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Abstract

With recent technological advances in remote sensing, very high-dimensional (hyperspectral) data are available for a better discrim-
ination among different complex land-cover classes having similar spectral signatures. However, this large number of bands makes very
complex the task of automatic data analysis. In the real application, it is difficult and expensive for the expert to acquire enough training
samples to learn a classifier. This results in a classification problem with small-size training sample set. Recently, a regularization-based
algorithm is usually proposed to handle such problem, such as Support Vector Machine (SVM), which usually are implemented in the
dual form with Lagrange theory. However, it can be solved directly in primal formulation. In this paper, we introduces an alternative
implementation technique for SVM to address the classification problem with small-size training sample set. It has been empirically pro-
ven that the effectiveness of the introduced implementation technique which has been evaluated by benchmark datasets.
� 2008 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most critical problems relating to the super-
vised classification of remote-sensing images lies in the def-
inition of a proper size of training set for an accurate
learning of classifiers. Since the collection of ground-refer-
ence data is an expensive and complex task, in many cases
the number of training samples is insufficient for a proper
learning of classification systems. This issue is particularly
critical when hyperspectral images are considered. Such
hyperspectral data are generally made of about 100–200
spectral channels of relatively narrow bandwidths (5–
10 nm). Although high-dimensional features are capable
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of better discriminating among the complex (sub)classes,
in the real application, it is difficult and expensive for
experts to acquire enough training samples to learn a clas-
sifier. Consequently, it is impossible to meet the require-
ments on the necessary number of training samples since
the size of training dataset is relatively fixed.

When the number of (representative) training samples is
relatively small with respect to the number of features (and
thus of classifier parameters to be estimated), the well-
known problem of the curse of dimensionality (i.e., the
Hughes phenomenon Hughes, 1968)1 occurs. This results
in the risk of overfitting of the training data and can lead
to poor generalization capabilities of the classifier. Conven-
tional classification methods, such as the Gaussian Maxi-
mum Likelihood algorithm, cannot be applied to
hyperspectral data due to the high dimensionality of the
rved.

1 With more discriminative features, classification performance is
improved with the increase of the number of labeled samples; if the
number of labeled samples is fixed, the performance otherwise decreases.
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data and the relatively small number of available training
samples. According to the Gaussian modeling of the statis-
tical distributions of classes, Maximum Likelihood classifi-
ers are widely used for the optimization, where the mean
vector and the covariance matrices of classes are estimated
in terms of training samples. However, the small ratio
between the number of training samples and the number
of classifier parameters often results in unstable covariance
matrices (which, in some cases, can be singular). This
strongly affects the classification accuracy.

By supervised algorithms for classification task, Hoff-
beck and Landgrebe (1996) proposed to use regularized
covariance matrices by the leave-one-out covariance
(LOOC) estimate (Hoffbeck and Landgrebe, 1996). For
obtaining a classifier with improved generalization capabil-
ities, in (Tadjudin and Landgrebe, 1999) an LOOC-based
regularized estimator was presented in the Bayesian frame-
work. This estimator reduces the number of parameters to
be computed, thus reducing the variances of their esti-
mates. The difficulty in using classification methods based
upon conventional multivariate statistical approaches is
that many of these methods rely on having a non-singular
class-specific covariance matrix for all classes (Benedikts-
son et al., 1995). When working with high-dimensional
data sets, it is likely that the covariance matrices will be sin-
gular when using a limited (with respect to the number of
input bands) amount of training samples. Accordingly,
those approaches can result in the overfitting of training
data and so lead to a poor generalization.

