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Abstract—This letter presents a multistage clustering technique
for unsupervised classification that is based on the following:
1) a graph-cut procedure to produce initial segments that are
made up of pixels with similar spatial and spectral properties;
2) a fuzzy c-means algorithm to group these segments into a fixed
number of classes; 3) a proper implementation of the expectation-
maximization (EM) algorithm to estimate the statistical parame-
ters of classes on the basis of the initial seeds that are achieved at
convergence by the fuzzy c-means algorithm; and 4) the Bayes rule
for minimum error to perform the final classification on the basis
of the distributions that are estimated with the EM algorithm.
Experimental results confirm the effectiveness of the proposed
technique.

Index Terms—Clustering, expectation-maximization (EM) algo-
rithm, remote sensing, segmentation, unsupervised classification.

I. INTRODUCTION

IN THE pattern recognition literature, two main approaches
to the classification problem have been proposed: the super-

vised and the unsupervised ones [1]. Supervised classification
methods require the availability of a suitable ground truth (i.e.,
a training set) for the learning of the classifier. Unsupervised
techniques (which are based on clustering algorithms) perform
classification by considering only the information that is con-
tained in the data, without requiring any training set. Generally,
the supervised methods offer a higher accuracy compared to the
unsupervised ones. However, in many applications, the training
information is not available, as the collection of ground-truth
information is a complex and expensive process. In these cases,
it is mandatory to adopt unsupervised algorithms.

In remote-sensing applications, clustering techniques, like
the fuzzy c-means and K-means [2], [3], have been widely
used, owing to their reasonable tradeoff between classification
accuracy and simplicity. However, other more complex pro-
cedures have been considered (like the ISODATA1 algorithm
[4]) or proposed to capture the properties of multispectral
remote-sensing images [3]–[7]. Among these techniques, we
recall the methods that are described in [7] and [8], which
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1 Iterative Self-Organizing Data Analysis Technique.

integrate the spatial-contextual information of the image in the
clustering procedure, in order to properly model the spatial
properties of the scene. For example, in [7], a method which
adopts Markov random fields in modeling the spatial-context
information is presented. However, despite the fact that the
method can provide good accuracy, its results are insensitive to
the geometrical details that are present in the scene or to small
homogeneous regions due to the use of a neighborhood system
of fixed size and shape.

In this letter, we propose a simple yet effective clustering
technique that produces classification maps by the following:
1) considering the spatial-context information and 2) preserv-
ing the small areas and details present in the scene. This
technique merges the advantages of segmentation, hierarchical
methods, and expectation-maximization (EM) algorithm within
a Bayesian framework.

II. PROBLEM FORMULATION

Let X = {x1,1,x1,2, . . . ,xR,S} denote a multispectral im-
age that is composed of R · S pixels, and xr,s is the d-variate
feature vector (where d is the number of spectral bands) that
is associated with the pixel at position (r, s) of the image X.
Let Ω = {ω1, ω2, . . . , ωM} be the set of M land-cover classes
that characterize the geographical area that is represented in the
image X. In this letter, for simplicity, the value of M is assumed
to be known. However, like any other clustering technique, the
method can be applied by assuming that the value of M is
unknown and by adopting validation criteria that are present
in the literature to identify its best value [9].

In the context of the Bayes classifier [10], the optimal deci-
sion rule for the minimum error is given by

xr,s ∈ ωm ⇔ ωm = arg max
ωi∈Ω

{P (ωi)p(xr,s|ωi)} (1)

where P (ωi) and p(xr,s|ωi) are the estimates of the prior
probability and of the conditional density function (for the pixel
xr,s) of class ωi, respectively. The training phase of the Bayes
classifier consists in the estimation of the a priori probability
and the conditional density function for each class ωi ∈ Ω.
These estimates are typically achieved by using supervised
approaches that exploit the information that is included in
the training set that is associated with the considered image.
However, in our case, we propose to use the Bayesian decision
rule in the assumption that no training data are available.
Thus, the probabilities should be estimated from the data in an
unsupervised way.
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III. PROPOSED CONTEXT-SENSITIVE

CLUSTERING TECHNIQUE

The proposed unsupervised classifier is a hybrid technique
that works at the pixel level, but also exploits the spatial
information that is included in homogeneous regions that are
present in the image. It is made up of four steps: 1) a graph-
cut technique [11] to cluster pixels having similar spectral
properties and to obtain a set of initial segments that properly
model the geometrical detail information that is present in the
considered scene; 2) a fuzzy c-means clustering [2] to partition
these segments into a given number M of land-cover classes;
3) an estimation module based on the EM algorithm [12], [13]
to improve the estimations of the class parameters resulting
from the fuzzy c-means; and 4) a decision module that gener-
ates the classification map on the basis of the Bayesian optimal
rule. In the following, each step is described in a detailed way.

