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Abstract�Remote sensing image classi�cation constitutes a
challenging problem since very few labeled pixels are typically
available from the analyzed scene. In such situations, labeled data
extracted from other images modeling similar problems might be
used to improve the classi�cation accuracy. However, when train-
ing and test samples follow even slightly different distributions,
classi�cation is very dif�cult. This problem is known as sample
selection bias. In this paper, we propose a new method to combine
labeled and unlabeled pixels to increase classi�cation reliability
and accuracy. A semisupervised support vector machine classi�er
based on the combination of clustering and the mean map kernel
is proposed. The method reinforces samples in the same cluster
belonging to the same class by combining sample and cluster
similarities implicitly in the kernel space. A soft version of the
method is also proposed where only the most reliable training
samples, in terms of likelihood of the image data distribution,
are used. Capabilities of the proposed method are illustrated
in a cloud screening application using data from the MEdium
Resolution Imaging Spectrometer (MERIS) instrument onboard
the European Space Agency ENVISAT satellite. Cloud screening
constitutes a clear example of sample selection bias since cloud
features change to a great extent depending on the cloud type,
thickness, transparency, height, and background. Good results are
obtained and show that the method is particularly well suited
for situations where the available labeled information does not
adequately describe the classes in the test data.

Index Terms�Cloud screening, clustering, kernel methods,
mean map kernel, MEdium Resolution Imaging Spectrometer
(MERIS), sample selection bias, semisupervised learning (SSL),
support vector machine (SVM).

I. INTRODUCTION

ACCURATE identification of clouds in remote sensing
(RS) images is a key issue for a wide range of RS

applications, particularly in the case of sensors working in the
visible and near-infrared range of the electromagnetic spec-
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trum. The amount of images acquired over the globe every day
by the instruments onboard Earth observation satellites makes
inevitable that many of these images present cloud covers,
whose extent depends on the season and the geographic position
of the study region. The presence of clouds drastically affects
the measured electromagnetic signal and thus the retrieved
properties. As a result, any set of RS images needs a prelim-
inary cloud screening task to ensure accurate and meaningful
results.

The simplest approach to mask clouds in a particular scene
is the use of a set of static thresholds (e.g., over features such
as albedo or temperature) applied to every pixel in the image.
This approach can fail for several reasons, such as the pres-
ence of subpixel clouds, high-reflectance surfaces, illumination
and observation geometry, sensor calibration, variation of the
spectral response of clouds with cloud type and height, etc.
[1]. Spatial coherence methods have an advantage over static
threshold methods because they use the local spatial structure
to determine cloud-free and cloud-covered pixels [2], [3]. How-
ever, they can fail when the cloud system is multilayered (which
is often the case), the clouds over the scene are smaller than
the instrument spatial resolution, or the scene presents cirrus
clouds (which are not opaque). As a consequence, researchers
have turned to developing adaptive threshold cloud-masking
algorithms [4] and more sophisticated machine learning tools
based on fuzzy logic [5], Bayesian methods [6], or artificial
neural networks [7]–[9]. In [10], we proposed a partly super-
vised method for cloud masking of the MEdium Resolution
Imaging Spectrometer (MERIS) instrument onboard the ENVI-
ronmental SATellite (ENVISAT) [11]. The method combined
unsupervised clustering and spectral unmixing to provide a
probabilistic cloud mask. Despite its good performance in many
different scenarios, the cloud classification ultimately relied on
a critical step in which the user was requested to manually label
the found cloudlike clusters.

In this context, most of the methods present several short-
comings. First, in many RS classification problems, it is difficult
to collect a sufficient number of statistically significant and rep-
resentative ground-truth samples to define a complete training
set for developing supervised classifiers. In these situations,
labeled data extracted from other images modeling similar
problems might be used to make the supervised classifier more
robust. Second, methods assume that training and test samples
come from the same underlying data distribution, which is
an unfortunate assumption when a general model applicable
to different images is needed. This is particularly true when
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Fig. 1. Illustrative example of the sample selection bias produced when the
distributions of training and test sets do not match, i.e., a good classifier in
training fails when testing because of the distribution mismatch. This can be due
to different reasons: the problem space is not adequately sampled, the extracted
features for the training data do not closely represent test samples, or when the
labeled data are extracted from other images modeling similar problems. These
are typical situations in RS classification problems.

testing on different, yet similar, scenes or even on different
portions of the same scene. To a certain extent, all these
problems are known in the pattern recognition and machine
learning literature as the data set shift problem. In [12], this
problem was defined as a type of sample selection bias due
to a flaw in the sample selection process, where a subset of
the data is systematically excluded due to a particular attribute
(e.g., test samples). A different perspective is given in [13] by
realizing that when data distributions between training and test
scenarios do not match, a special kind of bias, termed covariate
shift, is obtained. In addition, domain-adaptation methods have
been applied to RS data [14], [15], where the target-domain
distribution of unlabeled test samples differs from the source-
domain distribution of training samples due to changes in
measurements. Obviously, if the training and the test data have
nothing in common, there is no chance to learn. Nevertheless,
one can assume that both follow a similar conditional distri-
bution p(y|x), while the input prior distributions p(x) differ,
yet not completely (see Fig. 1). Certainly, having a limited
number of representative training data covering all the problem
space, or extracting features from a set of training images not
covering the test image situations are common problems in RS
image classification. For further details on the sample selection
bias and related problems, we refer the reader to [16], where
common forms of data set shifts (types of variations), and the
corresponding transfer learning methods and model selection
approaches are analyzed.

