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Abstract—In this paper, we address automatic updating of
land-cover maps by using remote-sensing images periodically ac-
quired over the same investigated area under the hypothesis that
a reliable ground truth is not available for all the considered
acquisitions. The problem is modeled in the domain-adaptation
framework by introducing a novel method designed for land-cover
map updating, which is based on a domain-adaptation support
vector machine technique. In addition, a novel circular accuracy
assessment strategy is proposed for the validation of the results
obtained by domain-adaptation classifiers when no ground-truth
labels for the considered image are available. Experimental results
obtained on a multitemporal and multispectral data set confirmed
the effectiveness and the reliability of the proposed system.

Index Terms—Domain adaptation, kernel methods, partially
unsupervised classification, semisupervised classification, support
vector machines (SVMs), transfer learning, updating land-cover
maps, validation strategy.

I. INTRODUCTION

IN THE LAST few years, the advances in remote-sensing
technology have led to a growing interest in the use of

space-borne data for large-scale mapping applications. In this
framework, satellite images periodically acquired over the same
geographical area have demonstrated to be particularly effec-
tive for providing and updating land-cover information in a
timely and cost-effective manner. Thus, they make it possible
to develop monitoring systems based on supervised classifiers
that can map the information classes that characterize a specific
geographical area on a regular basis. From an operational view-
point, the implementation of such kind of systems requires the
availability of adequate and reliable ground-truth labels for each
new image to be categorized. In fact, although the considered
images refer to the same area, it is reasonable to expect that
there might occur relevant changes between the information
class distributions that characterize each specific acquisition
date due to several possible reasons (e.g., dissimilar illumina-
tion conditions, different acquisition system state, alterations
in the phenologic state of vegetation, changes occurred on the
ground, etc.). When ground-truth labels are available for all the
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items of the temporal series, the use of supervised classification
approaches can be particularly effective [1], [2]. Nevertheless,
gathering reliable ground truth for each specific acquisition
date is not realistic and is generally very expensive both in
terms of time and economic cost. Thus, in real applications,
such constraint is rarely satisfied, and in several cases, it is not
possible to rely on training data as frequently as required to
ensure an efficient monitoring of the investigated site. For this
reason, the process of temporal updating of land-cover maps
results in a very complex and challenging problem.

Recently, in the remote-sensing community, great attention
has been devoted to address ill-posed classification problems
characterized by a small amount of training samples. In such
situations, transductive and semisupervised1 learning methods
proved capable to improve the performances with respect to
supervised classifiers by exploiting, in addition to the small-
size available training data, unlabeled samples taken from
the image being classified. In several applications, these ap-
proaches proved to be particularly effective and resulted in a
relevant increase of the classification accuracy [3]. Due to its
intrinsic high complexity, less attention has been devoted to
solving the problem of land-cover map updating when ground
truth is available only for one image of a temporal series.
For addressing this challenging problem and improving the
discrimination capability with respect to supervised classifiers,
it is necessary to design different kinds of classifiers, which
should be able to jointly exploit labeled and unlabeled patterns
that refer to different images. In this framework, the authors
have defined and developed in previous works partially unsu-
pervised2 classification techniques that aim at classifying an
image for which no ground truth is available, by exploiting la-
beled training patterns of another image acquired over the same
investigated area [4]–[7]. Nevertheless, even if these transfer
learning approaches proved to be effective, they exhibited some
limitations. The main drawback is due to the parametric nature
of the proposed classifiers, which prevents their employment

1A classifier which jointly exploits labeled and unlabeled data that refer to
the same image is said to be as follows: 1) transductive, if it is specifically
designed to suite only the unlabeled samples used in the learning process and
cannot handle unlabeled unseen data, or 2) semisupervised, if it is designed to
handle any unlabeled data of the considered image.

2The term “partially unsupervised” has been used to point out that, on the
one hand, no ground-truth information is assumed to be available for a given
investigated image; on the other hand, there exists a training set related to an
image of the same geographical area acquired before the one to be classified.
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in the cases where it is not possible to model explicitly the
kind of distribution that governs the investigated classification
problem. Aside from the intrinsic complexity of the considered
problem, another important limitation in developing operational
classification methods for addressing land-cover map updating
is related to the lack of validation strategies that permit to
assess the effectiveness of the classification results. In fact,
under the assumption that no ground-truth labels are available
for the image(s) being classified, standard statistical validation
methods cannot be employed.

The problem of updating land-cover maps by classifying
temporal series of images when only training samples collected
at one time are available can be modeled in a more general
framework, which is known in the pattern recognition and
machine learning community as domain adaptation [8]–[11].
In domain-adaptation classification problems, unlabeled test
patterns are drawn from a “target-domain” distribution different
from the “source-domain” distribution of training samples.
In such context, in this paper, we propose a novel domain-
adaptation support vector machine (DASVM) technique that
extends support vector machines (SVMs) to the domain-
adaptation problem and permits the addressing of land-cover
map updating in real operational cases where no ground truth
is available for new images to be classified. Starting from a
standard supervised learning, the proposed DASVM technique
iteratively selects and labels the (unlabeled) patterns of the new
image to be categorized that are most likely to be correctly
classified. At the same time, original (labeled) samples are
gradually erased, as they refer to a reference image different
from the one being classified. In addition, as a second original
contribution of this paper, we present a circular validation
strategy that permits to automatically identify solutions that are
consistent with the investigated problem and, thus, to assess
the correctness of a land-cover map obtained with the DASVM
technique when no ground-truth samples are available for the
image being classified. In particular, this strategy (which can
be used for validating the classification results of any domain-
adaptation method) indirectly analyzes the robustness of the
classification map obtained for the new image of a time series
at the end of a circular (i.e., forward and backward) domain-
adaptation process.

Several experimental results obtained on a multitemporal and
multispectral data set related to the Lake Mulargia (Sardinia
Island, Italy) confirmed the effectiveness and the reliability of
the proposed system.

This paper is organized into seven sections. In Section II,
a survey on both semisupervised and partially unsupervised
methods is reported. Sections III and IV present the proposed
DASVM technique and the circular validation strategy de-
vised for addressing land-cover map updating, respectively. In
Section V, experimental results are reported. Finally, Section VI
draws the conclusions of this paper.

II. LITERATURE SURVEY

In this section, we analyze the main contributions present
in the literature on semisupervised and domain-adaptation
methods.

A. Semisupervised Methods

In many remote-sensing applications, due to the practical
impossibility to obtain a sufficient number of representative
training samples for a reliable estimation of classifier parame-
ters (particularly when many information classes are consid-
ered), supervised classification approaches may result in poor
accuracies. Accordingly, in the last few years, the scientific
community has devoted a growing interest to the definition
of semisupervised classification techniques, which exploit both
labeled and unlabeled patterns taken from the remote-sensing
image being classified.

A possible approach to address this kind of problems is to
use the expectation-maximization (EM) algorithm [12] for a
maximum-likelihood (ML) estimation of the parameters that
characterize the distributions of the considered information
classes. In [13], Shahshahani and Landgrebe proved that addi-
tional unlabeled samples are helpful for semisupervised classi-
fication of hyperspectral remote-sensing images in the context
of a Gaussian ML classifier under a zero-bias assumption. By
assuming a Gaussian mixture model (GMM), the EM algorithm
is employed to estimate model parameters with both labeled
and unlabeled samples to better estimate the parameters of the
GMM. In order to limit the risk of a possible negative influence
of semilabeled samples (which are originally unlabeled samples
that obtain labels during the learning process), in [14], a weight-
ing strategy is introduced. Full weights are assigned to training
samples, whereas reduced weights are defined for semilabeled
samples during the estimation phase of the EM algorithm. Nev-
ertheless, when only very few labeled patterns are available, the
covariance matrices are generally highly variable. To overcome
this problem, in [15], Jackson and Landgrebe proposed an adap-
tive covariance estimator. In the adaptive quadratic process,
semilabeled samples are incorporated in the training set to
estimate regularized covariance matrices so that the variance
of these matrices can be smaller compared to the conventional
counterparts estimated with labeled samples alone [14].