A. Step 1: Graph-Cut-Based Context-Sensitive Initialization

In the first step, the proposed classifier applies the graph-
cut-based segmentation technique [11] to X to obtain an over-
segmentation G of the image (it is worth noting that over
segmentation of X is acceptable at this stage of the process).
This segmentation G consists of different regions Ck, such that
each Ck is a connected subgraph of the original graph. The
use of the graph-cut-based segmentation method comes from
its simplicity and low computational time. This is an important
constraint as we do not need to optimize the segmentation, but
just to seize some context information to initialize, in a robust
way, the statistical representation of the problem for the next
steps of the procedure.

The graph theoretic approaches to image segmentation model
the image X as an undirected graph G : (V,E), where a generic
image pixel in spatial position (r, s) has a corresponding ver-
tex vr,s ∈ V , and an edge er,s;t,u ∈ E that connects it to its
neighboring pixel (vertex) in the spatial position (t, u). Each
edge er,s;t,u ∈ E has a weight w(er,s;t,u) based on the measure
of similarity between the two considered pixels. Since the
purpose of the initial segmentation is to get a quick over seg-
mentation of the images without any emphasis on the spectral
signatures of classes, each band is modeled as a separate graph
and individually segmented. The results that are obtained on
individual spectral channels are merged together by means of a
logical OR operator to produce the final segmentation of X. An
appropriate modeling of the spectral signature of each class is
demanded to the fuzzy c-means clustering and the EM steps.
As the image is modeled as a graph, the feature vector xr,s

that is associated with image pixels is used to calculate the
edge weights w(er,s;t,u). The main objective of this approach
is to find a segmentation G of X, i.e., a partition of V into
components such that each region (or component) Ck ∈ G cor-
responds to a connected region in the segmentation G : (V,E′),
where E′ ⊂ E. In other words, a segmentation of the image is
induced by a subset of edges in E. In general, it is desired to
have similar elements in a component and dissimilar elements
in different components. This implies that the edges between
two vertices of the same component should have relatively
lower weights than the edges between two vertices of different
components.

There exist many approaches in achieving such a segmen-
tation. One of the faster and more accurate algorithms was
proposed in [11]. This algorithm requires similarity and dissim-
ilarity between the pixels to be quantitatively defined according
to a proper criterion. First, the internal variation Int(Ck) of a
component Ck ⊂ G is defined as the maximum edge weight
present in any minimum spanning tree of the set of edges which
compose a region, i.e.,

Int(Ck) = max
er,s;t,u∈MST(Ck,E)

{w(er,s;t,u)} (2)

where MST(Ck, E) denotes the minimum spanning tree of the
component that is built with respect to the set of edges E. This
is a measureof similarity within a region. Similarly, the exter-
nal variation Ext(Ci, Cj) between two regions Ci, Cj ⊂ G is
defined as the smallest weighted edge connecting them, i.e.,

Ext(C1, C2) = min
vr,s∈Ci
vt,u∈Cj

{w(er,s;t,u)} . (3)

Given the similarity measures, the algorithm checks whether
there is any evidence for a boundary between a pair of
components. This is accomplished by comparing the external
variation between components Ext(Ci, Cj) with the internal
variation of both components Int(Ci) and Int(Cj). A boundary
is detected if Ext(Ci, Cj) is greater than at least one between
Int(Ci) and Int(Cj). This can be defined as

Ext(Ci, Cj) ≥ MInt(Ci, Cj) (4)

where the minimum internal difference MInt is defined as

MInt(Ci, Cj)=min
(

Int(Ci)+
K

|Ci|
, Int(Cj) +

K

|Cj |

)
. (5)

Here, |Ck| denotes the size of component Ck, and K is a
nonnegative constant. The threshold value K/|Ck| controls the
degree of which the external variation between the components
should be greater than their internal variations, such that only
similar pixels are put in any component. In greater detail,
as K increases, the segmentation process results in a lower
number of large segments; on the opposite, as K decreases,
the segmentation leads to a high number of small segments.
In this letter, K is empirically set to 5000 in order to obtain a
reasonable over segmentation of the considered image.