Kernel methods and specifically support vector machines
(SVMs) are a good choice for supervised classification. SVMs
are accurate nonlinear robust classifiers [17]–[19], which have
been successfully used in RS data classification [20], [21].
However, as previously mentioned, using labeled data from
other images could give rise to the sample selection bias prob-
lem if the data marginal distribution is not properly modeled,
thus affecting the performance of supervised methods. In this
situation, unlabeled samples extracted from the test image
can be synergistically used with the available labeled training
samples to increase the reliability and accuracy of the classifier,
and to alleviate the problem [22]. This is the field of semisu-
pervised learning (SSL), in which the algorithm is provided

with some available supervised information in addition to the
unlabeled data. The framework of SSL has recently attracted a
considerable amount of interest and research [23], [24]. Several
approaches have been carried out in the context of remotely
sensed image classification either based on transductive ap-
proaches, graphs, or Laplacian SVMs [25]–[28].

The key issue in SSL is the general assumption of consis-
tency, which means that: 1) nearby points are likely to have
the same label and 2) points on the same data structure (cluster
or manifold) are likely to have the same label. This argument
is akin to that in [29]–[33] and often is called the cluster
assumption [31], [32]. Note that the first assumption is local,
whereas the second one is global. Classical supervised learning
algorithms, such as k-NN, in general, depend only on the first
assumption of local consistency. However, since either the local
or global consistency may not necessarily hold in the problem at
hand, one should design an SSL method such that the imposed
model assumptions fit the problem data structure, as recently
suggested in [34].

In this paper, we propose a family of semisupervised kernel-
based classification methods that rely on the cluster assumption
for model definition, since it properly meets the smooth local
variation of cloud pixels. The methods are based on computing
distances between clusters of the image in the kernel feature
space. The concept of computing similarities between sets
of vectors (samples or pixels) in the feature space has been
previously explored. For example, in [35], a kernel on sets is
proposed to solve multiinstance problems, where individuals
are represented by structured sets; in [36], the Bhattacharyya’s
measure is computed in the Hilbert space between the Gaus-
sians obtained after mapping the set of vectors into H; in
[37], kernel machines are combined with generative modeling
using a kernel between distributions; and in [38], expressions
for the most common probabilistic distance measures in the
reproducing kernel Hilbert space are presented. However, all
these works consider the sets of samples or distributions as a
single entity, and no information is provided for each individual
sample. In our approach, classifying clusters is not the final goal
since we seek a detailed classification at a pixel level. Hence,
the proposed algorithms compute and combine both similarity
among samples and similarity among clusters in the kernel
space through the use of composite kernels.

This paper is organized as follows. Section II fixes notation
and briefly revises the main concepts and properties of SVM
and kernels. Noting that the key to obtain a good perfor-
mance with SVM is a proper design of the kernel structural
form. Section III pays attention to the problem of learning the
kernel directly from the image, and introduces the concepts
of cluster kernels for semisupervised SVM image classifica-
tion. This section is also devoted to analyze the important
concepts of cluster similarity and the mean map kernel, and
presents a family of kernel methods that combine both similar-
ity among samples and similarity among clusters in the kernel
space, while performing the classification at a sample level.
Section IV presents the data, the experimental setup, and the
obtained results in real cloud screening scenarios. Finally,
Section V concludes with some remarks and further research
directions.
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II. KERNEL METHODS AND SVM

This section briefly reviews the main characteristics of kernel
methods, summarizes the formulation of the SVM, and the
main properties of Mercer’s kernels used in this paper.

A. Fundamentals of Kernel Methods

Kernel methods embed the data set S defined over the input
or attribute space X (S � X ) into a higher dimensional Hilbert
space H, or feature space, and then they build a linear algorithm
therein, resulting in a classifier which is nonlinear with respect
to the input data space. The mapping function is denoted as
� : X � H. If a given algorithm can be expressed in the form
of dot products in the input space, its (nonlinear) kernel version
only needs the dot products between mapped samples.

Kernel methods compute the similarity between training
samples S = {xi}n

i=1 using pairwise inner products between
mapped samples, and thus the kernel matrix defined by

Kij = K(xi,xj) = ��(xi),�(xj)� (1)

contains all the necessary information to perform many classi-
cal linear algorithms in the feature space.

B. SVM

The SVM is one of the most successful kernel methods.
Given a labeled training data set {(xi, yi)}n

i=1, where xi � Rd

and yi � {�1, +1}, and given a nonlinear mapping �(•), the
SVM classifier solves

min
w,�i,b

�
1
2

�w�2 + C
n�

i=1

�i

�

(2)

subject to:

yi (��(xi),w� + b) � 1 � �i 	i = 1, . . . , n (3)
�i � 0 	i = 1, . . . , n (4)

where w and b define a maximum margin linear classifier in
the feature space, and �i are positive slack variables enabling
to deal with permitted errors. Appropriate choice of nonlinear
mapping � guarantees that the transformed samples are more
likely to be linearly separable in the feature space [39]. Para-
meter C controls the generalization capabilities of the classifier,
and it must be selected by the user. Primal problem (2) is
solved using its dual problem counterpart [18], and the decision
function for any test vector x
 is given by

f(x
) = sgn

�
n�

i=1

yi�iK(xi,x
) + b

�

(5)

where �i are Lagrange multipliers corresponding to constraints
in (3), and b can be easily computed from a few support vec-
tors (SVs), which are those training samples xi with nonzero
Lagrange multipliers �i [18]. It is important to note that, both
for solving or using the SVM for test samples, there is no need
to work with samples but only with a valid kernel K.

