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This paper formulates the problem of distinguishing changed from unchanged pixels in multitemporal
remote sensing images as a minimum enclosing ball (MEB) problem with changed pixels as target class.
The definition of the sphere-shaped decision boundary with minimal volume that embraces changed pix-
els is approached in the context of the support vector formalism adopting a support vector domain
description (SVDD) one-class classifier. SVDD maps the data into a high dimensional feature space where
the spherical support of the high dimensional distribution of changed pixels is computed. Unlike the
standard SVDD, the proposed formulation of the SVDD uses both target and outlier samples for defining
the MEB, and is included here in an unsupervised scheme for change detection. To this purpose, nearly
certain training examples for the classes of both targets (i.e., changed pixels) and outliers (i.e., unchanged
pixels) are identified by thresholding the magnitude of the spectral change vectors. Experimental results
obtained on two different multitemporal and multispectral remote sensing images demonstrate the
effectiveness of the proposed method.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In the remote-sensing literature, two kinds of approaches to
change detection in multitemporal remote sensing images can be
identified: the supervised and the unsupervised approach. The for-
mer requires ground truth information for setting up the system
parameters, whereas the latter does not. Although supervised ap-
proaches usually result in higher change detection accuracies,
unsupervised techniques are more appealing at an operational le-
vel as the ground truth information is not typically available in
many change detection applications. In the literature, several
unsupervised change detection methods have been proposed (Bazi
et al., 2005; Bovolo and Bruzzone, 2005, 2006, 2007a,b; Bovolo
et al., 2008; Bruzzone and Fernández Prieto, 2000; Ghosh et al.,
2007; Inglada and Mercier, 2007; Radke et al., 2005; Singh,
1989). Among them, one of the simplest (yet effective) and most
widely used technique is the change vector analysis (CVA) (Bovolo
and Bruzzone, 2007b; Bruzzone and Fernández Prieto, 2000; Singh,
1989). CVA is typically applied to multispectral images acquired by
passive sensors, by using all the spectral channels that contain use-
ful information with respect to the considered kind of change. The
CVA technique is based on three steps: (i) image comparison by
vector subtraction; (ii) magnitude of the spectral change vectors
computation (sometimes also the direction of SCVs is computed)
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(Bovolo and Bruzzone, 2007b); and (iii) thresholding. The first step
computes the vector difference of spectral feature vectors associ-
ated with pairs of corresponding pixels in two images acquired
on the same geographical area at two different times, and results
in a multispectral difference image. Each pixel in this image is
associated with a multidimensional vector named spectral change
vector (SCV). In the second step, the magnitude of each SCV is com-
puted. This operation results in a 1-dimensional image usually re-
ferred as magnitude image. Finally, thresholding is applied to the
magnitude image in order to obtain the desired change detection
map. Due to the statistical behavior of multispectral images, and
to the properties of the magnitude operator, it is possible to assert
that pixels showing a magnitude higher than a given threshold va-
lue are changed, while pixels showing a magnitude lower than the
threshold value are unchanged (Bovolo and Bruzzone, 2007b; Bru-
zzone and Fernández Prieto, 2000; Singh, 1989). A major drawback
of using the magnitude of SCVs is that the magnitude operator is
not biunique and results in a decrease of information with respect
to the SCVs feature space. Nonetheless, if no ground truth is avail-
able, the magnitude operator allows one to establish a relatively
simple criterion (based on thresholding) for identifying nearly cer-
tain pixels belonging to either the class of changed pixels or the
class of unchanged pixels (Bovolo and Bruzzone, 2007b; Bovolo
et al., 2008).

