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A Fuzzy-Statistics-Based Affinity Propagation
Technique for Clustering in Multispectral Images
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Abstract—Due to a high number of spectral channels and a
large information quantity, multispectral remote-sensing images
are difficult to be classified with high accuracy and efficiency by
conventional classification methods, particularly when training
data are not available and when unsupervised clustering tech-
niques should be considered for data analysis. In this paper,
we propose a novel image clustering method [called fuzzy-
statistics-based affinity propagation (FS-AP)] which is based on
a fuzzy statistical similarity measure (FSS) to extract land-cover
information in multispectral imagery. AP is a clustering algorithm
proposed recently in the literature, which exhibits a fast execution
speed and finds clusters with small error, particularly for large
datasets. FSS can get objective estimates of how closely two pixel
vectors resemble each other. The proposed method simultaneously
considers all data points to be equally suitable as initial exemplars,
thus reducing the dependence of the final clustering from the ini-
tialization. Results obtained on three kinds of multispectral images
(Landsat-7 ETM+, Quickbird, and moderate resolution imaging
spectroradiometer) by comparing the proposed technique with
K-means, fuzzy K-means, and AP based on Euclidean distance
(ED-AP) demonstrate the good efficiency and high accuracy of
FS-AP.

Index Terms—Affinity propagation (AP), clustering, fuzzy clus-
tering, fuzzy sets, fuzzy statistical similarity measure (FSS), image
classification, unsupervised classification.

I. INTRODUCTION

C LUSTERING techniques can be used in unsupervised
classification to partition multispectral (and hyperspec-

tral) feature spaces for extracting clusters of patterns that can
be associated with land-cover classes [1]–[3]. As, in clustering,
training data are not available (unlike supervised classification,
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clustering is an ill-posed problem), a common approach is to
use data to learn a set of centers such that the sum of squared
errors between data points and their nearest centers is small.
When the centers are selected from actual data points, they
are called “exemplars” [4]. In order to mathematically identify
clusters in a dataset, it is usually necessary to first define a
measure of similarity [5], which establishes a rule for assigning
patterns to the domain of a particular cluster center (or exem-
plar). This similarity measure places similar data close to one
another to form a group, thus generating different clusters [6].

One of the most popular clustering algorithms is the K-
means, which was developed by MacQueen in 1967 [7]. It
exploits the Euclidean distance as similarity measure and be-
gins with an initial set of randomly selected exemplars. Then, it
iteratively refines this set to decrease the sum of squared errors.
K-means algorithm has many advantages such as simplicity,
low computational complexity, etc. [8]. Therefore, it is widely
used in remote sensing [9]–[11]. However, K-means is sensitive
to initialization [8], [12] and to the choice of the number of
clusters, which usually is a critical issue. Different random ini-
tializations of the cluster centers result in significantly different
clusters at the convergence. Thus, the algorithm is usually run
many times with different initializations in an attempt to find
a good solution [13]. In addition, K-means is prone to find
clusters with spherical shape, and it is sensitive to noisy data
[14]. Most important, K-means algorithm is a crisp clustering
method which restricts each point of the data to be associated
with only one cluster.

In remote-sensing images, depending on both the spatial
resolution of the sensor and the considered scene, a pixel can
represent a mixture of land covers that cannot be properly
described by a single class [15]. A fuzzy approach to data
classification is more suitable in managing both the uncertainty
intrinsic in the classification problem and the relation one-to-
many of a pattern with the related information classes [16],
[17]. Since a single class cannot describe these patterns, fuzzy
clustering has been developed. Fuzzy K-means algorithm
(proposed by Dunn [18] and extended by Bezdek [19]) is
the extension of crisp K-means. It has been shown to have a
better performance than K-means due to its ability to deal with
uncertain situations. One of the most significant advantages
of fuzzy K-means is that it more naturally handles situations
in which subclasses are formed by mixing (or interpolating)
extreme examples. Fuzzy K-means has been widely used
in remote sensing, and many algorithms are derived from it
[20]–[25]. However, these foregoing algorithms have similar
drawbacks when used in remote-sensing imagery analysis.
First, the use of Euclidean distance as a measure of similarity
is not very suitable for remote-sensing clustering, because the
scatter diagram of multispectral remote-sensing data tends to
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hyperellipsoid distributions in the feature space, owing to
uncertainty and existence of mixed pixels. This can be mitigated
by considering kernelized versions of fuzzy K-means, known
as the kernel fuzzy K-means [26]. Second, initial centers
of K-means and fuzzy K-means are defined randomly, thus
leading to unstable clustering results and requiring multiple
trials for obtaining reasonable results. This has a considerable
trouble in a noisy environment and inaccuracy with a large
number of different sample sized clusters [27]. Gath et al. [28]
proposed an improved version of fuzzy K-means called unsu-
pervised fuzzy partition-optimal number of classes. This
method combines fuzzy techniques with statistical algorithms
to obtain reliable clusters. Nasser et al. [29] proposed a
clustering algorithm that combines fuzzy K-means and
expectation-maximization algorithm. Li et al. [30] presented
an agglomerative fuzzy K-means clustering algorithm by
introducing a penalty term to the objective function to make
the clustering process insensitive to the initial cluster centers.
It is worth noting that clustering precision of the algorithm
is affected by its equal partition trend for datasets. Optimized
clustering results of the fuzzy K-means algorithm might not be
a right partition of the feature space when datasets have a large
discrepancy in the number of class samples [23].