C. Kernel Functions and Basic Properties

The bottleneck for any kernel method is the proper defi-
nition of a kernel function that accurately reflects the simi-
larity among samples. However, not all metric distances are
permitted. In fact, valid kernels are only those fulfilling the
Mercer’s Theorem [40], and the most common ones are the lin-
ear K(x, z) = �x, z�, the polynomial K(x, z) = (�x, z� + 1)d,
d � Z+, and the radial basis function (RBF), K(x, z) =
exp(��x � z�2/2�2), � � R+.

Mercer’s kernels have some relevant properties for this paper.
Be K1 and K2 two Mercer’s kernels on S × S, and � a real
positive constant. Then, the direct sum, K(x, z) = K1(x, z) +
K2(x, z), tensor product K(x, z) = K1(x, z) • K2(x, z), or
scaling K(x, z) = �K1(x, z) are valid Mercer’s kernels [18].

III. SEMISUPERVISED CLASSIFICATION
WITH MEAN KERNELS

This section presents the proposed methods for semisu-
pervised image classification. First, we pay attention to the
relevance of learning the kernel exploiting unlabeled samples,
and revise the framework of cluster kernels, their properties
and limitations. The proposed methods consider measuring dis-
tances between clusters in the feature space through the use of
mean map kernels. For doing this, we fix some useful notation
on clustering and present the hard and soft mean map kernels.
Since these two kernel methods only provide classification at
a cluster level, we reformulate the algorithms to accommodate
classification at pixel level based on composite kernels. Finally,
some remarks on the theoretical assumptions made are given.

A. Learning the Kernel With Unlabeled Samples

The performance of any kernel method strongly depends on
the adequate definition of the kernel structural form. Despite
the good performance obtained with the typical RBF kernel,
by imposing such “ad hoc” signal relations, the underlying
data structure is obviated. To properly define a suitable kernel,
unlabeled information and geometrical relationships between
labeled and unlabeled samples may be useful.

A simple, yet effective, way to estimate the marginal data
distribution, and then include this information into the kernel,
consists in “deforming” the structure of the core kernel (e.g.,
linear, polynomial, RBF) using the unlabeled samples. The idea
basically aims at estimating a likelihood kernel according to the
unlabeled data structure which modifies the assumed prior ker-
nel that encodes signal relations. Two different methodological
approaches can be found: either graph-based or cluster-based
methods. In [41] and [42], labeled and unlabeled samples were
related through the use of the graph Laplacian that models
the geometry of the data with a graph whose nodes represent
both labeled and unlabeled samples connected by weights (e.g.,
Euclidean distance among samples). Intuitively, these methods
use the graph to smooth the classification function evaluated by
penalizing rapid changes of the classification function between
close samples in the graph (manifold assumption). The method
has been recently used in multispectral image classification [28]
and to reformulate RS anomaly and target detection methods
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[43], [44]. These methods, nevertheless, introduce critical-
free parameters, and a high computational load associated to
building the graph. In [31], cluster kernels were introduced. The
essential idea of these methods is to modify the eigenspectrum
of the kernel matrix, which implies an alteration of the distance
metric. Therefore, they are closely related with the proposed
method, which modifies the distance matrix according to a mea-
sure of the cluster similarity in feature spaces computed from
samples. The main methods presented are the random walk
kernel and the spectral clustering kernel [45], [46]. A serious
problem with these methods is that one must diagonalize a ma-
trix of size m, where m is the number of labeled and unlabeled
data, giving a complexity O(m3). This problem precludes its
operational use in RS image classification. Alternative solutions
are based on exploiting clustering algorithms to define proper
kernels [47], [48] but, even in these cases, the sample selection
bias problem still persists.

B. Mean Map Kernels for Semisupervised Classification

The proposed method brings together the ideas of unsuper-
vised clustering, mean map kernel, composite kernel, and SVM
in a simple and natural way. Essentially, the method tries: 1)
to reinforce both the local and global consistencies and 2) to
mitigate the sample selection bias problem. Instead of working
with individual pixels, it characterizes data by first running a
clustering on the whole image and then computing distances
among clusters in the feature space. The final classification
model is obtained by solving a standard SVM, but the kernel
of the labeled training samples (local consistency) is previously
deformed to take into account the similarity between image
clusters (global consistency). Distances between clusters are
computed from the unlabeled samples of the analyzed image
with the mean map kernel. In the following, we present the
basic processing steps of the method.

1) Image Clustering: The proposed algorithm starts by ap-
plying a clustering algorithm, which provides for each sample
xi a crisp or soft association hik to each cluster �k, k = 1,
. . . , c. In this paper, the image is considered as a mixture of
normal distributions so the expectation-maximization (EM) al-
gorithm can be used to obtain the maximum likelihood estima-
tion of the probability density function of the Gaussian mixture.
The EM algorithm estimates the mixture coefficient �k, the
mean µk, and the covariance matrix �k for each component
k of the mixture. Then, the algorithm assigns each sample to
the cluster with the maximum a posteriori probability, and the
cluster membership hik represents the estimates of the posterior
probabilities, i.e., membership or probability value between
[0, 1], and sum-to-one cluster memberships

�
k hik = 1.

Hence, the optimal cluster label for each sample is found as
hi = arg maxk{hik}, i.e., hi = k if the sample xi is assigned
to the cluster �k.