In this paper, in order to take advantage of the large amount of
information present in the multispectral difference image, we for-
mulate the change detection problem in the higher dimensional
SCVs feature space. The unsupervised analysis of SCVs requires
ethod for change detection in multitemporal images. Pattern Recognition
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the application of clustering algorithms in the context of an ill-
posed problem. In order to address this problem, we reformulate
the unsupervised change detection problem in the multispectral
difference image as a data domain description problem, also
known as one-class classification. Among the different methods
for domain description (or outlier detection) present in the litera-
ture (Ritter and Gallegos, 1997; Tarassenko, 1995), the support
vector data description (SVDD) method (Tax and Duin, 1999,
2004) is adopted here. This method aims at mapping the data into
a high dimensional feature space where a hypersphere that en-
closes most of the patterns belonging to the class of interest (target
class) and rejecting the rest (outliers) can be defined. As all kernel
methods, SVDD shows some interesting advantages over other
techniques, like intrinsic regularization and robustness to noise
and high dimensionality (Camps-Valls et al., 2007; Schölkopf
et al., 1999; Schölkopf and Smola, 2002; Shawe-Taylor and Cristia-
nini, 2004). SVDD was recently introduced in the remote-sensing
literature (Muñoz-Marí et al., 2007; Camps-Valls et al., 2008) and
demonstrated to be effective in solving classification and change
detection problems when ground truth information is available.
In both Muñoz-Marí et al. (2007) and Camps-Valls et al. (2008),
SVDD is used as a supervised one-class classifier involving in the
training phase only samples of the target class. In the present pa-
per, the SVDD is included in a system for unsupervised change
detection, that aims at separating pixels belonging to the class of
change (target class) from all unchanged pixels (outlier class) with-
out any ground truth information. In order to properly constrain
the learning process in absence of ground truth information, an
unsupervised procedure for identifying examples is adopted,
which is based on a selective thresholding of the magnitude of
SCVs (Bovolo et al., 2008). Thanks to the specific nature of the
change detection problem, this approach leads to the identification
of both positive and negative examples. The outlier seeds are in-
cluded in the training of the SVDD leading to a more effective
description of the change detection problem. The resulting one-
class classifier (OCC) shows a higher capability in describing the
target data (Ben-Hur et al., 2001; Tax and Duin, 1999, 2004).

The paper is organized into four sections. In the next section,
the architecture of the proposed change detection method is pre-
sented and each of its components is described in detail. In section
3 experimental results obtained by applying the proposed tech-
nique to two different remote sensing data sets are presented. Fi-
nally, Section 4 draws the conclusion of this work.

2. Proposed methodology

Let I1 and I2 be two co-registered multispectral images of size
P � Q acquired over the same geographical area at different times
I1
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t1 and t2. Let N be the number of spectral channels of each consid-
ered image, and X = {xn, xc} the set of classes of no-changed and
changed pixels to be identified, respectively. The proposed tech-
nique is based on a two-step procedure: (i) an initialization step
that exploits a Bayesian thresholding of the magnitude of SCVs;
and (ii) a support vector data description (SVDD) method that ana-
lyzes the multispectral difference image ID = I2 � I1 (see Fig. 1).
Therefore, not only change information present in the magnitude
of SVCs is considered, but also the high dimensional information
present in the multispectral difference image. In the following,
we analyze these steps in greater detail.

2.1. Bayesian initialization

The first step of the proposed unsupervised method for change
detection aims at identifying the sets ST and SO of target (un-
changed pixels) and outlier (changed pixels) patterns to be used
as seeds for initializing the support vector data description (SVDD)
one-class classifier (OCC). Following the discussion in (Bovolo et al.,
2008), these subsets should contain pixels that are associated with
changed and no-changed areas on the ground. However, as in our
problem no ground truth information is available, the ideal
assumption is relaxed and replaced with the more realistic con-
straint that seeds included in the sets ST and SO are associated with
a high probability to belong to changed or unchanged areas.