In order to address the small-size training set problem,
in the machine learning community, classification methods
in the regularization framework are usually used in high-
dimensional input space. One of the most popular methods
is Support Vector Machine (SVM) (Vapnik, 1998), a large
margin based classifier with a good generalization capacity
in the small-size training set problem with high-dimen-
sional input space. Recently, SVMs have been successfully
applied in the classification of hyperspectral remote-sensing
data (Gualtieri and Cromp, 1998; Melgani and Bruzzone,
2004). However, all of the literatures are focusing on the
pursuit of the solution with dual property, i.e., Lagrange
theory is applied for the optimization problems (Gualtieri
and Cromp, 1998; Melgani and Bruzzone, 2004; Burges,
1998; Critianini and Shawe-taylor, 2000). Nonetheless,
SVMs can also be optimized directly on the primal repre-
sentation (Mangasarian, 2002; Keerthi and DeCoste,
2005; Chapelle, 2007). This is the focus of the paper to pro-
pose the usage of the primal SVM for the classification of
hyperspectral remote-sensing data with small-size training
set. As we know, it is the first time to use the primal
SVM for the hyperspectral image classification. In particu-
lar, the L2-norm regularizer and the quadratic loss are
taken into account for the objective function, and conju-
gate descent algorithm is applied on the objective for the
optimization problem. It is worth noting that the imple-
mentation on such objective is an unconstrained optimiza-
tion problem. The experimental analysis was carried out on
Hyperion hyperspectral remote-sensing data acquired by
the NASA EO-1 satellite over the Okavango Delta, Bots-
wana in 2001. The results provided by the proposed imple-
mentation technique for the primal SVM were compared
with those provided by the state-of-the-art approaches
reported in (Chen et al., 2004). On the basis of this compar-
ison, the proposed implementation technique provided
comparable accuracy as those by the reference methods.

This paper is organized in four sections. In Section 2, the
introduced classification technique, Support Vector
Machines (SVM) in the primal representation is presented
both in the linear and non-linear cases. Section 3 describes
the data set used in the experiments and reports the results
obtained by the presented classification technique. Finally,
discussion and the conclusion of this work is given in Sec-
tion 4.
2. Primal Support Vector Machine (SVM)

2.1. Problem formulation

Let us consider a binary classification problem. For the
generalization to the multiclass case the reader can refer to
(Melgani and Bruzzone, 2004; Hsu and Lin, 2002). Let the
given training dataset X ¼ ðxiÞni¼1;X 2 Rd�n be made of n

labeled samples in a d-dimensional feature space and the
associated labels y ¼ ðyiÞ

n
i¼1, yi = {±1}.

The notation adopted in the paper is as follows: bold
faced variables (e.g., x,w) are used to represent column vec-
tors. Matrices are represented by calligraphic upper-case
alphabets (e.g., K). Random variables are represented by
low-case alphabets (e.g., y). The symbols H, Rd denote
the Hilbert space, and the d-dimensional vector space,
respectively. The symbol > denotes the transpose of a vec-
tor, k�k2 denotes the L2 norm, and ‘‘s.t.” represents ‘‘sub-
ject to”.
2.2. The linear case

The standard SVM is a linear inductive learning classi-
fier where data in input space are separated by the
hyperplane:

f ðxÞ ¼ w>xþ b ð1Þ

with maximal geometric margin 2/kwk2, where w is a vec-
tor, normal to the hyperplane and |b|/kwk2 is the perpendic-
ular distance from the hyperplane to the origin. The
objective of the learning phase of standard SVM is to max-
imize the geometrical margins between classes in the fea-
ture space. This is equivalent to minimizing the following
objective function:

min
w

1

2
kwk2

� �
s:t: 8n

i¼1 : yiðw>xi þ bÞP 1:

ð2Þ
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If the perturbation of noises is considered, (2) becomes as
follows:

min
w;ni

1

2
kwk2 þ C

Xn

i¼1

ni

( )

s:t: 8n
i¼1 : yiðw>xi þ bÞP 1� ni; ni > 0

ð3Þ

where ni is a slack variable for the training pattern xi and C

is the penalty parameter of the loss (that plays the role of
tuning the regularization of the problem).
2.2.1. Primal representation

An alternative to the dual SVM (Burges, 1998; Critia-
nini and Shawe-taylor, 2000; Melgani and Bruzzone,
2004) is to use an optimization technique on the original
representation directly, such as Newton methods (Manga-
sarian, 2002; Keerthi and DeCoste, 2005; Chapelle, 2007;
Boyd and Vandenberghe, 2002). In this case, the objective
function (3) is rewritten without explicit constraints as
follows:

1

2
kwk2 þ C

Xn

i¼1

Hðyif ðxiÞÞ ð4Þ

where H(yif(xi)) is the loss for the training patterns x i 2 Xl,
defined by H(t) = max(0,1 � t)p when p = 1, a hinge loss is
used (cf. Fig. 1a) and if p = 2, it is a quadratic loss (Man-
gasarian, 2002; Chapelle, 2007) (cf. Fig. 1b). It is worthy
pointing out that (4) is a strongly convex optimization
problem with the quadratic loss and so a global solution
can be guaranteed (Mangasarian, 2002). As default, we
only consider the quadratic loss for labeled samples for
the ease of computation in this paper. With the implemen-
tation of optimization on (4), we define a labeled sample xi

given the vector w, as a support vector if yif(xi) < 1, i.e., the
loss on this sample is not equal to zero (Chapelle, 2007).
For the simplicity, we ignore the offset b in the following
discussion since all the algebra presented below can be ex-
tended easily to take it into account. For details, reader can
be referred to (Chapelle, 2007, Appendix 2.B).

If the gradient descent is used, provided that H(�) is dif-
ferentiable, the gradient of (4) with respect to w is given by:
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Fig. 1. Loss for the labeled samples in (4), when (a) p = 1, a hinge loss H
r ¼ wþ C
Xn

i¼1

oHðyif ðxiÞÞ
ow

xiyi ð5Þ

where oHðyif ðxiÞÞ
ow

is the partial derivative of H(yif(xi)) with re-
spect to w. At the optimal solution w*, the gradient van-
ishes such that rw� ¼ 0. Hence, we have the solution

w ¼
Xn

i¼1

bixi; bi ¼ �C
oH yif ðxiÞð Þ

ow
yi ð6Þ

This implies that the solution is the linear combination of
input data. This result is also known as Representer Theo-

rem (Kimeldorf and Wahba, 1971). Then, we can replace w

in (4) with (6) as follows:

1

2

Xn

i;j¼1

bibjx
>
i xj þ C

Xn

i¼1

H yi

Xn

j¼1

bjx
>
i xj

 !
: ð7Þ

It is an unconstrained optimization problem, so we can use
any optimization technique (e.g., Newton methods (Keer-
thi and DeCoste, 2005; Mangasarian, 2002)) to solve (7)
with respect to b.

Once the optimal b* is obtained, we can easily compute
the predicted value for given input x by:

f ðxÞ ¼
Xn

i¼1

b�i x>i x: ð8Þ

Thus, the corresponding labeling is:

y ¼ sgn½f ðxÞ� ¼
þ1 if f ðxÞP 0

�1 otherwise:

�
ð9Þ
2.3. The non-linear case

In practical applications, data usually cannot be linearly
separated in the input space. However, due to the ‘‘kernel
trick”, a linear support vector machine can still be found
but in a higher or infinite dimensional space, where the
data are mapped to, for example, Hilbert space H. We call
it feature space through a map /:

/ : X ! H

x! /ðxÞ:
ð10Þ
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(t) :¼ max(1 � t) and (b) p = 2, a quadratic loss H(t):¼ max(1 � t)2.
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Then, a linear decision boundary can be constructed in that
space.

After mapping, the dot product pair, e.g., (x>x0) in input
space X is represented in the dot product space or Hilbert
space H as (/(x)>/(x0)). In order to compute such a form
of the dot product, we can use kernel representation

kðx; x0Þ :¼ /ðxÞ>/ðx0Þ ð11Þ
which allows us to compute the value of the dot product in
H without having to explicitly compute the map /. Due to
Mercer’s Theorem, there exists such a map /(�) and so (11)
always holds true (Schölkopf and Smola, 2002, pp.36–38).

‘‘Kernel trick” plays a central role on non-linear SVM
also in primal formulation. We can deal with the non-linear
SVMs in the primal by replacing the inner product
/ðxiÞ>/ðxjÞ with a kernel function, i.e., kðxi; xjÞ ¼
/ðxiÞ>/ðxjÞ. In the meanwhile, with the Representer Theo-
rem (Kimeldorf and Wahba, 1971) and the reproducing
property of kernels (Aronszajn, 1950), we can deal with
the non-linear primal SVM problem in the Hilbert space H.

