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Abstract—This paper presents a novel approach to feature se-
lection for the classification of hyperspectral images. The proposed
approach aims at selecting a subset of the original set of features
that exhibits at the same time high capability to discriminate
among the considered classes and high invariance in the spatial do-
main of the investigated scene. This approach results in a more ro-
bust classification system with improved generalization properties
with respect to standard feature-selection methods. The feature
selection is accomplished by defining a multiobjective criterion
function made up of two terms: 1) a term that measures the class
separability and 2) a term that evaluates the spatial invariance of
the selected features. In order to assess the spatial invariance of
the feature subset, we propose both a supervised method (which
assumes that training samples acquired in two or more spatially
disjoint areas are available) and a semisupervised method (which
requires only a standard training set acquired in a single area of
the scene and takes advantage of unlabeled samples selected in
portions of the scene spatially disjoint from the training set). The
choice for the supervised or semisupervised method depends on
the available reference data. The multiobjective problem is solved
by an evolutionary algorithm that estimates the set of Pareto-
optimal solutions. Experiments carried out on a hyperspectral im-
age acquired by the Hyperion sensor on a complex area confirmed
the effectiveness of the proposed approach.

Index Terms—Expectation–maximization (EM) algorithm, fea-
ture selection, hyperspectral images, image classification, remote
sensing, robust features, semisupervised feature selection, station-
ary features.

I. INTRODUCTION

HYPERSPECTRAL remote sensing images, which are
characterized by a dense sampling of the spectral signa-

ture of different land-cover types, represent a very rich source
of information for the analysis and automatic recognition of
land-cover classes. However, supervised classification of hy-
perspectral images is a very complex methodological problem
due to many different issues [1]–[5]: 1) the small value of
the ratio between the number of training samples and the
number of available spectral channels (and thus of classifier

Manuscript received November 18, 2008; revised January 30, 2009. First
published July 10, 2009; current version published August 28, 2009.

The authors are with the Department of Information Engineering and
Computer Science, University of Trento, 38050 Trento, Italy (e-mail: lorenzo.
bruzzone@ing.unitn.it; claudio.persello@disi.unitn.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2009.2019636

parameters), which results in the Hughes phenomenon [6];
2) the high correlation among training patterns taken from the
same area, which violates the required assumption of indepen-
dence of samples included in the training set (thus reducing
the information conveyed to the classification algorithm by the
considered samples); and 3) the nonstationary behavior of the
spectral signatures of land-cover classes in the spatial domain
of the scene, which is due to physical factors related to ground
(e.g., different soil moisture or composition), vegetation, and
atmospheric conditions. All the aforementioned issues result in
decreasing the robustness, the generalization capability, and the
overall accuracy of classification systems used to generate the
land-cover maps.

In order to address the aforementioned problems, in the
recent literature, different promising approaches have been pro-
posed for hyperspectral image classification. Among the others,
we recall the following: 1) the use of supervised kernel methods
[and in particular of support vector machines (SVMs)], which
are intrinsically robust to the Hughes phenomenon [1], [2];
2) the use of semisupervised learning methods that take into
account both labeled and unlabeled samples in the learning of
the classifier [3]; and 3) the joint use of kernel methods and
semisupervised techniques [4], [5]. On the one hand, SVMs are
supervised classifiers that result in augmented generalization
capability with respect to other classification methods thanks
to the structural risk minimization principle, which allows one
to effectively control the tradeoff between the empirical risk
and the generalization property. On the other hand, semisuper-
vised approaches can increase the capability of classification
algorithms to derive discrimination rules that better fit with
the nonstationary behavior of features in the hyperspectral
image under investigation, by considering also the information
of unlabeled samples. These classification methods proved to
be quite effective in mitigating some of the aforementioned
problems. Nevertheless, the problem of the spatial variability
of the features can be addressed (together with the sample
size problem) at a different and complementary level, i.e., in
the feature extraction and/or feature-selection phase. To this
purpose, the feature extraction phase should aim at deriving
discriminative features that are also as stationary as possible
in the spatial domain. The feature-selection phase should aim
at selecting a subset of the available features that satisfies the
following: 1) allows the classifier to effectively discriminate
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the considered classes and 2) contains features that have the
most invariant as possible behavior in the spatial domain. In
this paper, we focus on the development of a feature-selection
approach to the identification of robust and spatially invariant
features. It is worth noting that, although, in the literature,
several feature-selection algorithms have been proposed for the
analysis of hyperspectral data (e.g., [9]–[12]), to the authors’
knowledge, little attention has been devoted to the aforemen-
tioned problem.

The feature-selection techniques that are most widely used
in remote sensing generally require the definition of a criterion
function and a search strategy. The criterion function is a mea-
sure of the effectiveness of the considered subset of features,
and the search strategy is an algorithm that aims at efficiently
finding a solution (i.e., a subset of features) that optimizes
the adopted criterion function. In standard feature-selection
methods [9]–[17], the criterion functions typically adopted are
statistical measures that assess the separability of the different
classes on a given training set but do not explicitly take into
account the stationarity of the features (e.g., the variability of
the spectral signature of the land-cover classes). This approach
may result in selecting a subset of features that retains very
good discrimination properties in the portion of the scene close
to the training pixels (and therefore with similar behavior), but
are not appropriate to model the class distributions in separate
portions on the scene, which may present different spectral
behavior. Considering the typical high spatial variability of
the spectral signature of land-cover classes in hyperspectral
images, this approach can lead to an overfitting phenomenon
in the feature-selection phase, resulting in poor generalization
capabilities of the classification system. Note that we use here
the term overfitting with an extended meaning with respect
to the conventional sense, which traditionally refers to the
phenomenon that occurs when inductive algorithms model too
closely the training data, losing generalization capability. In this
paper, we observe that there is an intrinsic spatial variability of
the spectral signature of classes in the hyperspectral image, and
thus, we expect that the generalization ability of the system is
strongly affected by this property of hyperspectral data, which
is much more critical than in standard multispectral images.

