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Abstract—This paper analyzes the problem of change detec-
tion in very high resolution (VHR) multitemporal images by
studying the effects of residual misregistration [registration noise
(RN)] between images acquired on the same geographical area
at different times. In particular, according to an experimental
analysis driven from a theoretical study, the main effects of RN
on VHR images are identified and some important properties
are derived and described in a polar framework for change
vector analysis. In addition, a technique for an adaptive and
unsupervised explicit estimation of the RN distribution in the
polar domain is proposed. This technique derives the RN distri-
bution according to both a multiscale analysis of the distribu-
tion of spectral change vectors and the Parzen windows method.
Experimental results obtained on simulated and real multitem-
poral data sets confirm the validity of the proposed analysis,
the reliability of the derived properties on RN, and the effec-
tiveness of the proposed estimation technique. This technique
represents a very promising tool for the definition of change-
detection methods for VHR multitemporal images robust to RN.

Index Terms—Change detection, change vector analysis (CVA),
multitemporal image analysis, registration noise (RN), remote
sensing, very high resolution (VHR) images.

I. INTRODUCTION

THE ever-increasing availability of remote-sensing images
regularly acquired by satellites over the same geographical

area makes the analysis of multitemporal data (and the related
applications) one of the most interesting research topics for the
remote-sensing community. Multitemporal images represent
a valuable information source for performing the detection
of changes occurred on the Earth surface at different scales.
Change-detection techniques generally compare two images
acquired at different times by assuming that they are similar
to each other except for the presence of changes occurred on
the ground. Unfortunately, this assumption is seldom com-
pletely satisfied due to differences in atmospheric and sunlight
conditions, as well as in the sensor acquisition geometry. In
order to satisfy the similarity assumption, preprocessing steps
are required, including: image coregistration, radiometric and
geometric corrections, and noise reduction. Among the others,
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coregistration plays a fundamental role as it allows one to obtain
a pair of images where corresponding pixels are associated with
the same position on the ground. However, in practice, it is not
possible to obtain a perfect alignment between images acquired
at different times. This may significantly affect the accuracy
of the change-detection process. The coregistration procedure
becomes more complex and critical (and therefore intrinsically
less accurate) when very high resolution (VHR) images ac-
quired by the last generation sensors (e.g., WorldView, Ikonos,
Eros, Quickbird, SPOT-5) are considered. These images can
be acquired with different view angles and often show differ-
ent geometrical distortions that, even after proper geometric
corrections, strongly affect the precision of the registration
process, thus resulting in a significant residual registration noise
(RN). This noise sharply decreases the accuracy of the change-
detection process.

In this paper, large attention has been devoted to the develop-
ment of advanced registration techniques, particularly for what
concerns medium-resolution multitemporal and multisensor
images [1]–[5]. Moreover, some studies exist on the effects of
misregistration on the change-detection accuracy [6]–[11] and
on the development of change-detection techniques less sensi-
tive to problems due to misregistration [12], [13]. Nonetheless,
in our knowledge, few attentions have been devoted to study the
effects and the properties of RN in VHR images.

This paper aims at analyzing the properties of RN in mul-
titemporal VHR images in order to formulate an adaptive
technique for the explicit estimation of the distribution of
residual RN between multitemporal images. This distribution is
a starting point for the development of novel change-detection
techniques robust to such source of noise. This paper is de-
veloped within a polar framework for change vector analysis
(CVA) recently introduced in the literature for change detection
in medium resolution multispectral images [14]. The definition
of this framework is based on the analysis of the distribution of
spectral change vectors (SCVs) computed according to the CVA
technique in the polar domain. In this context, the novel contri-
butions of this paper consist in: 1) the analysis of the effects of
RN in multitemporal and multispectral VHR images according
to the study of the statistical distribution of SCVs; 2) the
definition of the properties of RN in VHR images; and 3) the
formulation of an adaptive and distribution-free technique for
the estimation of the distribution of the RN in the polar domain.
This last technique exploits the Parzen windows estimation
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procedure and takes advantage from both a multiscale decom-
position of multitemporal images and the properties derived
in the first part of this paper. The experiments carried out on
simulated and real multitemporal images confirm the validity
of the theoretical analysis and the effectiveness of the proposed
technique, which represents a valuable tool for the development
of reliable change-detection techniques for multitemporal and
multispectral VHR images. It is worth noting that the proposed
method can be suitable also for the analysis of optical data at
lower resolution; however, we consider only very high geomet-
rical resolution images as the impact of misregistration on this
kind of data is more relevant.

This paper is organized into six sections. The next section
briefly recalls the notation and the background of the polar
framework proposed in [14]. Section III describes the experi-
mental setup for the study of the properties of RN on simulated
multitemporal VHR images. Section IV derives and defines the
properties of RN. Section V illustrates the proposed approach
to the estimation of the distribution of RN in the polar do-
main. Section VI presents the validation on real multitemporal
Quickbird images of both the derived properties and the
proposed technique for the estimation of the RN. Finally,
Section VII draws the conclusions of this paper.

II. NOTATION AND BACKGROUND

In order to analyze the effects of the RN, we take advantage
from the theoretical polar framework defined for unsupervised
change detection based on CVA proposed in [14]. In particular,
we derive the properties and adaptively estimate the distribu-
tion of RN according to the behavior of SCVs in such polar
domain.1 In the following, we briefly recall the main concepts
of this framework.

Let us consider two VHR multispectral images X1 and X2

(e.g., WorldView, Ikonos, Eros, Quickbird, SPOT-5 images) ac-
quired over the same geographical area at different times t1 and
t2, respectively. Let us assume that these images do not show
significant radiometric differences. Let Ω = {ωn,Ωc} be the set
of classes of changed and unchanged pixels to be identified. In
greater detail, ωn represents the class of unchanged pixels and
Ωc = {ωc1 , . . . , ωcK

} the set of the K possible classes (kinds)
of changes occurred in the considered area. For simplicity, the
whole analysis on the RN properties is carried out considering
a 2-D feature space (however, it can be generalized to the
case of more features, see [14] for details). In this manner, it
is possible to represent the information in a 2-D domain and
to better understand the implications of the analysis. Let XD

be the multispectral difference image computed according to
the CVA technique by subtracting the spectral feature vectors
associated with each corresponding spatial position in the two
considered images. XD is a multidimensional image made up
of SCVs defined as

XD = X2 − X1. (1)

1It is worth noting that in this paper, we do not present a change-detection
technique, but we focus the analysis on the RN properties and on the definition
of a method for an adaptive estimation of it.