In terms of (4), by the Representer Theorem (Kimeldorf
and Wahba, 1971) we have:

w ¼
Xn

i¼1

bikðxi; �Þ; /ðxiÞ ¼ kðxi; �Þ: ð12Þ
It is easy to see that the solution is a linear combination
over the training samples. The task is reduced to find the
optimal b*. Combining (4) and (12), we can obtain the fol-
lowing function with the reproducing property
f ðxiÞ ¼ hf ; kðxi; �ÞiH (Schölkopf and Smola, 2002; Aro-
nszajn, 1950) (h�, �i denotes the inner product):

1

2

Xn

i;j¼1

bibjkðxi; xjÞ þ C
Xn

i¼1

H yi

Xn

j¼1

bjkðxi; xjÞ
 !

¼ 1

2
b>Kbþ C

Xn

i¼1

H yiK
>
i b

� �
: ð13Þ
2 http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal/
primal_svm.m.

3 Available at http://www.csr.utexas.edu/hyperspectral/codes.html.
In this case, we solve the optimization of the non-linear pri-
mal SVM in terms of (13) with respect to b. The kernel ma-
trix is defined as K :¼ ½kðxi; xjÞ�ni;j¼1 2 Rn�n, a symmetric
positive definite kernel matrix (which can be viewed as a
non-linear similarity measure) and Ki ¼ ½kðxi; xjÞ�nj¼1

2 Rn�1 is the ith column of K.
If H(�) is differentiable, the optimum value b* can be

obtained by gradient descent or Newton method (Chapelle,
2007) with respect to b in (13). Finally, we can predict the
test sample x by:

f ðxÞ ¼
Xn

i¼1

b�i kðxi; xÞ: ð14Þ
3. Experiments

3.1. Dataset description

To evaluate the performance of the proposed implemen-
tation of the primal SVM, experiments were performed
using Binary Hierarchical SVM (BH-SVM) (Dare, 2004),
Hierarchical SVM (HSVM) (Chen et al., 2004) and Ran-
dom Forest Classification and Regression Tree (RF-
CART) (Breiman, 2001) on the Hyperion hyperspectral
remote-sensing data acquired on Okavango Delta, Bots-
wana. The soft code for the primal SVM with Newton
method is available in the website.2 For the multi-class
problem, a one-vs-rest combination strategy (Hsu and
Lin, 2002; Melgani and Bruzzone, 2004) is adopted in the
primal SVM.

A sequence of data were acquired by the NASA EO-1
satellite over the Okavango Delta, Botswana in 2001. The
Hyperion sensor on EO-1 acquired the data at 30 m pixel
resolution over a 7.7 km strip in 242 bands covering the
400–2500 nm portion of the spectrum in 10 nm windows.
Preprocessing of the data was performed by the University
of Texas Center for Space Research to mitigate the effects
of bad detectors, inter-detector miscalibration and inter-
mittent anomalies. Uncalibrated and noisy bands that
cover water absorption features were removed, and the
remaining 145 bands were included as candidate features:
[10–55, 82–97, 102–119, 134–164, 187–220]. The data ana-
lyzed in this study, were acquired in May 31, 2001 and con-
sist of 14 identified classes representing the land cover types
in seasonal swamps, occasional swamps and drier wood-
lands located in the distal portion of the Delta.3 These clas-
ses were chosen to reflect the impact of flooding on
vegetation in the study area. The class names and corre-
sponding numbers of ground truth observations used in
the experiments are listed in Table 1. Training data were
selected manually using a combination of GPS located veg-
etation surveys, aerial photography from the Aquarap
(2000) project, and 2.6 m resolution IKONOS multispec-
tral imagery.

In the experiments, two kinds of datasets are taken into
account in terms of the location distribution of training
and test sets (cf. Table 1). Traditionally, the training and
test data are spatially co-located and can thus be assumed
to be samples from the same distribution. We call such
datasets as ‘‘Spatially Correlated” (SC) dataset. In this
case, we have the totally 3248 samples available. For the
dataset, 10 randomly sampled partitions of the training
data were sub-sampled such that 75% of the original data
were used for training and 25% for testing. In order to
investigate the impact of the quantity of labeled data on
classifier performance, these training data were then sub-
sampled to obtain 10 splits comprised of 50%, 30%, 15%

http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal/primal_svm.m
http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal/primal_svm.m
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Table 1
The original training dataset, Spatially Uncorrelated (SU) test dataset and
Spatial Correlated (SC) test dataset distribution for Hyperion data of
Botswana

