiments, class “Graminoid marsh” was selected as the
target class, whereas the others are considered as outlier class.
The interest in this class is motivated by its intrinsic complexity;
it is underrepresented, and it can be confused with similar
subclasses in the scene, as documented in [15].

Fig. 4. Channel 4 of the Landsat-5 TM images acquired on the area of Mexico
in (left) April 2000 and (right) May 2002. The darker area in the May 2002
image corresponds to the burnt area.

3) Multispectral Cloud Screening: The third data set is con-
stituted by an ENVISAT MERIS Level 1b (L1b) image taken
over France. The tested image was acquired on March 19, 2005.
For our experiments, we used six physically inspired features
extracted from the 15 MERIS spectral bands: cloud brightness
and whiteness in the visible (VIS) and near-infrared (NIR)
spectral ranges, an atmospheric oxygen feature, and a water
vapor absorption feature [22].

4) Change Detection: The fourth data set is made up of
a section (512 × 512 pixels) of two multispectral images
acquired by the TM sensor of the Landsat-5 satellite in an
area of Mexico in April 2000 and May 2002 (Fig. 4). Between
the two aforementioned dates, a fire destroyed a large portion
of the vegetation in the considered region. A detailed visual
analysis of both the available multitemporal images and the
multispectral difference image [23] allowed us to produce a
reference map containing 25 599 changed and 236 545 un-
changed pixels for test purposes. As the class of changed pixels
is the most relevant from the application point of view and
it usually shows a small prior probability, it was selected as
the target class. Here, the multispectral difference image ob-
tained subtracting the two dates according to the change vector
analysis technique [23] was used as input to the considered
classifiers.

B. Classifier Development and Experimental Setup

In this paper, the results obtained with S2OC-SVM and
b-SVM are compared with the ones achieved by two reference
one-class classifiers: 1) the one-class Gaussian domain descrip-
tor (Gaussian DD) [24], which is a standard and simple one-
class classification algorithm, and 2) the OC-SVM, which is
the base of the proposed S2OC-SVM. Moreover, as for two
of the data sets (KSC and MERIS L1b), some outlier samples
are available; also, the standard binary SVM is trained for
comparison.

In all the experiments, we trained the kernel-based methods
using the RBF Gaussian kernel. For the S2OC-SVM, the graph
Laplacian L consisted of l + u nodes connected using k nearest
neighbors, and the edge weights Wij were computed using
the Euclidean distance among samples. The graph Laplacian
deforms the kernel through (14), with M = γL. Thus, the free
parameter γ tunes the amount of kernel deformation. For the
b-SVM, Ct and Co were adjusted always such that Ct > Co.
Table II summarizes the tested algorithms along with their free
parameters and their meaning, search ranges, and steps.
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TABLE II
FREE PARAMETERS, THEIR MEANING, SEARCH RANGES, AND STEPS FOR THE TESTED METHODS

Supervised one-class classifiers were trained according to the
following three-step procedure.

1) Free-parameter search. This search is done using a four-
fold cross-validation strategy on the training set2. In this
step, only labeled samples for the target class are used to
tune the free parameters of the classifier (when available,
also labeled samples for outlier class can be used).

2) Classifier learning. Using the optimal set of free param-
eters found in the previous step, the final classifier is
trained using all the available labeled target samples in
the training set.

3) Classifier testing. The trained classifier is used to label
the whole image (except the training samples), the con-
fusion matrix is computed, and the kappa statistic (κ) is
estimated [25].

When semisupervised one-class classifiers are considered,
steps 1) and 2) also involve unlabeled samples.

In general, free parameters are hard to adjust when only
target labeled samples are available in the training set. The
problem is that, in such situations, only the true positive
rate measure (sensitivity) can be computed, while the other
error counterpart (specificity) cannot. In these cases, the
free-parameter selection was carried out by evaluating
arg maxθ{OA[%]/#SV }, where θ is the whole set of free
parameters, OA is the overall accuracy (the percentage of
pixels correctly assigned), and #SV is the number of support
vectors3. This bound of performance enforces high overall
accuracy while limiting model complexity keeping a low
number of support vectors [5].

On the other hand, in the data sets where some labeled outlier
samples were available for validation, the kappa statistic was
used to measure the error of the classifier in the training set and
to select the best free parameters.

2In v-fold cross-validation, the training set is split in v disjoint groups: v − 1
sets are used for training and the remaining one for validation. The procedure
is repeated v times. The best combination of free parameters is chosen by
minimizing an average error measurement computed with the predictions on
the v different validation sets.

3Except for the Gaussian DD algorithm, for which no way to measure the
model complexity is available, and thus, just the overall accuracy was used.

C. Results

In this section, quantitative and qualitative results are shown
for the four considered data sets. In particular, attention is de-
voted to the performance of the S2OC-SVM and b-SVM meth-
ods in different remote sensing ill-posed and high-uncertainty
conditions.

