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Abstract—This paper addresses the problem of supervised clas-
sification of remote sensing images in the presence of incomplete
(nonexhaustive) training sets. The problem is analyzed according
to two different perspectives: 1) description and recognition of
a specific land-cover class by using single-class classifiers and
2) solution of multiclass problems with single-class classification
techniques. In this framework, we analyze different one-class
classifiers and introduce in the remote sensing community the
support vector domain description method (SVDD). The SVDD
is a kernel-based method that exhibits intrinsic regularization
ability and robustness versus low numbers of high-dimensional
samples. The SVDD technique is compared with other standard
single-class methods both in problems focused on the recognition
of a single specific land-cover class and in multiclass problems.
For the latter, we properly define an easily scalable multiclass
architecture capable to deal with incomplete training data. Ex-
perimental results, obtained on different kinds of data (synthetic,
hyperspectral, and multisensor images), point out the effectiveness
of the SVDD technique and provide important indications for
driving the choice of the classification technique and architecture
in the presence of incomplete training data.

Index Terms—Image classification, incomplete training data,
kernel methods, one-class domain description, remote sensing,
support vector domain description (SVDD).

I. INTRODUCTION

C LASSIFICATION of remote sensing images is a complex
task whose accuracy strongly depends on the available

prior information. Given the general high complexity of the
problem, usually supervised classifiers are preferred to unsuper-
vised clustering algorithms, which are intrinsically less suitable
to obtain accurate classification maps. However, supervised
classifiers require the availability of a complete and represen-
tative training set for a proper learning of the classification
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algorithms. In particular, the training set should satisfy the
following constraints.

1) It should be exhaustive (i.e., it should contain samples
describing all the land-cover classes present in the inves-
tigated area).

2) It should have a sufficient number of independent samples
for each land-cover class for a reliable estimation of
the classifier parameters (this is related to the small-size
training problem that may result in the Hughes phenom-
enon [1]).

3) It should be made up of samples that completely describe
the intraclass variability due to the nonstationary behavior
of the spectral signature in the spatial domain (this may
result in unrepresentative training sets).

However, these constraints are difficult to satisfy in real ap-
plications. This is particularly critical in the light of the last
generation of hyperspectral remote sensing sensors, which
allows a dense sampling of the spectral signature of land-
cover classes, and results in the following: 1) high-dimensional
feature spaces; 2) high sensitivity to the intraclass variation
of the spectral signature of a given land-cover class; and
3) high capability in discriminating similar land-cover classes
(involving a higher number of classes to be recognized). These
properties make more critical the definition of reliable training
sets, i.e., those capable of a complete representation of land-
cover classes and made up of a sufficient number of repre-
sentative training samples. Similar considerations can be done
when the integration of multisensor data is considered in the
solution of the classification problem. In the recent literature,
some papers addressed the learning problem in the presence
of small-size or unrepresentative training sets [2]–[4]. Less
attention has been devoted to the more critical (and in some
applications very important) case of the incomplete knowledge
of the classes present in the investigated scene. In this case,
effective strategies should be considered for a proper design of
a classification architecture capable to produce reliable classi-
fication maps by exploiting the available incomplete (nonex-
haustive) training information. The aforementioned problem
can be also analyzed from a different perspective. In some
applications, in spite of the richness of the information present
in the available remote sensing data, the goal is to recognize
one specific land-cover class of interest and to discriminate it
from the other classes present in the investigated area. This
means that we are interested in using the available training
information for characterizing and describing the behavior of
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one class in order to make it possible to recognize this class
independently on the other classes present in the considered
scene. This formulation of the problem relaxes the constraint
of having an exhaustive training set but requires the availability
of representative training data for the analyzed class and, if
possible, some training samples representative of other classes.1

This problem can be solved according to single hypothesis test-
ing methods, which are intrinsically devoted to recognize the
samples of one specific class from a heterogeneous distribution.