Class Name Training set SU test seta SC test setb

1 Water 270 (8.31%) 126 (5.05%) 68 (8.31%)
2 Hippo grass 101 (3.09%) 162 (6.5%) 26 (3.18%)
3 Floodplain grasses1 251 (7.74%) 158 (6.34%) 63 (7.7%)
4 Floodplain grasses2 215 (6.63%) 165 (6.62%) 54 (6.6%)
5 Reeds1 269 (8.27%) 168 (6.74%) 68 (8.31%)
6 Riparian 269 (8.27%) 211 (8.46%) 68 (8.31%)
7 Firescar2 259 (7.98%) 176 (7.06%) 65 (7.95%)
8 Island interior 203 (6.26%) 154 (6.17%) 51 (6.23%)
9 Acacia woodlands 314 (9.67%) 151 (6.05%) 79 (9.66%)

10 Acacia shrublands 248 (7.65%) 190 (7.62%) 62 (7.58%)
11 Acacia grasslands 305 (9.38%) 358 (14.35%) 77 (9.41%)
12 Short mopane 181 (5.56%) 153 (6.13%) 46 (5.62%)
13 Mixed mopane 268 (8.27%) 233 (9.34%) 67 (8.19%)
14 Exposed soils 95 (2.92%) 89 (3.57%) 24 (2.93%)

a This spatially uncorrelated test set was not included in the training set.
b This test set is generated from the spatially correlated labeled set. It

covers 25% samples of labeled set.

Table 2
Hyperparameters and a sequence of values for the hyperparameters in the
model selection problem with a grid search strategy for the primal SVM

Hyperparameters Grid searching

r 20, 21, 22, 23, 24, 25

C 100, 101, 102

Table 3
Classification results with small-size training set made up of 5% of original
samples

SC datasets SU datasets

Test Error (%) 10.02 29.28
Std. Dev. (%) 1.19 1.21
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and 5% of the original labeled data. All classifiers were
evaluated using the 10 test sets containing 25% of the ori-
ginal labeled samples (i.e., 818 samples).

In practice, however, it is also useful to estimate how a
classifier will perform in areas that are somewhat different,
in order to indicate how much additional data labeling and
retraining is needed to make the model applicable to much
larger areas. In the experiments, a ‘‘Spatially Uncorre-
lated” (SU) test set was also acquired from a geographi-
cally separate location at the Botswana site and used to
evaluate the classifiers mentioned above. In this case, the
same training datasets, i.e., made up of 75%, 50%, 30%,
15% and 5% of the dataset consisting of 3248 labeled data,
are used for the learning classifiers and the test set was
acquired from the different locations and it composes of
2494 test samples.

Note that before model selection, all the data should be
preprocessed with a normalization mechanism in the input
space X. It has been shown that normalization is a prepro-
cessing type which plays an important role in support vec-
tor machine classifiers. In the following experiments, input
features are normalized in a range [�11].

3.2. Model selection

For the sake of computation complexity, the leave-one-
out validation would not be considered in the paper for
solving model selection problems. Since the size of labeled
samples is limited, the hold-out validation is not reliable in
this problem. To compromise both, in this paper, cross val-
idation is utilized to select a proper model in our work. In
greater detail, a small-size labeled set is divided to k disjoint
folds (in all the experiments, 5-fold cross validation was
used). Then, one of k folds is randomly selected as a test
set and the remaining (k � 1) folds as a training set with
the assumption that there exists at least one sample per
class. After the learning with k subsets of training samples,
average test error can be obtained for a given model. Once
all the models are evaluated, the parameters with the lowest
average error was selected as final one for prediction.

In the paper, Gaussian RBF kernels are chosen for all
the experiments since they are good general purpose ker-
nels. In the primal SVM, two hyperparameters r and C

should be selected by model selection. Table 2 lists the
hyperparameters for the SVM in the primal and a sequence
of values for the corresponding hyperparameters is selected
in the model selection with a grid search strategy. For the
results obtained by Binary Hierarchical SVM (BH-SVM),
Hierarchical SVM (HSVM) and Random Forest Classifica-
tion and Regression Tree (RF-CART), we used the results
reported in (Chen et al., 2004) for the fair comparison.
3.3. Experimental results