This algorithm obtains a segmentation G = (C1, C2, . . . ,
CN ) by performing the following iterations.

1) Sort E on the basis of nondecreasing edge weights.
2) Start with a segmentation G0, where each vertex vr,s is

considered a separate component.
3) For q = 1, 2, . . . , |E| (i.e., the number of components in

the edge set E), construct Gq given Gq−1 as follows.
Let Cq−1

i be the component of Gq−1 containing vr,s

and Cq−1
j the component containing vt,u. If Cq−1

i �=
Cq−1

j and w(er,s;t,u) ≤ MInt(Cq−1
i , Cq−1

j ), then Gq is

obtained from Gq−1 by merging Cq−1
i and Cq−1

j . Oth-
erwise, Gq = Gq−1.

4) Return G = G|E|.
After the completion of the first step, the number of im-

age regions is always greater than the number of land cover
classes M characterizing the given classification problem. At
this stage, all the components of the over segmentation G are
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individually labeled with different labels, i.e., all segments are
considered belonging to different classes. In order to reduce
the number of segment labels to M , segments with similar
statistical properties are merged by applying the fuzzy c-means
clustering algorithm.

B. Step 2: Fuzzy c-Means Algorithm

At the end of Step 1, the final segmented image is com-
posed of N regions C1, C2, . . . , CN , where N > M . In order
to group the N regions in M clusters, the fuzzy c-means
algorithm is used [2]. Let {µ1, µ2, . . . , µN} denote the mean
vectors of segments that are obtained at the previous step, and
{µ1, µ2, . . . , µM} denotes the mean vectors of the resulting
clusters. Our purpose is to find the optimum matrix U of the
membership uij of segment i to class j (with respect to M
classes) by minimizing the following objective function:

J(U, S) =
M∑

j=1

N∑
i=1

(uij)md2(Ci, Sj)

given
M∑

j=1

uij = 1

and uij ∈ [0, 1] ∀ j = 1, . . . ,M (6)

where S = {S1, . . . , SM} is the set of prototypes that rep-
resents the M classes, m is a user-defined parameter, and
d(Ci, Sj) is the distance between Ci and Sj . In the following,
it will be assumed that d(., .) is the Euclidean distance (but
any other distance can be chosen); thus, the solution of the
defined constrained optimization problem can be achieved with
the following iterative procedure.

1) Randomly initialize the matrix U of memberships uij .
2) At t-step, calculate the new centroids Ŝi as

Ŝi =

∑n
j=1(uij)mµj∑M

j=1(uij)m
. (7)

3) Update the memberships uij as

ûij =

[
M∑

k=1

(
d(Ci, Sj)
d(Ci, Sk)

) 2
m−1

]−1

. (8)

4) If max ‖uij − ûij‖ < ε (where ε is a threshold value),
stop; otherwise, repeat Steps 2) and 3).

In order to have a proper representation of the prior terms
in the clustering, we decided to weight each segment with a
parameter that is related to its size (segments with a large size
play a “more important” role in the clustering than segments
with a small size). To achieve this, we have modified Step 3) of
the fuzzy c-means clustering algorithm explained before as

Ŝi =

∑n
j=1(uij · Szj)mµj∑n

j=1(uij · Szj)m
(9)

where Szj is the size of the jth component. In the context of the
classifier, size Szj refers to the number of pixels that is present
in the jth cluster. Note that, if all the classes are fairly well rep-
resented in the data, there would be no need to modify the fuzzy
c-means technique, as suggested in (9). If some of the classes

Fig. 1. Band 5 of the Landsat-5 TM image acquired in July 1996 on Sardinia
Island, Italy.

are very sparsely represented, the use of Szj improves the capa-
bility of modeling the problem of the fuzzy c-means technique.