Under the assumption of 2-D feature vectors, the change
information contained in the SCVs can be univocally described
by the change vector magnitude ρ and direction ϑ defined as

ϑ = tan−1

(
X1,D

X2,D

)
ρ =

√
(X1,D)2 + (X2,D)2 (2)

where Xb,D is the random variable representing the bth compo-
nent (spectral channel) of XD(b = {1, 2}). Finally, let us define
the magnitude-direction domain MD (in which all the SCVs of
a given scene are included) as

MD = {ρ ∈ [0, ρmax] and ϑ ∈ [0, 2π]} (3)

where ρmax is the highest magnitude of SCVs in the considered
images.

From the theoretical analysis reported in [14] and under
the aforementioned assumptions, it is expected that in the
polar representation unchanged and changed SCVs result in
separated clusters. Unchanged SCVs show a low magnitude and
are uniformly distributed with respect to the direction variable.
In the polar domain the region associated with them is the circle
of no-changed pixels Cn, defined as

Cn = {ρ, ϑ : 0 < ρ ≤ T and 0 ≤ ϑ < 2π}. (4)

This circle is centered at the origin and has a radius equal to
the optimal (in the sense of the theoretical Bayesian decision
theory) threshold T that separates unchanged from changed
pixels. On the opposite, changed SCVs are expected to show
a high magnitude. The region associated with them in the polar
domain is the annulus of changed pixels Ac, which is defined as

Ac = {ρ, ϑ : T ≤ ρ < ρmax and 0 ≤ ϑ < 2π}. (5)

This annulus has inner radius T and outer radius given by the
maximum among all possible magnitudes for the considered
pair of images (ρmax). As unchanged SCVs show preferred
directions according to the kind of change occurred on the
ground, different kinds of change can be isolated with a pair of
threshold values (ϑk1 and ϑk2) in the direction domain. Each
pair of thresholds identifies, in the annulus of changed pixels
Ac, an annular sector Sk of change ωk ∈ Ωc, defined as

Sk ={ρ, ϑ : ρ ≥ T and ϑk1 ≤ ϑ ≤ ϑk2 , 0 ≤ ϑk1 < ϑk2 ≤ 2π}.
(6)

All the mentioned regions are shown in Fig. 1. The reader
is referred to [14] for further details on both the polar frame-
work and the general properties of SCVs in this kind of
representation.

III. DESIGN OF THE ANALYSIS AND

EXPERIMENTAL SETUP

The objective of this paper is to study the effects of misregis-
tration within the framework presented in the previous section
in order to derive its properties and to define a procedure for
an adaptive estimation of the distribution of RN. As previously
mentioned, residual misregistration affects multitemporal data
and represents an important source of noise. In particular,
this noise becomes more relevant when dealing with VHR
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Fig. 1. Representation of the regions of interest in the CVA polar framework.

images, as the process of coregistration is more complex and
critical. Indeed, images acquired by VHR sensors of the last
generation can be acquired with different view angles and often
show different geometrical distortions that strongly affect the
registration process. Thus, they result in a significant amount
of residual RN. For this reason, it is very important to study
the properties of RN and to define techniques for estimating
its distribution (which is a valuable information to be given as
input to change-detection methods).

RN is due to the comparison of pixels that do not represent
the same area on the ground in images acquired over the same
geographical area at different times. In particular, the most
critical component of RN is related to the pixels that at the
two dates belong to different objects/classes on the ground (as
discussed in the next section) due to the misalignment between
the two images. In fact, these pixels show a behavior similar
to the one of real changes, causing misclassification effects in
the change-detection process. It follows that it is important to
identify these pixels and separate them from pixels associated
with true changes in the multitemporal data analysis.

The residual RN can be modeled as the effect of different
types of transformations between the images, such as scale
variation, rotation, translation, and skew [6]. In this section,
for space constraints, only examples modeling the RN as a
translational effect are reported; however, this choice is reason-
able as, according to [6], nontranslational effects show (from a
statistical viewpoint) a behavior similar to that of the transla-
tional ones. This behavior is confirmed by experimental results
obtained with misregistered data sets generated considering
relative rotation and rototranslation, which are not reported here
for space constraints.

In order to study the RN in the polar CVA domain, several
data sets have been selected by considering: 1) very high geo-
metrical resolution images acquired by different sensors (i.e.,
Quickbird, Ikonos, and Pleiades simulator) and 2) areas with
different characteristics, representative of the most frequent
land-cover types (i.e., urban, rural, and forestry). Three differ-
ent experiments have been defined to understand the behavior of
RN on unchanged and changed pixels when the misalignment
between images increases and the resolution level decreases.
To avoid intrinsic differences between images typical of real
multitemporal data sets (e.g., atmospheric differences, etc.), in

the first phase of the analysis, a single-date image has been con-
sidered for each data set, while the second acquisition has been
simulated. The analysis carried out on the single-date data sets
is then extended to real multitemporal images in Section VI.

In the following, we describe the experiments considering
the analysis conducted on a Quickbird image acquired on the
city of Trento (Italy) in July 2006 (X1). The selected test site
is a section of a full scene including both rural and urban
areas [Fig. 2(a)]. Results obtained on other data sets (which
contain areas with other characteristics and images acquired
by other sensors) are very similar to those reported here and,
thus, omitted for space constraints. In the following, after an
accurate preliminary analysis, among the four available spectral
channels, only the red and the near-infrared ones were con-
sidered for analyzing the distributions in the polar domain, as
they demonstrated to be the most effective in emphasizing the
properties of RN (with respect to both changed and unchanged
pixels) on the adopted data set. Different choices led to poorer
visual representations but to similar conclusions.

