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Abstract—Small footprint Light Detection and Ranging
(LiDAR) data have been shown to be a very accurate tech-
nology to predict stem volume. In particular, most recent sensors
are able to acquire multiple return (more than 2) data at very
high hit density, allowing one to have detailed characterization of
the canopy. In this paper, we utilize very high density ( 8 hits
per m�) LiDAR data acquired over a forest stand in Italy. Our
approach was as follows: Individual trees were first extracted
from the LiDAR data and a series of attributes from both the first,
and non-first (multiple), hits associated with each crown were
then extracted. These variables were then correlated with ground
truth individual estimates of stem volume. Our results indicate
that: i) non-first returns are informative for the estimation of stem
volume (in particular the second return); ii) some attributes (e.g.,
maximum at the power of n) better emphasize the information
content of returns different from the first respect to other metrics
(e.g., minimum, mean); and iii) the combined use of variables
belonging to different returns slightly increases the overall model
accuracy. Moreover, we found that the best model for stem volume
estimation (��� �� � � ��, � � ���	, 
� � � ��)
comprised four variables belonging to three returns (first, second,
and third). The results of this analysis are important as they
underline the effectiveness of the use of multiple return LiDAR
data, underling the connection between LiDAR hits different from
the first and tree structure and characteristics.

Index Terms—Forestry, laser scanning, multiple returns Light
Detection And Ranging (LiDAR), stem volume estimation, variable
extraction.

I. INTRODUCTION

P REDICTION of stem volume is an important goal of sus-
tainable forestry, with estimates critical for both forest in-

ventories as well as for assessing terrestrial carbon stocks as
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a key component of carbon accounting (i.e., [1] and [2]). Al-
though tree stem volume is generally estimated using ground
based measurements, a large number of studies have demon-
strated the capacity of using remotely sensed data for this pur-
pose (e.g., [2]–[13]). There are a number of advantages of using
remote sensing for the estimation of forest stem volume in-
cluding the possibility to have measurements from every loca-
tion in the forest, or the ability to collect data in areas difficultly
accessible on the ground.

One remote sensing technology which has been widely in-
vestigated over the past decade to estimate forestry attributes is
Light Detection And Ranging (LiDAR) (e.g., [2]–[13]). These
investigations can be divided into studies at stand level (e.g.,
[3]–[6]) and studies at single tree level (e.g., [2], and [7]–[12]),
with stand approaches consisting of estimating the stem volume
of groups of trees usually starting from circular plot of a given
radius, while single tree approaches estimate individual stem
volume of each tree.

Among these two scales of application, the majority of the
studies have focused on the stand level, principally due to the
ready availability of plot level data from forest inventory. More-
over, in the past the majority of the LiDAR sensors did not
acquire data with a sufficiently high posting density to allow
multiple hits per tree crown, thus making single tree level pre-
diction of volume difficult. Naesset [3] analyzed the effects of
different sensors (Optech ALTM1233 and ALTM3100), flying
altitudes (1100, 1200, and 2000 m), and pulse repetition fre-
quencies (PRF) (33, 50, and 100 kHz) on the estimation of stem
volume and mean height at stand level using first and last return
LiDAR data. The study concluded that: i) different sensors pro-
duce point clouds with different properties; ii) low PRFs tend to
produce upward shifted canopy height distributions compared
to higher PRFs; iii) all the datasets acquired in different con-
ditions appear to be suitable for the estimation of volume (the
“best” model developed has a of 0.92) and mean height, with
a mean error of up to 10.7% for stem volume and 2.5% for mean
height [3]. In [4], Coops et al. estimated the canopy structure
of a Douglas-fir forest with first return LiDAR data and found
high correlations between field data and LiDAR derived data
( ( , m) for the mean height,
and ( , m ha ) for basal
area). Patenaude et al. in [5] estimated the aboveground carbon
content in a number of plots using first and last return LiDAR
data and also found strong correlations ( , ,