Its ease of use and fast classification performance1 justifies
the selection of the EM algorithm, whose suitability to RS

1Note that although EM can be applied to the entire image, the number of
unlabeled samples used to describe the clusters can be selected by the user to
reduce the computational effort.

image classification has been extensively demonstrated [49],
[50]. However, other clustering algorithms and additional input
data (e.g., spatial information) might be equally used in our
method. The analysis of the available clustering algorithms,
the clustering initialization, and the selection of the number of
clusters is beyond the scope of this paper [51] but, for the cluster
assumption to be valid, the clusters should fairly approximate
the class distribution and the number of clusters should be high
enough (higher than two to better represent cloud types and
surface covers). Once a clustering is done, one should compute
cluster similarity.

2) Mean Map Kernel: Cluster similarity can be computed
either in the original input or in kernel feature spaces. Any
arbitrary distance metric could be used in the first case. Here,
we use the mean map kernel to measure distances between sets
of pixels in the feature space, which provides a richer distance
information.

Given a finite subset of training samples S = {x1, . . . ,xn}
laying in an input space X and a kernel K(xi,xj) = ��(xi),
�(xj)�, let �(S) = {�(x1), . . . ,�(xn)} be the image of S
under the map �. Hence, �(S) is a subset of the inner product
space H. Significant information about the embedded data set
�(S) can be obtained by using only the inner product infor-
mation contained in the kernel matrix K of kernel evaluations
between all pairs of elements of S: Kij = K(xi,xj), i, j = 1,
. . . , n. In particular, the center of mass of the set S in the kernel
space is the vector

�µ(S) =
1
n

n�

i=1

�(xi) (6)

where �µ(•) denotes the mean map. We should stress that,
in principle, there is not an explicit vector representation of
the center of mass, since, in this case, there may also not
exist a point in the input space X whose image under � is
�µ(S). In other words, we are now considering points that
potentially lie outside �(X ), i.e., the image of the input space
X under the mapping �. However, computing the mean in
a richer high-dimensional feature space can report additional
advantages.

Let us now consider two subsets of samples S1 =
{a1, . . . ,am} and S2 = {b1, . . . ,bn} belonging to two differ-
ent clusters �1 and �2, respectively. We are interested in defin-
ing a cluster similarity function that estimates the proximity
between them in a sufficiently rich feature space. A straightfor-
ward kernel function reflecting the similarity between clusters
is obtained by evaluating the kernel function between the means
of the clusters in the input space X

KX
µ (S1, S2) � ��(µ1),�(µ2)� = K(µ1,µ2) (7)

but then we loose the advantage of directly working in the
kernel space H.

The center of mass of the sets S1 and S2 in the kernel space
are the vectors �µ(S1) = (1/m)

�m
i=1 �(ai) and �µ(S2) =

(1/n)
�n

i=1 �(bi). Despite the apparent inaccessibility of the
points �µ(S1) and �µ(S2) in the kernel space H, we can
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compute the cluster similarity in H using only evaluations of
the sample similarity contained in the kernel matrix

KH
µ (S1, S2) =

�
�µ(S1),�µ(S2)

	

=



1
m

m�

i=1

�(ai),
1
n

n�

j=1

�(bj)

�

=
1

mn

m�

i=1

n�

j=1

K(ai,bj). (8)

Note how significant information about the cluster similari-
ties can be obtained by using only the inner product informa-
tion contained in the kernel matrix Kij = K(xi,xj) of kernel
evaluations between all pairs of elements in S1 and S2 in (9),
shown at the bottom of the page, which is reduced to Kµ by
applying (8)

KH
µ =

�
KH

µ (S1, S1) KH
µ (S1, S2)

KH
µ (S2, S1) KH

µ (S2, S2)



. (10)

The concept of the mean map has been recently extended and
led to a full family of kernel methods known as mean kernels,
which has mainly been used for the comparison of distributions
in the kernel space [52], [53].

3) Sample-Cluster Composite Kernels: SSL methods as-
sume having access to a set of unlabeled (test) samples and
learn from both labeled and unlabeled samples. To fix notation,
we are given a set of � labeled samples {xi, yi}�

i=1, where
xi � Rd and yi � {�1, +1}, and a set of u unlabeled samples
{xi}�+u

i=�+1. In the proposed semisupervised method, the u
unlabeled training samples coming from the test image are used
to describe the clusters and to compute the similarity between
clusters, which is used to weight the similarity between the �
labeled training samples that define the classes. In [54], we
explicitly formulated a full family of kernel-based classifiers
that combine different kernels. Following this approach, one
can design kernels by summing up (weighted) or multiplying
(product) dedicated kernels (see properties in Section II-C).
Here, the similarity between clusters is included through the use
of a composite kernel that balances both similarity distances

K�(xi,xj) = � K(xi,xj) + (1 � �) Kµ(Shi , Shj ) (11)

where � is a positive real-valued-free parameter (0 � � � 1),
which is tuned in the training process and constitutes a tradeoff
between the sample and corresponding cluster information.
This composite kernel allows one introducing a priori knowl-

Fig. 2. Illustrative example of the three involved kernel matrices (� × �): sam-
ple similarity accounted by the kernel of the training samples K (� = 1); clus-
ter similarity accounted by the mean map kernel of the clusters Kµ (� = 0);
and the composite kernel K� obtained by combining the sample and the cluster
similarities for each sample (� = 0.5). Note that samples are sorted by class
yi and by cluster �i for a proper interpretation.

edge in the classifier or allows one extracting some information
from the best tuned � parameter. It is worth noting that: 1) the
number of training samples is (� + u), because unlabeled sam-
ples are used to compute the cluster similarities by summing
elements of the kernel matrix and 2) the number of clusters is
c thus one will obtain only c × c cluster similarities using Kµ.
However, the size of final kernel matrix K� used to train the
standard SVM is � × � (the first � samples are labeled). Summa-
rizing, each position (i, j) of matrix K� contains the similarity
between all possible pairs of the � labeled training samples (xi
and xj) and their corresponding clusters (defined by hi and hj),
which are measured with suitable kernel functions K and Kµ
fulfilling Mercer’s conditions.