All the experiments were carried out using ten random
realizations of labeled and unlabeled training sets. The kappa
statistic is estimated from the confusion matrix for each real-
ization, and as a final result, the average kappa statistic on the
ten realizations is provided together with its standard deviation.
Table I summarizes the number of labeled l, unlabeled u, and
outlier o samples used in each experiment.

1) Multisource Urban Monitoring: The Naples data set con-
stitutes a complex example of urban monitoring using multisen-
sor data (optical and SAR data). The experiments were carried
out using only labeled samples of the target (urban) class. No
labeled samples of the outlier class were used in the training
process, which makes it a very difficult task.

Here, the attention is payed to the complex scenario of
working with only l = 60 labeled samples for the “urban”
class using u = 1000 unlabeled samples. The first four rows of
Table III show the results for this data set. The average kappa
statistic on the test set for the OC-SVM was 0.8, while the
S2OC-SVM improved results to 0.84, and the b-SVM obtained
0.85. For this data set, the Gaussian DD has a low performance,
obtaining an average κ of 0.66. These results show that the
proposed methods can improve the results obtained with stan-
dard one-class methods. In general, semisupervised methods
obtain better results in all ten realizations, even in those (for
instance, fifth realization) where standard one-class methods
fail. Fig. 5(a) shows the best classification maps, obtained in
the sixth realization.

2) Hyperspectral Crop Detection: The KSC hyperspectral
data set constitutes a challenging problem of target detection
due to the characteristics of the “Graminoid marsh” class
selected as target. In this experiment, 50 labeled samples were
used, and a small number of outlier labeled samples (o = 50)
were involved in the free-parameter selection. For the semisu-
pervised classifiers, u = 1000 unlabeled samples were used.

The one-class classifiers Gaussian DD and OC-SVM ob-
tained an average κ of 0.77 and 0.58, respectively. The proposed
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TABLE III
RESULTS FOR ALL DATA SETS AND CLASSIFIERS. THE KAPPA STATISTIC IS PRESENTED FOR THE TEN REALIZATIONS.

MEAN AND STANDARD DEVIATIONS ARE PRESENTED IN THE LAST COLUMN

semisupervised S2OC-SVM improved the result obtained by
the OC-SVM, obtaining 0.64 for the averaged κ, but did not
improve the Gaussian DD classifier that worked well for this
particular data set. The b-SVM outperformed all classifiers,
except the Gaussian DD, obtaining an average κ of 0.69.

As outliers were available for this data set, a binary SVM
was also trained and tested, which resulted in an average κ of
0.58. This result confirms that, in multiclass problems where
the user is interested in only one class, one-class classifiers
can obtain better results than traditional supervised (binary)
classifiers. Fig. 5(b) shows the classification maps obtained in
realization 7 with the algorithms.

3) Multispectral Cloud Screening: In this experiment, we
aim to detect cloudy areas in a MERIS L1b multispectral
image. Cloud screening is specially well suited to semisuper-
vised approaches since cloud features change to a great extent
depending on the cloud type, thickness, transparency, height,
and background, making extremely difficult the definition of a
representative training set. Cloud screening is carried out be-
fore atmospheric corrections (i.e., with the data being affected
by the atmospheric conditions), thus increasing the solution
complexity. Moreover, in this particular case, the presence of
snow, which is easily confused with clouds, further increases
the problem complexity.

Here, 200 labeled target samples were used to build a re-
liable OC-SVM, 200 samples of cloud-free areas (outliers)
were involved to properly adjust free parameters, and 1000 un-
labeled samples were used for SSL. Fig. 5(c) shows the RGB
composite image of the area. Note that only the upper left and
the bottom right parts of the image are covered by clouds,
while the remaining white areas are snow covered. As can be
deduced from the low κ values in Table III, standard one-class
classifiers are unable to distinguish clouds from snow, whereas
semisupervised classifiers discriminate much better and suc-
cessfully reject most of the snow areas (higher κ coefficient).
In this experiment, the proposed S2OC-SVM semisupervised
method significantly improves the OC-SVM classifier in all re-
alizations. This is also clear when observing maps in Fig. 5(c).

4) Change Detection: In the last experiment, the goal is
to detect the location of changed areas, assuming that no
ground truth information is available, as what usually hap-
pens in change-detection applications. An initial set of labeled
samples having a high probability to be correctly assigned to
the classes of changed pixels is detected by exploiting the
intrinsic unsupervised properties of the change vector analy-
sis technique following [26]. Nearly certain changed patterns
show a magnitude greater than T + δ, where T is the decision
threshold that separates changed from unchanged patterns and
is selected according to the Bayes decision rule for minimum
error [27] and δ is a positive constant that allows one to exclude
uncertain pixels (the ones with magnitude too close to T ) from
the training set. Patterns with magnitude smaller than T + δ are
considered as unlabeled.