According to the procedure described in (Bovolo et al., 2008),
pixels with a high probability to belong to the change and no-
change classes are identified by applying the CVA technique to I1

and I2, and by selectively thresholding the statistical distribution
p(iq) of the magnitude of SCVs in Iq (iq is the random variable asso-
ciated with the magnitude of the spectral change vectors in Iq). In
the literature, several threshold-selection methods (e.g., see Bruzz-
one and Fernández Prieto, 2000) have been proposed that can be
used for identifying the threshold value T, which separates chan-
ged from unchanged pixels. Among them, we recall threshold-
selection approaches based on the Bayesian decision theory, which
showed to be effective in many change detection scenarios. The
application of the Bayesian theory to threshold-selection requires
the estimation of the statistical parameters of classes, i.e., the class
prior probabilities and the class-conditional probabilities. As we
are dealing with an unsupervised change detection problem, these
statistical quantities are estimated from the data (without any
prior information) according to the expectation-maximization
(EM) algorithm (Bruzzone and Fernández Prieto, 2000). The esti-
mated class-statistical parameters are then used with the Bayes
decision rule for minimum-error for identifying the decision
threshold T that separates changed from unchanged patterns.
However, if we apply the Bayesian threshold to Iq, we obtain a
Selective
Bayesian 
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SVDD 
Classifier 

Change 
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change detection map affected by the high uncertainty that charac-
terizes patterns with a magnitude value close to the threshold. This
problem arises from the loss of information associated with the
magnitude operator. Nevertheless, the threshold value T represents
a reasonable reference point for identifying the subsets ST and SO.
According to this observation and following Bovolo et al. (2008),
the desired sets of patterns with a high probability to be correctly
assigned to one of the two classes are obtained by defining a mar-
gin around the minimum-error threshold. This margin conceptu-
ally separates uncertain from certain patterns. Patterns that fall
outside the margin and show a high magnitude have a high prob-
ability to be changed and are labeled as targets, whereas patterns
that fall outside the margin and show a low magnitude have a high
probability to be unchanged and are labeled as outliers. Therefore,
the resulting sets ST and SO are defined as (see Fig. 2):

ST ¼ fxn 2 RNjiqn P T þ d2gP�Q
n¼1 and

SO ¼ fxn 2 RNjiqn 6 T � d2gP�Q
n¼1 ð1Þ

where iqn is a 1-dimensional pattern in Iq, and xn is a N-dimensional
vector whose components are the spectral change vectors of the nth
pattern in ID. According to the standard classification setup, the
nth target pattern in ST is associated with a label yn = +1, while
the nth outlier pattern in SO is associated with a label yn = �1. It is
worth noting that constants d1 and d2 should be selected in order
to obtain a high probability that patterns in ST and SO are changed
and unchanged, respectively.

2.2. Change detection based on SVDD including outlier information

The second step of the proposed method aims at giving a
description of the class of changed pixels (target) in the SCVs fea-
ture space by exploiting the information present in the target
and outlier sets defined in the previous step. The higher dimen-
sionality that characterizes the multispectral difference image al-
lows integrating the incomplete information on targets and
outliers extracted from the 1-dimensional magnitude of SCVs and
achieving a better description of the target class. The problem of
finding a description of the target class data is faced here by using
a support vector data description (SVDD) technique (Tax and Duin,
1999, 2004). SVDD aims at distinguishing between targets and out-
liers defining a closed boundary around the target data. In greater
detail, the SVDD defines a minimum volume hypersphere in the
kernel feature space that includes all (or most) of the target pat-
terns available in the training set by minimizing a cost function.

Two different formulations of the cost function have been given
in the literature. The first, and standard one, involves only target
examples in the definition of the cost function (Tax and Duin,
1999); whereas, the second one involves both targets and outliers
(Tax and Duin, 2004). It has been shown (Tax and Duin, 2004) that
the joint use of both positive and negative examples in the training
phase improves the data description. As in the considered data do-
T 

δ1 δ2

( )p iρ
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SO ST

Fig. 2. Example of distribution of the magnitude of SCVs p(iq) and of the definition
of the targets and outliers subsets.
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main description problem it is possible to generate examples of
both classes (as described in the previous sub-section), we adopt
the second formulation for the definition of the minimum enclos-
ing ball.