Fig. 2 shows an illustrative example of the three kernel matri-
ces (� × �) involved in the proposed method: sample similarity
accounted by the kernel of the training samples K, cluster
similarity accounted by the mean map kernel of the clusters
Kµ, and the composite kernel K� obtained by combining the
sample and the cluster similarities for each sample. It is worth
noting that the proposed composite kernel K� maintains the
sample similarity at pixel level while making pixels in the
same cluster more similar, thus reinforcing them to belong to
the same class.2 Intuitively, this corresponds to smoothing K
attending to the cluster structure in Kµ, a similar approach to
that followed in [47] and [48].

4) Soft Mean Map Kernel: When the sample selection bias
arises, not all training (labeled) samples are equally reliable to
classify test samples since distribution p(x) changes between
training and test scenarios. In such cases, training samples are

2Cluster information could be also included by stacking input features of
each pixel xi with the mean of its corresponding cluster µk=hi

. However, this
is suboptimal as illustrated elsewhere [21], [54], [55], and intuition is lost.

K =

�

���������

K(a1,a1) • • • K(a1,am) K(a1,b1) • • • K(a1,bn)
...

. . .
...

...
. . .

...
K(am,a1) • • • K(am,am) K(am,b1) • • • K(am,bn)
K(b1,a1) • • • K(b1,am) K(b1,b1) • • • K(b1,bn)

...
. . .

...
...

. . .
...

K(bn,a1) • • • K(bn,am) K(bn,b1) • • • K(bn,bn)

�

���������

(9)
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TABLE I
PARTICULAR CASES OF THE PROPOSED METHOD DEPENDING ON: 1) THE SAMPLE-CLUSTER SIMILARITY BALANCE (FREE PARAMETER �),

2) IN WHICH SPACE THE CLUSTER SIMILARITIES ARE COMPUTED (INPUT OR KERNEL SPACE), AND 3) HOW THE UNLABELED
TRAINING SAMPLES CONTRIBUTE TO EACH CLUSTER (CRISP OR SOFT ASSOCIATION)

weighted to reflect their relative importance, and several ap-
proaches have been presented. In [13], the conditional density
to maximize the log-likelihood function was derived. In [22],
the criterion to be maximized in training was changed so the
SVM algorithm tries to match the first momentum of training
and test sets in the kernel space. In [56], the model selection was
tuned to obtain unbiased results. In the proposed method, the
most reliable samples in terms of maximum likelihood in the in-
put space are used to compute a kernel function that accurately
reflects the similarity between clusters in the kernel space. The
relative reliability of training samples is trimmed by weighting
the contribution of each sample xi to the definition of the center
of mass of each cluster in the kernel space H with the EM esti-
mated posterior probabilities hik (soft cluster membership), i.e.,

�µs
(Sk) =

�
i hik�(xi)�

i hik
(12)

which we call the soft mean map.
The corresponding kernel can be easily computed as

KH
µs

(Sk, Sl) =
�
�µs

(Sk),�µs
(Sl)

	

=


�
i hik�(xi)�

i hik
,

�
j hjl�(xj)
�

j hjl

�

=
�

i
�

j hikhjlK(xi,xj)
�

i hik
�

j hjl
(13)

and now, when computing cluster similarities, all samples
contribute to all clusters but with different relative weights
according to their posterior probability. The main advantage of
the proposed method is that weights for the training samples are
directly computed by taking advantage of the full statistical in-
formation of the test data distribution while solving a quadratic
programming (QP) problem of the same computational burden
as the traditional SVM. As with the pure mean map kernel, the
computational cost can be tuned by controlling the number of
unlabeled samples used to compute the mean kernels.

Note that the mean map kernel in (8) is a particular case of
the proposed soft mean map kernel in (13) when the training
samples are associated only with one cluster (crisp association),
i.e., when hik = 1 if xi belongs to cluster �k and hik = 0
otherwise. In addition, the expression of the soft mean map
kernel in (13) can be rewritten in a matrix notation as follows:

KH
µ = DH�KHD (14)

where K is the (� + u) × (� + u) kernel matrix of both labeled
and unlabeled training samples, H is a (� + u) × c matrix with
the memberships hik of each training sample to each cluster
(or set of samples) of the analyzed image, and D is a c × c
diagonal matrix with normalization factors for each cluster
Dkk = 1/

�
i hik.

The size of the matrix containing the similarity between
clusters Kµ is c × c. Thus, it has to be expanded to match the
number of labeled samples, in order to obtain the final � × �
kernel matrix K� in (11) used to train the classifier

K� = � JKJ� + (1 � �) WKµW� (15)

where J = [I 0] is an � × (� + u) matrix with I as the � × �
identity matrix (the first � samples are labeled), and W is
a � × c sparse matrix that stores the cluster of each labeled
sample hi, i.e., Wik = 1 if sample xi belongs to cluster �k and
Wik = 0 otherwise.