For this particular problem, l = 453 and u = 969. Different
from [28], here, outliers (unchanged pixels) were not used
in the training process. As one can see from Table III, the
S2OC-SVM performs better than the OC-SVM in most of the
cases. The improvement introduced by the S2OC-SVM is small
due to the simple structure of the considered problem and the
low dimensionality of the input space. These results suggest
that the proposed method is better suited for high-dimensional
problems. However, S2OC-SVM significantly reduced the im-
pact of false detected targets on the change-detection map. The
b-SVM obtains an average κ value that is slightly lower for
this data set, but on the other hand, we can see that its results
are more uniform and consistent across all runs, suggesting
less dependence on the training set than the OC-SVM or the
S2OC-SVM. Fig. 5(d) shows the reference and classification
maps obtained for realization 3.

VI. DISCUSSION

In the experiments, the proposed S2OC-SVM and b-SVM
obtained more uniform (i.e., less noisy) classification cover
maps and significantly reduced the number of false positives.
Comparing both methods, in general, the b-SVM worked
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Fig. 5. True and classification maps for all data sets obtained with Gaussian DD, OC-SVM, S2OC-SVM, and b-SVM for some specific realizations. (a) Naples
data set ground truth and classification maps for realization 6 (l = 60 and u = 1000). (b) KSC data set ground truth and classification maps for realization 7
(l = 50, u = 1000, and o = 50). (c) MERIS L1b data set RGB composition and classification maps for realization 6 (l = 200, u = 1000, and o = 200).
(d) Mexico data set reference and classification maps for realization 3 (l = 453 and u = 969).

slightly better, reducing not only the number of false positives
but also the number of false negatives.

From the results in Table III, one of the advantages of the
presented S2OC-SVM method is that it will always perform, at
least, as well as the OC-SVM: This is the case, for example, in
KSC realization 8, where the S2OC-SVM optimal kernel was
the original OC-SVM kernel (the best value for γ, controlling
the amount of kernel deformation, was zero).

The Gaussian DD obtained the best average κ values for
two data sets, KSC and Mexico. In both data sets, these good
results reveal the Gaussian underlying distribution of the target

class. Therefore, the Gaussian DD, despite being simple, is a
clear candidate in situations where a Gaussian distribution is
suspected. It also has the advantage of being fast, because only
the covariance matrix has to be estimated. On the other hand,
when the target class does not follow a Gaussian distribution, or
it is underrepresented by the training set, this classifier obtains
poor results. This is the case for the Naples and MERIS L1b
data sets.

For comparison purposes, in the KSC and MERIS L1b
data sets, where outlier samples were available, the standard
binary SVM classifier was also trained. In the case of the
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Fig. 6. Mean CPU times of the algorithms measured using Matlab cputime
function.

KSC, the SVM obtained worst results than the one-class or
semisupervised methods. This result was expected, taking into
account that the SVM tries, in this case, to model all classes
being nontarget (12 in total) as one single class. On the other
hand, one-class methods focus in obtaining a good model for
the selected class of interest. For the MERIS L1b data set, the
SVM obtained the best average κ value. In this case, given that
this was more clearly a binary classification problem (cloudy
versus cloud free), the SVM has the advantage, over one-class
and semisupervised methods, of having, in the training phase,
information about both classes.

As a final analysis, the different algorithms were compared
in terms of computational cost (here, the cputime Matlab
function was used to evaluate it). All the algorithms run un-
der the Matlab environment. For the Gaussian DD, we used
the dd_tools toolbox [29]. The rest of the algorithms were
implemented using the LibSVM [30]. As can be seen from
Fig. 6, standard one-class methods took a second or less to
train the models and make predictions, whereas S2OC-SVM
and bSVM methods needed up to 100 times more to carry out
the same process. This was an expected result, given that the
semisupervised methods have to deal with many more pixels
than the standard one-class methods. However, depending on
the complexity of the considered problem, the gain in accuracy
obtained by semisupervised methods justifies the higher com-
putational cost.

VII. CONCLUSION

Two methods for one-class classification and target detection
for remote sensing problems that take advantage of unlabeled
sample information for improving classification accuracy have
been presented and evaluated. The S2OC-SVM method works
by taking as core learner the OC-SVM and uses the graph
Laplacian to incorporate the unlabeled information into the
kernel machine by deforming the supervised kernel matrix.
The b-SVM method treats all unlabeled samples as outliers
and uses different weights for each class (target and outlier) in

the training process. Four real one-class classification scenarios
have been evaluated: urban monitoring, target detection, cloud
masking, and change detection. The obtained results reveal the
potential of the proposed methods. It has been shown that the
presented methodology can improve results by exploiting
the information contained in the unlabeled data, particularly
when the information in the labeled samples is poor or lacks
representativeness. Further work is tied to analyze the im-
provement of semisupervised classifiers as a function of the
unlabeled samples and input dimensionality.
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