Note that, depending on the size of the considered images, the
cardinality of ST and SO can be high. To decrease the computational
load, it is reasonable to randomly subsample both ST and SO. There-
fore let us assume that after subsampling the set of target pixels is
made up of KT examples (i.e., ST ¼ fxtgKT

t¼1), whereas the set of out-
liers is made up of KO counterexamples (i.e., SO ¼ fxogKO

o¼1). In the
following, indexes t and u will be used for identifying target pat-
terns while indexes o and p will be used for identifying outliers.
Let us assume that xo and xt in SO and ST, respectively, are column
vectors. We can characterize the minimum enclosing ball (MEB)
with its center a and radius R (>0), and define the problem of min-
imizing its volume as:

min
R;a
fR2g ð2Þ

subject to

k/ðxtÞ � ak2
6 R2 8t ¼ 1; . . . ;KT

k/ðxoÞ � ak2
> R2 8o ¼ 1; . . . ;KO

(
ð3Þ

where u(�) is a non-linear transformation that maps the input data
into a high dimensional Hilbert feature space H where target data
description can be achieved with a hypersphere. The first constraint
in (2) comes from the assumption that positive examples should fall
inside the sphere, whereas the second comes from the assumption
that outliers should fall outside it (i.e., counterexamples should be
rejected), see Fig. 3.

As for standard SVMs, the cost function can be reformulated in
order to allow a certain amount of errors in both the positive and
negative sample sets. Let us introduce slack variables nt

(t = 1, . . . , Kt) and no (o = 1, . . . , Ko) associated with the target and
outlier patterns, respectively (see Fig. 3). Accordingly, the error
function to be minimized becomes:

min
R;a;nt ;no

R2 þ CT

XKT

t¼1

nt þ CO

XKO

o¼1

no

( )
ð4Þ

subject to

k/ðxtÞ � ak2
6 R2 þ nt ; nt P 0; 8t ¼ 1; . . . ;KT

k/ðxoÞ � ak2
> R2 � no; no P 0 8o ¼ 1; . . . ;KO

(
ð5Þ
Fig. 3. An example of hyperspherical boundary defined by SVDD: light grey
samples (inside the sphere) are targets; dark grey samples (outside the sphere) are
outliers; samples on the boundary are support vectors. Both target and outlier
samples on the wrong side of the boundary are associated with slack variables to
deal with errors.
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where CT and CO are two regularization parameters that control the
trade-off between the volume of the hypersphere and the number
of rejected patterns for the target and outlier classes, respectively.
The primal function (3) is usually solved through its Lagrange dual
problem (Schölkopf and Smola, 2002; Tax and Duin, 2004), which
reduces to the following minimization problem:

max
at ;ao

XKT

t¼1

ath/ðxtÞ;/ðxtÞi �
XKO

o¼1

aoh/ðxoÞ;/ðxoÞi
(

�
XKT

t;u¼1

atauh/ðxtÞ;/ðxuÞi þ 2
XKO

o¼1

XKT

t¼1

aoaph/ðxoÞ;/ðxtÞi

�
XKO

o;p¼1

aoaph/ðxoÞ;/ðxpÞi
)

ð6Þ

constrained to

XKT

t¼1

at �
XKO

o¼1

ao ¼ 1

a ¼
XKT

t¼1

at/ðxtÞ �
XKO

o¼1

ao/ðxoÞ

0 6 at 6 CT ; 8t ¼ 1; . . . ;KT

0 6 ao 6 CO; 8o ¼ 1; . . . ;KO

ð7Þ

The given data description always results in a closed boundary
around the target class.