On the basis of the previous discussion, it is important
to define effective classification systems capable to properly
model and recognize a single land-cover class and/or to ad-
dress multiclass problems in the presence of a nonexhaustive
representation of classes in the training set. Of course, in this
last case, the system should be able to recognize the classes
modeled in the training set, by properly rejecting samples
belonging to other classes.

In this paper, we address this critical issue by considering
classification systems made up of one-class classifiers, which
are specialized in identifying a given class and rejecting the
others present in the scene. The main contributions of this work
consists of the following: 1) presenting an exhaustive analysis
on the effectiveness of the different one-class classifiers pro-
posed in the literature in the presence of either hyperspectral
or multisensor data sets for one-class modeling and recogni-
tion; 2) assessing the effectiveness of architectures made up
of one-class classifiers (one per each known class) in solving
multiclass problems when only a subset of classes is known;
and 3) introducing in the remote sensing community the use
of the support vector domain description (SVDD) one-class
classifier [5] in multiclass detection problems with incomplete
training data.

Concerning the first contribution, an experimental analysis
related to the effectiveness of different one-class classifiers
is presented. In particular, several single hypothesis testing
methods (including Gaussian, mixture of Gaussians, and k-
nearest neighbor (k-NN) domain description classifiers [6]) are
compared with the SVDD technique through both synthetic
datasets (assuming different data distributions and complex-
ity) and real remote sensing datasets with different properties
(i.e., multispectral, hyperspectral, and radar data). The analy-
sis of the different scenarios allows us to derive interesting
conclusions on the effectiveness of the different classification
techniques with different kinds of data. These conclusions
provide indications that can drive a proper choice of the
one-class classification technique to be used in different real
applications.

With regard to the second contribution, in order to properly
consider the nonexhaustive class representation in the phase
of the classification system design, we address the multiclass
problem by defining and analyzing the effectiveness of a clas-
sification architecture made up of one-class classifiers, one
per each known class. Each one-class classifier has the ability
to recognize samples from a given class of interest (targets)

1It is worth noting that, from a theoretical viewpoint, also in this case the
availability of a complete training set would result in potentially more accurate
classification results.

but also the capability to reject samples from other classes
(outliers). Combining one-class classifiers, we can get a scal-
able multiclass classifier that assigns correctly the samples of
known classes and, at the same time, rejects samples belonging
to unknown classes. Thus, we can easily adapt our solution ac-
cording to the available ground truth information, since adding
up one more class-dedicated classifier does not force us to
retrain the whole multiclass scheme.

Concerning the third contribution, although one-class de-
tection has been recently used in remote sensing images [7],
we introduce here a general framework to use the SVDD to
solve multiclass detection problems with incomplete training
data. The SVDD is a recent kernel-based development which
has demonstrated very effective (in terms of accuracy and ro-
bustness to high-dimensional problems) in different application
domains, when no a priori knowledge on the data distribution
is available [8], [9]. Unlike the standard support vector machine
(SVM), the SVDD only considers samples belonging to the
class of interest in order to learn the underlying data distribu-
tion. Hence, it becomes an efficient methodology for character-
izing a given class and offers good rejection capabilities. The
SVDD is, like SVM, a kernel method, thus inheriting all the
related advantages [5], [8], [9].

The rest of this paper is organized as follows. Section II
describes standard one-class methods evaluated in this paper,
pointing out their properties, advantages, and disadvantages.
Section III presents the SVDD one-class classifier. Section IV
addresses the architecture adopted for solving multiclass prob-
lems. Section V reports the experiments considered in this pa-
per, analyzes the properties of each problem, explains the model
development, and shows the experiments results. Section VI
discusses the obtained results from a theoretical viewpoint and
also provides recommendations for further research.

II. ONE-CLASS CLASSIFICATION METHODS

In this section, we briefly review the one-class formulations
used in this paper for comparisons with the SVDD technique:
Gaussian, mixture of Gaussians, and k-NN domain description.