In this paper, we address the aforementioned problem by
proposing a novel approach to feature selection that aims at
identifying a subset of features that exhibits both high discrimi-
nation ability among the considered classes and high invariance
in the spatial domain of the investigated scene. This approach is
implemented by defining a novel criterion function that is based
on the evaluation of two terms: 1) a standard separability mea-
sure and 2) a novel invariance measure that assesses the station-
arity of features in the spatial domain. The search algorithm,
adopted for deriving the subsets of features that jointly optimize
the two terms, is based on the optimization of a multiobjective
problem for the estimation of the Pareto-optimal solutions. For
the assessment of the two terms of the criterion function, we
propose both a supervised and a semisupervised method that
can be adopted according to the amount of available reference
data. The proposed approach can be integrated in the design
of any system for hyperspectral image classification (e.g.,
based on parametric or distribution-free supervised algorithms,

kernel methods, and semisupervised classification techniques)
for increasing the robustness and the generalization capability
of the classifier.

This paper is organized into six sections. The next section
presents the background and a brief overview on existing
feature-selection algorithms for the classification of hyperspec-
tral data. Section III presents the proposed novel approach to
the selection of features for the classification of hyperspectral
images, and two possible methods to implement it according to
the available reference data. Section IV describes the adopted
hyperspectral data set and the design of the experimental analy-
sis carried out for assessing the effectiveness of the proposed
approach. Section V presents the obtained experimental results
on the considered data set. Section VI draws the conclusions of
this paper.

II. BACKGROUND ON FEATURE SELECTION

IN HYPERSPECTRAL IMAGES

The process of feature selection aims at reducing the dimen-
sionality of the original feature space by selecting an effective
subset of the original features while discarding the remaining
measures. Note that this approach is different from feature
transformation (extraction), which consists in projecting the
original feature space onto a different (usually lower dimen-
sional) feature space [9], [14], [18], [19]. In this paper, we
focus our attention on feature selection, which has the important
advantage to preserve the physical meaning of the selected
features. Moreover, feature selection results in a more general
approach than feature transformation alone by considering that
the features given as input to the feature-selection module can
be associated with the original spectral channels of the hyper-
spectral image and/or with measures that extract information
from the original channels and from the spatial context of each
single pixel [20], [21] (e.g., texture, wavelets, average of groups
of contiguous bands, derivatives of the spectral signature, etc.).

Let us formalize a general feature-selection problem for
the classification of a hyperspectral image I, where each
pixel, described by a feature vector x = (x1, x2, . . . , xn) in an
n-dimensional feature space, is to be assigned to one of C
different classes Ω = {ω1, ω2, . . . , ωC}. The set Υ is made up
of the n features in input to the feature-selection process (which
can be the original channels and/or measures extracted from
them). Let P (ωi), where ωi ∈ Ω, be the a priori probabilities of
the land-cover classes in the considered scene, and let p(x |ωi)
be the conditional probability density functions for the feature
vector x, given the class ωi ∈ Ω. Let us further assume that a
training set T = {X ,Y} made up of l pairs (xi, yi) is available,
where X = {x1,x2, . . . ,xl}, xi ∈ R

n, ∀i = 1, 2, . . . , l, is a
subset of I and Y = {y1, y2, . . . , yl}, yi ∈ Ω, ∀i = 1, 2, . . . , l,
is the corresponding set of class labels. The aim of the feature-
selection process is to select the most effective subset θ∗ ⊂ Υ
of m features (with m < n), according to a criterion function
and a search strategy. This can be obtained according to dif-
ferent algorithms that broadly fall into three categories [22]:
1) the filter model; 2) the wrapper model; and 3) the hybrid
model. The filter model is based on the general characteris-
tics of the considered data and filters out the most irrelevant
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features without involving the classification algorithm. Usually,
this is accomplished according to a measure that assesses the
separability among classes. The wrapper model depends on
a particular classification algorithm and exploits the classifier
performance as the criterion function. It searches for a subset
of features that optimizes the accuracy of the adopted inductive
algorithm, but it is generally computationally more expensive
than the filter model. The hybrid model takes advantage of
the aforementioned two models by exploiting their different
evaluation criteria in different search stages. It uses a criterion
function that depends on the available data to identify the
subset of candidate solutions for a given cardinality m and
then exploits the classification algorithm to select the final best
subset. In the next sections, we focus our literature analysis on
the filter methods and only on the background concepts that are
relevant for the developed technique.

A. Criterion Functions

In standard filter approaches to feature selection, the
typically adopted criterion functions are based on statistical
distance measures that assess the separability among class
distributions p(x |ωi), ∀ωi ∈ Ω, on the basis of the available
training set T . Statistical distance measures are usually adopted
as they represent practical criteria to easily approximate the
Bayes error. The commonly adopted measures to evaluate the
separability between the distributions of two classes ωi and ωj

are [9], [14]

Divergence:

Divij(θ) =
∫
x

{p(x|ωi) − p(x|ωj)} ln
p(x|ωi)
p(x|ωj)

dx (1)

Bhattacharyya distance:

Bij(θ) = − ln

⎧⎨
⎩

∫
x

√
p(x|ωi)p(x|ωj)dx

⎫⎬
⎭ (2)

Jeffries–Matusita (JM) distance:

JMij(θ) =

⎧⎨
⎩

∫
x

[√
p(x|ωi) −

√
p(x|ωj)

]2

dx

⎫⎬
⎭

1/2

. (3)

The JM distance can be rewritten according to the
Bhattacharyya distance Bij

JMij(θ) =
√

2 {1 − exp [−Bij(θ)]}. (4)

In multispectral and hyperspectral remote sensing images, the
distributions of classes p(x |ωi), ωi ∈ Ω are usually modeled
with Gaussian functions with mean vectors μi and covariance
matrices Σi. Under this assumption, we can write