Recently, in the machine learning community, a growing
attention has been focused on semisupervised approaches im-
plemented under the cluster assumption: Each cluster of sam-
ples is assumed to belong to one data class; thus, the decision
boundary is defined between clusters, i.e., in low-density re-
gions of the feature space. In this context, transductive SVMs
(TSVMs) [16], [17] and semisupervised SVMs (S3VMs) [18]
proved particularly effective in several applications. In partic-
ular, TSVMs and S3VMs exploit specific iterative algorithms
based on SVMs which gradually search a reliable separation
hyperplane (in the kernel space) through a learning process
that incorporates both labeled and unlabeled samples in the
training phase. Based on an analysis of the properties of the
TSVMs presented in the literature, the authors first proposed
in [19] a semisupervised classifier specifically designed for
addressing ill-posed problems in the context of remote sensing.
In particular, this technique has the following properties: 1) It
is based on a transductive procedure that exploits a weighting
strategy for unlabeled patterns on the basis of a time-dependent
criterion; 2) it is able to mitigate the effects of suboptimal
model selection (which is unavoidable in the presence of small-
size training sets); and 3) it can address multiclass problems.
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A similar method that exploits, in place of SVMs, a modified
version of the Kernel Fisher’s discriminant using labeled and
unlabeled data has been presented in [20] by Dundar and
Landgrebe. In particular, the proposed technique is obtained
through an optimization of a quadratic programming problem
that minimizes the total cost of misclassified labeled data while
maximizing the Rayleigh coefficient in the kernel space.

Other effective approaches have been presented in [21],
where the authors introduced in remote sensing two different
S3VM algorithms for the classification of hyperspectral data
implemented and optimized in the primal formulation. In this
case, as proposed in [22], the constraints of the labeled and
unlabeled samples are directly included in the cost function
in order to obtain an unconstrained optimization problem.
The first presented primal S3VM optimizes the unconstrained
objective function by the gradient descent technique, leading to
the formulation of ∇S3VMs. The second algorithm combines
∇S3VMs with a graph-based kernel matrix.

A different class of promising methods includes graph-based
semisupervised algorithms, which define a graph where the
nodes are labeled and unlabeled patterns and edges reflect the
similarity of samples. Each sample spreads its label information
to its neighbors until a global stable state is achieved on the
whole data set. Graph-based approaches aim at estimating an
objective function on the graph which generally consists of
a loss term and a regularizer. In this context, an interesting
approach has been proposed in [23] where Camps-Valls et al.
presented a graph-based classifier for hyperspectral images
based on the algorithm described in [24], which takes advantage
of both the high number of unlabeled samples present in the
image and the integration of contextual information.

Another technique has been recently proposed by
Gómez et al. in [25]. In particular, the authors extended to the
remote-sensing domain the Laplacian SVM technique proposed
in [26], which introduces an additional regularization term on
the geometry of both labeled and unlabeled samples by using
the graph Laplacian [27]. This method follows a noniterative
optimization procedure in contrast to most transductive
learning methods and provides out-of-sample predictions in
contrast to graph-based approaches.

In order to increase the reliability of the semisupervised
learning process, systems based on ensemble methods have also
been devised. As an example, in [28] and [29], the authors pro-
posed the employment of semilabeled-sample-driven bagging
techniques.

B. Domain-Adaptation Methods

Semisupervised approaches proved to be useful for improv-
ing the discrimination capability with respect to supervised
classifiers when both available labeled and unlabeled data refer
to the same domain. However, in the case of addressing the
updating of land-cover maps, domain-adaptation methods are
necessary as, unlike the semisupervised case, they permit the
joint exploitation of labeled and unlabeled patterns that refer
to different images (i.e., different domains). While, in the last
few years, several techniques have been designed for handling
remote-sensing semisupervised problems, at the present, only

few methods have been proposed for tackling the challenging
problem of land-cover map updating. In this context, partially
unsupervised techniques that address domain adaptation in the
framework of remote sensing have been previously proposed by
the authors in [4]–[7]. In [4], a partially unsupervised approach
is proposed, which can update the parameters of an already
trained parametric ML classifier on the basis of the distribution
of a new image for which no ground-truth information is avail-
able. In [5], in order to take into account the temporal corre-
lation between images acquired over the same area at different
times, the partially unsupervised ML classification approach is
reformulated in the framework of the Bayesian rule for cascade
classification (i.e., the classification process is performed by
jointly considering information contained in all the items of
a temporal series). The basic idea in both approaches consists
in modeling the observed spaces by a mixture of distributions,
whose components are estimated through the employment of
unlabeled data according to a proper inference applied to train-
ing samples of the reference image. This is achieved by using
a specific version of the EM algorithm with finite GMM [13].
In [6] and [7], partially unsupervised classification approaches
based on a multiple-classifier system and a multiple-cascade-
classifier system (MCCS) have been defined, respectively. In
particular, in [7], the proposed MCCS architecture is made up of
an ensemble of partially unsupervised classifiers integrated in a
multiple-classifier architecture. Each classifier of the ensemble
is developed in the framework of cascade classification. Both
a parametric ML classification approach and a nonparametric
radial basis function neural-network (RBF-NN) classification
technique are used as basic classifiers. In addition, in order
to increase both the effectiveness and the robustness of the
ensemble, hybrid ML and RBF-NN cascade classifiers are
defined. In this way, the resulting partially unsupervised MCCS
is characterized by a higher reliability than single algorithms
composing the ensemble.

However, in general, the updating of land-cover map is still a
scarcely investigated problem that deserves to be further studied
given the relevant impact that its solution can have on many
application domains.

III. PROPOSED DOMAIN-ADAPTATION CLASSIFIER

In this section, we describe the proposed DASVM classifier.
Note that the rationale for developing a domain-adaptation
technique in the framework of SVMs is due to the effective-
ness of this classification methodology. Accordingly, in the
following, we first briefly overview the main concepts of super-
vised SVMs; then, we discuss the considered assumptions, and
finally, we present the formulation of the DASVM algorithm.

A. SVM: Background

The success of SVMs [16], [17] is mainly related to their
desirable properties that can be summarized as follows: 1) high
classification accuracies and very good generalization capabili-
ties with respect to other traditional classifiers; 2) existence and
uniqueness of an optimal solution; 3) possibility of representing
the optimization problem in a dual formulation, which makes
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SVMs scalable to large data sets and allows one to express
the solution in terms of only a subset of the training samples;
4) capability to address classification problems in which no
explicit parametric models on the distribution of information
classes are assumed; and 5) possibility of defining nonlinear
decision boundaries by implicitly mapping the available obser-
vations into a higher dimensional space.

Let T = {X ,Y} = {(xl, yl)}N
l=1 represent the available

training set, where X = {xl}N
l=1 is a subset of N patterns

drawn from the remote-sensing image being classified and
Y = {yl}N

l=1, yl = ±1, is the set of associated true labels.
SVMs aim at linearly separating data by the hyperplane
h : f(x) = w · x + b = 0, where x represents a generic sam-
ple, w is a vector normal to h, and b is a constant such
that b/‖w‖2 represents the distance of h from the origin. The
distance between the two hyperplanes h1 : w · x + b = −1 and
h2 : w · x + b = +1 parallel to h is called margin. Note that
the larger is the margin, the higher is expected to be the gen-
eralization capability of the classifier. Accordingly, since max-
imizing the margin is equivalent to minimizing the norm of w,
the objective of SVMs is to solve the following minimization
problem:⎧⎪⎪⎨

⎪⎪⎩
min
w,b,ξ

{
1
2‖w‖2 + C

N∑
l=1

ξl

}
yl(w · xl + b) ≥ 1 − ξl ∀l = 1, . . . , N
ξl > 0

(1)

where ξn’s are slack variables allowing for (permitted) errors
and C is the associated penalization parameter (also called
regularization parameter), which permits to tune the gener-
alization capability. Since direct handling of inequality con-
straints is difficult, it is possible to exploit Lagrange theory
which permits to obtain the corresponding equivalent dual
representation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
α

{
N∑

l=1

αl − 1
2

N∑
l=1

N∑
m=1

ylymαlαmxl · xm

}
N∑

l=1

ylαl = 0

0 ≤ αl ≤ C ∀l = 1, . . . , N

(2)

where the coefficients αN
l=1 are referred to as Lagrange multi-

pliers. According to the Karush–Kuhn–Tucker conditions [30],
it is possible to demonstrate that the solution is a linear com-
bination of the only training patterns associated with nonzero
Lagrange multipliers (i.e., either mislabeled training samples or
correctly labeled training samples falling into the margin band
M = {x| − 1 ≤ f(x) ≤ 1}), denoted as support vectors.