C. Summary of the Mean Map Kernel Method

Table I shows several particular cases of the proposed method
(denoted by µ-SVM) depending on: 1) the balance between the
sample similarity and the cluster similarity (free parameter �);
2) in which space the cluster similarities are computed (input or
kernel space); and 3) how the unlabeled training samples con-
tribute to each cluster (crisp or soft association). In this table,
we indicate the kernel used in the SVM, the mapping function
whose dot product generates the corresponding composite ker-
nel, and the value of � that constitutes a tradeoff between the
sample (� = 1) and the cluster information (� = 0).

IV. EXPERIMENTAL RESULTS

This section presents the obtained results. First, we review
the methods, data used, and the experimental setup. Results
are analyzed in terms of accuracy, model complexity, and
computational cost. Moreover, we analyze two training sce-
narios inducing different sample selection bias levels. Methods
are compared with the MERIS standard products for cloud
screening on five images.

A. Methods and Model Development

The proposed kernel method implemented in different cases
(summarized in Table I) is benchmarked against the standard
SVM, which is used as a reference for supervised methods,
and the Laplacian SVM, which is used as a reference for
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Fig. 3. MERIS FR images over Spain (BR-2003-07-14 and BR-2004-07-14), Tunisia (TU-2004-07-15), Finland (FI-2005-02-26), and France (FR-2005-03-19).

semisupervised methods. Note that the Laplacian SVM is a
general regularization framework that contains as particular
cases several unsupervised and semisupervised methods [28].
We also add to the comparison a standard SVM trained to
classify cluster centers: The same class label is assigned to all
the samples belonging to the same cluster �k. Note that this is
the standard approach in unsupervised classification problems,
where first a clustering algorithm is applied to the data and later
clusters are classified as a single entity.

For all the experiments, we use the RBF kernel. Its associated
� parameter is the kernel width, and is individually tuned
for each kernel. Free parameters of the SVM (C, �), µ-SVM
(C, �, �), and LapSVM (	L, 	M , �) are selected following a
tenfold cross-validation strategy on the training set. The �
parameter is tuned in the range {10�3, . . . , 10}. Regularization
parameter C is varied in the range {10�1, . . . , 102}, while the
LapSVM regularization constants 	L and 	M are varied in steps
of one decade in the range {10�4, . . . , 104}. The composite
trimmer � is tuned in the range {0.01, . . . , 0.99}. Finally, for
the LapSVM, the graph Laplacian L consists of � + u nodes
connected using six nearest neighbors, and the edge weights
Wij are computed using the Euclidean distance among samples.
The clustering required by the µ-SVM classifiers is performed
only once for each image, and the number of clusters is selected
in the range {15, . . . , 30} using the Davies–Bouldin index [57].
Once classifiers are trained, they are compared using the overall
accuracy (OA) (in percent), and the kappa statistic 
 as a
measure of robustness in the classification over the validation
set and the test image.

B. Semisupervised Cloud Screening Results

In this section, we show the validation results for a set of five
MERIS Level 1b images3 taken over Spain, Finland, Tunisia,
and France (Fig. 3). For our experiments, we used as the input
13 spectral bands (MERIS bands 11 and 15 were removed since
they are affected by atmospheric absorptions), and the six phys-
ically inspired features extracted from MERIS bands in a previ-
ous work [10]. The features model general properties of clouds:
brightness and whiteness in the visible and near-infrared spec-
tral ranges, along with atmospheric oxygen and water-vapor
absorption. Data were normalized between zero and one.

3All scenes correspond to MERIS full spatial resolution (FR) images with a
pixel size of 260 m across track and 290 m along track and an image size of
2241 × 2241 pixels (582-km swath by 650-km azimuth), except the two quarter
scenes over Spain with an image size of 1153 × 1153 pixels (300-km swath by
334-km azimuth).

A training set consisting of 400 labeled samples (200 sam-
ples per class) with their class label and cluster membership
{xi, yi,hi}�

i=1 was manually generated for each image, and
u = 800 unlabeled samples {xi,hi}�+u

i=�+1 were randomly se-
lected from the test images for the SSL methods. Several ex-
periments are carried out using a different percentage of labeled
samples �, {2, 4, 7, 14, 27, 52, 100}%, to train the models, and
classification results are computed on 5000 validation samples,
independent of the training set, which were labeled by an expert
for each image. In order to avoid skewed conclusions, ten
realizations are performed for each value of � by randomly
extracting the subpart of training examples but assuring the
same number of samples per class.

Two different training methodologies are used.

1) Single-image case: Each analyzed image is classified
with a model built with labeled and unlabeled samples
coming from the same image. This procedure is aimed at
comparing the different algorithms in an ideal situation
where both training and test data come from the same
distribution (or from very similar distributions).

2) Image-fold case: Each analyzed image is classified ac-
cording to a model built with labeled samples from the
other images and unlabeled samples coming from the
same analyzed image. This procedure is aimed at testing
the robustness of the algorithm to differences between
the training and test distributions. Note that this method
resembles the one proposed in [56], where a weighted
cross-validation estimate was introduced to alleviate the
training bias.

For both methodologies, we show results of all methods in
terms of accuracy, computational cost, classification maps, and
adequacy to problem setting.