Remote-sensing data are general reflection of the spatial
characteristics of ground objects. Statistical pattern recognition
is the most common approach used in the classification of mul-
tispectral and hyperspectral remote-sensing data [31]. When
unsupervised clustering methods are used for data analysis, re-
sults are affected by uncertainty, and multiple reliable solutions
can be obtained. After introducing and developing fuzzy set
theory, many studies have been carried out to combine statis-
tical methods and fuzzy set theory. These studies, called fuzzy
statistics, have been developed in several branches [32]. Fuzzy
set theory is the basis in studying membership relationships
from the fuzziness of the phenomena. Fuzzy statistics is used
to estimate the degree of membership of a pattern to a class
according to the use of a membership function. Multispectral
and hyperspectral remote-sensing images consist of multiple
channels and a large quantity of data. These data usually
have a complex structure, which results in time-consuming and
slow convergence rate in the clustering process. Therefore, the
development of efficient and fast fuzzy clustering algorithms
for multispectral and hyperspectral remote-sensing imagery is
an important topic of current research.

Recently, Frey and Dueck [4] published a paper in Science
where they describe an algorithm, called affinity propagation
(AP), that clusters data points based on similarity measures
and considers that all data points can be equally suitable as
exemplars. This algorithm aims to find several exemplars such
that the sum of the similarities between the data points and
the corresponding exemplars is maximized. There are two
kinds of messages communicated between data points, namely,
responsibility and availability, and each takes a different kind
of competition into account. In [4], the authors first describe
the algorithm and then apply it to some different examples of
clustering problems from diverse fields [4], [33]–[35]. They
argue that AP finds clusters with much lower error than other
methods by requiring less than one-hundredth the amount of
time of standard clustering algorithms, which slashes comput-
ing times while keeping accuracy. It performs well, particularly

in face image recognition, gene finding, etc. However, it has
not been used in remote sensing and on multispectral images. In
this context, unless a meaningful measure of similarity between
pairs of points has been established, no meaningful cluster
analysis is possible. Aiming to further solve this knotty prob-
lem, in this paper, an improved similarity measure integrating
fuzzy statistics with AP is proposed, which is called fuzzy-
statistics-based AP (FS-AP). The proposed method considers
that all data points can be equally suitable as initial exemplars.
First, according to the characteristics of multispectral images,
we propose fuzzy mean deviation and then develop a fuzzy
statistical similarity measure (FSS) in evaluating the similarity
between two pixel vectors. We iteratively merge cluster centers
to extract land-cover information by FSS. Experimental results
show that our method can improve not only the clustering
accuracy but also the computational efficiency, compared with
the standard K-means, the fuzzy K-means algorithms, and the
AP method presented in [4].

This paper is organized as follows. Section II reviews some
important related researches about similarity measures and
briefly introduces the AP algorithm and fuzzy schemes used in
remote-sensing data clustering. Section III presents the fuzzy
mean deviation and the FSS used in this paper. Then, the
proposed FS-AP based on the presented similarity measure
is introduced. Section IV illustrates the experimental results
obtained on three different multispectral images and analyzes
the accuracy and efficiency of the proposed method. Finally,
Section V draws the conclusion of this paper.

II. BACKGROUND

A. Similarity Measures for Clustering

For remote-sensing images, clustering implies a grouping
of pixels in a multidimensional space. Pixels belonging to a
particular cluster are therefore spectrally similar. In order to
quantify this relationship, it is necessary to define a similarity
measure. Many similarity metrics have been proposed in the
literature, but those commonly used in clustering procedures are
usually simple distance measures in a multidimensional space
[31]. Nowadays, some similarity measures, including Euclidian
distance, spectral angle, correlation coefficient, spectral infor-
mation divergence, encoding and matching, and others, are
used, and each has its advantages and disadvantages.

The most frequently encountered similarity measure
is the Euclidean distance. By using Euclidean distance,
hyperspherical-shaped clusters of equal size are usually
detected. This measure is not very useful or even undesirable
when clusters tend to develop along principal axes [36]. In addi-
tion, Euclidean distance primarily measures overall brightness
differences but does not respond to the correlation between
two pixels of the spectra [37]. To take care of hyperellipsoidal-
shaped clusters, the Mahalanobis distance is one of the most
popular choices. One of the major difficulties associated with
using the Mahalanobis distance as a similarity measure is that
we have to recompute the inverse of the sample covariance
matrix each time that a pattern changes its cluster domain,
which is computationally expensive.

The correlation coefficient is very responsive to differences
in direction (i.e., spectral shape), but it does not respond to
brightness differences due to band-independent gain or offset
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factors. Spectral angle [38] is closely related mathematically
to the correlation coefficient and is primarily responsive to
differences in spectral shape. However, spectral angle does
respond to brightness differences due to a uniform offset, which
confounds the interpretation of the spectral angle value [37].

B. AP

AP [4] was proposed as a new technique for exemplar learn-
ing. It takes input measures as similarity between pairs of data
points. In contrast to K-means and fuzzy K-means techniques,
AP operates by simultaneously considering all data points as
potential exemplars and iteratively exchanging messages be-
tween data points until a good set of exemplars and clusters
emerges.