A. Experiment 1: Effects of Increasing Misregistration
on Unchanged Pixels

From the considered image X1, different simulated images
X2 have been generated introducing some pixels of misreg-
istration according to translations in several directions. This
resulted in different multitemporal data sets made up of the
original image X1 and of its shifted versions X2. In particular,
we considered misregistration between 1 and 6 pixels, which
are reasonable values when taking into account large VHR
images acquired with different view angles and/or in complex
areas. After the application of the CVA, the SCV distributions
were analyzed in the polar scatterograms in order to derive
the properties of RN on unchanged pixels. It is worth noting
that the application of the CVA technique to X1 and a copy
of itself when images are perfectly coregistered leads to a
multispectral difference image made up of SCVs with all zero
components. Thus, the representation in polar coordinates of
SCVs collapses in a single point at the origin. This is no longer
valid if the CVA is applied to misregistered images; in this case,
the distribution of SCVs in the polar domain corresponds to the
distribution of RN (as no changes are present in the considered
data set). Fig. 3 shows an example of the behaviors of scat-
terograms obtained by applying the CVA technique to X1 and
its 2- and 6-pixel-shifted versions, respectively. An analysis of
these scatterograms allows us to derive the properties of RN
when no changes are present between the considered images
(see Section IV).

B. Experiment 2: Effects of Increasing Misregistration
on Changed Pixels

From the considered image X1, a new image X2 has been
generated by adding simulated changes. These changes have
been accurately introduced in order to be as similar as possible
to real changes. In particular, some buildings have been added
to the scene [see regions marked with white circles in Fig. 2(b)]
taking their geometrical structures and spectral signatures from
other real buildings present in the image. All the mentioned

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 20, 2009 at 09:26 from IEEE Xplore.  Restrictions apply.



BOVOLO et al.: ANALYSIS AND ADAPTIVE ESTIMATION OF THE RN DISTRIBUTION 2661

Fig. 2. True color composition of pansharpened image of the city of Trento (Italy) acquired by the Quickbird VHR multispectral sensor in July 2006.
(a) Original image without simulated changes. (b) Original image with simulated changes (pointed out with white circles).

Fig. 3. Scatterograms in the polar coordinate system obtained by applying CVA to the simulated multitemporal data sets (which do not contain any change) that
show (a) 2 pixels and (b) 6 pixels of residual misregistration (Experiment 1).

buildings have similar spectral signatures and are located on
agricultural fields. Therefore, the solution to the simulated
change-detection problem requires the identification of a single
class of changed pixels (ωc1). As in the first experiment, from
the simulated image six new images have been generated intro-
ducing some pixels of residual misregistration. This resulted in
seven multitemporal data sets made up of the original image
(X1) and one of the simulated images (X2). In particular,
the two images in the first data set are perfectly aligned and
differ only for the simulated changes, while the images in the
other data sets show also a residual misregistration between
1 and 6 pixels. It is worth noting that when the images are
perfectly coregistered, the application of the CVA technique to
X1 and to the image obtained introducing simulated changes
leads to a multispectral difference image made up of SCVs
with nonzero values only for the simulated changes. Other
nonzero SCVs (associated with RN) appear if we compute the
scatterograms of pair of misregistered images. Fig. 4 shows
an example of the behaviors of such scatterograms obtained

by applying the CVA technique to the image X1 and: 1) the
simulated image perfectly aligned; 2) the simulated image with
2 pixels of residual misregistration; and 3) the simulated image
with 6 pixels of residual misregistration. An analysis of these
scatterograms (and of the others obtained for different values of
misregistration) allowed us to derive the effects of the RN on
the class of changed pixels (see Section IV).

C. Experiment 3: Effects of Misregistration at Different Scales

Further data sets have been generated from the consid-
ered image (X1) and the simulated image including changes
with a four-pixel misregistration (X2) by applying to them
a decomposition filter. In this manner, two sets of images
(Xn

1 and Xn
2 , n = 1, 2, . . . , N) have been generated that have

lower scale (resolution) than the original ones. These images
show a consistent decrease in detail content. In order to obtain
the multiscale representation of the images, in the experimental
phase, different decomposition approaches have been used,
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Fig. 4. Scatterograms in the polar coordinate system obtained by applying CVA to the simulated data sets containing changes in the case of (a) perfect alignment
between images, (b) 2 pixels of residual misregistration, and (c) 6 pixels of residual misregistration (Experiment 2).

Fig. 5. Scatterograms in the polar coordinate system obtained by applying the CVA technique to the simulated data sets containing changes (a) at full resolution
and (b) at a lower scale (level three) (Experiment 3).

such as Laplacian/Gaussian pyramid decomposition, iterative
sliding window low-pass filter, recursively upsampled bicubic
filter, and wavelet transform. All these approaches provided
similar results. For this reason, we report only the analysis
obtained by applying to X1 and X2 the Daubechies-4 sta-
tionary wavelet transform (SWT) [15], [16]. In the follow-
ing, as an example, the results achieved considering the pair
of images obtained at the third decomposition level (n = 3)
are reported. It is worth noting that the choice of the level
of decomposition is strictly data and application dependent
(see Section VI for details). Fig. 5 shows the scatterograms
obtained by applying the CVA technique to images X1 and X2

(full resolution) and to X3
1 and X3

2, respectively. By comparing
these scatterograms (and the others obtained for different values
of misregistration and at different resolution levels, which are
not reported for space constraints), it is possible to study the
effects of multiscale decomposition on the distribution of RN
and of real changes (see Section IV).

IV. PROPERTIES OF RN IN VHR IMAGES

An analysis of the scatterograms obtained from the three
sets of previously described experiments, and a study on the
behavior of SCVs in the polar domain for each investigation
setup allowed us to derive some important properties of the RN
on both unchanged and changed pixels.

Property 1: RN affects unchanged pixels by: 1) increasing
the spread of the cluster in the circle of no-changed pix-
els Cn with respect to the case of perfectly aligned images;
2) generating clusters of dominant RN in the annulus of
changed pixel Ac that have properties very similar to those of
changes pixels.