ha ).
At the single tree scale Popescu et al. in [7] estimated forest

volume and biomass at the individual tree level using LiDAR
first return and a crown extraction algorithm with encouraging
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TABLE I
SUMMARY OF THE FIELD MEASUREMENTS (N = NUMBER OF TREES; DB = DIAMETER AT BREAST HEIGHT (1.30 m); CB = CROWN BASE HEIGHT)

results (83% of the variance explained for the estimation of
volume). Similarly, Hyyppa et al. in [8] proposed a method for
the estimation of stem volume using first return at single tree
level, based on the segmentation of the individual tree crowns.
Bortolot et al. [2] used an individual tree-based approach to es-
timate forest biomass using first return LiDAR data, obtaining
good results with R ranging between 0.59 and 0.82. In [10],
Wang et al. proposed a procedure for the analysis of the ver-
tical canopy structure and the 3-D modeling of forest. From their
analysis, they derived parameters from first return LiDAR data
characterizing crown volume tree diameter and height. Like-
wise, Falkowski et al. in [11] proposed an automated technique
for the estimation of tree crowns based on spatial wavelet anal-
ysis and accurately predicted crown diameters .

In the majority of these single stem volume analyses, first re-
turn LiDAR data have been used with little investigation into
the information content and applicability of returns different
from the first or the last. This lack of investigation is principally
due to the fact that, until recently, most sensors only recorded
dual returns (first and last hit); however, more recently multiple
return, discrete small footprint LiDAR systems have become
available allowing multiple returns (more than 2) to be recorded
and subsequently analyzed. However, while the multiple return
system may have the capacity to record more than two returns
per LiDAR pulse, numerous factors influence the number of re-
turns [4], including the amount of energy needed to trigger a
return, the minimum time differences between two echoes, and
the specific method used to detect an echo. All these factors
affect the minimum distance between returns. For example, in
the Optech ALTM3100 (the sensor used in this study) the min-
imum distance detected between the first and the second return
is 2.1 m, which increases to 3.8 m for any subsequent returns
[3]. Despite these potential limitations, multiple LiDAR returns
potentially provide an increase in the information provided by
these sensors, in particular in applications such as predicting
crown and stem attributes where multiple returns are expected.
The goal of this paper, therefore, is to examine the differences
in the capacity of LiDAR pulse returns to predict individual
stem volume based on their relative return. Our analysis is fo-
calized on: i) single variables; ii) group of variables according
to their characteristics (e.g., standard metrics, percentiles, etc)

and returns (first, second, third, and fourth); and iii) all the vari-
ables. Moreover, we analyze the generalization ability of the
best model developed with a cross-validation analysis.

This paper is organized as follows. In Section II, we describe
the study area and data used; in Section III, we present our ap-
proach with a particular focus on the phase of variables extrac-
tion. Section IV illustrates the experimental results, with im-
portant discussions on the outcomes of the experiments, and,
finally, in Section V, we draw some conclusions.

II. DATA SET DESCRIPTION

The focus area for this study is a 500 ha forest stand located
in the Trento Province in the north of Italy in the Italian Alps.
It has a variable topography with Norway spruce (Picea abies)
and Silver Fir (Abies alba), the dominant species and subdomi-
nant species including Fagus sylvatica, Larix decidua and Pinus
sylvestris.

The field data for this study were collected in 2007 with the
relascopic technique. Fifty plots were randomly distributed
over the study area. Within each sampling point, a standard
cluster of five angle count sampling (ACS) was used to esti-
mate mean basal area around the point, while the diameter at
breast height (DBH) (1.30 m) was measured for all trees with

. For each sample plot, some tree heights
(about 4–6 of tallest trees for species that were present in the
central ACS) were measured with a Vertex hypsometer, in
order to select an acceptable height-diameter function for the
estimation of tree volume. For trees for which only the diameter
was measured, the height was estimated using a local height-di-
ameter function selected using the information provided by
the heights measured. The height-diameter relationships were
provided by the Forest Service of the Province of Trento (Italy).