Divij(θ) =
1
2
Tr

{
(Σi − Σj)

(
Σ−1

j − Σ−1
i

)}
+

1
2
Tr

{(
Σ−1

i − Σ−1
j

)
(μi − μj)(μi − μj)T

}
(5)

Bij(θ) =
1
8
(μi − μj)T

(
Σi + Σj

2

)−1

(μi − μj)

+
1
2

ln

(
1
2
|Σi + Σj |√
|Σi| |Σj |

)
(6)

where Tr{·} is the trace of a matrix. An important drawback
of the divergence is that its value quadratically increases with
respect to the separation between the mean vectors of the class
distributions. This behavior does not reflect the classification
accuracy behavior, which asymptotically tends to one when
the class distributions are perfectly separated. On the contrary,
the JM distance exhibits a behavior that saturates when the
separability between the two considered classes increases. For
this reason, the JM distance is generally preferred to either the
divergence or the Bhattacharyya distance.

The previously described measures evaluate the statistical
distance between a pair of class distributions. In order to extend
the separability measures to multiclass problems, a usually
adopted separability indicator is obtained by computing the av-
erage distance among all pairwise distances. Thus, a multiclass
separability measure can be defined as

Δ(θ) =
C∑

i=1

C∑
j>i

P (ωi)P (ωj)Sij(θ) (7)

where Sij(θ) is a statistical distance measure (e.g.,
Bhattacharyya distance, divergence, and JM distance) between
the distributions p(x |ωi) and p(x |ωj) of the two classes ωi

and ωj , and P (ωi) and P (ωj) are the prior probabilities of the
classes ωi and ωj in the considered scene, respectively.

Other measures adopted for feature selection are based on
scatter matrices that allow one to characterize the variance
within classes and between classes [14]. Using these measures,
the canonical analysis aims at maximizing the ratio between
among-class variance and within-class variance, resulting in the
selection of features that simultaneously exhibit both require-
ments, i.e., high among-class variance and low within-class
variance. Another example of indicator that can be adopted as
criterion function is the mutual information, which measures
the mutual dependence of two random variables. In the context
of feature selection, the mutual information can be used to
assess the capability of the considered feature vector xi ∈ θ
to predict the correct class label yi ∈ Ω ∀i = 1, 2, . . . , l. To this
purpose, a definition of the mutual information that considers
the discrete nature of y should be adopted (for deeper insight
on feature selection based on mutual information, we refer the
reader to [23] and [24]).

B. Search Strategies

In order to select the final subset of features that optimizes
the adopted criterion function, a search strategy is needed.
The search strategy generates possible solutions of the feature-
selection algorithm and compares them by applying the crite-
rion function as a measure of the effectiveness of each solution.
An exhaustive search for the optimal solution involves the
evaluation and comparison of the criterion function for all
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(
n
m

)
possible combinations of features. This is an intractable

problem from a computational point of view, even for low num-
bers of features [17]. The branch-and-bound method proposed
by Narendra and Fukunaga [14], [15] is a widely used approach
to compute the globally optimum solution for monotonic crite-
rion function without explicitly exploring all possible combi-
nations of features. Nevertheless, the computational saving is
not sufficient for treating problems with hundreds of features.
Therefore, in the case of feature selection for hyperspectral
data classification, suboptimal approaches should be adopted.
Several suboptimal search strategies have been proposed in the
literature. The simplest suboptimal search strategies are the
sequential forward selection (SFS) and the sequential backward
selection (SBS) techniques [16], [17]. A serious drawback of
both algorithms is that they do not allow backtracking. In
the case of the SFS algorithm, once the features have been
selected, they cannot be discarded. Similarly, in the case of the
SBS search technique, once the features have been discarded,
they cannot be added again to the subset of selected features.
Two effective sequential search methods are those proposed
by Pudil et al. [16], namely, the sequential forward floating
selection (SFFS) method and the sequential backward floating
selection (SBFS) method. They improve the standard SFS
and SBS techniques by dynamically changing the number of
features included (SFFS) or removed (SBFS) to the subset of
selected features at each step, thus allowing the reconsideration
of the features included or removed at the previous steps. Other
effective strategies are those proposed in [12], where two search
algorithms are presented (i.e., the steepest ascent and the fast
constrained search), which are based on the formalization of
the feature-selection problem in the framework of a discrete
optimization problem in an adequately defined binary multidi-
mensional space.

An alternative approach to the exploration of the feature
space that is relevant to this paper is that based on genetic
algorithms (GAs), whose application to feature-selection prob-
lems was proposed in [25]. Genetic algorithms exploit an
analogy with biology, in which a group of solutions, encoded
as chromosomes, evolve via natural selection [26]. A standard
GA starts by randomly creating an initial population (with a
predefined size). Solutions are then combined via a crossover
operator to produce offspring, thus expanding the current
population. The individuals in the population are evaluated
according to the criterion function, and the individuals that
less fit such a function are discarded to return the population
to its original size. A mutation operator is generally applied
in order to increase individuals’ variations. The processes of
crossover, evaluation, and selection are repeated for a prede-
termined number of generations (if no other stop criterion is
met before) in order to reach a satisfactory solution. Several
papers confirmed the effectiveness of GAs for standard feature-
selection approaches (e.g., [27]–[29]), also for hyperdimen-
sional feature space. Moreover, as it will be explained later,
GAs become particularly relevant for this paper as they are
effective when the criterion function involves multiple con-
current terms, and therefore, a multiobjective problem has to
be optimized in order to estimate the Pareto-optimal solutions
[30], [31].