Experiment 1 makes it possible the study of the behavior
of the distribution of RN (associated with the distribution of
SCVs) versus different amounts of misregistration in the polar
domain. As the misalignment increases, the number of multi-
temporal pixels having the same coordinates but that do not
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Fig. 6. Behaviors of the standard deviation of (a) the magnitude and (b) the direction of the SCVs in the cluster of unchanged pixels versus the number of pixels
of misalignment (Experiment 1).

correspond to the same position on the ground at the two dates
increases. Therefore, the CVA technique performs a compari-
son between pixels that are not associated to the same area on
the ground due to the misalignment. This results in two different
contributions to the distribution of RN in the polar domain:
1) the first one is related to the comparison of pixels that belong
to the same object in the two images, but that are not associated
with the same position on the ground due to misregistration
(slightly different spectral signatures due to the heterogeneity
of objects in VHR images) and 2) the second one comes from
the comparison between pixels that belong to different objects
in the two images (pixels associated with details and border
regions). These contributions result in: 1) an increase of the
standard deviation of the cluster of unchanged pixels when RN
increases and 2) the generation of clusters of unchanged pixels
with properties very similar to those of real changes.

Subproperty 1.a: The spread of the cluster in Cn increases
by increasing the misalignment.

Let us consider, at first, only the effect of the spectral
differences between misaligned pixels of the same object. This
effect can be observed in the scatterograms of Fig. 3, where
some SCVs associated with unchanged pixels that should stay
in Cn fall in Ac. Nevertheless, they still show a relative low
magnitude and a rather uniform distribution along the direction
variable, as it happens for medium resolution images [14] (see
regions marked with the continuous line circle in Fig. 3). We
can observe that the spread of the cluster of unchanged pixels
increases, exhibiting an effect that is sharply amplified with
respect to medium resolution images, due to the higher spectral
heterogeneity within the objects. It is worth noting that the
rather uniform distribution of SCVs along the direction is due
to the fact that the structures of objects are usually different for
different elements in the scene.

A quantitative analysis carried out on both the magnitude and
the direction of SCVs shows that the standard deviation σωn of
the class of unchanged patterns ωn increases in a nonlinear way
by increasing the misalignment (see Fig. 6) and, as expected, it
tends to saturate when the residual RN is over a given threshold.

Statistically, as reported in [14] for the class of unchanged
pixels, RN generated by the comparison of pixels that belong
to the same object can be modeled as a mixture of Gaussian
distributions with the same mean values (as the distributions at
the two dates are related to the same class) in the Cartesian
domain, which corresponds to a Rayleigh distribution along

the magnitude variable of the polar domain and to a uniform
distribution along the direction variable.

Subproperty 1.b: The clusters of dominant RN in Ac have
properties very similar to those of real changes and are made
up of a number of patterns that increases by increasing the
misalignment.

Let us now consider the effects of pixels that at the two ac-
quisition dates belong to different objects on the ground. In this
case, significantly different spectral signatures are compared
leading to SCVs with large magnitude values. This behavior
can be observed in the scatterograms of Fig. 3 where it is
possible to note that a large number of unchanged SCVs show
a magnitude significantly higher than expected, thus falling in
Ac (see regions marked with dashed circles in Fig. 3). In the
medium resolution case, the distribution of such SCVs is nearly
uniform along the direction [14]. On the contrary, when dealing
with VHR images, their distribution has preferential directions,
resulting in clusters of pixels of RN in Ac that exhibit properties
very similar to those of changed pixels. Such an effect is
mainly due to the comparison of misaligned pixels belonging
to different objects with similar structures in different positions
of the images. This can be explained, for example, with the
regular structure of the urban areas and of the crop rows, as
well as with the high-frequency content of the VHR images.
The number of SCVs composing these clusters increases by
increasing the amount of RN. It is worth noting that, on the
contrary, when dealing with medium resolution images, the
number of misregistered pixels belonging to different objects is
small, and the effects of RN are less evident and more uniformly
distributed along the direction variable. This is due to both the
small amount of geometrical details contained in such images,
and the intrinsic effectiveness of classic registration algorithms
on medium resolution data. We define the annular sectors in
the polar domain associated with these clusters as sectors of
dominant RN SD

RNi

SD
RNi

= {ρ, ϑ : ρ≥T and ϑi1 ≤ϑ≤ϑi2 , 0≤ϑi1 <ϑi2 <2π}.
(7)

Each SD
RNi

can be represented in the polar domain as a sector
within Ac bounded from two angular thresholds ϑi1 and ϑi2 .
This is not surprising as SCVs due to misregistration, exactly
as SCVs of true changes, are originated from the comparison of
pixels that are associated with different objects on the ground at
the two acquisition dates. It follows that sectors of dominant RN
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Fig. 7. Behaviors of (a) the mean value μωc and (b) the standard deviation σωc of the magnitude of SCVs in the cluster of changed pixels versus the number of
pixels of misalignment (Experiment 2).

are very critical because at full resolution, they cannot be distin-
guished from sectors of true changes, resulting in a significant
false alarm rate in the change-detection process. Statistically, as
reported in [14] for the class of changed pixels, RN generated
by the comparison of pixels that belong to different classes can
be modeled as a mixture of Gaussian distributions with different
mean values in the Cartesian domain which corresponds to a
Ricean distribution along the magnitude variable of the polar
domain and to a nonuniform distribution along the direction
variable.

Property 2: Statistical properties of clusters associated
with changed pixels in Ac slowly vary with the amount of
misalignment.

Experiment 2 points out the behaviors of SCVs associated
with changed pixels versus the amount of misalignment that
affects the considered simulated data sets. Observing Fig. 4,
it is possible to note that SCVs associated with the class of
changed pixels ωc1 are not significantly affected by an increase
of the amount of misregistration between images. Indeed, the
cluster of changed pixels can be easily identified in all the three
scatterograms and shows quite stable behaviors (see regions
marked with circles in Fig. 4). The position of the annular sector
S1 (which identifies pixels belonging to ωc1) is almost invariant
with the misregistration. This behavior allows one to conclude
that the RN does not affect significantly the properties of the
cluster of changed pixels. This is confirmed from a quantitative
analysis of the behavior of the mean value μωc and standard de-
viation σωc of the magnitude of SCVs in the cluster of changed
pixels ωc (for simplicity of notation in the following ωc1 will
be indicated as ωc) versus the amount of misregistration (in
pixels). As shown from Fig. 7, these behaviors do not show
significant variations by increasing misregistration.

Nonetheless, the RN indirectly affects the detection of
changed pixels (see Property 1) as: 1) the overlap between
clusters of changed and unchanged pixels increases when the
standard deviation of the patterns in Cn increases and 2) the
presence of sectors of dominant RN in Ac results in false
alarms.