Let s(xi, xk) be the similarity between points xi and xk, i.e.,
the suitability of point xi to serve as the exemplar for data point
xk (shorten as i and k). In conventional AP, a common choice
for similarity is the negative Euclidean distance

s(i, k) = −‖i − k‖2.

AP can be applied by using more general notions of similarity,
and the similarities may be positive or negative.

The preference of point k, called s(k, k), is the a priori
suitability of point k to serve as an exemplar. Preferences can
be set to a global (shared) value or customized for particular
data points. High values of the preferences will cause AP to find
many exemplars (clusters), while low values will lead to a small
number of exemplars (clusters). A good initial choice for the
preference is the minimum similarity or the median similarity.

The AP algorithm is as follows [4], [39]:
Initialization:

r(i, k)=s(i, k)−max{s(i, k′)} , a(i, k) = 0, k′ �=k. (1)

Responsibility updates:

r(i, k) = s(i, k) − max
k′s.t.k′ �=k

{a(i, k′) + s(i, k′)} (2)

r(k, k) = s(k, k) − max
k′s.t.k′ �=k

{a(k, k′) + s(k, k′)} . (3)

Availability updates:

a(i, k) = min

⎛
⎝0, r(k, k) +

∑
i′s.t.i′ �∈{i,k}

max {0, r(i′, k)}

⎞
⎠
(4)

a(k, k) =
∑

i′s.t.i′ �=k

max (0, r(i′, k)) . (5)

Making assignments:

c∗i ← arg max
1≤k≤n

r(i, k) + a(i, k).

In the processing, two kinds of messages are exchanged
among data points, and each takes into account a different
kind of competition. The “responsibility” r(i, k), sent from data
point i to candidate exemplar point k, indicates how well suited
point i would be as a member of the candidate exemplar point k.
The “availability” a(i, k), sent from candidate exemplar point
k to potential cluster members point i, indicates how the cluster

k would represent point i. Responsibilities and availabilities
are initialized as (1), and in the whole process, they follow
the updating rules (2)–(5). Messages are updated on the basis
of simple equations searching for minima of an appropriately
chosen energy function. However, computing responsibilities
and availabilities according to simple updating rules often lead
to oscillations caused by “overshooting” the solution, so the
responsibilities and availability messages are “damped” accord-
ing to the following equation:

Rt+1 =αRt−1 + (1 − α)Rt

At+1 =αAt−1 + (1 − α)At (6)

where R and A represent the responsibility and availability
vectors, respectively; α is the factor of damping, which should
be satisfied at 0.5 ≤ α < 1; and t is the number of iterations. A
higher α will lead to a slower convergence.

At any time during the clustering, the magnitude of each
message reflects the current affinity of a data point to choose
another data point as its exemplar. For point i, if point k (k �= i)
maximizes r(i, k) + a(i, k), then k would be considered as the
exemplar of i, whereas k = i means that point i itself is an
exemplar.

The message-passing procedure may be terminated after a
fixed number of iterations, after changes in the messages are
less than a threshold, or after the local decisions stay constant
for some iterations.

C. Fuzzy Schemes for Remote-Sensing Image Clustering

Fuzziness is an intrinsic characteristic of remote-sensing
imagery. Probabilistic clustering techniques use the concept of
memberships to describe the degree by which a vector belongs
to a cluster. The use of memberships provides probabilistic
methods with more realistic clustering than hard or crisp tech-
niques. In conventional fuzzy classification, pixels can belong
to several classes with different degrees of membership, which
is the case when class descriptions overlap, e.g., in the presence
of mixed pixels. Pixels whose feature values are within these
overlapping ranges can be seen as ambiguous pixels. Although
fuzzy concepts make it possible to describe these ambiguities,
the main aim of each classification is to define classes as
unambiguously as possible.

Conventional fuzzy clustering, like the fuzzy K-means, needs
the given cluster numbers, and the clustering results strongly
depend on the initial sequence of samples. There are two main
deficiencies associated with fuzzy K-means, namely, inability
to distinguish outliers from nonoutliers by weighing the mem-
berships and attraction of the centroid toward the outliers [40].
Both deficiencies together are referred to as “noise sensitivity.”
Moreover, conventional fuzzy schemes are based on maximum
and minimum paradigms. Most of the cluster analysis results
are thus easy to trap in local optimizations which increase
randomicity and cause difficulty in getting accurate results.

III. PROPOSED CLUSTERING METHOD

A. FSS

Fuzzy statistics is a subject based on the combination of
fuzzy set theory and statistical methods. Fuzzy set theory is the
basis in studying membership relationships from the fuzziness
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of the phenomena [41]. In this section, we will discuss the
mathematical definition of the FSS.

Multispectral and hyperspectral remote-sensing images often
have extensive interband correlations. As a result, the images
may contain similar information and have similar spatial struc-
tures [42]. At the same time, multispectral and hyperspectral
images have their own special characteristics, namely, the
spatial variability of the spectral signature. According to this,
we introduce the following statistical characteristics, which are
based on fuzzy statistics.