To simulate the small-size training problem, we only
conduct experiments on training datasets containing 5%
of original labeled samples for the ‘‘Spatially Correlated”
(SC) and ‘Spatially Uncorrelated” (SU) datasets. In the
datasets, we have 10 splits of the small-size training set
made up of 156 samples. On the analysis of Table 3, one
can see that the classification error is already good with
156 training samples in the SC datasets. However, these
spatially uncorrelated data have somewhat different char-
acteristics from the training/test data, so the performance
of all classifiers is reduced, as expected (Chen et al.,
2004). In the following, we only concentrate on these chal-
lenging Spatially Uncorrelated (SU) datasets with the 10-
split training sets containing 75%, 50%, 30%, 15% and
5% of the original labeled samples.

For a fair comparison, we used directly the classification
results provided by the state-of-the-art algorithms for these
SU datasets which were obtained in (Chen et al., 2004).
The algorithms include BH-SVM, HSVM and RF-CART.
Hierarchical Support Vector Machines (HSVM) approach
utilizes a tree structure framework and solves a series of
max-cut problems to perform the unsupervised class
decomposition. Then, a dual SVM classifier is applied at
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each internal node to construct the best discriminant func-
tion of a binary meta-class problem. The Random Forest
Classification and Regression Tree (RF-CART) approach
is based on a collection (forest) of CART-tree-like classifier
systems, where the trees are grown to minimize an impurity
measure based on CART. For the fair comparison, we use
the same setting and so the completely the same datasets
for our experiments as those used in (Chen et al., 2004).

Fig. 2 shows the classification results versus the different
proportions of training samples provided by different algo-
rithms, i.e., the primal SVM (Primal SVM in the figure),
BH-SVM, HSVM and RF-CART for the SU datasets.
Average classification errors for the SU test data made
up of 2494 samples for the 10 experiments conducted with
different algorithms are shown in Fig. 2a. The general trend
shows that classification accuracies increase as the percent-
age of training samples involved for all four classifiers
except for 75% sampling. However, for the introduced clas-
sifier SVM in the primal, the classification accuracies and
the corresponding stability (standard deviation decreasing)
increase with the higher quantity of training samples in the
learning phase. On the analysis of Fig. 2, the primal SVM
consistently obtain the best classification performance
including average test errors (cf. Fig. 2a) compared to those
provided by BH-SVM, HSVM and RF-CART.
4. Discussion and conclusion

In this paper, primal SVM (which is implemented in the
primal formulation of optimization problem) has been
introduced in the first time for the classification of hyper-
spectral remote-sensing data. The quadratic optimization
problems with inequality constraints in L2-norm SVM
make most of the literature naturally to focus on the usage
of Lagrange theory. However, the optimization problems
on SVMs can be also carried out directly in the primal rep-
resentation. Even though primal and dual optimization are
equivalent in most cases, both in terms of the solution and
time complexity, when it comes to approximate a solution,
primal optimization is superior because it is more focused
on minimizing what we are interested in: the primal objec-
tive function in (4) (Chapelle, 2007). For SVM in the pri-
mal with the objective function (4) in mind, the
unconstrained problem can be implemented by any optimi-
zation technique. This has been verified by semi-supervised
SVM, which is an alternative promising technique for the
solution of small-size training set problem. Due to the
non-convexity of objective function, different optimization
techniques can lead to different results (Chapelle and Zien,
2005; Chapelle et al., 2006a,b; Chi and Bruzzone, 2007).

Although dual optimization problem can be written in
terms of dot product by the ease of using kernel functions,
the primal optimization can solve this problem using repre-
senter theorem (Kimeldorf and Wahba, 1971). As pointed
out in (Chapelle, 2007), the computation complexity for
the primal is Oðnd2 þ d3Þ, and for the dual Oðdn2 þ n3Þ.
Using conjugate gradient, when n� d, the primal and dual
steps have the same efficiency, on the other hand, the pri-
mal converges faster than the dual. For the objective with
the quadratic loss, it is a strongly convex optimization
problem as pointed out by (Mangasarian, 2002). Of course,
we agree that when the kernel is not invertible, the solution
is not unique, but we can add an infinitesimally small ridge
to avoid this problem.

Further study will focus on the knowledge transfer
learning using the primal SVM in the remote-sensing
applications.
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