When the available data cannot be linearly separated directly
in the input space, they can be projected into a higher dimen-
sional feature space (e.g., a Hilbert space) with a nonlinear
mapping function Φ(·) defined in accordance with Cover’s
theorem [32]. As a consequence, the inner product between the
two patterns xl and xm in (2) becomes Φ(xl) · Φ(xm). In order
to avoid considering the Φ(·) mapping explicitly, according
to the Mercer’s theorem, it is possible to exploit a kernel
function K(xl,xm) = Φ(xl) · Φ(xm), which ensures that the

objective function is convex. After obtaining the optimal values
of the multipliers αN

l=1 (e.g., carrying out optimization in (2)
with some quadratic optimization techniques), for any given
sample x, the predicted label becomes

ŷ = sgn [f(x)] = sgn

[
N∑

l=1

ylαlK(xl,x) + b

]
. (3)

Note that, for addressing multiclass problems, different
strategies have been proposed so far in the literature (the reader
is referred to [30] for greater details).

B. Proposed DASVM: Assumptions

Let I1 and I2 represent two remote-sensing images acquired
over the same area at different times (t1 and t2, respectively).
Let X1 = {x1

i |x1
i ∈ I1}N

i=1 and X2 = {x2
i |x2

i ∈ I2}M
i=1 denote

two subsets of I1 and I2 composed of N and M patterns,
respectively. Note that x1

i and x2
i represent the d-dimensional

feature vectors associated with the ith sample of I1 and I2

(where d represents the dimensionality of the input space). In
the formulation of the proposed DASVM technique, we make
the following assumptions.

1) The same set of L information classes, Ω = {ωi}L
i=1,

characterizes the two images I1 and I2.
2) A set of ground-truth labels Y1 = {y1

i |y1
i ∈ Ω}N

i=1 for
X1 is available; thus, it is possible to define a training set
T1 = {X1,Y1} = {(x1

l , y
1
l )}N

l=1 for I1.
3) A set of ground-truth labels Y2 = {y2

i |y2
i ∈ Ω}M

i=1 for
X2 is not known; thus, it is not possible to define a
training set for I2.

Under the aforementioned hypothesis, our goal is to perform
an effective domain adaptation from I1 to I2 and, thus, to
obtain an accurate and robust classification of I2 by exploiting
labeled training samples T1 from the reference image I1 and
unlabeled samples X2 from the new image I2. Note that ob-
taining a good adaptation requires an adequate modeling of the
relationship between I1 and I2. In this framework, there exist
two bound conditions defined on the basis of the correlation
between the distributions P 1(x, y) and P 2(x, y) that govern
I1 and I2, respectively: 1) If P 1(x, y) and P 2(x, y) are inde-
pendent, then the available training set T1 for I1 is useless for
building a model for I2, and 2) if P 1(x, y) ≡ P 2(x, y), then
adaptation is not necessary and standard supervised learning
algorithms can be employed. Nevertheless, in real applications,
the aforementioned distributions are generally neither inde-
pendent nor identical. In these situations, it is reasonable to
assume the existence of an intrinsic relationship between the
two images that makes adaptation possible. We expect that the
probability to succeed in the adaptation process is associated
with the complexity of the problem, which depends on the
similarity between P 1(x, y) and P 2(x, y).

C. Proposed DASVM: Formulation

In the following, for simplicity, we describe the pro-
posed DASVM technique in the case of a two-class problem.
DASVMs directly take into account that unlabeled samples X2
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Fig. 1. (Solid line) Separation hyperplane and (dashed lines) margin bounds at different stages of the DASVM algorithm for a toy data set. Original patterns at
time t1 are shown as white and black circles. Semilabeled patterns are shown as white and black squares. Remaining unlabeled patterns at time t2 are represented
as gray squares. Feature space structure obtained: (a) At the first iteration (the dashed circles and squares highlight the current semilabeled patterns and the current
original training patterns to delete, respectively; in the example, ρ = 3), (b) at the second iteration, and (c) at the last iteration, respectively, in an ideal situation
(the dashed gray lines represent both the separation hyperplane and the margin bounds at the beginning of the learning process).

are drawn from a new image I2 different from the reference im-
age I1 of training samples. Accordingly, we assume that labeled
samples of I1 should be considered only for initially constrain-
ing the learning problem for I2 (i.e., they are the only labeled
patterns at the beginning of the domain-adaptation learning
process). It seems reasonable that, at the end of the training
process, the final decision function should be defined on the
basis of samples at t2 alone (i.e., the semilabeled samples itera-
tively selected in the learning process), as they are the only ones
referring to the target domain. In the light of this reasoning, in
the proposed DASVM technique, original training samples at
time t1 are gradually erased in order to obtain a final discrimi-
nant function ruled only by semilabeled samples at time t2.

The proposed DASVM algorithm is made up of three main
phases: 1) initialization (only T1 is used for initializing the dis-
criminant function); 2) iterative domain adaptation (T1 and X2

are jointly used for gradually adapting the discriminant function
to I2); and 3) convergence (only samples of X2 are used for
defining the final discriminant function). In the following, we
will denote T (i) and X (i)

2 as the training set and the unlabeled
set (i.e., the set containing the unlabeled samples that have not
been inserted into the training set T (i)) at the current iteration
i, respectively. These phases are described into details in the
following.

1) Phase 1—Initialization: At the beginning of the learn-
ing process, an initial separation hyperplane is determined
on the basis of training data available for I1. We have that
T (0) ≡ T1 = {(x1

l , y
1
l )}N

l=1 and X (0)
2 = {x2

u}M
u=1. As for stan-

dard supervised SVMs, the bound cost function to minimize is
the following:

⎧⎪⎪⎨
⎪⎪⎩

min
w,b,ξ

{
1
2

∥∥w(0)
∥∥2

+ C
N∑

l=1

ξ1
l

}
y1

l

(
w(0) · x1

l + b(0)
)
≥ 1 − ξ1

l ∀l = 1, . . . , N
ξ1
l ≥ 0.

(4)

2) Phase 2—Iterative Domain Adaptation: The second iter-
ative phase represents the core of the proposed algorithm. At the
generic iteration i, all the original unlabeled samples of X2 are
associated with an estimated label ŷ

2(i)
u = sgn[f (i)(x2

u)], deter-
mined according to the current decision function f (i)(x2

u) =
w(i) · x2

u + b(i).

In order to seize the classification problem at time t2, a subset
of the (remaining) unlabeled samples X (i)

2 is iteratively selected
and moved, together with the corresponding estimated labels,
into the training set T (i+1). On the one hand, the higher the dis-
tance from the separation hyperplane h(i) : w(i) · x + b(i) = 0,
the higher the chance for an unlabeled sample to be correctly
classified. On the other hand, the current unlabeled samples
falling into the margin band M(i) = {x| − 1 ≤ f (i)(x) ≤ 1}
are those with the highest probability to be associated with
nonzero Lagrange multipliers (and, thus, to affect the position
of h(i+1)) once inserted in the training set with their current
estimated label (patterns falling outside the margin band, in
fact, are more likely to be associated with null multipliers). In
light of these two observations, at each iteration, we progres-
sively take into account unlabeled samples falling into M(i)

closest to the margin bounds (i.e., they are the ones further from
the decision boundary h(i)). Let us define the two following
subsets:

H(i)
up =

{(
x2

u, ŷ2(i)
u = +1

)
|x2

u ∈ X (i)
2 ,

1 ≥ f (i)
(
x2

u

)
≥ f (i)

(
x2

u+1

)
≥ 0

}
(5)

H(i)
low =

{(
x2

u, ŷ2(i)
u = −1

)
|x2

u ∈ X (i)
2 ,

−1 ≤ f (i)
(
x2

u

)
≤ f (i)

(
x2

u+1

)
< 0

}
. (6)

The current unlabeled samples in the upper and lower sides of
the margin band M(i) are inserted with their corresponding
estimated labels into H(i)

up (i.e., ŷ
2(i)
u = +1) and H(i)

low (i.e.,

ŷ
2(i)
u = −1), respectively. In particular, samples of H(i)

up and

H(i)
low are sorted in ascending order with respect to their distance

from the upper and lower bounds of M(i), respectively. At each
iteration, the first ρ unlabeled patterns in both the two afore-
mentioned subsets (where ρ is a strictly positive free parameter
defined a priori by the user) are selected and moved to the
training set T (i) [see Fig. 1(a)]. Note that a similar strategy is
proposed in [33], where only the two unlabeled patterns inside
the margin band with the maximum and the minimum values of
the decision function are iteratively considered; nevertheless,
we assume that, in general, two patterns may not be sufficiently
representative for properly tuning the position of the separation
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hyperplane. As the cardinality of H(i)
up and H(i)

low may become
lower than ρ, the set of unlabeled patterns selected at the generic
iteration i becomes

H(i) =
{(

x2
u, ŷ2(i)

u

)
∈ H(i)

up

∣∣∣ 1 ≤ u ≤ λ(i)
}

∪
{(

x2
u, ŷ2(i)

u

)
∈ H(i)

low

∣∣∣ 1 ≤ u ≤ δ(i)
}

(7)

where λ(i) = min(ρ, |H(i)
up |) and δ(i) = min(ρ, |H(i)

low|).
Patterns of H(i) are then merged with T (i).