A. Gaussian Domain Description Classifier

In the one-class Gaussian domain description method, the
target class is modeled as a Gaussian distribution. The function
is expressed as

f(x) = (x − µ)T Σ−1(x − µ) (1)

where µ is the class mean, and Σ represents the covariance
matrix estimated using the training samples. According to this
function, the classifier is defined as

h(x) =
{

target if f(x) ≤ θ
outlier if f(x) > θ.

(2)

Note that a threshold θ has to be adjusted heuristically, usually
by evaluating the accuracy in an out-of-sample dataset.
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B. Mixture of Gaussian Domain Description Classifier

In order to improve the model of the Gaussian domain
description method, here, the target class is modeled using a
mixture of K Gaussians. The model is defined as

f(x) = −
K∑

i=1

Pi exp
(
−(x − µi)T Σ−1

i (x − µi)
)
. (3)

Parameters Pi, µi, and Σi represent the contribution, mean,
and sample covariance for each Gaussian in the mixture, respec-
tively. These parameters are optimized using the expectation
maximization (EM) algorithm. The main drawback of this
method is that when working with high-dimensional data and
a large number of clusters, the number of free parameters to be
tuned can be huge.

This method can also be formulated in order to use outlier
objects in the training process. In this case, different mixtures
of Gaussians are defined both for target and outlier samples (Kt

andKo, respectively). To ensure that the decision boundary will
be closed around the target class, an extra outlier cluster with a
wide covariance matrix should be introduced, giving the model

f(x) = −
Kt∑
i=1

Pi exp
(
−(x − µi)T Σ−1

i (x − µi)
)

+ P∗ exp
(
−(x − µ)T Σ−1

∗ (x − µ)
)

+
Ko∑
j=1

Pj exp
(
−(x − µj)T Σ−1

i (x − µj)
)
. (4)

Here, µ and Σ are the sample mean and covariance matrix of the
complete dataset, respectively, and Σ∗ represents a regulariza-
tion covariance which is usually defined as 10Σ. The parameter
P∗ is optimized with the EM algorithm in such a way that
P∗ +

∑
j Pj = 1.

Note that the mixture of Gaussian domain description model
constitutes a generalization of the Gaussian domain description,
and that each data class distribution is assumed to be drawn
from a Gaussian distribution, thus yielding a final mixture of
Gaussian model.

The classification function for the mixture of Gaussian
method is defined in (2), and again, a threshold θ is required
and has to be adjusted in the classifier training process.

C. k-NN Domain Description Classifier

In this model, labels are assigned to test samples by com-
puting the kth normalized distance to their NN. This method is
the natural extension of the NN algorithm, which is defined as
a given set of P points in an N -dimensional space R

N , which
constructs a data structure given any query point q that finds
the point in P with the smallest distance to q [10]. Usually, the
distance is induced by an Ls-norm, so the distance between two
points p and q is defined as f(p,q) = (

∑N
i=1 |pi − qi|s)1/s,

s ∈ [0,∞). However, other notions of distance can be used
as well.

In the k-NN algorithm, instead of searching for the nearest
point, a set of k nearest points is retrieved using the defined

Fig. 1. Hypersphere containing the (colored) target data is described by the
center a and radius R, in which the samples in the boundary are the support
vectors (green), and samples outside the ball are assigned a positive constrained
to deal with outliers.

distance, and then the point is assigned to the most common
class in these k points.

The k-NN method works well when having a large training
set to train the classifier and can work equally well on different
probabilistic distributions, but its accuracy decreases severely
if not enough training data are available or when dealing with
high-dimensional feature spaces [11], [12].

III. SVDD CLASSIFIER

In remote sensing data processing, the use of the SVM
binary classifier resulted in very high accuracies both in binary
and multiclass hyperspectral image classification [2], [13]–
[15]. However, the formulation of binary SVM cannot be used
directly for one-class problems. In this context, Tax and Duin
[5] originally proposed a support vector (SV) method for one-
class classification.

A. Notation

Let us consider a dataset {xi ∈ R
N , i = 1, . . . , n} belonging

to a given class of interest. The goal here is to find a hypersphere
(in a high-dimensional Hilbert feature space H where the
samples have been mapped through a nonlinear transformation
φ) of radius R > 0 and center a with a minimum volume
containing most of these data objects [5] (see Fig. 1).