1) Single-Image Cloud Screening: Fig. 4(a) shows 
 sta-
tistic versus the number of labeled samples for the five im-
ages obtained with the standard SVM, and provides us with
a reference on how difficult cloud screening problem is in
each MERIS image. Classification complexity increases in the
following order: Barrax image (BR-2003-07-14) that presents
a bright and thick cloud in the center of the image; Barrax
image (BR-2004-07-14) that presents small clouds over land
and sea in the right part of the image; Tunisia image (TU-
2004-07-15) that presents clouds and bright desertic areas;
France image (FR-2005-03-19) that presents not only opaque
clouds at south and north France but also snowy mountains at
various altitudes; and, finally, Finland (FI-2005-02-26), which
presents cirrus clouds over the sea and the icy coast of Finland.
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Fig. 4. Single-image case (a)–(f): Classification results training the models with � labeled and 800 unlabeled samples from the image to be classified. Image-fold
case (g)–(l): Classification results training the models with � labeled samples from the other four images and 800 unlabeled samples from the image to be classified.
Plots (a) and (g) show the standard SVM classification results (�) for the five MERIS images, and the other plots show average classification results over the five
images: (b) and (h) �; (c) and (i) OA (in percent); (d) and (j) weight � of the sample-similarity kernel of labeled samples K; (e) and (k) SVs (in percent); and
(f) and (l) CPU time (in seconds).

Therefore, we are including in the experiments both easy cloud
screening problems, where few labeled samples are enough to
obtain accurate classifications, and extremely complex cloud

screening scenarios, where a relatively high number of labeled
samples is required to correctly detect clouds when using a
standard supervised classifier.
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Fig. 4(b) and (c) shows the average 
 and OA for all the
methods. The proposed µ-SVM method clearly improves the
results. The mean kernel classifiers yield better results than
the reference provided by the supervised SVM in all cases
(note that SVM is a particular case of the µ-SVM for � = 1).
These results are a consequence of taking into account the
distribution of image data to define the clusters in the SSL
methods. In addition, µ-SVM classifiers working in the feature
space provide slightly better results, supporting the idea that
we can find a richer space H for separating classes. In ill-
posed situations, with a small number of labeled samples,
the performance of µ-SVM in H is reversed and µ-SVM in
X provides better results. This fact can be explained since,
when working with a small number of labeled samples, v-fold
cross correlation procedures are less efficient to tune the ker-
nel width �. Therefore, the cluster similarity KH

µ , computed
only from the unlabeled samples in H, has less meaning than
KX

µ , computed by using the cluster centers µk. Moreover, the
proposed method is not equivalent to a simple segmentation
of the image by classifying clusters centroids (red dash-dotted
line), i.e., classifying µk is not a good option but still better
than purely supervised SVM (red dotted line). This indicates
that the EM clustering of the image provides a good image
segmentation, which is mainly due to the physically inspired
extracted features described in [10] that accurately discriminate
clouds from surface and are well suited to the Gaussian mixture
model imposed in the EM algorithm. Finally, LapSVM clas-
sifiers produce worse classification results than SVM in some
cases. In principle, that is not possible since SVM is a particular
case of the LapSVM for 	M = 0. However, we intentionally
avoided this combination by varying 	L and 	M in the range
{10�4, . . . , 104}. LapSVM performs better than standard SVM
when a small number of labeled samples is available and
unlabeled samples help estimating the geometry of data.

Fig. 4(d) shows the relative weight � of the sample-similarity
kernel of labeled samples K with respect to the cluster-
similarity kernel of the unlabeled samples in the selected KX

� ,
KH

� , and KH
�s

models. The value of � can be tuned by the user
in the training process, but we selected it through tenfold cross-
validation in the training set. In our experiments, the sum of
Hilbert spaces leads approximately to an average weighting as
optimal solution (�  0.5). Intuitively, this means that both the
labeled information and the cluster information (from unlabeled
samples) hold similar importance for the classification, and
they both properly describe the class distribution in the test
image. This situation is coherent in the context of the single-
image case.

Fig. 4(e) shows the average percentage of support vectors
(SVs) for each method, i.e., the number of labeled training sam-
ples used as SVs in the selected models. In these experiments,
all SVM methods produce sparse models with a small number
of SVs. Note that LapSVM is not included in the analysis since
it does not produce sparse models and all the training samples
(both labeled and unlabeled) contribute to the final model. This
fact makes LapSVM computationally expensive in both the
training and test phases. The trend for all methods is consistent,
since as the number of labeled samples in the training set in-
creases, the rate of samples (SVs) required to correctly classify

decreases. The only significant difference between methods is
that, in ill-posed situations with a small number of labeled
samples, the classifiers based on cluster similarity require less
SVs since the class distribution is approximated by the cluster
distribution. However, when increasing the number of labeled
samples, simple spaces (such as that of SVM) not only increase
sparsity but also worsen models in terms of kappa.

Finally, Fig. 4(f) shows the average CPU time consumed
by each method during the training phase.4 Three groups
of methods can be distinguished. First, the best efficiency is
obtained by standard SVM and µ-SVM in X , which only
require to compute the kernel matrix for the labeled samples
K�×�. In fact, KX

µ method is slightly faster than SVM since
it only computes the kernel matrix over the cluster centers
µk in the input space (KX

µ = ��(µ1),�(µ2)�), and the
number of clusters c in the image is usually lower than the
number of labeled samples �. Composite methods KX

� =
�K + (1 � �)KX

µ are slightly slower since the weighting
parameter � is also tuned during the training. Second, proposed
µs-SVM classifiers in H provide an acceptable accuracy, but
are slower than previous methods since, in order to compute
the similarity between clusters in the kernel space KX

µ , they
have to compute the kernel matrix for the labeled and unlabeled
samples K(�+u)×(�+u). However, this difference is reduced
when the number of labeled samples � approaches the number
of unlabeled samples u = 5000. Again, the weighted versions
of µ-SVM (“+” markers) are slower than the versions based
on clusters exclusively (“�” markers) because of the tuning of
�. Finally, LapSVM is around three orders of magnitude more
demanding than SVM and µ-SVM, since training LapSVM
models not only requires tuning more free parameters but also
an (� + u) × (� + u) matrix must be inverted. In consequence,
µ-SVM classifiers can be considered as a good tradeoff
between computational cost and classification accuracy.