Due to the fact that the training set iteratively changes, it
is reasonable to expect that also the position of the separa-
tion hyperplane h(i) changes at each iteration [see Fig. 1(b)].
Accordingly, a dynamical adjustment is necessary for taking
into account that a given semilabeled sample could be asso-
ciated with different estimated labels between two successive
iterations. Let

S(i) =
{(

x2
u, ŷ2(i−1)

u

)
∈ T (i)

∣∣∣ ŷ2(i)
u 
= ŷ2(i−1)

u

}
(8)

represent the set of semilabeled samples belonging to T (i)

whose labels at iteration i are different than those at iteration
i − 1. If the label of a semilabeled pattern at iteration i is
different from the one at iteration i − 1, it means that the system
is no more confident on that sample. Accordingly, such a label
is erased, and the “inconsistent” semilabeled pattern is reset
to the unlabeled state and moved to X (i+1)

2 . In this way, it is
possible to reconsider this pattern at the following iterations of
the learning procedure.

As it will be pointed out in the following, the proposed
DASVM algorithm aims at gradually increasing the regulariza-
tion parameter for the patterns that belong to the new image I2

according to a time-dependent criterion. Accordingly, the set
J (i) containing all the semilabeled patterns at the ith iteration
is partitioned into a finite number of subsets γ ∈ N0, where γ is
defined as the maximum number of iterations for which the user
allows the regularization parameter for semilabeled samples to
increase. In particular, we have that

J (i) = J (i)
1 ∪ J (i)

2 ∪ · · · ∪ J (i)
γ⎧⎪⎪⎨

⎪⎪⎩
J (i)

1 = H(i)

J (i)
k = J (i−1)

k−1 − S(i) ∀k = 2, . . . , γ − 1

J (i)
γ =

(
J (i−1)

γ ∪ J (i−1)
γ−1

)
− S(i)

(9)

where the generic kth subset includes all the semilabeled sam-
ples that have been labeled in the same way for k successive
iterations. Each subset of J (i) will be associated with a specific
regularization parameter.

The main purpose of the proposed technique is to define and
solve a bound minimization problem with respect only to the
samples at time t2; therefore, a strategy for gradually deleting
the original labeled patterns of the reference image at time t1
has been developed. Intuitively, the higher is the distance of
a training sample from the separation hyperplane, the lower
is the chance that it can be misclassified after a new tuning
of the hyperplane due to the insertion of semilabeled samples

into the training set T (i+1). For this reason, in the proposed
DASVM technique, we iteratively delete remaining original
training samples of the reference image I1 that are furthest
from the current decision boundary h(i). Let us define the two
following subsets:

Q(i)
up =

{(
x1

l , y
1
l

)
∈T (i)

∣∣∣ f (i)
(
x1

l

)
≥f (i)

(
x1

l+1

)
≥0

}
(10)

Q(i)
low =

{(
x1

l , y
1
l

)
∈T (i)

∣∣∣ f (i)
(
x1

l

)
≤f (i)

(
x1

l+1

)
<0

}
(11)

where Q(i)
up and Q(i)

low contain the remaining labeled patterns for
I1 which lie above and under the separation hyperplane, respec-
tively, sorted in descending order with respect to their distance
from h(i). At each iteration, for balancing the contribution of
the new semilabeled samples, the number of patterns to erase
from Q(i)

up and Q(i)
low is set equal to λ(i) and δ(i) (i.e., the number

of semilabeled patterns selected from the upper and the lower
side of the margin band), respectively. If none of the remaining
unlabeled samples at time t2 falls into either the upper or the
lower side of the margin band (i.e., H(i) = ∅), the number of
patterns to delete is set to ρ. As a consequence, we have

Q(i) =
{(

x1
l , y

1
l

)
∈ Q(i)

up

∣∣∣ 1 ≤ l ≤ ν(i)
}

∪
{(

x1
l , y

1
l

)
∈ Q(i)

low

∣∣∣ 1 ≤ l ≤ κ(i)
}

(12)

where

ν(i) =

⎧⎨
⎩

min
(
λ(i),

∣∣∣Q(i)
up

∣∣∣) if H(i) 
= ∅

min
(
ρ,

∣∣∣Q(i)
up

∣∣∣) if H(i) = ∅

κ(i) =

⎧⎨
⎩

min
(
δ(i),

∣∣∣Q(i)
low

∣∣∣) if H(i) 
= ∅

min
(
ρ,

∣∣∣Q(i)
low

∣∣∣) if H(i) = ∅.

Let μ(i) and η(i) represent the number of remaining original
training samples at t1 and semilabeled samples at t2 in T (i),
respectively. For i ≥ 1, the minimization problem can be
written as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
w,b,ξ1,ξ2

{
1
2

∥∥w(i)
∥∥2

+ C(i)
μ(i)∑
l=1

ξ1
l +

η(i)∑
u=1

C∗
uξ2

u

}

y1
l ·

(
w(i) · x1

l + b(i)
)
≥ 1 − ξ1

l ∀l = 1, . . . , μ(i)

ŷ
2(i−1)
u ·

(
w(i) · x2

u + b(i)
)
≥ 1 − ξ2

u ∀u = 1, . . . , η(i)

ξ1
l , ξ2

u ≥ 0.
(13)

It is possible to notice that, with respect to supervised SVMs,
the training patterns of the image at time t1 are associated
with a regularization parameter C(i) which varies at each
iteration. Moreover, as pointed out before, semilabeled
samples are associated with a specific regularization parameter
C∗

u = C∗
u(k) ∈ R

+ that depends on the kth subset J (i−1)
k they

belong to at iteration i − 1. The purpose of C(i) and C∗
u is

to control the number of misclassified samples of the current
training set T (i) associated with I1 and I2, respectively. In
particular, the larger their values, the higher is the influence of
the associated samples in tuning the position of the separation
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Fig. 2. (a) Behavior of C∗
u, regularization parameter for the semilabeled patterns belonging to J (i) = J (i)

1 ∪ J (i)
2 ∪ · · · ∪ J (i)

γ , versus k (index corresponding

to the subset J (i)
k

, which is related to the number of iterations in which a semilabeled pattern is associated with the same label). (b) Behavior of the regularization

parameter for the original training patterns at time t1, C(i), versus the number of iterations i.

hyperplane. It is reasonable to expect that the two distributions
P 1(x, y) and P 2(x, y) could be rather different; thus, in
order to avoid instabilities in the learning process, unlabeled
samples are considered gradually. In particular, a weighting
strategy based on a temporal criterion is adopted. As regards
the regularization parameter for the semilabeled patterns, the
proposed algorithm let it grow in a quadratic way, depending
on the number of successive iterations they have been assigned
the same estimated label [see Fig. 2(a)]. For each semilabeled
sample (x2

u, ŷ
2(i)
u ), we have

C∗
u =

τ · C − C∗

(γ − 1)2
(k − 1)2 + C∗ ⇔

(
x2

u, ŷ2(i)
u

)
∈ J (i)

k ,

k = 1, . . . , γ (14)

where C∗ is a free parameter that represents the initial
regularization value for semilabeled samples and τ , 0 < τ ≤ 1,
tunes the maximum cost value of semilabeled samples (i.e., a
reasonable choice has proved to be τ = 0.5). For balancing the
growing importance of semilabeled samples in affecting the
position of the current separation hyperplane, the algorithm
makes the cost factor C(i) for the original labeled samples at
time t1 decrease in a quadratic way too [see Fig. 2(b)]

C(i) = max
(

C∗ − C

γ2
i2 + C,C∗

)
. (15)

In this way, while, at the beginning, the position of the
separation hyperplane strongly depends on labeled patterns
available for I1, then their influence gets always lower as the
number of iteration increases (until i = γ).