Therefore, one has to minimize R2 constrained to ‖φ(xi) −
a‖2 ≤ R2, ∀i = 1, . . . , n. In addition, since the (training) dis-
tribution may contain outliers, one introduces a set of slack
variables ξi ≥ 0, as usual in the SVM framework, and the
problem becomes

min
R,a,ξ

{
R2 + C

∑
i

ξi

}
(5)

which is constrained to

‖φ(xi) − a‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i = 1, . . . , n
(6)
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where the parameter C controls the tradeoff between the vol-
ume of the hypersphere and the permitted errors (regularization
parameter).

The primal function (5) is usually solved through its
Lagrangian dual problem [8], which consists of solving

max
αi



∑

i

αi 〈φ(xi),φ(xi)〉−
∑
i,j

αiαj 〈φ(xi),φ(xj)〉


 (7)

subject to 0 ≤ αi ≤ C. This constitutes a quadratic program-
ming problem that yields a set of αi fulfilling the following.

1) If ‖φ(xi) − a‖2 < R2 then αi = 0.
2) If ‖φ(xi) − a‖2 = R2 then 0 < αi < C.
3) If ‖φ(xi) − a‖2 > R2 then αi = C.

As a result, SVs are those satisfying αi > 0, while samples
associated with αi = C are considered outliers.

It is worth noting that all φ mappings (which are in principle
unknown) used in the SV method occur in the form of inner
products. This allows us to define a kernel function K

K(xi,xj) = 〈φ(xi),φ(xj)〉 (8)

and the nonlinear SVDD can be constructed using only the ker-
nel function, without needing to know the mapping φ explicitly.

After solving the dual problem, the decision function imple-
mented by the classifier for any test vector x is given by

f(x) = sgn

(
n∑

i=1

αiK(xi,x) + b

)
(9)

where b can be easily computed from the αi that are neither
0 or C.

B. Equivalent Formulation

An equivalent formulation was proposed by Schölkopf in
[16], in which one places a hyperplane that separates the data
from the origin with maximum margin. In this case, the problem
reduces to

min
w,ρ,ξ

{
1
2
‖w‖2 − ρ+

1
νn

∑
i

ξi

}
∀i = 1, . . . , n (10)

constrained to ξi ≥ 0, and where ν ∈ (0, 1] is a regularization
parameter (resembling C) controlling the tradeoff between
accepting data into the class and having ‖w‖ small. Introducing
again Lagrange multipliers, we reach the (equivalent) dual
problem which, by using (8), becomes:

min
α


1

2

∑
i,j

αiαjK(xi,xj)


 (11)

which is subject to 0 ≤ αi ≤ 1/νn and
∑

i αi = 1, which once
again is a quadratic programming problem.

C. Remarks

The SVDD, like binary SVMs, is a kernel-based method. In
the framework of kernel methods, the key point is the use of a
valid kernel matrix. The Mercer’s theorem states the condition
for a similarity matrix to be a valid kernel and constitutes
the key requirement to obtain a unique global solution when
developing kernel-based classifiers [9]. Some popular kernels
are linear (K(xi,xj) = 〈xi,xj〉), polynomial (K(xi,xj) =
(〈xi,xj〉 + 1)d, d ∈ Z

+), or Gaussian radial basis function
(RBF) (K(xi,xj) = exp(−‖xi − xj‖2/2σ2); σ ∈ R

+, where
σ is the Gaussian width). In all our tests, we used a Gaussian
RBF kernel function because it has less numerical difficulties,
and only the Gaussian width has to be tuned. In addition, the
Gaussian RBF kernel is a universal kernel that includes other
valid kernels as particular cases [17].

IV. ONE-CLASS MULTICLASS ARCHITECTURE

Several multiclass architectures for one-class classifiers have
been proposed in the literature with different degrees of so-
phistication [18]–[20]. Here, we propose a simple but very effi-
cient architecture, particularly convenient when the information
about labeled classes might potentially increase.