1) Fuzzy Set: Let X = {x1, x2, . . . , xn} ⊂ Rp be a set of
pixels vectors, where X represents all pixels in the dataset,
xi = [xi1, xi2, . . . , xip] (i = 1, 2, . . . , n) is the feature vector
of pixel i, n is the total number of pixels in the image,
and p is the number of features considered (e.g., bands
of the image). Let Z = {z1, z2, . . . , zm} ⊂ Rp be a set
of cluster exemplars, where Z represents all exemplars
set, zk = [zk1, zk2, . . . , zkp] (k = 1, 2, . . . ,m) is an exem-
plar vector, and m is the number of clustering exem-
plars in the image (at initialization n = m). N = {μ1(1),
μ2(2), . . . , μn(m)} is the membership degree set, and
μi(k) = [μi1(k), μi2(k), . . . , μip(k)] (i = 1, 2, . . . , n; k = 1,
2, . . . , m) is a membership degree vector. The fuzzy set is
defined by

F = {X,Z,N}={〈xi, zk, μi(k)〉}
= {〈x1, z1, μ1(1)〉 , 〈x1, z2, μ1(2)〉 , . . . , 〈xn, zm, μn(m)〉} .

2) Fuzzy Mean Distance: Distance is the amount of
difference between individual pixel vectors and clustering
exemplars vector. Let Dis = {dis1(1), dis2(2), . . . , disn(m)}
be a set of distance vectors values, where disi(k) =
[disi1(k), disi2(k), . . . , disip(k)] (i = 1, 2, . . . , n; k =
1, 2, . . . ,m) is a distance vector. The value of the distance is
defined as

disij(k) = |xij − zkj |, i = 1, 2, . . . , n; j = 1, 2, . . . , p;
k = 1, 2, . . . ,m; i �= k (7)

in which disij(k) represents the value of the distance between
the ith pixel value and the kth clustering exemplar of the
jth band.

Let Dis = {dis1(1), dis2(2), . . . , disn(m)} be a set of
fuzzy mean distance vectors values, where disi(k) (i =
1, 2, . . . , n; k = 1, 2, . . . ,m) represents the fuzzy mean dis-
tance computed on all bands between the ith pixel vector and
the kth cluster exemplar.

Rather than being assigned to a single class, the unknown
measurement vector (pixel) now has membership grade values
describing how close the pixel is to the clustering exemplars.
Fuzzy mean distance is computed using the membership de-
gree. It represents the distance between two pixel vectors and is
defined as

disi(k)=
p∑

j=1

disij(k)μij(k)
/ p∑

j=1

μij(k), i=1, 2, . . . , n;

j = 1, 2, . . . , p; k = 1, 2, . . . ,m; i �= k (8)

where μij(k) (i = 1, 2, . . . , n; j = 1, 2, . . . , p; k =
1, 2, . . . ,m) represents the membership of the fuzzy mean
distance.

3) Mean Distance Deviation and Membership Function:
Deviation is a measure of difference for interval and
ratio variables between the distance value and the
mean. Let Dev = {dev1(1), dev2(2), . . . , devn(m)} be
a set of distance deviation values, where devi(k) =
[devi1(k), devi2(k), . . . , devip(k)] (i = 1, 2, . . . , n; k =
1, 2, . . . ,m) is a distance deviation vector. The value of
distance deviation is defined as

devij(k) =
∣∣disij(k) − disi(k)

∣∣ , i = 1, 2, . . . , n;
j = 1, 2, . . . , p; k = 1, 2, . . . , m; i �= k. (9)

Let Dev = {dev1(1), dev2(2), . . . , devn(m)} be a set of
mean distance deviation vectors values, where devi(k) (i =
1, 2, . . . , n; k = 1, 2, . . . ,m) represents the mean distance de-
viation computed on all bands between the ith pixel vector and
the kth cluster exemplar. The mean distance deviation of the
pixels in the space is computed using

devi(k) =
1
p

p∑
j=1

∣∣disij(k) − disi(k)
∣∣ , i = 1, 2, . . . , n;

j = 1, 2, . . . , p; k = 1, 2, . . . ,m; i �= k. (10)

The membership degree of the fuzzy mean distance is com-
puted using

μij(k) = exp
(
−devij(k)β/devi(k)β

)
, i = 1, 2, . . . , n;

j = 1, 2, . . . , p; k = 1, 2, . . . , m; i �= k (11)

where β is a parameter determining the scalar of μij(k) and
ranges from (0,∞). It determines the degree of fuzziness of
the final solution, which is the degree of overlapping between
groups. If β = 0, the solution is a hard partition. As β becomes
close to infinity, the solution approaches its highest degree of
fuzziness. β is aimed to accommodate the outliers in a special
class to decrease their effect on clustering.

The membership degree depends on distance deviation in the
spectral space. Because the scatter diagram distribution of most
remote-sensing data tends to hyperellipsoid distribution in the
feature space, the membership function adopts an exponential
function where the exponential part is the Mahalanobis distance
based on the standard variance matrix.

4) FSS: The FSS between pixel vector xi =
[xi1, xi2, . . . , xip] and clustering exemplar zk =
[zk1, zk2, . . . , zkp] can be computed using the following:

FSS = s(i, k) = −disi(k), i = 1, 2, . . . , n;
k = 1, 2, . . . , m; i �= k (12)

and the preference is calculated using

s(i, i) = min−CTS(max−min), i = 1, 2, . . . , n (13)

where max and min are the maximum and minimum values of
all s(i, k) (i �= k). Cluster threshold scalar (CTS) is used to get
the expected number of clusters through setting the appropriate
values.