It is worth noting that the strategy adopted for deleting
patterns of I1 might result also in the removal of mislabeled
original training samples, which affect the position of the hyper-
plane as they are associated with nonzero Lagrange multipliers.
Nevertheless, this aspect does not seem to be critical as the
following are observed.

1) If mislabeled original training samples fall far away from
the hyperplane (i.e., ξ � 1), it is reasonable to assume
that they are outliers (e.g., they could have been associ-
ated with a wrong label while defining the training set
at time t1). In practice, we expect that only few original
training samples may exhibit such a behavior. Accord-
ingly, even if they are still associated with a nonnegligible
value of the regularization parameter, their deletion would
not significantly affect the position of the hyperplane.

2) If mislabeled original training samples fall into the wrong
side of the margin band, or close to the wrong margin
bound, they are expected to be deleted when the system is
close to convergence or, in general, when the number of
current semilabeled samples is high. In such a scenario,
by taking into account the adopted weighting criterion,
it is reasonable to assume that the position of the hyper-
plane strongly depends on semilabeled samples. Thus, the
deletion of these original training samples is not critical
(note that, as this happens after several iterations of the
learning process, training patterns would be associated
with a small value of the regularization parameter).

The second phase ends when the convergence criteria described
hereinafter are satisfied.

3) Phase 3—Convergence: As the proposed DASVMs aim
at defining a discriminant function on the basis of samples
at time t2 alone, it is reasonable to assume that convergence
can be obtained only if all the original labeled samples at
t1 have been completely erased, i.e., Q(i) = ∅. Under this
assumption, from a theoretical viewpoint, it can be assumed
that convergence is reached if none of the remaining unlabeled
samples of X2 lies into the margin band M(i), i.e., H(i) = ∅

[see Fig. 1(c)]. Nevertheless, such a choice might result in a
high computational load. Moreover, it should be considered
also that even when the margin band is empty, the number
of inconsistent semilabeled patterns cannot be negligible. For
these reasons, the following empirical stopping criteria have
been defined: ⎧⎨

⎩
Q(i) = ∅∣∣H(i)

∣∣ ≤ �β · M�∣∣S(i)
∣∣ ≤ �β · M�

(16)

where M is the number of original unlabeled samples taken
from I2 and β is a user-defined parameter that permits to
tune the sensitivity of the learning process. This means that
convergence is reached if the number of both mislabeled and
remaining unlabeled patterns lying into M(i) at the current
iteration is lower than or equal to �β · M�. Accordingly, the
final bound minimization problem at the last iteration i is
defined only on the basis of the semilabeled samples⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min
w,b,ξ

{
1
2 ‖w‖2 +

η(ī)∑
u=1

C∗
uξu

}

ŷ
2(̄i−1)
u ·

(
w·x2

u+b
)
≥1−ξu ∀u=1, . . . , η(̄i)

ξu ≥ 0.

(17)
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At the end of the learning process, all the patterns x2
u ∈ I2 are

labeled according to the resulting separation hyperplane, i.e.,
ŷ2

u = sgn[w · x2
u + b].

At each iteration of the proposed DASVM technique, the
objective function to minimize is convex. This means that,
independently from the number of considered semilabeled
patterns, a unique solution for the considered minimization
problem exists; therefore, the system is always able to reach
convergence. However, note that it is not possible to guarantee
the convergence toward a final solution that is satisfactory for
the investigated task. In fact, this depends on the definition
of the unlabeled samples considered and, implicitly, on the
“similarity” between source and target domains.

The earlier described algorithm is defined for two-class
problems. When a multiclass problem has to be investigated,
a one-against-all (OAA) strategy [30], [34] can be employed.

IV. PROPOSED CIRCULAR VALIDATION STRATEGY

One of the main limitations in developing methods for
addressing updating of land-cover maps when no ground-truth
information is available for the new image being classified
is the lack of validation strategies that permit to assess the
effectiveness of the classification results. To this end, in this
section, we present a novel circular strategy for validating
the solutions obtained with classifiers designed for handling
domain-adaptation problems. The joint use of this accuracy
assessment strategy and of the DASVM technique described
in Section III permits to address operational land-cover map
updating problems. It is worth noting that the proposed circular
validation strategy is general and can be used with any domain-
adaptation classifier.

A. Proposed Circular Validation Strategy: Rationale

The proposed strategy is based on the two following
observations.

1) Observation 1: The only ground-truth information is
that available for the reference image I1. Therefore, for
assessing the accuracy of the classification of the new
image I2 at time t2, an indirect procedure that exploits
the training set T1 at time t1 must be defined.

2) Observation 2: Given the reference image I1 and the
new image I2 acquired over the same geographical
area at times t1 and t2, respectively, it is reasonable
to expect that, in real applications, the related distrib-
utions P 1(x, y) and P 2(x, y) are neither independent
nor identical. In this hypothesis, there exists a direct
relationship between I1 and I2, which depends on the
similarity between the distributions that govern the two
images.

On the basis of these observations, the proposed strategy
relies on the following rationale. Let us consider that, starting
from an acceptable accuracy for I1, the considered algorithm
results in a satisfactory solution for I2. In such a situation,
the domain-adaptation process is able to seize the relationship
between I1 and I2, and thus the structure of the problem at

time t2; therefore, we expect that by applying again the same
learning algorithm in the reverse sense (using the classifica-
tion labels in place of the missing ground-truth labels for I2,
keeping the same learning parameters, and considering I1 as
the new image to be categorized), it is possible to obtain again
a good discrimination capability at time t1. On the contrary, if
the domain-adaptation classifier does not identify an acceptable
solution for I2, this means that it does not capture the relation-
ship between the two images but converges to a solution which
is not related to the investigated problem. In this condition, at
the end of the backward process from time t2 to time t1, it
seems impossible to recover a reliable solution for I1, as,
exploiting an unreliable training set for I2, the domain-
adaptation classifier has almost no probability to correctly
reseize the classification problem for the reference image. On
the basis of these expected properties, we can use the accuracy
evaluated on the original training samples T1 for validating
the solution obtained for the unlabeled instances of the new
image after a circular (forward and backward) application of
the considered domain-adaptation algorithm.

In the following, we formally define the proposed circular
strategy in the specific case of DASVM classifiers.

B. Proposed Circular Validation Strategy: Formulation

Let us define Λ(Yj , Ŷj) as a classification accuracy measure
(e.g., the overall accuracy, the kappa coefficient of accuracy)
that evaluates the similarity between a set of estimated labels
Ŷj (i.e., a solution) predicted by a generic classifier and the
corresponding set of true labels Yj . If Λ(Yj , Ŷj) ≥ Λth, where
Λth represents a threshold for Λ, we assume that the solution
Ŷj is consistent with Yj (i.e., it is acceptable for the problem
under investigation). Accordingly, let us define the following
four sets.

1) A: It contains all the solutions consistent with the refer-
ence image at time t1 (i.e., Λ(Y1, Ŷ1) ≥ Λth).

2) B: It contains all the solutions consistent with the new
image at time t2 (i.e., Λ(Y2, Ŷ2) ≥ Λth).

3) C: It contains all the solutions nonconsistent with the
reference image at time t1 (i.e., Λ(Y1, Ŷ1) < Λth).

4) D: It contains all the solutions nonconsistent with the new
image at time t2 (i.e., Λ(Y2, Ŷ2) < Λth).

Let us train a supervised SVM using the training samples
available for I1, and select a solution consistent at time t1
that belongs to the set A (i.e., the system is in the state A).
Successively, we train a DASVM using T1 as training set and
X2 as unlabeled set. For both the kernel function variables
and the regularization parameter C, we keep the same values
adopted for the aforementioned supervised learning. With a
proper choice of the values for the domain-adaptation para-
meters (i.e., C∗, γ, and ρ), the solution at time t2 is expected
to belong to B (i.e., the system moves to the state B); on the
contrary, if the choice of the parameters is not adequate (i.e.,
P 1(x, y) is too different from P 2(x, y)), the solution belongs
to D (i.e., the system moves to the state D).