C. Step 3: Iterative Estimation of Statistical Parameters of
Classes Based on the EM Algorithm

The third step of the proposed procedure consists in optimiz-
ing the class representation obtained with the fuzzy c-means
clustering. As stated in Section II, to apply the Bayes decision
rule, it is necessary to estimate the a priori probability P (ωi)
and conditional density function p(xr,s|ωi) for each class
ωi ∈ Ω. Reliable estimates for these statistical terms can be
obtained by starting from the estimates that are derived earlier
and by using the iterative EM algorithm (which is a well-known
technique for the estimation of parameters in incomplete-data
problems [12], [13]).

The EM algorithm is an iterative procedure that consists
of two alternating steps: an expectation step, followed by
a maximization step. The expectation is with respect to the
unknown underlying variables, using the current estimates of
the parameters and conditioned upon the observations. The
maximization step provides new estimates of the parameters. At
each iteration, the estimated parameters provide an increase in
the maximum-likelihood (ML) function until a local maximum
is achieved. Despite the convergence properties, there is no
guarantee that the algorithm converges to a global maximum
of the likelihood function. This depends on the initial starting
points, i.e., the seeds given as input to the algorithm.

To better explain the proposed approach, for simplicity, let
us consider the case in which all classes included in Ω can be
described by Gaussian distributions. In this case, the density
function that is associated with each class ωi ∈ Ω can be
completely described by a mean vector µi and a covariance
matrix Σi. Thus, the set of parameters to be estimated for the
application of the Bayes rule is

θ = [µ1,Σ1, P (ω1), . . . , µM ,ΣM , P (ωM )] . (10)

The initial values of the aforementioned terms are derived
from the previous segmentation and fuzzy c-means clustering
steps. These values are then updated according to the EM
algorithm, which models the distribution of the image X as
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TABLE I
OVERALL ACCURACIES OBTAINED ON THE LANDSAT TM DATA SET WITH THE PROPOSED CONTEXT-SENSITIVE CLUSTERING, THE

CONTEXT-INSENSITIVE AND CONTEXT-SENSITIVE FUZZY c-MEANS CLUSTERING, AND THE SUPERVISED ML CLASSIFIER

a mixture made up of M components. It can be proved that
the equations to be used at each iteration of the EM algorithm
for the estimation of the means and the covariance matrices for
different classes in Ω are the following [10]:

P j+1(ωi) =
1

R · S
∑

xr,s∈X

P j(ωi)pj(xr,s|ωi)
pj(xr,s)

(11)

[µi]j+1 =

∑
xr,s∈X

P j(ωi)p
j(xr,s|ωi)

pj(xr,s)
xr,s∑

xr,s∈X
P j(ωi)pj(xr,s|ωi)

pj(xr,s)

(12)

[Σi]j+1 =

∑
xr,s∈X

P j(ωi)p
j(xr,s|ωi)

pj(xr,s)

(
X̃r,s,i ·X̃T

r,s,i

)
∑

xr,s∈X
P j(ωi)pj(xr,s|ωi)

pj(xr,s)

(13)

where

p(xr,s)=
M∑
i=1

P (ωi)p(xr,s|ωi) X̃r,s,i =xr,s−[µi]j (14)

j is the iteration index, and R · S is the total number of pixels
in the image X.

D. Step 4: Bayesian Decision

The estimates that are obtained for each class ωi ∈ Ω at
convergence, i.e., P (ωi), µi, and Σi, are taken as the final
values of the parameters to be used in the classification. The
final classification map is obtained by using these values in the
framework of the Bayes decision rule in (1).

IV. EXPERIMENTAL RESULTS

In order to assess the effectiveness of the proposed approach,
different experiments were carried out on various data sets. For
space constraints, results are presented only for two of them.

A. Landsat Thematic Mapper (TM) Data Set

The first data set is made up of a multispectral image that
is acquired by the TM multispectral sensor of the Landsat-5
satellite. The selected test site was a section (493 × 412 pixels)
of a scene, including Lake Mulargia on the Sardinia Island,
Italy. The image that is used in the experiments was acquired
in July 1996. Fig. 1 shows band 5 of the image.