The similarity is a negative value; therefore, a small value
is equivalent to a large similarity. By introducing fuzzy mean
deviation into similarity measure, we can exploit fuzzy sets in
decision making. Thus, FSS can take into account the difference
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of the same band between pixels. When working with real
remote-sensing data, the actual fuzzy partition of the spectral
space is the merger based on FSS.

B. FS-AP

The algorithm proposed in the following is based on fuzzy
statistics and AP and is called FS-AP. Compared with the con-
ventional fuzzy clustering methods, it simultaneously considers
all data points in the feature space to be initial clustering exem-
plars and iteratively refines with the mean distance deviation
until getting the optimal FSS.

The procedure associated with the FS-AP is as follows.

Step 1) Set the initial value of the exemplars and
parameters. At the beginning, we simultaneously
consider all samples to be initial clustering exem-
plars. Therefore, all pixel vectors are set as cluster-
ing exemplars (Z = X).

Step 2) Calculate the fuzzy mean distance between the
sample vector and the clustering exemplars using
(7)–(11). In practical applications, we need to get
μij(k), which can be obtained by using a fuzzy itera-
tion method. Accordingly, the membership degree of
the fuzzy mean distance can be obtained as follows:

μt
ij(k) =

{
1, t = 0
exp

(
−devt

ij(k)β/dev
t
i(k)β

)
, 0 < t ≤ c

i = 1, 2, . . . , n; j = 1, 2, . . . , p; k = 1, 2, . . . ,m; i �= k

where t is the number of iterations and devt
ij(k) and

dev
t
i(k) are defined as

devt
ij(k) =

∣∣∣disij(k) − dis
t
i(k)

∣∣∣
dev

t
i(k) =

1
p

p∑
j=1

∣∣∣disij(k) − dis
t
i(k)

∣∣∣ , i = 1, 2, . . . , n;

j = 1, 2, . . . , p; k = 1, 2, . . . , n; i �= k.

The initial fuzzy mean distance is (μ0
ij(k) = 1)

dis
0
i (k) =

p∑
j=1

disij(k)
/

p, i = 1, 2, . . . , n;

j = 1, 2, . . . , p; k = 1, 2, . . . , n; i �= k.

If dis
t
i(k) and dis

t+1
i (k) are close enough, i.e.,

|dis
t
i(k) − dis

t+1
i (k)| < ε, where ε is the iteration

accuracy and has a predefined value, then the itera-
tion is stopped, or else the iteration is continued.

Step 3) Calculate the FSS for all data points according to
(12) and (13).

Step 4) Update the responsibility and availability. At the
beginning, responsibilities and availabilities are ini-
tialized according to (1). Then, update responsibility
and availability according to (2)–(6).

Step 5) Identify the fuzzy cluster centers and the number
of clusters. Identify the fuzzy cluster centers by

Fig. 1. Flowchart of the proposed FS-AP.

Fig. 2. Color composite (RGB = bands 7, 4, 2) of Landsat-7 ETM+ images
of the west of Haerbin, Heilongjiang, China.

looking at the maximum value of availabilities and
responsibilities. For point i, if point k (k �= i) max-
imizes r(i, k) + a(i, k), then k is considered as the
fuzzy cluster exemplar of i, or else if k = i, then the
point i itself is considered a fuzzy cluster exemplar.

Step 6) Convergence. Repeat steps 4)–5) until the decisions
for fuzzy cluster exemplars and cluster boundaries
are unchanged for some number of iterations. Then,
we can get the fuzzy cluster centers and the number
of clusters.

The flowchart for FS-AP is shown in Fig. 1.
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Fig. 3. Unsupervised clustering maps of the west of Haerbin, Heilongjiang, China (Landsat-7 ETM+ images). (a) K-means. (b) Fuzzy K-means. (c) ED-AP.
(d) FS-AP. (e) Test field map.

IV. EXPERIMENTAL RESULTS

In order to show the effectiveness of the proposed approach,
three different types of multispectral images are considered
to test its performance. Consistent comparisons between FS-
AP and traditional unsupervised algorithms (K-means and
fuzzy K-means) and the standard AP method based on the
Euclidean distance (ED-AP) are carried out. The estimations
of clustering accuracy provided by these algorithms are given
in terms of classification accuracy by manually associating
cluster labels with land-cover classes and exploiting (only
for numerical validation) available ground truth information.
In addition, computational efficiency for these algorithms is
provided. The comparison is performed on PC workstation
(Intel(R) Pentium(R) Dual E2180 2.0 GHz, 2.0 GHz with
2.0 GB of RAM).

A. Landsat-7 ETM+ Dataset

The first dataset is a portion of a Landsat-7 ETM+ multi-
spectral image (bands 1, 2, 3, 4, 5, and 7) acquired over the
west of Haerbin, Heilongjiang, China, on August 11, 2001. This
site mainly contains two land-cover types, which are vegetation
and exposed land. We use the displayed color composite image
(Fig. 2) as a guide to make the comparison and to evaluate in a
qualitative way the effectiveness of the proposed FS-AP. Even
in a simple three-band image, it is easy to see that there are areas
that have similar spectral characteristics. Green areas represent
vegetation. Dark green areas represent dry land. Slightly darker
green areas on the image usually represent forest land. Bright
green areas represent grass land, and deep darker green areas
represent paddy field. We can see that the degree of class
mixture in the vegetation area is high. Brown areas mainly
represent exposed land. Slightly brown areas represent dry salt
flats which are blocked by forest land and dry land that are
highly mixed too. This points out the difficulty in land-cover
clustering.