Let us now consider the solution obtained for X2. We can
address the reverse domain-adaptation problem (from time t2
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Fig. 3. Diagram of all the possible state transitions of solutions exploited from
the proposed circular validation strategy.

to time t1) with the same DASVM classifier by keeping the
same learning parameters and jointly exploiting the estimated
training set T̂2 = {X2, Ŷ2} (i.e., Ŷ2 represents the set of esti-
mated labels for X2) and the subset of unlabeled patterns X1

at time t1 (considered without the corresponding ground-truth
labels Y1). As the ground-truth labels Y1 are known, we can
compute the value for Λ associated with the results obtained
after the circular learning process. If Λ(Y1, Ŷ1) < Λth, the
classification accuracy at time t1 is considered nonacceptable,
then the solution belongs to C (i.e., the system moves to the
state C). On the contrary, if Λ(Y1, Ŷ1) ≥ Λth, the resulting
solution is consistent (i.e., it belongs to A) and the system
moves back to the state A. Fig. 3 shows all the possible
transitions of the system.

Our assumption is that, when the system starting from the
state A is able to return again into the state A, the classification
accuracy at time t2 is satisfactory. Accordingly, the land-cover
map obtained by the corresponding DASVM for I2 represents
a reasonable updating of the land-cover map for the reference
image I1. This aspect is crucial because it means that, in such
situations, we are able to assess that the estimated map at time
t2 has an acceptable accuracy even if no prior ground-truth
information is available. Let Pr(Y |X) denote the probability
that the system joins the generic state Y starting from the
generic state X by applying the DASVM algorithm.

The two main hypotheses under which the proposed valida-
tion technique is assumed to be effective are the following.

1) Starting from the state D, the system must never move
back to the state A. If the solution obtained in the forward
sense (from time t1 to time t2) for unlabeled instances X2

is not satisfactory, by applying the considered domain-
adaptation algorithm in the backward sense (from time
t2 to time t1), it must never be possible to obtain
an acceptable solution at time t1 (i.e., Pr(A|D) = 0),
but rather to obtain a solution that is not consistent
with the reference image I1 (i.e., Pr(C|D) = 1). This
hypothesis is very reasonable because it seems almost
impossible to recover a correct solution at time t1 start-
ing from a completely wrong solution at t2. This has
some analogies with the definition of specific trajectories

that model transitions between different states in chaotic
systems.

2) Starting from the state B, the system can return to the
state A. If there exists a set of satisfactory solutions
obtained in the forward sense (from time t1 to time t2)
for unlabeled instances X2 (i.e., B 
= ∅), by applying the
considered domain-adaptation algorithm in the backward
sense (from time t2 to time t1), it must be possible to
obtain for at least one of them a solution acceptable for
I1 (i.e., Pr(A|B) > 0).

Under the aforementioned assumptions, the system never
accepts solutions that are nonconsistent with the new image I2.
It is worth noting that this aspect represents the keypoint for
a correct validation in real operational problems, because this
guarantees to avoid validation of inaccurate classification maps.
In some cases, it may happen that solutions consistent at time t2
are actually rejected; nevertheless, this is due to the fact that the
learning parameters are not optimized for the backward process.
Therefore, it does not represent a critical issue (it is important
that at least one accurate solution can be accepted).

V. EXPERIMENTAL RESULTS

In order to assess the effectiveness of the proposed system,
we carried out several experiments. In particular, we considered
a data set made up of two coregistered multispectral images
acquired by the Thematic Mapper (TM) sensor of the Landsat 5
Satellite in September 1995 (I1) and in July 1996 (I2). The
investigated site relates to a section of 412 × 382 pixels
(i.e., about 11.7 km × 10.8 km), including Lake Mulargia,
located in the Southern part of the Sardinia Island, Italy (see
Fig. 4). In our trials, we took into account the five information
classes that mainly characterized the area of interest at both the
times, i.e., forest, pasture, urban area, water, and vineyard. As
commonly done in the literature, among the seven available
TM spectral bands, we did not take into account the low-
resolution band associated with the thermal infrared channel
(i.e., band 6). Moreover, in order to exploit the distribution-free
nature of SVMs and to characterize the texture properties of the
investigated land-cover classes, in addition to the six remaining
TM bands, we also considered five additional texture features
based on the gray-level co-occurrence matrix (GLCM), i.e.,
correlation, sum average, sum variance, difference variance,
and entropy. The GLCM was obtained by compressing the
original dynamic of 256 levels to 32 levels using an equal-
probability quantizing algorithm [31]. The window size was set
to 7 × 7, and the interpixel distance was fixed to 1.

Available prior knowledge about the area of interest was
exploited to define two spatially uncorrelated sets of labeled
samples at time t1 (i.e., September 1995) and time t2 (i.e.,
July 1996), respectively (see Table I). However, it is worth
noting that prior ground information related to I2 was con-
sidered only for an objective and quantitative assessment of
the performances of the proposed system. In the following,
we will refer to the set of labeled samples available for I1

as T1 = {X1,Y1} (i.e., X1 and Y1 represent the instances and
the corresponding true labels, respectively), whereas we will
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Fig. 4. Band 5 of the multispectral Landsat-5 TM images used in the experiments. (a) Image acquired in September 1995. (b) Image acquired in July 1996.

TABLE I
NUMBER OF LABELED PATTERNS AVAILABLE FOR THE SEPTEMBER 1995

(I1) AND THE JULY 1996 (I2) IMAGES AND JENSEN–SHANNON

DIVERGENCE (DJS) VALUES

denote X2 as the subset of instances at t2 for which true labels
were actually available but were not exploited in the learning
phase.

At the beginning of our analysis, we assessed the complexity
of the considered problem by estimating the “distance” between
the pattern distributions P 1(x) and P 2(x) related to I1 and
I2, respectively. This was accomplished by computing the
Jensen–Shannon divergence (DJS) [35] defined as

DJS

[
P 1(x), P 2(x)

]
= α · DKL

[
P 1(x)‖P 3(x)

]
+ β · DKL

[
P 2(x)‖P 3(x)

]
(18)

where DKL represents the Kullback–Leibler divergence3 and
P 3(x) = α · P 1(x) + β · P 2(x). In particular, we fixed α =
β = 0.5 (this case is referred in the literature as specific DJS)
for which it holds that DJS[P 1(x), P 2(x)] ∈ [0; log 2]. The
existence of both lower and upper bounds for DJS is very
important as it let us guess how different the two distributions
are. If DJS[P 1(x), P 2(x)] = 0, then P 1(x) and P 2(x) can be
considered identical, whereas if DJS[P 1(x), P 2(x)] = log 2 �
0.693, P 1(x) and P 2(x) can be considered independent.

Table I shows that, as the two investigated images were
acquired in different periods of the year, the resulting overall
DJS between the distributions at time t1 and t2 was consid-

3DJS is a symmetrized and smoothed version of DKL, which is defined
as DKL[P 1(x)‖P 2(x)] =

∑
n

p1
n log(p1

n/p2
n), where p1

n and p2
n are point

probabilities of P 1(x) and P 2(x), respectively [36].

erable (i.e., 0.391). Moreover, the complexity of the consid-
ered problem is increased by the distances evaluated between
the corresponding conditional class distributions at the two
dates DJS[P 1(x|ωi), P 2(x|ωi)], which permit the estimation
of how far apart the pattern distributions related to the same
information class in the two images are. In particular, a con-
siderable difference is noticed for both the class pasture (i.e.,
DJS = 0.517) and the class vineyard (i.e., DJS = 0.567).

In all the trials, we chose the percentage overall accuracy
OA% (i.e., the percentage of correctly labeled samples over the
whole number of considered samples) as reference classifica-
tion accuracy measure Λ and fixed Λth = OA%th = 85 (this
value can be considered as a reasonable lower bound for an ac-
ceptable solution in the investigated problem). Accordingly, for
both the classification problems at time t1 and time t2, a solu-
tion was assumed to be consistent if OA% ≥ 85. We employed
Gaussian kernel functions (ruled by the free parameter σ)
in the learning phase of both DASVMs and SVMs (used for
comparison purposes), as they generally proved effective in
addressing classification of multispectral images. Note that one
of the constraints imposed by the DASVM algorithm is to use
the OAA multiclass architecture; therefore, the same multiclass
strategy was adopted also for supervised SVMs. In all the exper-
imental trials, we employed the sequential minimal optimiza-
tion algorithm [37] for training both the supervised SVMs and,
with proper modifications, the proposed DASVMs. As pointed
out in Section III, we fixed τ = 0.5 (it is reasonable to assign
the semilabeled samples at most a regularization parameter
equal to one half of the regularization parameter for original
training samples). Concerning the convergence criterion, on the
basis of the performances exhibited by the system on a variety
of preliminary experimental trials on different toy data sets, a
reasonable empirical choice proved to be β = 3 · 10−2.