Essentially, one-class classifiers can provide two types of
outputs: 1) a density estimation p̂(x|ωk) or 2) a distance to
a model δ(x|ωk), being {ωk}NC

k=1 the class. Gaussian and
mixture of Gaussians are classifiers of the first group, while
k-NN and SVDD are classifiers of the second group.

Unlike [18], here we are not dealing with the more difficult
problem of combining the outputs of different families of one-
class classifiers. Instead, we only need to check the outputs of
NC one-class classifiers of the same type (each one trained to
recognize a single class) and decide which class ωk a given
input vector x belongs to.

In the ideal case, each input test pattern should be recognized
only from the classifier trained to identify that class. If the
input test vector belongs to an unknown class, then it should
be rejected by all classifiers. However, the problem arises when
several classifiers accept an input vector simultaneously. In
this work, in order to solve this situation, we assign the input
vector to the most likely class. In the case of the Gaussian
and mixture of Gaussians classifiers, we adopt the following
criterion:

arg
{

max
k=1,...,NC

p̂k

}
. (12)

For the k-NN and SVDD classifiers, the smallest distance to
the cluster and the smallest distance to the hypersphere, respec-
tively, are used to classify the input samples. The decision is
taken according to the following rule:

arg
{

min
k=1,...,NC

δk

}
(13)

being δk as the distance from the test sample to the model,
which is δ(x|ωk) in the k-NN and SVDD one-class methods.
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V. EXPERIMENTAL RESULTS

In this section, we present an extensive evaluation of the
SVDD technique and the other one-class methods for remote
sensing data classification. Synthetic and real scenarios are
considered using both hyperspectral images and fusion of mul-
tispectral and synthetic aperture radar (SAR) data.

The following problems are analyzed in this section.
1) Synthetic problems. Two synthetic problems are consid-

ered, and the behavior of the domain description classi-
fiers presented in this paper under different probability
density functions are studied.

2) Real problems. The proposed methods are tested in real
remote sensing images under the following scenarios.

a) Hyperspectral images.
i) Very little prior knowledge of the problem. This

scenario deals with the case in which one has train-
ing samples for few classes (NC) and a relatively
high number of test samples of unknown classes
(m): (m � NC).

ii) Reasonable prior knowledge about most of the
classes. In this case, one has training samples for
almost all classes (NC), but there are still some
unknown classes (m): (m > NC).

We have identified two real scenarios considering hy-
perspectral images for crop cover and urban classifi-
cation, respectively. Each problem considers different
spectral and spatial resolutions; thus, a more complete
comparison can be done.

b) Multispectral and SAR images. We also consider
the classification problem when multisource data are
available, and thus, different distributions of the fea-
tures are present. In particular, we treat the problem
of using multispectral and SAR data jointly for urban
monitoring. This leads to a complex classification
problem.

A. Model Development

The four one-class domain description classifiers described
in the previous sections have been tested in this work: Gaussian
(GDD), mixture of Gaussians (MoGDD), k-nearest neighbor
(KnnDD), and the SVDD (with the RBF kernel). All one-class
domain description classifiers have a parameter to adjust, which
is the fraction rejection, that controls the percentage of target
samples the classifier can reject during training. Some other
parameters need to be tuned depending on each classifier. For
instance, the Gaussian classifier has a regularization parameter
in the range [0–1] to estimate the covariance matrix, using
all training samples or only diagonal elements. With regard
to the mixture of Gaussian classifier, four parameters must
be adjusted: the shape of the clusters to estimate the covari-
ance matrix (e.g., full, diagonal, or spherical), a regularization
parameter in the range [0–1] used in the estimation of the
covariance matrices, the number of clusters used to model
the target class, and the number of clusters to model the
outlier class. The most important advantage of this classifier
with respect to the Gaussian classifier, apart from the obvi-

TABLE I
KAPPA COEFFICIENT OF ACCURACY (κ) AND OVERALL ACCURACY (OA)