The LiDAR data were acquired on September 4, 2007, using
an Optech ALTM 3100 laser scanner, with a mean density of
8.6 points per square meter. The laser pulse wavelength and the
PRFs were 1064 nm and 100 kHz, respectively, with the system
recording up to four returns per pulse.

In order eliminate the effect of the topography on the eleva-
tion of the LiDAR hits and to retrieve the exact height of each
tree, it was necessary to subtract from each LiDAR return the
height of the underlying terrain. To this end, a Digital Terrain
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Fig. 1. Architecture of the system adopted.

Model (DTM) with a spatial resolution of 1 m was generated
starting from the data acquired. The DTM was provided by the
company. that acquired the LiDAR data. This surface was then
subtracted from all returns points.

III. METHODS

The approach followed in this paper is shown in Fig. 1.
In order to derive individual crowns we first derived a Digital

Canopy Model (DCM), which was calculated as the mean height
of all first return hits within a 1 1 m grid.

To retrieve the individual tree crowns from the DCM, we ap-
plied the algorithm described in [7], implemented in the soft-
ware TreeVaW.1 This algorithm assumes a circular shape for the
tree crowns and it is based on two main steps: i) the individual
trees are located using a moving window; ii) starting from the in-
dividual tree positions, the diameter of each crown is estimated.

As described in Popescu et al. [7], [8], in the first step, the
local maximum (LM) technique is used to locate the tree tops.
In particular, this algorithm operates with a square window of

pixels and a circular window of variable sizes. After this
step, the crown diameter is identified. In this phase, at first, the
algorithm applies a median 3 3 filter in order to reduce the
outliers, preserving the edges. The crown diameter is computed
as the average between two values measured along two perpen-
dicular directions from the tree top location. In order to describe
the crown profile along these two perpendicular directions the
algorithm fits them with a fourth degrees polynomial using the
singular value decomposition (SVD). The lengths of these pro-
files are determined by the window size, and they are usually
double of the window size. The use of a fourth degree polyno-
mial allows one to exploit a concave shape with three extreme
values. These values could be both local maxima and minima,
and the values of the independent variable at extreme functional
are called critical points. The algorithm finds these points and
analyzes them with a derivative analysis (first and second deriva-
tive). In particular, the sign of the second derivative allows one
to know if the concavity has changed. If it happens we have a
point of inflection that usually occurs on the edges of a crown
profile. The distance between these points is used to compute
the tree crowns. The final value of the crown diameter is the av-
erage between the diameters measured on the two directions.

All tree locations were overlaid onto both a 20 cm orthophoto
and the derived TreeVaW crown polygons. The size of the tree

1http://www-ssl.tamu.edu/personnel/s_popescu/TreeVaW/

TABLE II
CORRELATION BETWEEN THE MAXIMUM OF THE FIRST

RETURN INSIDE THE CROWN AND THE TREE HEIGHT

crown and tree species from the field data were used to en-
sure the individual tree data matched the extracted crown in-
formation to avoid errors connected with tree positions in the
final model (see Table I for a detailed description of the final
ground truth available). Only tree crowns which were positively
matched to the LiDAR data were used in the analysis. Once the
tree position and the diameter of the crown were extracted, a
cylinder is defined representing the individual tree within the
dataset, and all LiDAR hits were extracted.

From each identified crown, we extracted a series of vari-
ables from both the elevation and the intensity information of
each pulse. We divided the variables extracted into five different
groups: i) “standard metrics”: minimum, maximum, mean, and
range value of the elevation of each return (e.g., [4], [7], and
[13]); ii) “distributional metrics”: standard deviation, kurtosis,
skewness, coefficient of variation of the elevation of each return
(i.e., [13]), crown radius, crown area and crown volume (calcu-
lated as a cylinder having as area the crown area and as height
the difference between the DCM and the average height of the
second, third or fourth return according to which is the last re-
turn available after the first); iii) “intensity metrics”: the mean
value of the intensity for each return; iv) “percentiles”: the per-
centiles of the elevation from the fifth to the 95th for each return
(e.g., [13]); and v) “ ”: the maximum of each return
elevation at the power of (with ) (e.g., [6]).