Property 3: Clusters of dominant RN in Ac exhibit signifi-
cant variations of properties versus the scale (resolution) of the
images.

From experiment 3, we can observe the effects of a multiscale
decomposition of the images on pixels associated with both
changed and unchanged areas. Let us first consider only un-

Fig. 8. Behavior of the mean value of the magnitude of SCVs versus the
resolution levels (scale) for clusters (dashed line) of change and (continuous
line) of RN.

changed pixels (changed pixels will be discussed in property 4).
As the resolution of the images decreases, the presence of small
and thin structures diminishes. This results in a reduced impact
of RN at lower scales (resolutions) as the details and border
regions are smoothed out from the low-pass effects associated
with scale reduction. Comparing the scatterograms of Fig. 5
(derived from experiment 3), it can be observed that reducing
the scale, SCVs associated with RN tend to disappear. In other
words, decreasing the resolution sectors of dominant RN tend to
disappear, thus exhibiting a nonstationary behavior with respect
to the scale. In particular, such SCVs tend to collapse within Cn.
This is confirmed from Fig. 8, which reports the behavior of
the mean value of the magnitude of SCVs associated with RN
versus the resolution levels (scales). As can be seen from the
continuous line in the diagram, the mean value of RN clusters
rapidly decreases by reducing the resolution. This property is
very important in the definition of a strategy for estimating the
distribution of RN in VHR images (see Section V).

Property 4: Clusters associated with changed pixels in Ac

exhibit slow varying statistical properties versus the scale
(resolution) of the images.

From experiment 3, it is also possible to observe the behavior
of the cluster of changed pixels when the scale decreases.
Observing regions marked with circles in Fig. 5, it is possible
to note that the cluster of pixels associated with true changes
reduces its spread, but it is not completely smoothed out when
the resolution decreases. In other words, it shows a nearby
stationary behavior versus the resolution. This is confirmed by
an analysis of the behavior of the mean value of the magnitude
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of SCVs associated with true changes versus the scale. As it can
be seen from the dashed line in Fig. 8, the mean value slightly
varies with the resolution, but it decreases slower than the one
of SCVs associated with RN (continuous line in Fig. 8).

From properties 3 and 4, it follows that the behaviors of
changed and unchanged (i.e., the ones due to RN) SCVs that
fall in Ac versus the resolution are different: decreasing the
resolution, sectors of changes, unlike sectors of dominant RN,
are preserved. It is worth noting that this property is true under
the reasonable and realistic assumption that given the very
high geometrical resolution of the sensor, the true significant
changes are associated with objects with a nonnegligible size.
This results in an intrinsic robustness of changes to the scale.
On the contrary, misregistration appears in the difference image
with linear (or nonlinear) and relatively thin structures having
different orientations that are smoothed out from the scale re-
duction process. Properties 3 and 4 can be exploited for defining
an adaptive strategy for estimating the statistical distribution of
RN. This strategy is described in the next section.

V. PROPOSED TECHNIQUE FOR THE ADAPTIVE

ESTIMATION OF THE RN DISTRIBUTION

The properties of RN described in the previous section sug-
gest us to exploit the behaviors of SCVs in the polar domain at
different resolution levels (scales) for explicitly estimating the
statistical distribution of RN. In particular, properties 3 and 4
clearly show the usefulness of a multiresolution decomposition
in identifying and separating annular sectors of dominant RN
from annular sectors of real changes. Given the very high geo-
metrical resolution of images, we assume that true significant
changes are associated with objects with a nonnegligible size.
On the contrary, misregistration appears in the difference image
with linear (or nonlinear) and relatively thin structures having
different orientations. Therefore, if we reduce the resolution
of images, we implicitly decrease the impact of the RN with
respect to that on the original scene (Property 3), while true
changes maintain a good stability (Property 4). In other words,
the lower is the geometrical resolution, the lower is the proba-
bility of identifying in the polar representation annular sectors
of dominant RN. This means that at low resolution, in the
annulus of changed pixels, mainly, sectors (i.e., clusters) due to
the presence of true changes on the ground are detected. Thus,
by comparing the clusters present in the polar domain at full
resolution and at reduced resolution, it is possible to identify
annular sectors dominated from RN and separate them from
annular sectors of changes. It is worth noting that this is made
possible from the thin structures associated with RN that result
in strong changes in the corresponding SCV clusters when the
low-pass effect of the scale reduction is considered.

On the basis of the aforementioned analysis, we propose
an adaptive multiscale strategy that exploits the behaviors of
SCVs to identify the distribution of the RN. The proposed
technique compares the distribution of the SCVs at the highest
resolution level with the one at a lower level in order to derive
the distribution of RN at full resolution. In particular, first of
all the two multitemporal images are decomposed according
to a multiscale transformation (as described in Section III

different algorithms can be used, like SWT, recursively up-
sampled bicubic filter, etc.). In greater detail, we applied the
2-D discrete SWT; this decomposition technique is obtained
as an extension of the 1-D discrete SWT by applying 1-D
filters independently along both dimensions of the considered
image. In particular, two filters with different impulse responses
are considered to built up the SWT filter bank: 1) a low-
pass filter with impulse response l(.) and 2) a high-pass filter
with impulse response h(.). A one-step wavelet decomposition
applies both filters separately: first along columns and then
along rows. The original image Xi(i = 1, 2) is decomposed
into a low-resolution image (the approximation subband XLL

i ),
containing low spatial frequencies in both the horizontal and
the vertical direction, and three detail images XLH

i , XHL
i ,

and XHH
i , which correspond to the horizontal, vertical and

diagonal detail subbands at resolution level 1, respectively.
Note that, superscripts LL, LH , HL, and HH specify the
order on which high- and low-pass filters have been applied to
obtain the considered subband. The multiscale decomposition
is obtained by recursively applying the described procedure to
the approximation subband obtained at each scale 2n. Thus, the
output at a generic resolution level n can be express analytically
as follows:

XLL(n+1)
i (i, j) =

Dn−1∑
p=0

Dn−1∑
q=0

ln[p]ln[q]XLLn
i (i + p, j + q)

XLH(n+1)
i (i, j) =

Dn−1∑
p=0

Dn−1∑
q=0

ln[p]hn[q]XLLn
i (i + p, j + q)