OBTAINED FOR THE SYNTHETIC PROBLEMS

ous improvement of modeling a class with several Gaussian
distributions, is the possibility of using outliers information
when training the classifier. This allows tracing a more pre-
cise boundary around the target class, improving classification
results notably. However, having a total of five parameters to
adjust constitutes a serious drawback for this method, making
it difficult to obtain a good working model. With respect to
the k-NN classifier, only the number of k neighbors used to
compute the distance of each new sample to its class must be
tuned. Finally, for the SVDD, the width of the RBF kernel
(σ) has to be adjusted. In all the experiments, except the last
one, σ is selected among the following set of discrete values:
{
√

10, 5, 10, 25, 50, 100, 250, 500, 1000}. It is worth stressing
here that the SVDD is one of the methods among those consid-
ered, together with the mixture of Gaussians that allows to use
outliers information to better define the target class boundary.
In addition, it has the important advantage that only two free
parameters have to be adjusted, thus making relatively easier to
define a good model.

In all the experiments, 30% of the samples available are used
to train each classifier. In order to adjust free parameters, a
cross-validation strategy with four folds is employed. Once the
classifier is trained and adjusted, the final test is done using the
remaining 70% of the samples. In all our experiments, we used
the dd_tools [21] and LibSVM [22] software packages.

B. Synthetic Problems

Two different synthetic problems are tested here. In each
problem, binary classification is addressed, thus having two
sets of targets and outliers. Each class contains 500 samples
generated from different distributions. The two problems an-
alyzed are mixture of two Gaussian distributions and mixture
of Gaussian and logarithmic distributions; both of them are
strongly overlapped. Our goal here is testing the effectiveness
of the different methods with standard and simple models
but in very critical conditions on the overlapping of class
distributions.

In order to measure the capability of each classifier to ac-
cept targets and reject outliers, the confusion matrix for each
problem is obtained, and the kappa coefficient (κ) is estimated
[23], which gives a good tradeoff between the capability of the
classifier to accept its samples (targets) and reject the others
(outliers).

Table I shows the results for the synthetic tests, and Fig. 2
shows graphical representations of the classification boundary
defined by each method. In each plot, the classifier decision
boundary is represented with a dotted curve.

Several conclusions can be obtained from these preliminary
tests. First, MoGDD and SVDD obtain the highest accuracies
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Fig. 2. Plot of the decision boundaries obtained with GDD, MoGDD, KnnDD, and SVDD for the two Gaussians problem (top) and the mixed Gaussian-logarithm
problem (bottom). Note the semilogarithmic scale in this later case.

TABLE II
CLASSES CONSIDERED IN THE AVIRIS DATA SET WITH

THEIR LABELS AND NUMBER OF SAMPLES

in our problems. When mixing two Gaussians, none of the
classifiers shows a good behavior, as in our synthetic data the
distributions are strongly overlapped. This is a common situa-
tion in the remote sensing field when trying to classify classes
very similar to each other. Mixture of overlapped Gaussian
and logarithmic features is a difficult problem. In this synthetic
example, we can see that the SVDD performs slightly better,
since it does not assume any a priori data distribution.

C. Medium-Resolution Hyperspectral Image Classification

These experiments were carried out using the hyperspec-
tral images acquired by the Airborne Visible/Infrared Imaging
Spectroradiometer (AVIRIS) sensor in June 1992 on the Indian
Pines area, Indiana [24]. The hyperspectral image contains 220
bands. In our experiments, 20 bands were discarded because
they were affected by atmospheric problems.

The hyperspectral image tested has a total of 16 classes. In
order to simplify the problem and obtain interpretable results,
we have selected ten classes in our experiments. Table II shows
labels and number of samples of the selected classes.