In order to assess the relationships between the LiDAR ex-
tracted variables and the volume we utilized a stepwise selec-
tion procedure. This approach has widely been used in previous
research (e.g., [1] and [13]), and it is an enhancement of the for-
ward stepwise selection. In this technique, variables are added
and deleted from the model according to their significance (see
[14] for a more detailed description).

No predictor variable was left in the model with a significance
value of the F statistic greater than 0.01. This value was applied
instead of the most common 0.05 as a model with a reduced
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TABLE III
VARIABLES EXTRACTED FROM EACH CROWN AND THEIR ��� � � RELATIVE TO THE VOLUME

ESTIMATION CONSIDERING ALL THE REFERENCE POINTS AND THE POINTS DIVIDED BY SPECIES

number of variables allow us to obtain a more stable model with
a higher generalization ability.

In the estimation phase, we utilized multivariate linear regres-
sion. In the analysis we used all the ground truth points for the
creation of the model. Subsequently with the best model we ap-
plied a ten-fold cross-validation analysis using 90% of the data
(about 219 trees) for the training and 10% for the test (about 24)
in order to analyze the generalization ability of the model.

IV. RESULTS

Four sets of analysis were undertaken. First, we analyzed
the relationship between the LiDAR data and the tree heights

(Section IV-A). Second, we focused on the stem volume estima-
tion by analyzing its relationship with the extracted variables,
considering each variable separately (Section IV-B), groups
of variables (Section IV-C), and all the variables together
(Section IV-D).

A. Correlation Between First Return LiDAR Data and Tree
Heights

The relationship between individual tree height and the max-
imum of the first return is shown in Table II. The overall relation-
ship across all species is highly significant ( ,

, ). When stratified by species, the rela-
tionship remains highly significant ( to 0.92).
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Fig. 2. ����� of the percentiles of the elevation of the different returns.

B. Regression Analysis of Each Variable Extracted in the
Estimation of Stem Volume

The relationship between individual stem volume and the ex-
tracted LiDAR variables presented in Section III is shown in
Table III. Results are shown for all the reference points and for
the two main species present in the investigated area.

Among the “Standard metrics” the variable which emerges
to be the most highly correlated with the stem volume is the
maximum of the first return ( , ,

). This result was anticipated as the ground truth tree
stem volume was computed as a function of both height and the
DBH of the stem. The second highest correlation occurs with the
maximum of the second return ( of 0.69, ,

).
Among the “Distributional metrics” the variables most highly

correlated with volume are the radius and the area; however, in
both cases, the correlation is quite low ( of 0.52 and
0.5, respectively).

Fig. 2 shows a correllogram of the relationship between the
stem volume and the “percentiles”, based on the four returns.
Results indicate the most significant percentile is the 95th for all
the returns, with the first return the most informative (

, , ), followed by the second return
( , , ).

The behavior of the “ ” metric is shown in Fig. 3.
It is worth nothing that these are the variables that provide the
highest levels of correlation, with a maximum of of
0.74 ( , ). In particular, for these vari-
ables there is no difference between the first and the second
return. Moreover, in this case also the third return has quite
high correlations, exhibiting a maximum adjusted of 0.63
( , ). This underlines the potential of re-
turns different from the first.

Regarding the variables extracted from the intensity informa-
tion, they resulted in a very low level of information (

, , ).
From Table III, it is also possible to see the behavior of
for the two main species present in the area. As these species

Fig. 3. ���� � of the maximum of the different returns at the power of n.

belong to the same family, the values of are quite sim-
ilar for all of them, with slightly higher values for the Picea
abies with respect to the Abies alba. Moreover, the values ob-
tained for these species are quite similar to the ones obtained
considering all the reference points.