For both the FS-AP and the ED-AP algorithms, we carried
out the experiments with an α that is equal to 0.7 and by
considering values of CTS between 2 and 15. The value of β
was fixed to one in the FS-AP method. In the following, we
report the results obtained by the K-means (best of 50 runs and
k = 5), the fuzzy K-means (best of 10 runs and k = 5), the
ED-AP (CTS = 14, α = 0.7), and the FS-AP (CTS = 9, α =
0.7, β = 1) techniques applied to the aforementioned images.
Fig. 3(a)–(d) shows the unsupervised clustering maps provided
by the four considered algorithms. To evaluate the classification
accuracy, a test field map based on the ground truth data is

shown in Fig. 3(e). The ETM+ image is classified into the
following five clusters: paddy field, forest, grass land, dry salt
flats, and dry land.

From the comparison between Figs. 2 and 3, it can be
observed that the FS-AP shows better classification results than
the K-means, the fuzzy K-means, and the ED-AP. In these
methods, many pixels of the image are wrongly classified to
other cover types.

In order to quantitatively compare the clustering perfor-
mance, we used 670 reference pixels collected for Haerbin,
Heilongjiang, China, on the basis of a stratified random sam-
pling. We assigned the obtained cluster labels to land-cover
classes manually. The clustering results of K-means, fuzzy
K-means, ED-AP, and FS-AP are evaluated using overall accu-
racy, Kappa value, average of producer’s accuracy [43], average
of user’s accuracy [43], and average of Short’s mapping accu-
racy index [44]. Among them, average of producer’s accuracy,
average of user’s accuracy, overall accuracy, and Kappa value
are widely used in the validation of the land use/land cover clas-
sification [44]. The average of the Short’s mapping accuracy
index is the arithmetic mean of the Short’s mapping accuracy
index [45], [46] (a monotonic function of the harmonic mean of
the user’s and producer’s accuracies) that explicitly combines
both user’s and producer’s accuracies in one measure. This
measure is supposed to be supplementary to the average of the
user’s accuracy and the average of the producer’s accuracy.

The error matrices obtained from all the considered methods
are shown in Table I. For a more detailed verification of
the results, we assess the accuracy of each method using the
producer’s and user’s accuracy measures (see Table I). As an
example, for the paddy field, the producer’s accuracy of the
K-means, fuzzy K-means, ED-AP, and FS-AP are 80.92%,
84.73%, 92.37%, and 93.89%, respectively. FS-AP exhibits the
highest producer’s accuracy among the four considered meth-
ods. In the classification results of K-means, although 80.92%
of the paddy field pixels are correctly identified as paddy field,
only 67.09% of the areas in the cluster of the paddy field are
actually paddy field. A similar situation occurred for the fuzzy
K-means and the ED-AP. On the contrary, the user’s accuracy of
FS-AP for the paddy field is 82.55%. A careful evaluation of the
error matrix also reveals that there is confusion when discrim-
inating dry salt flats from forest in the first three methods. In
other words, although the user’s accuracy of K-means, fuzzy K-
means, and ED-AP for dry salt flats is high, the producer’s accu-
racy of these methods shows that some of the dry salt flat pixels
are wrongly identified as forest. It can be observed that there
is a significant confusion also when discriminating grass land
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TABLE I
ERROR MATRICES OF THE CLASSIFICATION MAPS DERIVED FROM THE WEST OF HAERBIN, HEILONGJIANG, CHINA (LANDSAT-7 ETM+ DATA)

TABLE II
PERFORMANCE OF K-MEANS, FUZZY K-MEANS, ED-AP, AND THE

PROPOSED FS-AP (LANDSAT-7 ETM+ DATA)

from other land covers, particularly for the K-means, the fuzzy
K-means, and the ED-AP. The FS-AP recognizes the grass land
better than the other three methods. The producer’s and user’s
accuracies of the K-means and fuzzy K-means for dry land are
low because the mixed pixels in this class are not distinguished
accurately. Although the producer’s and user’s accuracies of
the ED-AP are higher than those of the K-means and fuzzy
K-means, the producer’s and user’s accuracies provided by the
FS-AP for this class are further increased in some degrees.

Table II shows the global performance in terms of execution
time and classification accuracy yielded by the K-means, fuzzy
K-means, ED-AP, and the proposed FS-AP. From the table, we
can observe that FS-AP exhibits the highest overall accuracy
and Kappa value, with a gain of the overall accuracy of 15.97%,
11.94%, and 7.91% over the K-means, the fuzzy K-means,
and the ED-AP, respectively. This behavior is confirmed by the
other quality indices considered.

Fig. 4. Color composite (RGB = bands 1, 2, 3) of the Quickbird data of the
south part of the city of Trento, Italy.

B. Quickbird Dataset

The second dataset used in our experiments is a portion of a
multispectral Quickbird image, which covers a small area of
the south part of the city of Trento, Italy (see Fig. 4). This
image was acquired on July 17, 2006. Seven land-cover classes,
i.e., agricultural field, road, tree, soil, roof, shadow, and grass,
characterize this image.