III. PROPOSED FEATURE-SELECTION APPROACH

The main idea and novelty of the approach that we propose in
this paper is to explicitly consider in the criterion function of the
feature-selection process the spatial variability of the features
(e.g., of the spectral signatures) on each land-cover class in the
investigated scene, together with their discrimination capability.
This results in the possibility to select a subset of features that
exhibits both high capability to discriminate among different
classes and high invariance in the spatial domain. The resulting
subset of selected features implicitly improves the general-
ization capability in the classification process, which results
in augmented robustness and accuracy in the classification of
hyperspectral images with respect to feature subsets selected
with standard methods. This property is particularly relevant
when the considered scene is extended over large geographical
areas and/or presents considerable intraclass variability of the
spectral signatures.

From a formal viewpoint, the aim of the proposed approach
is to select the subset θ∗ ⊂ Υ of m features (with m < n) that
optimizes a novel criterion function made up of two measures
that characterize the following: 1) the capability of the subset of
features to discriminate among the considered classes in Ω and
2) the spatial invariance (stationary behavior) of the selected
features. The first measure can be evaluated with standard
statistical separability indices (as described in the previous
section), whereas the spatial invariance property is evaluated
according to a novel invariance measure that represents an
important contribution of this paper. In particular, we propose
two possible methods to evaluate the invariance of a subset
of features: 1) a supervised method and 2) a semisupervised
method. The supervised method relies on the assumption that
the available training set T is made up of two subsets of
labeled patterns T1 and T2 (such that T1 ∪ T2 = T and T1 ∩
T2 = ∅) collected on disjoint (separate) areas on the ground.
This property of the training set is exploited for assessing the
spatial variability of the spectral signatures of the land-cover
classes. We successively relax this hypothesis by proposing a
semisupervised method that does not require the availability of
a training subset T2 spatially disjoint from T1 (only a standard
training set T ≡ T1 acquired in a single area of the scene is
needed) and takes advantage of unlabeled samples. This second
method is based on an estimation of the distributions of classes
in portions of the image separate from T , which is carried out
by exploiting the information captured from unlabeled pixels.
The final subset of features is selected by jointly optimizing
the two concurrent terms of the criterion function. This is done
by defining a proper search strategy based on the optimization
of a multiobjective problem for deriving the subsets of fea-
tures that exhibit the best tradeoff between the two concurrent
objectives.

In the following sections, we present the proposed supervised
and semisupervised methods for the evaluation of the criterion
function. Then, we describe the proposed multiobjective search
strategy for deriving the final subsets of features that exhibit
both the aforementioned properties (which can be assessed with
either the supervised or the semisupervised method, depending
on the available reference data).
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Fig. 1. Examples of feature subsets with different invariant (stationary)
behaviors on two disjoint sets T1 and T2. (a) Feature subset that exhibits
high separability and high invariance properties. (b) Feature subset with high
separability on T1 and high variability between T1 and T2.

A. Supervised Formulation of the Proposed
Criterion Function

Let us first assume the availability of two subsets of labeled
patterns T1 and T2 collected on disjoint areas on the ground
(thus representing two different realizations of the class distrib-
utions). Under this assumption, we can define a novel criterion
function that is based on two different terms: 1) a term that
measures the class separability (discrimination term) and 2) a
term that evaluates the spatial invariance of the investigated
features (invariance term).

1) Discrimination Term Δ: This term is based on a standard
feature-selection criterion function. In the proposed system, we
adopt the definition given in (7), where the term Δ(θ) evaluates
the average measure of distance between all couples of class
distributions p(x |ωi) and p(x |ωj) ∀ωi, ωj ∈ Ω and i < j.
This term depends on the selected subset θ of features, and the
subset of m features θ∗ that maximizes this distance results
in the best potential for discriminating land-cover classes in
the area modeled by the training samples. It is important to
note that the evaluation of the aforementioned term is usually
performed by assuming Gaussian distributions of classes for
calculating the statistical distance Sij(θ). Under this assump-
tion, also in the presence of two disjoint training sets, it is
preferable to evaluate the discrimination term by considering
only one subset of the training set (T1 or T2). This can be
explained by considering that mixing up the two available
training subsets T1 and T2 would result in mixing together two
different realizations of the feature distributions, which, from
a theoretical perspective, cannot be correctly modeled with
Gaussian (monomodal) distributions.

2) Invariance Term P: In order to introduce the invariance
term, let us first consider Fig. 1. This figure shows a qualitative
example in a 2-D feature space of two subsets of features
that exhibit different behavior of the samples extracted from
different portions of a scene. The features of Fig. 1(a) present
good capability to separate the class clusters and also exhibit
high invariance on the two considered training sets. These
properties allow the supervised algorithm to derive a robust
classification rule, resulting in the capability to accurately clas-
sify samples that can be localized in both areas from which the
samples of T1 and T2 are extracted. On the contrary, the features
adopted in Fig. 1(b) exhibit good separability properties but low
invariance. This feature subset leads the supervised learner to
derive a classification rule that is not robust, resulting in poor
classification accuracy in spatially disjoint areas.

The different behavior between the feature subsets in
Fig. 1(a) and (b) can be modeled by considering the distance
between the clusters that refer to the same land-cover class in
the two disjoint training sets T1 and T2. Thus, we can introduce
a novel term to explicitly measure the invariance (stationary
behavior) of features on each class in the investigated image.
It can be defined as

P(θ) =
1
2

C∑
i=1

PT1(ωi)PT2(ωi)ST1T2
ii (θ) (8)

where ST1T2
ii is a statistical distance measure between the

distributions pTr (x |ωi), r = 1, 2, of the class ωi computed
on T1 and T2, and PTr(ωi) represents the prior probability of
the class ωi in Tr, r = 1, 2. This term evaluates the average
distance between the distributions of the same class in different
portions of the scene (i.e., on the two disjoint subsets of the
training set). Unlike for Δ(θ), we expect that a good (i.e.,
robust) subset of features should minimize the value of P(θ).
The computation of P(θ) can be easily extended to more than
two training subsets if labeled data collected on more than
two disjoint regions are available. In the general case, when R
spatially disjoint training sets are available, the invariance term
can be defined as follows:

P(θ) =
1
R

R∑
a=1

R∑
b>a

C∑
i=1

PTa(ωi)PTb(ωi)STaTb
ii (θ). (9)

The process of selection of features that jointly optimize the
discrimination term Δ(θ) and the invariance term P(θ) will be
described in Section III-C.