The inner product of mapping functions u(�) (which are in prin-
ciple unknown) that appears in (5) can be replaced with a kernel
function K(�,�):

Kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi with i; j 2 fo; t; p;ug ð8Þ

Substituting (7) into (5) we obtain

max
at ;ao

XKT

t¼1

atKðxt; xtÞ �
XKO

o¼1

aoKðxo; xoÞ �
XKT

t;u¼1

atauKðxt ; xuÞ
(

þ2
XKO

o¼1

XKT

t¼1

aoatKðxo; xtÞ �
XKO

o;p¼1

aoapKðxo; xpÞ
)

ð9Þ

This allows us to construct a non-linear SVDD by defining only the
kernel function, without the need to know the mapping u(�)
explicitly.

After solving the dual problem, to decide whether any vector xn

in ID belongs to the class of change (targets) or no-change (outliers)
the distance to the center of the sphere should be evaluated. A pat-
tern xn is classified as changed if it falls inside the sphere (i.e., its
distance from the center of the sphere is lower than the radius),
otherwise if the distance from the center of the sphere is higher
than the radius, xn falls outside the boundary and it is marked as
unchanged. The decision rules becomes as follows:

xn 2
xc $ k/ðxnÞ � ak2

6 R2

xn $ k/ðxnÞ � ak2
> R2

(
ð10Þ

In other words, a vector xn is accepted as target (i.e., is classified as
changed pixel) if the following inequality is satisfied:

h/ðxnÞ � a;/ðxnÞ � ai

¼ Kðxn; xnÞ � 2
XKT

t¼1

atKðxn; xtÞ �
XKO

o¼1

aoKðxn; xoÞ
" #

þ
XKT

t;u¼1

atauKðxt ; xuÞ � 2
XKO

o¼1

XKT

t¼1

aoatKðxo; xtÞ

þ
XKO

o;p¼1

aoapKðxo; xpÞ 6 R2 ð11Þ

otherwise it is rejected and identified as outlier.
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3. Experimental results

The proposed method has been tested on two multitemporal
datasets made up of a pair of multispectral images acquired by
the Thematic Mapper (TM) multispectral sensor of the Landsat-5
satellite. The first data set refers to an area in the Mexico, the sec-
ond concerns the Sardinia Island (Italy). In the following subsec-
tions, we present the experimental setup and the results
obtained on these data sets.
3.1. Experimental setup

In all the experiments the initialization threshold value T was
obtained according to a manual-trial-and-error procedure (MTEP).
The MTEP performs a non-automatic evaluation of the overall
change detection errors versus all the possible values of the deci-
sion threshold; and then selects the threshold value that leads to
a change detection map that shows the minimum overall error if
compared to a reference map. This choice allowed us evaluating
the performance of the proposed method without any bias due
to human operator subjectivity or to the fact that the selection
was made by an automatic thresholding algorithm. At an opera-
tional level, any automatic threshold-selection technique can be
adopted (see Bruzzone and Fernández Prieto (2000) for more de-
tails about thresholding the magnitude image). The constants d1

and d2 were set equal to 10, resulting in ST and SO sets with a high
cardinality. In order to reduce the computational load of the SVDD
training, ST and SO were randomly sub-sampled. Several trials were
carried out for different realizations of ST and SO. For both consid-
ered data sets the trials resulted in quite similar performance;
therefore in the following only the results of the realization that
exhibited in the highest Kappa accuracy are reported.

In the learning of the SVDD three parameters should be tuned:
(i) the width r of the employed Gaussian kernel function (Ritter
and Gallegos, 1997); (ii) the regularization parameters CT for wrong
pixels in the target class; and iii) the regularization parameters CO

for wrong pixels in the outlier class. In our experiments, for conve-
nience, we assumed that CT = CO. The selection process was based
on a grid search strategy with values of the free parameters in
the following ranges: (i) regularization parameters CT ¼ CO ¼
C 2 ½10�3;5�; and (ii) Gaussian kernel width r 2 ½0:01;1�. The tun-
ing of CT, CO and r was performed with both: (i) a supervised pro-
cedure based on the available reference map (this allows one to
establish an ‘‘upper bound” of SVDD performance); and (ii) an
unsupervised procedure based on the strategy proposed in (Bovolo
et al., 2008) which is based on the information available in ST and
SO and on a similarity measure between change detection maps ob-
tained with different settings.