C. Regression Analysis Considering Groups of Variables for
the Estimation of Tree Stem Volume

Once individual correlations were assessed, we performed re-
gression analysis based on the groups of variables. Table IV
shows the results of the stepwise selection applied to different
groups of variables. Interestingly the best model incorporates
all classes of variables. This is important, as it underlines that
the combined use of these variables increases the predictive ca-
pacity of the model. Indeed the model created with all the returns
provides always higher values of with respect to the
ones generated with only variables belonging to one return.

Concerning the “standard metrics”, the variable that was al-
ways selected is the maximum. In two cases, other variables
were also selected, like the range of the fourth return and the
mean of the first one.

The model created using the “distribution metrics” has the
largest number of variables (6) ( , ,

). These variables belong to different sources (first
and fourth return), and they are connected also to the geometry
of the tree (area and cylinder volume).

Among the “percentiles”, the variables derived from the first
return provides the regression model with the highest accuracy
( , , ); however, in most
cases, the second return does equally well ( ,

, ). The model extracted with all the
variables ( , , ) is made up
by three variables belonging to the first return and one variable
from the fourth, even if this variable is the last one selected.

Concerning the “intensity metrics”, also in this case, they do
not provide good results, with an adjusted of only 0.13 (

, ).
The set “ ” included the variables that provide the

highest correlations ( , ,
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TABLE IV
SELECTED MODELS FOR THE DIFFERENT SETS OF VARIABLES FOR THE ESTIMATION OF TREE STEM VOLUME

). In this case, it is worth noting that the model developed
with the variables belonging to the first ( ,

, ) and the second ( ,
, ) return provide the same results, underling

the effectiveness of these variables, as well as also the amount
of information contained in the second return. Moreover, also
the variables extracted from the third return provide quite good
correlations ( , , ).

D. Regression Analysis Using All the Variables Extracted for
the Estimation of Tree Stem Volume

In this final analysis, we considered all the variables extracted
from all the four returns. Table V shows that the model devel-
oped using all the variables has the highest correlation (

, , ). In this case, the model
is made up of four variables belonging to the first, the second
and the third return. This is important as the selected variables
represent different sources of information. However, the max-
imum variable is always selected in all the five selections, and
also the variables of the group “ ” are always present.
It is worth noting that another important source of information
for the estimation of volume is that associated with the “per-
centiles”. Fig. 4 shows the relationship between the predicted
versus observed stem volume.

As the model derived from the variables of all returns is the
one that provides the highest accuracy, we decided to use it in
the cross-validation analysis. The results are shown in Table VI.

Concerning the results on the training set, they are quite sim-
ilar to the ones presented in Table V, whereas for the test set,
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TABLE V
SELECTED MODELS FOR THE ESTIMATION OF TREE STEM VOLUME CONSIDERING ALL THE VARIABLES EXTRACTED

Fig. 4. Observed volume versus predicted volume for all the 243 trees of the
ground truth.

there is a slight decrease of the (while the RMSE re-
mains unchanged).

E. Analysis on the Relationship Between the Number of Hits
per Return and the Crown Depth

In this final analysis, we examined if a relationship exists be-
tween the number of hits per return and the depth of the tree
crowns. Fig. 5 shows crown depth versus the percentage of hits
on the total for all the four returns considered. Twelve groups
of crown depth were defined from 6 to 28 m. Only trees with
a height between 20 and 40 m were considered. From a theo-
retical viewpoint, we expect that as much the crown is depth as
high the possibility to have hits over the first return is. In greater
detail, analyzing the specification of the sensor considered in
this study we know that the minimum distance between the first
and the second pulse is 2.1 m, and 3.8 m for any subsequent
return [3]. This is confirmed from our analysis. In Fig. 5, it is
possible to see that there is a slight trend for which we have a
reduction of the percentage of first return hits, in favor to the
hits belonging to the other returns. In particular we move from
an 81.5% of the first returns for the range between 6 and 8 m to

51.1% for the range from 26 to 28 m. Meanwhile we have an
increase of the second return (from 15.8% to 34%), of the third
(from 2.6% to 13%) and of the fourth one (from 0.1% to 1.9%).