B. Semisupervised Evaluation of the Criterion Function
(Invariance Term Estimation)

The collection of labeled training samples on two (or more)
spatially disjoint areas from the site under investigation can
be difficult and/or very expensive. This may compromise the
applicability of the proposed supervised method in some real
classification applications. In order to overcome this possible
problem, in this section, we propose a semisupervised tech-
nique to estimate the invariance term defined in (8), which
does not require the availability of a disjoint training subset T2.
Here, we only assume that a training set T1 is available, and we
consider a set of unlabeled pixels U = {x1,x2, . . . ,xn} ∈ I
(subset of the original image I) that should satisfy two require-
ments: 1) U contains samples of all the considered classes, and
2) samples in U should be taken from portions of the scene
separated from those on which the training samples T1 are
collected. The set U can be defined in either of the following
ways: 1) by manually selecting clusters of pixels on a portion
of the considered scene; 2) by randomly subsampling a set of
pixels; or 3) by considering the whole image I. It is worth
noting that, in the proposed algorithm, the labels of classes are
not required. We only assume that the unlabeled samples are
collected according to a strategy that can implicitly consider all
classes present in the scene.
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The method is based on the semisupervised estimation of the
terms PU (ωi) and pU (x |ωi), ωi ∈ Ω, which, in this case, char-
acterize the prior probabilities and the conditional probability
density functions in the disjoint area corresponding to the pixels
in U , respectively. The distribution of the samples in U can be
described by the following mixture model:

pU (x) =
C∑

i=1

PU (ωi)pU (x |ωi). (10)

We assume that PU (ωi) and pU (x |ωi) are not known, while
pU (x) is given from the data distribution. However, despite the
expected variability, for each class ωi ∈ Ω, the initial values of
both the prior probability PU (ωi) and the conditional density
function pU (x |ωi) can be roughly approximated by the prior
and the conditional density function in T1, i.e.,

PU,0(ωi) = PT1(ωi) pU,0(x |ωi) = pT1(x |ωi). (11)

The problem can be addressed by estimating the parameter
vector J = [PU (ωi), δi]Ci=1, where each component δi repre-
sents the vector of parameters that characterize the density
function pU (x |ωi), which, given its dependence from δi, can
be rewritten as pU (x |ωi, δi). The components of J can be
estimated by maximizing the pseudo log-likelihood function
L[pU (x)] defined as

L
[
pU (x) |J

]
=

m∑
j=1

log

{
C∑

i=1

PU (ωi |J)pU (x |ωi,J)

}
.

(12)

The maximization of the log-likelihood function can be ob-
tained with the expectation–maximization (EM) algorithm [32].
The EM algorithm consists of two main steps: an expectation
step and a maximization step. The two steps are iterated, so
that the value of the log-likelihood function L[pU (x)] increases
at each iteration, until a local maximum is reached. For sim-
plicity, let us consider that all the classes ωi ∈ Ω are Gaussian
distributed. Under this assumption, the density function asso-
ciated with each class ωi can be completely described by the
mean vector μU

i and the covariance matrix ΣU
i , i = 1, . . . , C.

Therefore, the parameter vector to be estimated becomes

J =
[
PU (ωi), μU

i ,ΣU
i

]C

i=1
. (13)

It can be proven that the equations to be used at iteration s + 1
for estimating the statistical terms associated with a generic
class ωi are the following [3], [32], [33]:

PU,s+1(ωi) =
1
m

∑
xj∈U

PU,s(ωi)pU,s(xj |ωi)
pU,s(xj)

(14)

[
μU

i

]s+1
=

∑
xj∈U

P U,s(ωi)p
U,s(xj |ωi)

pU,s(xj)
xj

∑
xj∈U

P U,s(ωi)pU,s(xj |ωi)
pU,s(xj)

(15)

[
ΣU

i

]s+1
=

∑
xj∈U

P U,s(ωi)p
U,s(xj |ωi)

pU,s(xj)

{
xj −

[
μU

i

]s+1
}2

∑
xj∈U

P U,s(ωi)pU,s(xj |ωi)
pU,s(xj)

(16)

where the superscripts s and s + 1 refer to the values of the
parameters at the sth and s + 1th iterations, respectively. The
estimates of the statistical parameters that describe the class
distributions in the disjoint areas are obtained starting from
the initial values of the parameters [see (11)] and iterating
(14)–(16) up to convergence. An important aspect of the EM
algorithm concerns its convergence properties. It is not possible
to guarantee that the algorithm will converge to the global
maximum of the log-likelihood function, although convergence
to a local maximum can be ensured. A detailed description of
the EM algorithm is beyond the scope of this paper, so we refer
the reader to the literature for a more detailed analysis of such
an algorithm and its properties [3], [32]. The final estimates
obtained at convergence for each class ωi ∈ Ω, i.e., P̂U (ωi),
and p̂U (x |ωi) (which depend on the estimated parameters μ̂U

i

and Σ̂U
i ) can be used in place of PT2(ωi) and pT2(x |ωi) to

estimate the invariance term P̂(θ) for each subset of features θ
considered. Thus, the semisupervised estimation of the invari-
ance term becomes

P̂(θ) =
1
2

C∑
i=1

PT1(ωi)P̂U (ωi)ŜT1U
ii (θ). (17)

The discrimination term Δ(θ) can be calculated as in (7) with
no difference with respect to the supervised method.