The results obtained with the proposed method were compared
with the ones obtained with a standard CVA algorithm applied to Iq
with manual trial-and-error thresholding procedure. The compari-
son is performed in terms of false alarms, missed alarms, overall
errors and Kappa coefficient of agreement evaluated according to
the reference maps.
3.2. Results on the Mexico data set

The Mexico data set is a section of 512 � 360 pixels of two co-
registered multispectral images acquired by the TM sensor of the
Landsat-5 satellite. The two images were acquired in April 2000
(I1) and May 2002 (I2) (Fig. 4a and b). Between the two acquisi-
tions, two wildfires occurred in this area. A reference map concern-
ing their location was available (Fig. 4c). This map includes 29,506
changed pixels and 154,814 unchanged pixels. A preliminary anal-
ysis pointed out that spectral channels 4 and 5 are the most rele-
ethod for change detection in multitemporal images. Pattern Recognition
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Fig. 4. Channel 4 of the Landsat-5 TM images acquired on the Mexico in: (a) April 2000, and (b) May 2002. (c) Available reference map of the burned areas.

Fig. 5. Distribution of the class of changed (dark grey) and unchanged (light grey)
pixels in the 2-dimensional ID image according to the available reference map. The
black line is the SVDD decision boundary obtained for the model selected in an
unsupervised way according to the method proposed in (Bovolo et al., 2008)
(Mexico data set).
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vant for discriminating the burned area on this data set. Accord-
ingly, we used these channels in our trials.
Table 1
False alarms, missed alarms, overall errors and estimated Kappa coefficient associated wit

Technique Missed alarms

Standard CVA 4801
Proposed SVDD Supervised model selection 3141

Unsupervised model selection 3135

Fig. 6. Change detection maps obtained for the Mexico data set with: (a) the standard
proposed technique with supervised model selection (upper bound of method performa

Please cite this article in press as: Bovolo, F., et al. A support vector domain m
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As can be seen from Fig. 5, this change detection problem is
quite complex, as the target and outlier classes are significantly
overlapped. In this critical situation the proposed technique re-
sulted in higher change detection accuracy than the standard
CVA technique (see Table 1). In greater detail, the proposed ap-
proach increased the estimated Kappa accuracy provided by the
standard CVA from 0.844 to 0.903 (which in turn is quite similar
to the estimated Kappa accuracy achieved with the unsupervised
model selection procedure, i.e., 0.883). The improvement is associ-
ated to a slight decrease of false alarms (from 2428 to 2031) and to
a sharp reduction of missed alarms (from 4801 to 3141). The unsu-
pervised model selection strategy achieved results close to the
ones obtained with the supervised model selection (which repre-
sent an upper bound for the operational use of the proposed meth-
od). Quantitative results are confirmed by a qualitative analysis of
the change detection maps reported in Fig. 6.
3.3. Results on the Sardinia data set

The second data set is made up of two multispectral co-regis-
tered images acquired by the Thematic Mapper (TM) multispectral
sensor of the Landsat-5 satellite on the Island of Sardinia (Italy) in
September 1995 (I1) and July 1996 (I2). A section of 412 � 300 pix-
els including Lake Mulargia was selected for the experiments. As an
example of the images used in the experiments, Fig. 7a and b show
channel 4 of the September and July images, respectively. Between
h the change detection maps of the Mexico data set.

False alarms Overall error Estimated Kappa statistic

2428 7229 0.844
2031 5172 0.903
2409 5544 0.883

CVA; (b) the proposed technique with unsupervised model selection; and (c) the
nce).

ethod for change detection in multitemporal images. Pattern Recognition
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Fig. 7. Images of the Lake Mulargia (Italy). (a) channel 4 of the Landsat-5 TM image acquired in September 1995; (b) channel 4 of the Landsat-5 TM image acquired in July
1996; (c) available reference map of changed areas.