F. Discussion

From these results, it is possible to draw a number of conclu-
sions on the use of LiDAR variables to predict individual stem
volume and on the exploitation of information contained in the
non-first returns.

In this study, ground truth individual stem volume was esti-
mated using an equation of the form where
is the stem volume, is the diameter at breast height (DBH),

is the height of the tree, and , , are parameters de-
pendent on the species, the geographical area, and the terrain
characteristics.

This equation explains the reason for which throughout the
analysis the maximum of the first return is considered to be in-
formative in the stem volume estimation. This variable is highly
correlated with tree height, likewise other variables such as the
percentiles over the 80th. The variables “ ” in partic-
ular emerge to be highly correlated with the stem volume. This
comes from the fact that in the computation of the volume the
height of the tree at a certain power is used. This could be also
a reason for the efficiency on how this kind of variable empha-
sizes the information content of the second and third return. In
particular, the maximum of the second return at the power of 2.9
provides an adjusted of 0.74, while the maximum of the third
return moved from a correlation of 0.49 to 0.63 at the power of
2.7.

Concerning the percentiles, many studies in the literature
used this kind of variables in the estimation phase (e.g, [13]).
This is mainly due to the fact that high percentage percentiles
usually represent better the tree height with respect to the
“maximum” (the maximum could be an outlier), and that the
percentiles around the 50th could be used as a measure of
crowns density. We can expect a connection between the den-
sity of the crown and the tree stem volume, and in particular
trees with a higher crown density have a higher stem volume.

Moreover, from our analysis, it is clear that the returns dif-
ferent from the first are informative in the estimation of the tree
stem volume. In greater detail, the second return provides good
results comparable to those obtained with the first return. Also
in this case the information contained in the second return can
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TABLE VI
RESULTS OBTAINED WITH A TEN-FOLD CROSS VALIDATION

Fig. 5. Crown depth versus percentage of hits per return.

be related to the crown density and, thus, to the volume. The
same consideration holds for the variables of the third return.

Concerning the variables descriptive of the tree crown (e.g.,
the radius and the area of the crown), they are correlated with
the stem volume, as confirmed from some literature studies (e.g.,
[7]).

It is worth noting that the combined use of variables be-
longing to different returns allows one to increase the estimation
accuracy. In all the models developed starting from ensembles
of variables belonging to different returns, the stepwise selec-
tion included variables extracted from almost all the returns. In
particular, in the final model used, we have variables belonging
to the first, the second, and the third return.

V. CONCLUSIONS

In this paper, we have presented an analysis on the effective-
ness of the use of multireturn LiDAR data in the estimation of
tree stem volume at individual tree level. We have studied a mul-
tireturn LiDAR data set characterized by four returns. We have
also analyzed different kinds of variables extracted from the dif-
ferent returns, deriving some interesting conclusions.

1) The use of variables belonging to all the returns allows one
to obtain an increase of the estimation accuracy. In our
particular case, the final best model is based on variables
extracted from the first, the second, and the third returns.

2) The variables “ ” allow one to emphasize the
information contained in all the returns and, in particular,
to obtain good correlations only using the second or the
third returns.

3) There exists a correlation between the crown depth and the
number of hits per return; in greater detail, increasing the

crown depth, the probability to have returns different from
the first increases.

As future developments of this work we plan to: i) ana-
lyze the effectiveness of different kinds of variable-selection
techniques; ii) study other kinds of nonlinear estimators (e.g.,
Support Vector Regression); iii) investigate the interaction of
LiDAR data with other sources of information (e.g., multispec-
tral and hyperspectral remote sensing images); iv) analyze the
effects of the undetected crowns (e.g., in multilayer forests) on
the estimation of the of stem volume in forest inventories; v)
study the possibility to identify information on the dominated
layers from the analysis of different LiDAR returns in multi-
layer forests.
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