It is worth noting that, depending on the adopted set U of
unlabeled pixels, the estimation of the prior probabilities and
the class-conditional densities can reflect with different degree
of accuracy the true values. In particular, the estimation of the
elements of the covariance matrices Σ̂U

i , i = 1, . . . , C, may be-
come critical in some cases when the number of classes is high.
Thus, in these cases, since small fluctuations in the accuracy
of the estimation of the covariance terms Σ̂U

i , i = 1, . . . , C,
can strongly affect the invariance term values, the estimation
of the invariance term can be simplified in the following ways:
1) by assuming that the covariance matrix is diagonal and
2) by considering only the first-order statistical moment (thus
neglecting the second-order moments) for the evaluation of the
statistical distance ŜT1U

ii (θ).

C. Proposed Multiobjective Search Strategy

Given the proposed criterion function that is made up of the
discrimination term Δ(θ) and the invariance term P(θ) (which,
depending on the available reference data, can be evaluated
with the supervised or unsupervised methods, as described in
the previous two sections), we address now the problem of
defining a search strategy to select the subset (or the subsets) of
features that (jointly) optimize(s) the two defined measures. To
this purpose, one can define a global optimization function as

V (θ) = Δ(θ) + K · f [P(θ)] (18)
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Fig. 2. Example of Pareto-optimal solutions and dominated solution in a two-
objective search space.

where K tunes the tradeoff between discrimination ability
and invariance of the selected subset of features and f is the
monotonic decreasing function of P(θ). The subset θ∗ of m
features for which V (θ) has the maximum value represents the
solution to the considered problem.

Nevertheless, the aforementioned formulation of the problem
has two drawbacks: 1) the obtained criterion function is not
monotonic (and thus, effective search algorithms based on this
property cannot be used), and 2) the definition of f and K
(which should be carried out empirically) affects significantly
the final result. To overcome these drawbacks, we modeled
this problem as a multiobjective minimization problem, where
the multiobjective function g(θ) is made up of two different
(and possibly conflicting) objectives g1(θ) and g2(θ), which
express the discrimination ability Δ(θ) among the considered
classes and the spatial invariance P(θ) of the subset of features
θ, respectively. The multiobjective problem can therefore be
formulated as follows:

min
|θ|=m

{g(θ)} ,

where g(θ) = [g1(θ), g2(θ)] = [−Δ(θ),P(θ)] (19)

where |θ| is the cardinality of the subset θ, i.e., the number
of features m to be selected from the originally available n.
This problem is solved in order to obtain a set of Pareto-optimal
solutions O∗ instead of a single optimal one. In greater detail,
a solution θ∗ is said to be Pareto optimal if it is not dominated
by any other solution in the search space, i.e., there is no other
θ such that gi(θ) ≤ gi(θ∗) (∀i = 1, 2) and gj(θ) < gj(θ∗) for
at least one j (∀j = 1, 2). This means that θ∗ is Pareto optimal
if there exists no other subset of features θ that would decrease
an objective without simultaneously increasing the other one
(Fig. 2 clarifies this concept with a graphical example). The set
O∗ of all optimal solutions is called Pareto-optimal set. The plot
of the objective function of all solutions in the Pareto-optimal
set is called Pareto front PF∗ = {g(θ)|θ ∈ O∗}. Because of
the complexity of the search space, an exhaustive search of
the set of optimal solutions O∗ is unfeasible. Thus, instead
of identifying the true set of optimal solutions, we aim to esti-
mate a set of nondominated solutions Ô∗ with objective values
as close as possible to the Pareto front. This estimation can be
achieved with different multiobjective optimization algorithms
(e.g., multiobjective evolutionary algorithms).

The main advantage of the multiobjective approach is that it
avoids aggregation of metrics capturing multiple objectives into
a single measure. On the contrary, it allows one to effectively
identify different possible tradeoffs between the values of Δ(θ)
and P(θ). This results in the possibility to evaluate in a more
flexible way the tradeoffs between discrimination ability among
classes and spatial invariance of each feature subset and to
identify the subsets of features that simultaneously exhibit
both properties. In particular, we expect that the most robust
subsets of features (which will result in the best generalization
capability of the classification system) are represented by the
solutions that are localized close to the knee of the estimated
Pareto front (or the solutions closest to the origin of the search
space).

IV. DATA SET DESCRIPTION AND

DESIGN OF EXPERIMENTS

In order to assess the effectiveness of the presented approach
(with both the proposed supervised and semisupervised meth-
ods), we carried out several experiments on a hyperspectral
image acquired over an extended geographical area. We con-
sidered a data set that is increasingly used as a benchmark in
the literature and consists of data acquired by the Hyperion
sensor of the Earth Observing 1 (EO-1) satellite in an area of
the Okavango Delta, Botswana. The Hyperion sensor on EO-1
acquired the hyperspectral image with a spatial resolution of
30 m over a 7.7-km strip in 242 bands. Uncalibrated and noisy
bands that cover water absorption range of the spectrum were
removed, and the remaining 145 bands were given as input
to the feature-selection technique. For more details on this
data set, we refer the reader to [34]. The labeled reference
samples were collected on two different and spatially disjoint
areas (Area 1 and Area 2), thus representing possible spatial
variabilities of the spectral signatures of classes. The samples
taken on the first area were partitioned into a training set T1 and
a test set TS1 by random sampling (these sets represent similar
realizations of the spectral signatures of classes). The samples
taken on the second area were used to derive a training set T2

and a test set TS2 according to the same procedure used for
the samples of the first considered area (these two sets present
possible variability in class distributions with respect to the first
two sets). The numbers of labeled reference samples for each
set and class are reported in Table I. After preliminary exper-
iments were carried out in order to understand the size of the
subset of features that led to the saturation of the classification
accuracies, we performed different experiments (with both the
supervised and semisupervised methods) by varying the size
m of the selected subset of features in a range between 6 and
14 with step 2. The obtained subsets of features were used to
perform the classification with a Gaussian maximum-likelihood
(ML) classifier. The training of the ML classifier (estimation
of Gaussian parameters for class-conditional densities) was
carried out using the training set T1. We compared the clas-
sification accuracies obtained on both test sets TS1 and TS2

performing the feature selection with the following: 1) the pro-
posed approach with the supervised method for the estimation
of the invariance term; 2) the proposed semisupervised method
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TABLE I
NUMBER OF TRAINING (T1 AND T2) AND TEST (TS1 AND TS2)
PATTERNS ACQUIRED IN THE TWO SPATIALLY DISJOINT AREAS

for estimating the invariance term; and 3) a standard feature-
selection technique that considers only the discrimination term.