For both the FS-AP and the ED-AP algorithms, we carried
out the experiments with an α that is equal to 0.9 and by
considering values of CTS between 8 and 42. The value of β
was fixed to 0.5 in the FS-AP method.

Fig. 5(a)–(d) shows the unsupervised classification maps
obtained by using the K-means (best of 80 runs and k = 7), the
fuzzy K-means (best of 5 runs and k = 7), the ED-AP (CTS =
40, α = 0.9), and the FS-AP (CTS = 38, α = 0.9, β = 0.5).
To evaluate the classification accuracy, a test field map is
provided in Fig. 5(e) based on the ground truth data. A manual
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Fig. 5. Unsupervised classification maps of the south part of the city of Trento, Italy (Quickbird data). (a) K-means. (b) Fuzzy K-means. (c) ED-AP. (d) FS-AP.
(e) Test field map.

association of the cluster labels to the land-cover classes was
carried out.

The error matrices and global performance indices obtained
by applying K-means, fuzzy K-means, ED-AP, and FS-AP to
this dataset are shown in Tables III and IV. As an example,
from Table III, one can see that, for the agricultural field, the
user’s accuracy of K-means and ED-AP is 79.34% and 87.26%,
respectively. However, they get a lot of confusion between
agricultural field and soil (only 64.00% and 59.33% of the
agricultural field pixels are classified correctly). By contrast,
fuzzy K-means and FS-AP exhibit a higher accuracy (i.e.,
85.33% and 91.33%, respectively) than the other techniques.
On the other hand, there is a confusion when discriminating
agricultural field from grass, and many shadow pixels are
wrongly identified as soil and roof by the fuzzy K-means. It can
also be observed that there is a significant confusion between
trees and other land covers, particularly for fuzzy K-means and
K-means.

From Table IV, we can observe that, in general, the proposed
FS-AP obtains the highest overall accuracy and Kappa value,
improving 9.11%, 5.82%, and 6.87% of the overall accuracy
yielded by the K-means, the fuzzy K-means, and the ED-
AP, respectively. These results are also confirmed by the other
quality indices considered, including those related to the com-
putational time. Thus, we can conclude that, on this dataset, the
FS-AP technique is superior to all the other three algorithms
considered.

C. MODIS Dataset

The third dataset consists of Moderate Resolution Imag-
ing Spectroradiometer (MODIS) data, acquired in the west
of Changchun, Jilin, China, on June 12, 2008 (see Fig. 6).
The considered level 1B dataset includes 500-m resolution
images acquired in channels 3–7 of the sensor. Seven land-
cover classes, i.e., wetland, river, cultivated land, open grass,
bare soil, dry salt flats, and grass land, characterize this image.

For both the FS-AP and the ED-AP algorithms, we carried
out the experiments with an α that is equal to 0.85 and by
considering values of CTS between 10 and 25. The value of
β was fixed to 1.5 in the FS-AP method. Fig. 7(a)–(d) shows
the unsupervised classification maps obtained by using the K-
means (best of 50 runs and k = 7), the fuzzy K-means (best
of 3 runs and k = 7), the ED-AP (CTS = 35, α = 0.85), and
the FS-AP (CTS = 30, α = 0.85, β = 1.5). To quantitatively
evaluate the classification accuracy, a test field map is provided

in Fig. 7(e) based on the ground truth data. Also, in this case,
the land-cover classes are assigned to cluster labels manually.

The error matrices and global performance indices obtained
by applying K-means, fuzzy K-means, ED-AP, and FS-AP to
this dataset are shown in Tables V and VI. As an example,
one can see from Table V that, for the wetland class, the
producer’s accuracy of K-means and fuzzy K-means is equal
to 72.1% and 74.78%, respectively. However, this class is
significantly confused with river and cultivated land, i.e., only
59.7% and 65.35% of the wetland pixels are classified correctly,
respectively. By contrast, ED-AP and FS-AP recognize the
wetland better than the aforementioned algorithms, resulting in
a user’s accuracy of 82.88% and 76.74%, respectively. On the
other hand, the ED-AP involves a significant confusion between
cultivated land and the other land covers and between grass and
bare soil.

From Table VI, we can observe that, in general, the FS-AP
obtains the highest overall accuracy and Kappa value, with a
gain of 7.07%, 5.38%, and 4.48% over the K-means, the fuzzy
K-means, and the ED-AP, respectively. These results are also
confirmed by the other quality indices considered, thus pointing
out the superiority of the FS-AP over the other three algorithms
also for this dataset.

D. Analysis of Computational Efficiency

Based on all the experimental results presented in the pre-
vious sections, we can conclude that the proposed FS-AP
produces better clustering accuracies than the K-means, the
fuzzy K-means, and the ED-AP techniques. In this section,
we focus our attention on the execution time taken from the
different algorithms.