2) Image-Fold Cloud Screening: Fig. 4(g) shows that, under
this setting, classification complexity is very similar for all
images, and also poorer accuracy is obtained. In addition, no-
ticeable is that results remain almost independent of the number
of labeled samples, which suggests that labeled samples from
other images roughly describe the type of clouds in the test
image. This fact persists when adding more labeled samples.
The image-fold case is essentially inducing a clear sample
selection bias problem.

In this case, accuracy measures in Fig. 4(h) and (i) show
a completely different situation. Almost all the methods pro-
vide moderate classification results, and all of them provide
poor results in ill-posed situations. However, a great difference
can be observed between µ-SVM classifiers based on clusters
exclusively (“�” markers) and the rest. The standard SVM is
affected by the sample selection bias, which cannot be solved
since it relies on the training labeled samples exclusively. When
using standard SVM to directly classify clusters centroids, re-
sults improve since cluster prototypes have a higher probability

4Time consumed by the clustering algorithm is not included in the results
since it was performed only once per image at the beginning of the experiments.
All experiments were carried out in a 64-b dual-core Intel Xeon CPU 2.80-GHz
processor under Linux, and all methods are based on MATLAB implementa-
tions with an SMO algorithm programmed in C++ [58].
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Fig. 5. Comparison of the cloud mask of kernel methods proposed against the reference cloud mask obtained from the user-driven unsupervised method proposed
in [10] for the MERIS images over Barrax and France. Discrepancies between methods are shown in red when proposed kernel methods detect cloud and in yellow
when pixels are classified as cloud free.

to be correctly classified by SVM than test samples. LapSVM
provides moderate results, but yields higher accuracies than
SVM in all cases, since it incorporates in the solution the
geometry of the unlabeled test samples.

The µ-SVM classifiers based exclusively on cluster-based
approaches KX

µ , KH
µ , and KH

µs
give excellent results when there

are enough labeled samples to describe the class conditional
distribution of the clusters (with few labeled samples a whole
cluster can be misclassified). Among these three classifiers, KH

µ
produces worse results, probably because of an inappropriate
training biases free parameter selection. As a consequence, KH

µ
is more affected by the sample selection bias since all the
unlabeled samples in the training set are used to compute the
cluster similarity in an inappropriate kernel space. On the other
hand, KX

µ is more robust to the sample selection bias because
it approximates the cluster similarity to the similarities of the
cluster centers µk already defined in the input space, and thus
it is less dependent on how the unlabeled samples representing
the clusters are mapped into H. In this sense, KH

µs
provides

the best overall results, and is also more robust to the sample
selection bias because it uses the soft mean map to compute the
cluster similarity in the kernel space. Intuitively, this method
eliminates the training samples not properly representing the
image clusters in the input space, and thus the estimation of
the cluster center in H is less affected by the selection of an
inappropriate mapping.

Finally, µ-SVM classifiers based on composite mean kernels
KX

� , KH
� , and KH

�s
(black “+” lines) produce significantly

worse results than the cluster-based approaches Kµ. The diver-
gence in the results could be explained because the surface of
� is full of local minima. Fig. 4(j) shows the relative weight
� of the sample-similarity kernel of labeled samples K with
respect to the cluster-similarity kernel Kµ. For a small number
of labeled samples (� � 30), the sample-similarity and cluster-
similarity have the same weight (� = 0.5), and then � increases

exponentially with the number of labeled samples. As the num-
ber of labeled samples increases, K becomes more important
than the cluster information Kµ (see [59] for a theoretical
analysis on the exponential value of labeled samples).

Fig. 4(k) shows the average percentage of SVs for each
method. Again, most of the methods produce sparse models
with a small number of SVs. The only exception are the
three cluster-based methods that require more SVs to correctly
weight the cluster similarities. Here, we can clearly observe the
tradeoff between sparsity and accuracy: oversparsified solutions
provide low accuracy levels, and moderately sparse models pro-
vide better results. The higher number of SVs in cluster-based
methods can be explained since the information (similarities)
contained in K and Kµ are somehow contradictory; the class
distribution in training and the cluster distribution in test do not
match, and thus a higher number of representative samples is
needed.

Finally, the average CPU time consumed by each method
[Fig. 4(l)] is almost identical to the single-image case
[Fig. 4(f)], since the computational burden mainly depends on
the amount and type of data.

3) Cloud Screening Classification Maps: In this section, a
quantitative and a visual analysis of the classification maps of
the test images are carried out. The obvious cloud reference
to compare our results is the official MERIS L2 Cloud Flag.
However, it shows clear deficiencies, as reported by the users’
community elsewhere [60], [61] and by the MERIS Quality
Working Group [62]. An alternative partially supervised algo-
rithm was proposed in [10], in which the labeling of the clouds
has been carried out by an operator, and it is used here for
comparison purposes.

Fig. 5 shows the comparison of the µs-SVM methods (both
composite KH

�s
and cluster-based KH

µs
classifiers) against the

cloud reference. The images selected to illustrate the results are
one image over Barrax and the France image, which present
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