The methodology used to obtain the one-class classifiers is
described in Section V-A. The most problematic classifier in the
training phase is the mixture of Gaussians due to its relatively

high number of free parameters to tune. More specifically,
regarding the selection of the number of Gaussians to model
the target and the outlier classes in our tests with the AVIRIS
image, we noticed that adding more Gaussians to model these
classes did not improve results in an appreciable way, but
considering outlier information to trace the boundary around
the target class resulted in a significant improvement. Note,
however, that including outliers information is different from
including outliers labels, as in the usual supervised approach.
Taking this into account, we used only a Gaussian to model the
target and another one to model the rest of outliers classes.

We addressed two possible scenarios which are common in
the remote sensing field. In the first scenario, we simulated
having information about the samples of one class only for
training the classifier. It could be possible having samples of
some other classes too, but here, we were only interested in
knowing whether a given sample belongs to a target class or
not. Thus, in order to test each one-class classifier, we used
samples of all the classes in the image. In the second scenario,
we simulated having labels for almost all classes in the image,
but still some classes remained unlabeled. In this case, we built
a multiclass classifier based on one-class algorithms and tested
it using samples of all the classes present in the image.

1) First Scenario—Samples of One Class Are Available:
Table III shows the results for the methods tested in this
situation in which we feed each classifier with samples of
its class (targets) and samples of other classes (outliers) to
evaluate both acceptance and rejection properties. Next, the
confusion matrix was built, and from it, we computed the kappa
coefficient (κ) and the overall accuracy (OA) [%]. Only seven
out of the nine available classes were used to develop the
classifiers. These are the same classes we used in the second
scenario to build the one-class-based multiclassifier.

In general terms, the best results are achieved by the SVDD,
even when classifying difficult classes like corn-min (3) and
soy beans-clean (12), for which other methods almost fail.
However, in some cases, due to the underlying Gaussian distri-
bution of some of the classes of the image, GDD or MoGDD
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TABLE III
KAPPA COEFFICIENT (κ) AND OVERALL ACCURACY (OA [%]) FOR THE AVIRIS IMAGE WITH GAUSSIAN CLASSIFIER, MIXTURE OF GAUSSIANS

CLASSIFIER, k-NN CLASSIFIER, AND SVDD. THE CORRESPONDING FREE PARAMETER (PAR) AND FRACTION REJECTION (F.R.)
RATIOS ARE INDICATED; FOR GDD AND MoGDD PAR IS A REGULARIZATION TERM AND THE TYPE OF COVARIANCE

MATRIX (F: FULL, D: DIAGONAL); FOR KnnDD PAR IS THE NUMBER OF NEIGHBOURS;
AND FOR SVDD σ IS THE RBF KERNEL WIDTH

TABLE IV
KAPPA COEFFICIENT OF ACCURACY (κ) AND OVERALL ACCURACY (OA)

FOR THE AVIRIS IMAGE WITH THE MULTICLASS SCHEME BUILT

WITH SEVEN ONE-CLASS CLASSIFIERS

performed slightly better than SVDD. We can also see that
KnnDD showed low accuracies in almost all cases.

2) Second Scenario—Having Labeled Samples of Almost All
Classes: In this scenario, we used the seven previously trained
one-class classifiers and the multiclass architecture described
in Section IV to build a multiclass classifier for seven classes.
Then, we tested it with all the classes in the image. It is worth
noting that the main property of this multiclass classifier is
that it is not only able to classify known classes (by accurately
describing the domain or class distribution), but it also rejects
samples from unknown classes instead of misclassifying them.
Also, the combination of one-class classifiers worked better
than each one-class classifier working alone.

Table IV shows the results of the seven-class multiclass
classifiers tested. We can see that the best accuracies were
obtained by the combination of the SVDD one-class classifiers.

D. High-Resolution Hyperspectral Image Classification

In this section, one-class classifiers on a high-resolution
hyperspectral urban image of the area of Pavia, Italy, are
tested. The image is a nine-class data set, acquired from DAIS
7915 airbone imaging spectrometer of Deutsches Zentrum
für Luft- und Raumfahrt (DLR) [25]. This is a challenging
urban classification problem dominated by directional fea-
tures and relatively high spatial resolution (5-m pixels). The
image has a size of 400 × 400 pixels (2000 × 2000 m),
40 bands and 9 labeled classes. Class labels and their number
of samples are shown in Table V.