At the beginning of our analysis, we trained several super-
vised SVMs at time t1 by exploiting all the labeled samples
T1 = {X1,Y1} available for the reference image I1. In par-
ticular, in order to identify models with good generalization
capabilities, according to the literature [30], we adopted in the
learning phase a tenfold cross-validation (CV) strategy, which
allows one to effectively evaluate the quality of a predicted
model using the same data set exploited for building the model
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TABLE II
PERCENTAGE OVERALL ACCURACY (OA%), PRODUCER’S ACCURACIES (PA%), AND USER’S ACCURACIES (UA%) OBTAINED FOR THE NEW IMAGE

I2 BY THE FOLLOWING: 1) THE SUPERVISED SVM TRAINED ACCORDING TO THE TENFOLD CV STRATEGY WITH THE LABELED PATTERNS AVAILABLE

FOR I1 WHICH PROVIDED THE HIGHEST OA% AT TIME t1 (SVMCV
t1

) AND 2) THE PROPOSED DASVM TECHNIQUE WITH OPTIMAL SELECTION OF

DOMAIN-ADAPTATION PARAMETERS (DASVMbest). THE AVERAGE ACCURACY ASSOCIATED WITH THE CONSISTENT SOLUTIONS OBTAINED BY THE

PROPOSED DASVM TECHNIQUE AND CORRECTLY IDENTIFIED BY THE CIRCULAR VALIDATION STRATEGY (DASVMave) IS ALSO GIVEN

itself. This process allowed us to identify the values of the
supervised learning parameters (i.e., σ and C) that better fit
the structure of the classification problem at t1 and resulted in
solutions consistent for I1. Successively, we trained a number
of DASVMs using T1 and X2 as labeled and unlabeled sets,
respectively. It is worth noting that, in the learning process,
we associated both σ and C to pairs of values that resulted in
consistent solutions at time t1, while we applied a grid search
strategy on the remaining domain-adaptation parameters (i.e.,
C∗, ρ, and γ).

In all our trials, the choice of the C∗ value was not critical.
In particular, for very small values of C∗ (i.e., in the range
of 0.5–1), it was always possible to obtain good classification
accuracies. As concerns γ and ρ, their behaviors proved to be
correlated. Note the following: 1) The higher is ρ, the lower
is expected to be the number of total iterations, and 2) to let
the final regularization parameters for the most of semilabeled
samples achieve sensible values, γ must be lower than the
number of total iterations. Accordingly, there exists an intrinsic
inverse proportion between ρ and γ. In our experiments, a
reasonable range for ρ was 5–15. For ρ = 5, we obtained
consistent solutions when γ ∈ 45−55, whereas for ρ = 15, we
obtained consistent solutions when γ ∈ 30−40.

In order to assess the effectiveness of the circular validation
strategy presented in Section IV, for each of the aforemen-
tioned DASVMs, we applied the proposed domain-adaptation
algorithm in the reverse sense. In each case, we exploited the
set of estimated labels Ŷ2 predicted at time t2 for defining an
estimated training set T̂2 = {X2, Ŷ2} for the new image I2.
Then, we trained the correspondent backward DASVM using
T̂2 as labeled set and the set of instances X1 at time t1
(considered without the associated true labels) as unlabeled set.
Note that we kept the same values for the learning parameters
employed in the forward learning. Finally, by exploiting the real
ground-truth labels Y1 available for I1, we were able to de-
termine whether the estimated final solution Ŷ1 was consistent
or not with the reference image and, thus, to infer about the
correctness of the solution Ŷ2 related to the new image I2.

At the end of our analysis, the proposed system proved to be
particularly promising and exhibited very good classification
performances. Table II shows the results obtained in terms of
OA% and both percentage producer’s and user’s accuracies
(i.e., PA% and UA%, respectively) for each information class

at time t2 by the following: 1) the supervised SVM trained
according to the tenfold CV strategy with the labeled patterns
available for I1 which provided the highest OA% at time
t1 (SVMCV

t1
) and 2) the proposed DASVM technique with opti-

mal selection of domain-adaptation parameters (DASVMbest).
Moreover, also the average accuracies associated with the
consistent solutions obtained by the presented domain-
adaptation algorithm and correctly identified by the circular
validation strategy (DASVMave) are reported4 (in order to
obtain significant estimations, 400 backward DASVMs have
been trained both starting from consistent and nonconsistent
solutions at time t2). It is worth noting that these values are
particularly important as they represent an average measure for
the quality of the solutions that were identified as consistent
without exploiting any prior ground information about the new
image I2.

From the table, it is noticed that the DASVM technique
was able to sharply increase the accuracies with respect to
the standard supervised approach. In particular, the average
improvement in the OA% exhibited by the solutions automat-
ically identified as consistent was remarkable (i.e., +14.36).
Without any prior true label for I2, we were able to obtain a
mean OA% equal to 93.12, which can be considered a very
good result in the light of the complexity of the investigated
problem. Moreover, when the domain-adaptation parameters
were selected in an optimal (i.e., supervised) way, the proposed
method proved capable to increase the OA% even up to 96.67
(i.e., +17.91 with respect to SVMCV

t1
).

As shown by the values of DJS reported in Table I, the
distributions of pasture and vineyard experienced the most rele-
vant changes between the two considered dates. Accordingly, it
seems reasonable that SVMCV

t1
exhibited low performances on

these two information classes at time t2.
In general, the behavior of the DASVMs was significantly

different with respect to the standard supervised approach [see,
for instance, the confusion matrices reported in Table III(a)
and (b)]. SVMCV

t1
often misclassified several pasture patterns as

forest areas at time t2, whereas the proposed domain-adaptation
algorithm rarely incurred in such kind of errors, thus exhibiting
a huge increase in the corresponding PA% (i.e., +36.33 on

4Note that also the solution obtained at time t2 by DASVMbest was correctly
identified as consistent by the proposed circular validation strategy.
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TABLE III
CONFUSION MATRICES THAT RESULTED FROM THE CLASSIFICATION OF THE NEW IMAGE I2 BY USING THE FOLLOWING: (a) THE SUPERVISED SVM

TRAINED ACCORDING TO THE TENFOLD CV STRATEGY WITH THE LABELED PATTERNS AVAILABLE FOR I1 WHICH PROVIDED THE HIGHEST OA% AT

TIME t1 (SVMCV
t1

) AND (b) THE PROPOSED DASVM TECHNIQUE WITH OPTIMAL SELECTION OF DOMAIN-ADAPTATION PARAMETERS (DASVMbest)

TABLE IV
PERCENTAGE OVERALL ACCURACY (OA%), PRODUCER’S ACCURACIES (PA%), AND USER’S ACCURACIES (UA%) OBTAINED FOR THE NEW IMAGE

I2 BY THE FOLLOWING: 1) THE SUPERVISED SVM TRAINED ACCORDING TO THE TENFOLD CV STRATEGY AT TIME t2 EXPLOITING TRUE LABELS

FOR THE PATTERNS OF X2 (SVMCV
t2

); 2) THE PARTIALLY SUPERVISED RETRAINING TECHNIQUE FOR ML CLASSIFIERS (MLretrain)

PRESENTED IN [4]; AND 3) THE PARTIALLY UNSUPERVISED ML CASCADED CLASSIFIER (MLcascade) PROPOSED IN [5]

average, +43.12 in the best case). Urban areas exhibited a
similar behavior, as they were frequently confused with forest
by the supervised approach, whereas the presented DASVMs
were able to avoid these errors, thus providing a noteworthy
improvement both in the PA% of urban area (i.e., +13.20 on
average, +17.51 in the best case) and in the UA% of forest (i.e.,
+19.86 on average, +32.64 in the best case). Even if the related
DJS was not negligible, SVMCV

t1
exhibited good accuracies for

the class water also at time t2. This is due to the fact that the
spectral signature of this class is rather different with respect
to those of the other information classes. The proposed system
resulted effective also on the vineyard class, which proved to
be the most critical information class (as confirmed by the very
low accuracies provided by SVMCV

t1
) mainly due to the fact that

it has the lowest prior probability. Moreover, in this case, even
if the accuracies are smaller than those obtained for the other
classes, the gain of the DASVMs with respect to the supervised
approach is significant both in terms of PA% (i.e., +9.40 on
average, +17.87 in the best case) and UA% (i.e., +37.00 on
average, +53.21 in the best case).