The K-means and fuzzy K-means are quite sensitive to the
initial selection of exemplars. Different initializations cause
different evolutions of the algorithm, which affect the number
of iterations and the accuracy of clustering. As a result, K-
means and fuzzy K-means often need to run many times
with different initial exemplars and then require a cluster
validation procedure for selecting the best final result (in the
experiments reported in this paper, we used classification ac-
curacy as a validation measure). For this reason, K-means
and fuzzy K-means executed 50/80/50 and 10/5/3 runs with
different initial random choice in the experiments presented in
Sections IV-A–C), respectively, for achieving the best results.
It can be observed from Tables II, IV, and VI that the FS-
AP takes much less time and gets better classification results
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TABLE III
ERROR MATRICES OF THE CLASSIFICATION MAPS DERIVED FROM THE SOUTH PART OF THE CITY OF TRENTO, ITALY (QUICKBIRD DATA)

TABLE IV
PERFORMANCE OF K-MEANS, FUZZY K-MEANS, ED-AP,

AND THE PROPOSED FS-AP (QUICKBIRD DATA)

Fig. 6. Color composite (RGB = bands 7, 4, 2) of the MODIS data of the
west of Changchun, Jilin, China.

than K-means and fuzzy K-means. From the same tables, one
can observe that the FS-AP algorithm is faster (and also more
accurate) than the ED-AP. In order to further compare the exe-
cution time when getting different number of clusters, different
values of CTS were used in the three considered datasets. By
analyzing Figs. 8–10, which report the execution time versus
the number of clusters, one can note that FS-AP has a smaller
execution time than ED-AP with the same number of clusters.
This mainly depends on the effectiveness of the FSS used by the
proposed technique. Although FSS similarity computing needs
a little longer time, it can make the whole algorithm converge
more quickly (i.e., in a smaller number of iterations). From this
analysis, we can conclude that the proposed FS-AP clustering
technique gets better efficiency than the K-means, the fuzzy
K-means, and the ED-AP methods.

E. Parameter Sensitivity Analysis for FS-AP

The following are the two user-defined parameters in FS-AP
and ED-AP: 1) α, which affects both the convergence speed and
the computational time, and 2) CTS, which affects the number
of clusters. We performed experiments by varying these two
parameters when running the FS-AP in the three considered
datasets.
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Fig. 7. Unsupervised classification maps of the west of Changchun, Jilin, China (MODIS data). (a) K-means. (b) Fuzzy K-means. (c) ED-AP. (d) FS-AP. (e) Test
field map.

TABLE V
ERROR MATRICES OF THE CLASSIFICATION MAPS DERIVED FROM THE WEST OF CHANGCHUN, JILIN, CHINA (MODIS DATA)

• Parameter α: The parameter α is related to the conver-
gence of the algorithm. By increasing the α value, we
increase the convergence probability, but we also increase
the execution time. As an example, Fig. 11 shows the
behavior of the execution time versus the value of α for
the Landsat ETM+ dataset (CTS = 9, β = 1). By analyz-
ing the figure, one can conclude that the execution time
increases almost linearly with the value of α.

• Parameter CTS: Table VII reports the relation between
the number of clusters obtained and the values of the
CTS parameter for the three considered datasets. One

can observe that the number of clusters is close to be
monotonically related to the CTS value, and it decreases
while CTS increases.

V. CONCLUSION

In this paper, a novel FS-AP clustering method has been
presented and implemented. The key concepts contained in the
FS-AP include fuzzy mean deviation and FSS. FSS allows the
algorithm to assign proper memberships to uncertain data and
can get an accurate and objective estimate of how closely two
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TABLE VI
PERFORMANCE OF K-MEANS, FUZZY K-MEANS, ED-AP,

AND THE PROPOSED FS-AP (MODIS DATA)

Fig. 8. Comparison between the execution time taken by the ED-AP and the
proposed FS-AP algorithms versus the number of clusters (Landsat-7 ETM+
data).

Fig. 9. Comparison between the execution time taken by the ED-AP and the
proposed FS-AP algorithms versus the number of clusters (Quickbird data).

pixel vectors resemble each other. This ensures high robustness
against noise and involves accurate clustering results in the case
of mixed (or complex) pixels. Meanwhile, the proposed method
simultaneously considers all the data points as candidate ex-
emplars and passes soft information around until a subset of
data points becomes the exemplar. It can avoid poor solutions
caused by unlucky initializations and hard decisions and can
save a significant amount of execution time for getting optimal
results.

The experimental results based on three types of multispec-
tral remote-sensing images (Landsat-7 ETM+, Quickbird, and
MODIS) show that the proposed FS-AP clustering method

Fig. 10. Comparison between the execution time taken by the ED-AP and the
proposed FS-AP algorithms versus the number of clusters (MODIS data).

Fig. 11. Execution time versus the α value for the proposed FS-AP technique
(Landsat ETM+ data).

TABLE VII
NUMBER OF CLUSTERS VERSUS THE VALUE OF THE CTS PARAMETER

FOR THE PROPOSED FS-AP TECHNIQUE

exhibits better accuracy indices and higher efficiency than the
K-means, the fuzzy K-means, and the ED-AP algorithms. The
obtained classification accuracy, Kappa value, and general ac-
curacy indices related to the proposed FS-AP clustering method
are always higher than those yielded by the other considered
algorithms. Meanwhile, the FS-AP takes much less execution
time than the K-means (best of 50/80/50 runs), the fuzzy K-
means (best of 10/5/3 runs), and the ED-AP. This confirms
that the FS-AP is effective in processing multispectral remote-
sensing images.
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In the future, we will focus the attention on the definition
of alternative similarity measures and on their comparison and
integration with other metrics, particularly with reference to the
applications to multispectral and hyperspectral remote-sensing
image classification.
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