XHL(n+1)
i (i, j) =

Dn−1∑
p=0

Dn−1∑
q=0

hn[p]ln[q]XLLn
i (i + p, j + q)

XHH(n+1)
i (i, j) =

Dn−1∑
p=0

Dn−1∑
q=0

hn[p]hn[q]XLLn
i (i + p, j + q)

(8)

where Dn is the length of the wavelet filters at resolution
level n. At each decomposition step, the length of the impulse
response of both high- and low-pass filters is upsampled by a
factor of two. Thus, filter coefficients for computing subbands
at resolution level n + 1 can be obtained by applying a dilation
operation to the filter coefficients used to compute level n. In
particular, 2n−1 zeros are inserted between the filter coefficients
used to compute subbands at the lower resolution level. This
allows a reduction in the bandwidth of the filters by a factor
two between subsequent resolution levels. Filter coefficients of
the first decomposition step for n = 0 depend on the selected
wavelet family and on the length of the chosen wavelet filter.
To this purpose, we selected the Daubechies wavelet family
and set the filter length to eight. The finite impulse response
of the high-pass filter for the decomposition step is obtained by
satisfying the properties of the quadrature mirror filters. This
is done by reversing the order of the low-pass decomposition
filter coefficients and by changing the sign of the even indexed
coefficients [16].

In order to perform the proposed analysis, one must return
to the original image domain. This is done by applying only
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to the approximation subbands the 2-D inverse discrete SWT
at each resolution level independently. In this way, we obtain
two sets of images XMSi

= {X0
i , . . . ,X

n
i , . . . ,XN−1

i } where
the subscript i (i = 1, 2) denotes the acquisition date, and the
superscript n (n = 0, 1, . . . , N − 1) indicates the resolution
level (note that X0

i ≡ Xi). Then, the CVA technique is applied
to each corresponding pair of images (Xn

1 ,Xn
2 ), and the distri-

butions of the direction of SCVs at different resolution levels
are analyzed. In particular, the behaviors of SCVs in Ac are
studied. To this purpose, we compute the conditional density of
the direction of pixels in Ac. In order to estimate this distribu-
tion, we take advantages from the Parzen windows technique
[17]–[20], which is a basic and effective estimation method
for one-dimension problems. According to this technique, the
density estimation can be computed as

p̂n(ϑ|ρ ≥ T ) =
1

Mn

Mn∑
m=1

1
hn

γ

(
ϑ − ϑm

hn

)
(9)

where T is the threshold value that separates the circle of
no-changed pixels from the annulus of changed pixels (it can
be retrieved either manually or in an automatic way through
one of the algorithms proposed in the literature [21], [22],
see Section II), n (n = 0, 1, . . . , N − 1) denotes the resolution
level at which the estimation is computed, ϑm represents the
direction value of the mth SCV in Ac, Mn is the number of
SCVs in Ac at scale n, γ(.) is the kernel function used in the
estimation process, and hn is the width of the kernel window
(smoothing parameter) at scale n.

In particular, we used Gaussian kernel, so that the final
estimation is given by

p̂n(ϑ|ρ ≥ T ) =
1

Mn

Mn∑
m=1

1
hn

√
2π

exp

[
−1

2

(
ϑ − ϑm

hn

)2
]

.

(10)

For what concerns the smoothing parameter, which, in our
case, is represented by the standard deviation of the Gaussian
function, we propose to compute it as a function of the number
of pixels that fall in Ac. In particular, considering a Gaussian
kernel, the width value at scale n can be derived as in [17]

hn = sig ∗
(

4
3Mn

)1/5

(11)

where

sig = median
m=1,...,Mn

∣∣∣∣ϑm − median
m=1,...,Mn

(ϑm)
∣∣∣∣
/

0.6745. (12)

Then, we observe the behaviors of p̂n(ϑ|ρ ≥ T ) versus the
scale. According to the properties of RN, this density decreases
at reduced resolutions in the annular sectors of dominant RN
SD

RNi
, whereas it remains nearby constant in the annular sectors

of true changes Sk. On the basis of this analysis, we propose to
estimate the conditional density of RN in the direction domain
p̂RN(ϑ|ρ ≥ T ) as

p̂RN(ϑ|ρ ≥ T ) = C [P0(ρ ≥ T )p̂0(ϑ|ρ ≥ T )
−PN−1(ρ ≥ T )p̂N−1(ϑ|ρ ≥ T )] (13)

where Pn(ρ ≥ T ) is the probability of SCVs to be in Ac at
scale n, p̂0(ϑ|ρ ≥ T ) and p̂N−1(ϑ|ρ ≥ T ) are the marginal
conditional densities of the direction of pixels in Ac at the
full resolution and at the lowest considered resolution level
(N − 1), respectively, and C is a constant defined such that∫ +∞
−∞ p̂RN(ϑ|ρ ≥ T )dϑ = 1. The term Pn(ρ ≥ T ) in (13) is

necessary in order to obtain a reliable comparison between
distributions at different resolution levels.

In this way, we obtain an explicit estimation of the distribu-
tion of RN that is adaptive (in the sense that it intrinsically takes
into account the properties of the considered images). It is worth
noting that this estimated distribution represents the behavior
of RN at full scale (resolution). In the proposed technique, the
analysis at the lowest resolution is only used for separating the
RN contribution from that of true changes (and of other possible
sources of noise). The sensitivity of the estimation depends
on the lowest level N − 1 of decomposition considered. The
lower the level is, the greater the sensitivity of the estimated
distribution to the minor components of RN is. Nonetheless,
considering applications like change detection, it is important
to choose the lowest scale according to the smallest size of
expected changes, as they must be preserved in the degraded
image in order to be detected.