For the sake of comparison, in Table IV, we also evaluated
the performances obtained by the following: 1) a supervised
SVM trained according to a tenfold CV strategy with the sam-
ples belonging to X2 by exploiting the corresponding true labels
(SVMCV

t2
); 2) the partially unsupervised retraining technique

for ML classifiers (denoted as MLretrain) presented in [4]; and

3) the partially unsupervised ML cascade classifier (denoted as
MLcascade) proposed in [5].

As expected, SVMCV
t2

resulted in almost perfect separation
between the considered information classes at time t2. This
is mainly due to the fact that the model selection for the free
parameters has been optimized to seize the problem modeled
on I2 according to the CV strategy. For a suboptimal selec-
tion of the values for the learning parameters, the supervised
approach provided results comparable with those exhibited by
the DASVM technique. DASVMs also proved capable to obtain
higher accuracies than the MLretrain and MLcascade techniques,
thus confirming once again the effectiveness of the presented
method (see Table IV).

Let us now focus the attention on the circular validation
procedure. Fig. 5 shows the empirical cumulative distribution
function (cdf) of the OA% [denoted as P̂ (OA%)] estimated
from the solutions obtained for the reference image I1 at the
end of the backward learning process when the system started
from both the state B (i.e., solutions consistent with the new
image I2, black line) and the state D (solutions nonconsistent
with the new image I2, gray line).

For each point of the considered cdfs, the ordinate (referred
to as quantile) represents the probability that the final OA%
obtained after the circular learning process on the labeled
samples available at time t1 is lower or equal to the OA% value
of the corresponding abscissa. Accordingly, it is noticed that
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Fig. 5. Empirical cdf of the percentage overall accuracy (OA%) estimated
from the solutions obtained at the end of the backward learning process for
I1 when the system started from both state B (i.e., solutions consistent with
the new image I2, black line) and state D (i.e., solutions nonconsistent with
the new image I2, gray line). If OA% < 85, the system moved to the state
C (i.e., solutions nonconsistent with the reference image I1); if OA% ≥ 85,
the system moved to the state A (i.e., solutions consistent with the reference
image I1).

the proposed validation strategy was always able to correctly
reject solutions that were not acceptable at time t2, since the
distribution corresponding to solutions not consistent with the
new image (gray line) saturates to 1 for OA% ≈ 78.5, which
is lower than OA%th = 85. Indeed, when the DASVM started
from a solution that did not adequately model the classifica-
tion problem for I2, the system could not recover a solution
consistent with the reference image I1, thus satisfying the
most critical requirement for the operational employment of the
proposed strategy (i.e., Pr(A|D) = 0).

As concerns the distribution related to the solutions con-
sistent with the new image (black line), the quantile corre-
sponding to OA%th = 85 [i.e., q0.85(OA%)] is equal to 0.45.
Accordingly, as the systems move to the state C if OA% <
OA%th, we have that Pr(C|B) = q0.85(OA%) = 0.45. There-
fore, Pr(A|B) = 1 − Pr(C|B) = 0.55, which means that the
classifier moved back to the state A in the 55% of the cases.
This result is very important, as it means that without con-
sidering any prior ground information for I2, it was possible
to correctly identify more than a half of the correct solutions.
Moreover, as discussed before, the average quality of these so-
lutions is comparable with that obtained with optimal selection
of learning parameters, thus confirming the effectiveness of the
proposed circular validation strategy.

VI. DISCUSSION AND CONCLUSION

In this paper, we have presented a novel domain-adaptation
classifier based on SVMs (DASVM) for land-cover map up-
dating, which can be employed in real operational situations
when ground-truth labels are available only for a reference
image acquired over the same geographical area before the one
being classified. In addition, we have proposed a circular vali-

dation strategy for the accuracy assessment of the classification
results without labeled samples available for the image to be
categorized.

The proposed DASVM technique extends the principles of
SVMs to the domain-adaptation framework, by taking into ac-
count that unlabeled “test” samples are drawn from a new image
I2 different from the reference image I1 of training samples.
Starting from a standard supervised learning on labeled sam-
ples available for I1 (which determines an initial discriminant
function for the new image), the DASVM technique iteratively
selects and labels the unlabeled patterns of I2 that are most
likely to be correctly classified. At the same time, original
training patterns of I1 are gradually erased, as they refer to
an image different from the one being classified; therefore, the
final solution is ruled only by patterns of I2. In order to improve
the robustness and to better control the behavior of the classifier,
an adaptive weighting strategy for the regularization parameters
based on a temporal criterion has been defined. This allows
one to tune the influence of unlabeled patterns and, in general,
prevents the system from both converging to improper solutions
and providing unreliable results.

The presented circular validation strategy overcomes the
problem of the lack of procedures for the validation of classifi-
cation results in the context of land-cover map updating, when
no prior ground information for the new image being classified
is available. The proposed strategy has been developed under
the assumption that, although different, the class distributions
of images acquired over the same geographical area at different
times are intimately related. In particular, we assume that a
solution for I2 obtained with a domain-adaptation learning
algorithm is consistent if the solution obtained by applying the
same algorithm in the reverse sense (i.e., using the classification
labels in place of missing true labels for the new image and
considering the training patterns of the reference image as
unlabeled) is consistent (i.e., sufficiently accurate) with I1 (this
can be evaluated due to the availability of true labels for I1).

The experimental results obtained on a multitemporal data
set made up of two multispectral images acquired by the TM
sensor of the Landsat-5 satellite confirmed the effectiveness
and the robustness of the proposed methods. On the one
hand, the presented DASVM technique exhibited a very good
discrimination capability and proved capable to outperform
standard SVMs, resulting in high and satisfactory classification
accuracies. On the other hand, the circular validation strategy
allowed us to correctly identify solutions consistent with the
new image even in critical conditions. In addition, it proved
always able to reject solutions that were not consistent with the
investigated classification problem (which is the most critical
requirement for the operational employment of the proposed
strategy).

It is worth noting that, if most of the unlabeled samples
of the new image are incorrectly classified at the beginning
of the learning process, it becomes difficult for the proposed
system to recover a reliable land-cover map. Nevertheless, this
is due to the fact that the convergence to a consistent solution
is related to the intrinsic similarity between the considered
images, which can be estimated by computing proper statisti-
cal distance measures (e.g., the Jensen–Shannon divergence).
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Thus, as for semisupervised and TSVMs, when the two images
are considerably different, it is not possible to guarantee for
obtaining a reliable solution to the investigated classification
problem. However, such critical situation is detected by the
proposed circular validation strategy, which, in this case, is able
to reject all the solutions.

As concerns the computational load of the proposed classi-
fier, it is worth noting that each iteration of the DASVM algo-
rithm requires a time equivalent to that necessary for training
a supervised SVM. Indeed, while the number of semilabeled
patterns drawn from the new image increases, at the same time,
the number of labeled patterns of the reference image decreases.
Accordingly, the cardinality of the training set does not increase
with the number of iterations; therefore, the computational load
grows almost linearly with the number of iterations. In our
experiments, carried out on a PC mounting an Intel Core2 Duo
processor at 2.6 GHz and a 4-Gb DDR2 RAM, the training
phase of a supervised SVM took about 10 s. Concerning the
proposed DASVM, it came out that, on average, some tens
of iterations were necessary. Therefore, the average learning
time resulted of about 9 min. Accordingly, by taking into
account the huge increase of the classification accuracy with
respect to the supervised approach, it is reasonable to consider
the computational cost of DASVMs acceptable. In order to
speed up further the learning process, similarly to what it is
commonly done in the active learning framework, as a future
development of this work, we are studying an adaptive version
of the proposed method that iteratively takes into account only
the patterns of the current training set identified as support
vectors and the semilabeled samples selected at the current
iteration.
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