The experiments with the supervised feature-selection
method were carried out by considering the training set T1

for the evaluation of the discrimination term Δ(θ) and both
T1 and T2 for the evaluation of the invariance term P(θ).
In our implementation, we adopted the JM distance (under
the Gaussian assumption for the distribution of classes) as
a statistical distance measure for both considered terms. The
second set of experiments was carried out with the proposed
semisupervised feature-selection method. In these experiments,
we considered the training set T1 for the evaluation of the
discriminative term Δ(θ), while the invariance term P̂(θ) was
estimated from T1 and the samples of T2, which were used
without their class label information as set U . For simplicity,
we considered only the first-order moment to evaluate the sta-
tistical distance ŜT1U

ii (θ) (see the discussion in Section II-A).
The standard feature selection was performed by selecting
the subsets of features that maximize the JM distance on the
training set T1 with a (mono-objective) GA. Note that we did
not mix up the two training sets T1 and T2 for both training
the ML classifiers and evaluating the discrimination term, as
the Gaussian approximation is no more reasonable for the two
different Gaussian realizations of each class in T1 and T2 (see
Section II-A).

In order to solve the defined two-objective minimization
problem for the proposed methods (i.e., estimating the Pareto-
optimal solutions), we implemented a modification of the “non-
dominated sorting in genetic algorithm II” (NSGA-II) [31]. The
original algorithm was modified in order to avoid solutions
with multiple selections of the same feature. This has been
accomplished by changing the random initialization of the
chromosome population and by modifying the crossover and
mutation operators. In all the experiments, the population size
was set equal to 100, and the maximum number of generations
was set equal to 50. The classification was carried out using
all combinations of features θ̂

∗ ∈ Ô∗ that lie on the estimated
Pareto front, and the subset θ̂

∗
that resulted in the highest

accuracy on the disjoint test set TS2 was finally selected. For
the mono-objective GA, we adopted the same values for both
the population size and the maximum number of generations as
for the multiobjective GA.

V. EXPERIMENTAL RESULTS

A. Results With the Supervised Method for the Estimation of
the Invariance Term

We first present the experimental results obtained with the
proposed supervised method that allows us to derive important
considerations about the validity of the proposed approach with
respect to the standard one. In order to show the shortcomings
of standard feature-selection algorithms for the classification of
hyperspectral images, Fig. 3 shows the graphs of the accuracy
obtained by the ML classifier on the adjoint (TS1) and dis-
joint (TS2) test sets versus the values of the discrimination
term Δ(θ) for different subsets of features. For the reported
graphs, we used the solutions on the Pareto front estimated by
the modified NSGA-II algorithm applied to the multiobjective
minimization problem in (19), in the cases of six and eight
features (these two cases are selected as examples; the other
considered cases led to similar results). From this figure, it is
possible to observe that the accuracy on TS1 increases when
the discrimination term increases, whereas the accuracy on
TS2 increases only until a certain value and then it decreases.
Therefore, the simple maximization of the discrimination term
(as standard approaches do) can lead to an overfitting phe-
nomenon, which results in poor generalization capabilities, i.e.,
low capability to discriminate and correctly classify the land-
cover classes in areas of the scene different from that associated
with the collected training data. This confirms the significant
variability of the spectral signature of classes in hyperspectral
images.

The aim of the proposed approach is to overcome this prob-
lem. Let us now consider Fig. 4 that shows the Pareto fronts
estimated by the proposed approach (employing the modified
NSGA-II algorithm) in the cases of the selection of six and eight
features. This figure represents the information of the kappa
coefficient of accuracy, which is obtained by the classification
of the test sets TS1 and TS2 with the considered subset of
features θ̂

∗
, as the color of the point, according to the reported

color scale bar. The diagrams in Fig. 4(a)–(c) show that, for the
classification of TS1, the solutions with higher discrimination
capability [lower values of −Δ(θ)] result in better accuracies.
This behavior reveals (as expected) that only the discrimination
term is important for selecting the most effective feature subset
for the classification of pixels acquired in a similar area of
pixels in T1 (in these conditions, training and test patterns
represent the same realization of the statistical distributions of
classes). On the contrary, the diagrams in Fig. 4(b)–(d) show
that the most accurate solutions for the classification of the
spatially disjoint samples of TS2 (which result in the highest
kappa coefficient of accuracy) are located in a middle region,
close to the knee of the estimated Pareto front. This confirms the
importance of the invariance term, and that tradeoff solutions
between the two competing objectives Δ(θ) and P(θ) should
be identified in order to select the subset of features that leads to
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Fig. 3. Behaviors of the kappa coefficients of accuracy on the test sets TS1 and TS2 versus the values of the discrimination term Δ(θ). Cases of (a) six and
(b) eight features.

Fig. 4. Pareto fronts estimated by the proposed approach with the supervised method. (a) and (b) Six-feature case. (c) and (d) Eight-feature case. The color
indicates the kappa coefficient of accuracy on (a)–(c) TS1 and (b)–(d) TS2 according to the reported color scale bar.

better generalization capabilities and, thus, higher classification
accuracy in areas of the hyperspectral image different from the
training one.