VI. EXPERIMENTAL RESULTS

This section presents an experimental analysis on both the
reliability of the derived properties of RN and the effec-
tiveness of the proposed method to estimate the distribution
of RN on real multitemporal images. The investigation was
conducted on two different test areas of a pair of Quickbird
images acquired on the Trento city (Italy) in October 2005 and
July 2006. For both test areas, the final data set is made up of
two pansharpened radiometrically corrected multitemporal and
multispectral images of 984 × 984 pixels, with a geometrical
resolution of 0.7 m, which after preprocessing show a residual
misregistration of about 1 pixel on ground control points.2

For applying the proposed method to the estimation of RN,
the original images X1 and X2 were transformed to lower
scales through a four-step SWT [15], [24] using fourth-order
orthogonal filters of the Daubechies family. The maximum level
of decomposition was selected according to a tradeoff between
the degree of sensitivity desired in the RN estimation and the
size of the expected main change structures present in the
images. Then, the CVA technique was applied to the images
at different scales. In order to separate the circle of no-changed
pixels (Cn) from the annulus of changed pixels (Ac), for each
data set, a proper threshold value T on the magnitude variable
was retrieved according to a trial-and-error procedure. (We did
not use an automatic technique for avoiding biases introduced
from the threshold selection method in the evaluation of the
effectiveness of the proposed method. However, at an opera-
tional level, one of the thresholding algorithms proposed in the

2It is worth noting that we carried out all the analysis using pansharpened
images, as we expect that the pansharpening process can emphasized the
effects of misregistration. However, similar results can be obtained on original
multispectral images at lower resolution (2.4 m). We refer the reader to [23] for
greater details on the effects of pansharpening on change detection.
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Fig. 9. True color composition of pansharpened images of the Trento city (Italy) acquired by the Quickbird VHR multispectral sensor in (a) October 2005 and
(b) July 2006 (Test site 1).

literature can be used [21], [22].) In greater detail, in order to
find the optimal threshold for our purposes, the whole analysis
for the estimation of the RN distribution has been conducted
for different values of the threshold T in a consistent range of
the magnitude values. All of them provided similar results in
the estimation of RN. For space constraints, in the following,
only the results obtained with a single threshold value for each
data set are reported. The marginal conditional densities of the
directions of pixels in Ac at the highest resolution and at a
lower resolution levels were computed according to (10), and
finally the conditional density of RN was estimated according
to (13). In order to assess the effectiveness of the proposed
technique for the identification of the distribution of RN, such a
distribution was thresholded, and the direction intervals in Ac,
where p̂RN(ϑ|ρ ≥ T ) was higher than a given threshold, were
recognized as dominated from RN. Then, the RN maps were
derived on the basis of the results obtained by thresholding
p̂RN(ϑ|ρ ≥ T ), and a qualitative analysis was performed in
order to assess the effectiveness of the proposed estimation
technique.

A. Test Site 1: Urban and Rural Areas

The first test site considered (see Fig. 9) covers both an urban
area and a rural one. Between the two acquisitions, two kinds
of changes occurred: 1) simulated changes (see Section III-B
on the procedure adopted to simulate them) that consist of new
houses introduced on the rural area and 2) real changes that
consist of some roofs rebuilt in the urban area. In order to
assess the reliability of the proposed technique, the previously
described procedure was applied to the two images. Fig. 10
shows the behaviors of the marginal conditional densities of
the direction in Ac[p̂n(ϑ|ρ ≥ T )] computed according to (10)
and corrected by the term Pn(ρ ≥ T ), after applying the CVA
technique to the red and near-infrared spectral channels of:
1) the original images at full resolution (continuous line in
Fig. 10) and 2) the low-resolution images yielded at level four
of the Daubechies stationary wavelet decomposition (dashed

Fig. 10. Marginal weighted conditional densities Pn(ρ ≥ T )p̂n(ϑ|ρ ≥ T )
of the direction in Ac (continuous line) at full resolution and (dashed line) at
level four of the Daubechies SWT (Test site 1).

Fig. 11. Estimated conditional density p̂RN(ϑ|ρ ≥ T ) of RN obtained with
the proposed technique (Test site 1).

line in Fig. 10). As previously mentioned, red and near-infrared
spectral channels were considered as they better represent
changes occurred between the two dates. The estimation of the
marginal conditional density of RN p̂RN(ϑ|ρ ≥ T ) was derived
from the two aforementioned densities according to (13) (see
Fig. 11). From an analysis of the behavior of p̂RN(ϑ|ρ ≥ T ), it
is possible to identify three main modes, which potentially de-
fine sectors where the RN is dominant. A comparison between
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Fig. 12. Scatterograms in the polar coordinate system of (a) the full-resolution original difference image X0
D and (b) the low-resolution image X4

D obtained at
level four of the wavelet decomposition (Test site 1). Dashed circles separate Cn from Ac, while continuous circles indicate sectors of true changes.

the scatterograms at full and at low resolution (see Fig. 12)
points out that in the sectors corresponding to the three modes
of p̂RN(ϑ|ρ ≥ T ), the density of the magnitude of SCVs in
the annulus of changed pixel reduces significantly when the
resolution decreases, whereas in the others, it is nearly constant.
In particular, it is possible to verify that the sectors in which
the behavior of SCVs is quite stable correspond to sectors of
true changes (continuous circles in Fig. 12). This behavior also
confirms the properties derived from the simulated data sets.

To further understand the effectiveness of the proposed es-
timation technique, we applied a threshold to p̂RN(ϑ|ρ ≥ T )
to identify sectors of dominant RN. The threshold value was
empirically fixed equal to 1 × 10−4. Thus, in the annulus of
changed pixels (defined by applying a threshold T = 310 to
the magnitude of SCVs), the sectors of dominant RN were
identified between 35◦ and 115◦ and between 225◦ and 265◦.
In order to perform a qualitative analysis of the estimation,
Fig. 13 shows the map of pixels associated with the estimated
sectors of dominant RN. A visual analysis of this map confirms
that the regions identified as RN by the proposed technique
are associated with areas that show the effects of misregistra-
tion between the multitemporal images, as they mainly refer
to border regions of buildings located in the urban area, to
roads, and to crop rows. In addition, it is possible to note that
the regions identified in the RN map do not belong to areas
of changes. This behavior confirms the effectiveness of the
proposed technique that properly distinguishes between RN and
true changes contributions in the estimation of p̂RN(ϑ|ρ ≥ T ).
It is worth noting that the proposed technique marks as RN,
the boundaries of the four simulated changes. This happens as,
in order to make the changes more realistic, together with the
roofs also some pixels surrounding buildings have been copied;
these pixels result in changes with thin structure and small size
with respect to the sensor resolution. Thus, they do not satisfy
the basic assumption that true significant changes are associated
with objects with nonnegligible size and, consequently, appear
correctly as RN.