Five land-cover classes (i.e., pasture, forest, urban area,
water, and vineyard) characterize the aforementioned image.
However, preliminary clustering experiments carried out on the

Fig. 2. Pancromatic channel of the Quickbird image acquired in 2002 on
Pavia, Italy.

five-class data set showed low accuracy on both pasture and
vineyard classes. An analysis of the distributions (in the feature
space) of the pixels of these classes points out that they have
similar spectral characteristics and that their distributions are
significantly overlapped. Thus, in order to better understand the
effectiveness of the proposed unsupervised clustering technique
in reasonable conditions, the five-class problem was reduced
to a four-class problem, where pasture and vineyard were
considered as belonging to the same information class. The
accuracy that is yielded by the proposed approach is reported
in Table I, where it is compared with those obtained by the
unsupervised standard (i.e., context-insensitive) fuzzy c-means
clustering, the unsupervised context-sensitive fuzzy c-means
clustering (i.e., applying Steps 1 and 2 of the proposed method),
and the supervised ML classifier. Classification accuracies for
all the four classifiers were evaluated on a test set that is defined
on the basis of the available ground-truth information (see
Table I). A training set was also considered for the estimation
of the parameters of supervised ML classifier.

From Table I, one can see that the proposed approach resulted
in an overall accuracy of 86.33%. This accuracy is sharply
higher than the one that is obtained by both the unsupervised
context-insensitive (78.69%) and context-sensitive (81.56%)
fuzzy c-means clustering and, as expected, lower than that
exhibited by the supervised ML classifier (96.38%). In general,
it represents a good result by considering that no ground truth
is used with the proposed method.

It is worth noting that this Landsat TM data set is quite
challenging for the proposed technique because the moderate
geometrical resolution of the TM sensor results in images that
do not contain significant homogeneous regions. This reduces
the accuracy of the initialization step of the proposed method,
which is based on segmentation.
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TABLE II
OVERALL ACCURACY OBTAINED ON THE QUICKBIRD DATA SET BY THE PROPOSED CONTEXT-SENSITIVE CLUSTERING, THE

CONTEXT-INSENSITIVE AND CONTEXT-SENSITIVE FUZZY c-MEANS CLUSTERING, AND THE SUPERVISED ML CLASSIFIER

B. Quickbird Data Set

To further assess the effectiveness of the proposed technique,
a second data set was considered, which is made up of an image
of 512 × 512 pixels that is acquired by the Quickbird satellite
over the city of Pavia (north of Italy) in 2002 (see Fig. 2). Owing
to the high geometrical resolution of the Quickbird sensor, this
data set is intrinsically more suitable to the properties of the
proposed approach.

The accuracy that is obtained by applying the proposed
approach to this data set is shown in Table II, together with
the definition of the seven considered land-cover classes and
with the number of test samples for each of them. The accu-
racy of the proposed clustering technique was compared with
the ones provided by the unsupervised context-insensitive and
context-sensitive fuzzy c-means clustering algorithms and by
the supervised ML classifier. In addition, for this second image,
a training set was defined for the estimation of the parameters
of the ML classifier.

From Table II, one can observe that the proposed classi-
fier exhibited an overall accuracy of 72.6%, which is smaller
than that obtained by the supervised ML classifier (86.42%)
but sharply higher than the one yielded by the unsupervised
context-insensitive (58.94%) and context-sensitive (64.74%)
fuzzy c-means clustering. These results confirm the effective-
ness of the proposed unsupervised clustering technique and the
usefulness of the joint use of both the context information in
the initialization phase of an unsupervised classifier and the EM
algorithm in the classification step.

V. DISCUSSION AND CONCLUSION

A novel context-sensitive clustering technique based on the
Bayes decision theory has been presented. The proposed tech-
nique is composed of a context-sensitive initialization and an
iterative procedure aimed at estimating in an unsupervised way
the statistical parameters of classes to be used in the Bayesian
decision rule. The initial steps exploit a graph-cut segmentation
algorithm, followed by a fuzzy c-means clustering. The iterative
procedure is based on the EM algorithm, which, starting from
the estimates derived in the initialization steps, achieves the
final values of the statistical parameters of classes to be used
to accomplish the Bayesian classification. In our experimental
results, the proposed technique provided significantly higher
accuracies than the context-insensitive and context-sensitive
fuzzy c-means clustering algorithms, resulting in more reliable

land-cover maps. Comparisons with the supervised ML clas-
sifier also pointed out that the effectiveness of the proposed
method decreases in the presence of classes that strongly over-
lapped in the feature space. However, this is a typical drawback
of unsupervised methods that should be addressed with the use
of more complex features, where classes are better separated or
with supervised algorithms.
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