Table II reports the comparison of the classification ac-
curacies obtained on TS1 and TS2 by selecting the subset
of features with the proposed multiobjective supervised and
semisupervised methods, as well as the standard method. From
this table, it is possible to observe that the obtained accuracy
on the disjoint test set TS2 are, in general, significantly lower
that those obtained on the adjoint test set TS1, confirming the
presence of consistent variability in the spatial domain of the
spectral signatures of the classes. This phenomenon severely

challenges the generalization capability of the classification
system. Nevertheless, we can observe that, for all considered
cases, the proposed multiobjective feature-selection methods
allowed one to significantly increase the accuracy on the test
set TS2 with respect to the standard method, while the accuracy
on the adjoint test set TS1 only slightly decreased. On average,
the proposed supervised method resulted in an increase of the
classification accuracy on the disjoint test set of 21.3% with
respect to the standard approach, while it slightly decreased by
4.2% the accuracy on the adjoint test set.

The obtained results clearly confirm that the proposed ap-
proach is effective in exploiting the information of the two
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TABLE II
KAPPA COEFFICIENT OF ACCURACIES OBTAINED BY THE ML CLASSIFIER WITH THE FEATURES SELECTED

BY THE PROPOSED SUPERVISED AND SEMISUPERVISED METHODS AND THE STANDARD APPROACH

distinct available training sets to select subsets of robust and
invariant features, which can improve the generalization ca-
pabilities of the classification system. We further observe that
very few spectral channels (6–14 bands out of the originally
available 145) are sufficient for effectively representing and
discriminating the considered information classes, thus signifi-
cantly reducing the problems associated with the Hughes phe-
nomenon. The computational cost of the proposed supervised
method is comparable with that of the standard mono-objective
algorithm. In our experiments, which were carried out on a
personal computer mounting an Intel Pentium D processor at
3.4 GHz and a 2-GB DDR2 RAM, the feature selection with
the supervised multiobjective method took an average time of
about 4 min, while the standard method took about 3 min.
This is due to the fact that the evaluation of the discrimination
term Δ(θ) (which has to be computed also with standard
feature-selection methods) requires a computational cost that
is proportional to C(C − 1)/2, while the introduced invariance
term P(θ) has a computational cost that is proportional to C.
Therefore, the additional cost due to the evaluation of the new
term becomes lesser and lesser when the number of classes
increases.

B. Results With the Semisupervised Method for the Estimation
of the Invariance Term

Often, in real applications, a disjoint training set T2 is not
available to the user, and the proposed supervised method
cannot be used. In these cases, the semisupervised approach can
be adopted. It is worth noting that, from the perspective of the
semisupervised method, the supervised technique represents an
upper bound of the accuracy and generalization ability that
can be obtained (if the same samples with and without labels
are considered). Thus, in this case, the results presented in the
previous section can be seen as the best performances that can
be obtained on the considered samples.

As expected, the semisupervised method led to accuracies
that were slightly lower than that of the supervised method,
but it still maintained a significant improvement with respect
to the traditional approach. On average, the semisupervised
method increased the classification accuracy on TS2 by 16.4%
with respect to the standard feature-selection method, while
it decreased the accuracy on TS1 by 3.1%. The small de-
crease in performances with respect to those obtained by the

supervised method is due to the approximate estimation of
the invariance term carried out with the EM algorithm, which
cannot ensure convergence to the optimal solution. However,
the semisupervised method has the very important advantage
to considerably increase the generalization capabilities of the
classification systems with respect to the traditional approach
without requiring additional reference data. The computation
cost of this method is slightly higher with respect to the standard
method, because of the time required by the EM algorithm
to perform the estimation necessary to evaluate the invariance
term. In our experiments, the average time for the feature
selection with the semisupervised approach was about 60 min
(15 times more than that with the supervised method).

VI. CONCLUSION

In this paper, we presented a novel feature-selection approach
to the classification of hyperspectral images. The proposed
approach aimed at selecting subsets of features that exhibited,
at the same time, high discrimination ability and high spatial
invariance, improving the robustness and the generalization
properties of the classification system with respect to standard
techniques. The feature selection was accomplished by defining
a multiobjective criterion function that considered the evalua-
tion of both a standard separability measure and a novel term
that measured the spatial invariance of the selected features. In
order to assess the invariance in the scene of the feature subset,
we proposed both a supervised method (assuming the availabil-
ity of training samples acquired in two or more spatially disjoint
areas) and a semisupervised method (which required only a
standard training set acquired in a single area of the scene and
which exploited the information of unlabeled pixels in portions
of the scene spatially disjoint from the training areas). The mul-
tiobjective problem was solved by an evolutionary algorithm for
the estimation of the set of Pareto-optimal solutions.

Experimental results showed that the proposed feature-
selection approach selected subsets of the original features that
sharply increased the classification accuracy on disjoint test
samples, while it slightly decreased the accuracy on the adjoint
test set with respect to standard methods. This behavior con-
firms that the proposed approach results in augmented general-
ization capability of the classification system. In this regard, we
would like to stress the importance of evaluating the accuracy
on a disjoint test set, because this allows one to estimate the
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accuracy in the classification of the whole considered image.
In particular, the proposed supervised method is effective in
exploiting the information of the two available training sets,
and the proposed semisupervised method can significantly
increase the generalization capabilities of the classification
system without requiring additional reference data with respect
to traditional feature-selection algorithms. This can be achieved
at the cost of an acceptable additional computational time.

It is important to note that the proposed approach is defined
in a general way, thus allowing different possible implemen-
tations. For instance, the discrimination and invariance terms
can be evaluated considering statistical distance measures that
are different from those adopted in our experimental analy-
sis, and other multiobjective optimization algorithms can be
adopted as search strategy for estimating the Pareto-optimal
solutions. This general definition of the approach results in
the possibility of further developing the implementation that
we adopted for our experimental analysis. As an example,
as future developments of this paper, the proposed approach
could be integrated with classification algorithms that are dif-
ferent from the adopted ML classifier, e.g., the SVM and/or
other kernel-based classification techniques, for further im-
proving the accuracy of the classification system. In addition,
we think that the overall classification system can be further
improved by jointly exploiting the proposed feature-selection
approach and a semisupervised classification technique for a
synergic and complete exploitation of the unlabeled-sample
information.
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