Fig. 13. RN map obtained by thresholding the p̂RN(ϑ|ρ ≥ T ) obtained with
the proposed technique (Test site 1).

B. Test Site 2: Industrial and Rural Area

The second test site considered (see Fig. 14) mainly covers
an industrial area. Moreover, in this case, two kinds of changes
occurred in the two images: 1) natural changes of the land
cover in rural areas and along the river bank and 2) man-made
changes in the roofs of the industrial area. As for the previous
data set, the marginal conditional densities of the direction
in Ac were computed according to (10) after applying the
CVA technique to the red and near-infrared spectral channels
of the original images at full resolution (continuous line in
Fig. 15) and the low-resolution images yielded at level four
of the Daubechies stationary wavelet decomposition (dashed
line in Fig. 15). From these distributions, the p̂RN(ϑ|ρ ≥ T )
was estimated according to (13) (Fig. 16). Moreover, in this
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Fig. 14. Pansharpened images of the city of Trento (Italy) acquired by the Quickbird VHR multispectral sensor in (a) July 2005 and in (b) October 2006.
Continuous white lines evidence changes in field crop, while the dashed lines mark changes in roofs (Test site 2).

Fig. 15. Marginal weighted conditional densities Pn(ρ ≥ T )p̂n(ϑ|ρ ≥ T )
of the direction in Ac (continuous line) at full resolution and (dashed line) at
level four of the Daubechies SWT (Test site 2).

Fig. 16. Estimated conditional density p̂RN(ϑ|ρ ≥ T ) of RN obtained with
the proposed technique (Test site 2).

case, from an analysis of the behavior of this distribution, it
is possible to identify three main modes, which represent the
estimated sectors of dominant RN (this is confirmed from a
visual analysis of polar scatterograms not reported for space
constraints).

Fig. 17. RN map obtained by thresholding the p̂RN(ϑ|ρ ≥ T ) obtained with
the proposed technique (Test site 2).

We applied a threshold to the density of RN in order to
estimate sectors of dominant RN. With a threshold equal to
1 × 10−4 applied to p̂RN(ϑ|ρ ≥ T ), and a threshold in the
magnitude domain T = 310, the sectors of dominant RN were
identified between 35◦ and 70◦, between 90◦ and 120◦, and
between 220◦ and 250◦. Fig. 17 shows the map of RN pattern
obtained by thresholding p̂RN(ϑ|ρ ≥ T ) with the proposed
strategy. As for the previous test site, from a visual analysis of
this map, it is possible to conclude that the regions identified as
RN corresponds to areas of a misregistration, as they are mainly
located in border of buildings, along the riverside and along
the roads. In addition, also in this case, it is possible to note
that the proposed technique allows one to properly distinguish
between RN and true changes contributions in the estimation of
p̂RN(ϑ|ρ ≥ T ).
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VII. DISCUSSION AND CONCLUSION

In this paper, we have analyzed the properties of RN in VHR
remote-sensing images. This analysis was carried out in the
context of a polar framework for CVA, where both the mag-
nitude and the direction information of SCVs are represented.
On the basis of the derived properties, a novel method for
an adaptive estimation of the statistical distribution of RN in
multitemporal VHR images has been proposed.

Images acquired by several sensors and with different land-
cover types were considered in the analysis (only a part of the
results has been reported in this paper for space constraints).
From them, some simulated data sets have been generated in
order to study the effects of RN when: 1) the misregistra-
tion between the two considered images increases and 2) the
resolution of the original images decreases. From this analysis,
four different properties of the RN in VHR images have been
derived, associated with both unchanged and changed pixels.
These properties point out that misregistration may signifi-
cantly affect the accuracy of change detection and show some
important effects due to this specific kind of noise on VHR
images. It is worth noting that on the basis of the conducted
analysis, we can conclude that the properties of RN in VHR
multispectral images are significantly different from those on
high- or medium-resolution images. These differences should
be properly understood and exploited in the mitigation of the
effects of such a kind of noise in the definition of change-
detection algorithms.

The analysis of the properties of RN resulted also in the
definition of an adaptive technique for the estimation of the
RN distribution in the polar domain. The proposed technique
estimates the conditional density of RN with respect to the
direction variable in the annulus of changed pixels, thus provid-
ing valuable information for the design of a change-detection
procedure. In order to assess the reliability of the proposed
estimation technique, we performed an analysis of the results
obtained with the estimation method on a couple of test sites
made up of two real multitemporal images acquired by the
Quickbird sensor. These results confirm the effectiveness of
the proposed technique in identifying and modeling RN also
in presence of real multitemporal noisy images acquired under
different conditions.

Even if the proposed technique exploits a multiscale de-
composition for identifying RN and modeling its conditional
distribution, the resulting estimate represents the behavior of
the RN at full resolution. Thus, the estimated distribution can
be used for analyzing the images at full scale, as the low-pass
component used in the proposed strategy does not affect the
scale of the estimation.

It is worth noting that depending on the considered scene,
a slight relative shift effect (bias) on the direction variable
between the distributions of the SCVs in the annulus of changed
pixels at full and reduced resolution might be observed. This is
due to the low-pass operation associated with the downscaling
process. Even if this shift in general is not expected to be critical
for the estimation technique, a simple correction procedure
could be applied to the distributions before deriving the RN
estimation.

The proposed strategy focuses on the estimation of the dis-
tribution of RN in the annulus of changed pixels and neglects
the components of RN in the circle of unchanged pixels (whose
properties are however identified in Section IV). Nonetheless,
this is not critical because only the RN components in the
annulus of changed pixels affect the change-detection map
resulting in a significant false-alarm rate.

As a final remark, it is important to observe that the pro-
posed strategy can be considered also for estimating the RN
on medium- and high-resolution multispectral images. Indeed,
even if the typical uniform distribution of RN in the annulus of
changed pixels obtained with such kind of data [14] is against
the assumption to have well-defined clusters of dominant RN
in the annulus of changed pixels, the rationale inspiring the
proposed estimation strategy is still valid.

As future developments of this paper, we plan to fully
exploit both the derived properties and the technique for the
estimation of the RN distribution to develop: 1) effective
change-detection methods for VHR images based on both the
Bayesian decision theory and context-sensitive strategies and
2) adaptive coregistration strategies based on the estimated
local behavior of the RN.
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