6 F. Bovolo et al. / Pattern Recognition Letters xxx (2009) xxx–xxx

ARTICLE IN PRESS
the two acquisition dates the lake surface registered an enlarge-
ment of the water surface resulting in a spectral change. A refer-
ence map of the analyzed site was defined according to a
detailed visual analysis of both the available multitemporal images
and the difference image. The obtained reference map contains
7480 changed pixels and 116,120 unchanged pixels (see Fig. 7c).
In the experiments, we considered only the two spectral channels
4 and 7 of the TM, i.e., the near and the middle infrared, as they are
the most reliable for detecting the considered change type.

The spectral signature of the water class significantly differs
from the spectral signatures of all other natural classes. For this
reason, SCVs associated with changes in the water class show
smaller overlapping to unchanged SCVs than in the previous case
in both the Iq and ID images (see Fig. 8). Therefore detection of
changes associated to the appearance (or disappearance) of water
becomes a relatively simple problem. Under these conditions, the
standard CVA performs well resulting in a high Kappa accuracy
Fig. 8. Distribution of the class of changed (dark grey color) and unchanged (light
grey color) pixels in the 2-dimensional ID image according to the available reference
map. The black line is the SVDD decision boundary obtained for the model selected
in an unsupervised way according to the method proposed in (Bovolo et al., 2008)
(Sardinia data set).

Table 2
False alarms, missed alarms, overall errors and estimated Kappa coefficient associated wit

Technique Missed alarms

Standard CVA 335
Proposed SVDD Unsupervised model selection 362

Supervised model selection 373

Please cite this article in press as: Bovolo, F., et al. A support vector domain m
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(i.e., 0.95), which is a result difficult to improve. Therefore, as ex-
pected, the proposed technique resulted in a similar Kappa accu-
racy (see Table 2). Nonetheless, it is worth observing that also in
this case the CVA resulted in a slightly larger amount of false
alarms (i.e., 369) than the proposed technique (i.e., 295 and 332,
depending on the considered model selection strategy). This
behavior is related to the higher sensitivity of the standard CVA
technique to the presence of residual noise.
4. Discussion and conclusion

In this paper, a novel method for change detection based on
CVA and SVDD has been proposed. The proposed method formu-
lates the change detection problem as a minimum enclosing ball
(MEB) problem with changed pixels as target objects. The MEB
problem is solved after mapping spectral change vectors into a
high dimensional Hilbert space. Once the minimum volume hyper-
sphere is computed, it is mapped back into the original feature
space where it results in a non-linear flexible boundary around tar-
get pixels. With respect to standard change vector analysis that
considers only the 1-dimensional magnitude of SCVs, the proposed
technique takes advantage from the higher amount of information
present in the multidimensional SCVs feature space. This results in
a better identification of changed areas, particularly in problems
with overlapping classes. Furthermore, focusing on the changed
pixels, it allows reducing the impact of residual registration noise
in the final change detection map.

It is worth noting that the proposed change detection technique
can be applied in a completely unsupervised framework perform-
ing the model selection of SVDD with the unsupervised approach
presented in (Bovolo et al., 2008). As shown in the experimental
section, unsupervised model selection demonstrated its validity
resulting in a estimated Kappa accuracy close to the one achieved
by the supervised approach to model selection (which represents
an upper bound of performance for the proposed change detection
method).

As future developments of the proposed work we propose to de-
fine a semi-supervised strategy for the learning of the SVDD
parameters in order involve in the SVDD learning phase also unla-
beled pixels according to the cluster assumption.
h the change detection maps of the Sardinia data set.

False alarms Overall error Estimated Kappa statistic

369 704 0.950
332 694 0.950
295 668 0.952

ethod for change detection in multitemporal images. Pattern Recognition
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