We followed the same procedure used in the section before
to train and test the one-class classifiers. In this example, we
trained classifiers for the following classes: {1, 3, 4, 6, 7, 9},
which correspond to water, brick roofs, asphalt, meadows, bitu-
men, and shadows, respectively. To test the classifiers, samples
of all classes in the image were used.

TABLE V
DAIS 7915 PAVIA IMAGE CLASSES, LABELS,

AND NUMBER OF SAMPLES

1) First Scenario—Samples of One Class Are Available:
Table VI shows the accuracy for each one-class classifier. Note
that only the six classes used in the second scenario to build the
multiclass classifier are considered but here each classifier was
used to recognize only its own class. Best results are boldfaced.
The main conclusion is that, again, the best overall accuracies
are those obtained by using SVDD one-class classifiers. Only
in class shadows (9), MoGDD obtained better results. However,
this can be due to the fact that this is the class with the lowest
number of labeled samples.

2) Second Scenario—Having Labeled Samples of Almost All
Classes: In a similar way as we did in the previous section, in
this scenario, we built a six-class multiclass classifier made-
up of six one-class classifiers. Table VII shows the obtained
accuracies. In agreement with the results in Table VI, the
combination of SVDD one-class classifiers clearly provides
the highest accuracies, yielding a gain in the overall accuracy
between 2% and 4%.

E. Multispectral and SAR Image Fusion

The images used in this section were collected in the
Urban Expansion Monitoring (UrbEx) ESA-ESRIN DUP
project [26]. Results from UrbEx project were used both to
perform the analysis of the selected test site and for validation
purposes (for further details, visit http://dup.esrin.esa.int/ionia/
projects/summaryp30.asp). The considered test site is the city
of Rome, Italy, where images from ERS2 SAR and Landsat
Thematic Mapper (TM) sensors were acquired in 1999. In the
classification, we considered the seven Landsat TM optical
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TABLE VI
KAPPA COEFFICIENT (κ) AND OVERALL ACCURACY (OA [%]) FOR THE DAIS 7915 IMAGE WITH GAUSSIAN CLASSIFIER, MIXTURE OF GAUSSIANS

CLASSIFIER, k-NN CLASSIFIER, AND SVDD. THE CORRESPONDING FREE PARAMETER (PAR) AND FRACTION REJECTION (F.R.) RATIOS ARE

INDICATED; FOR GDD AND MoGDD PAR IS A REGULARIZATION TERM AND THE TYPE OF COVARIANCE MATRIX (F: FULL, D: DIAGONAL);
FOR KnnDD PAR IS THE NUMBER OF NEIGHBOURS; AND FOR SVDD σ IS THE RBF KERNEL WIDTH

TABLE VII
KAPPA COEFFICIENT OF ACCURACY (κ) AND OVERALL ACCURACY (OA)

FOR DAIS 7915 IMAGE WITH THE MULTICLASS SCHEME BUILT

WITH SIX ONE-CLASS CLASSIFIERS

Fig. 3. Images of the test areas of Rome acquired in 1999 both in (left) band
L3 from Landsat and (right) SAR first log-intensity band.

spectral bands, the two SAR backscattering intensities (0–35
days), the coherence between the two SAR signals, and an
additional feature computed by applying a multistage spatial
filter to the coherence images. Once that features were extracted
from optical and SAR images, we analyzed their potential use
for multisource image classification (see more details in [27]).

1) Model Development and Free Parameter Selection: In
this experiment, we selected a subset image containing 200 ×
200 pixels (see Fig. 3). We randomly selected 25% of the
changed pixels for training and used five-fold cross-validation
for free parameter tuning. Then, we tested the built classifier on
the whole subset image. The RBF kernel widths were tuned
in the range σ = {10−3, . . . , 103}, and the rejection fraction
parameter for the SVDD method was tuned in the range
{10−3, . . . , 100}.

2) Model Comparison: Fig. 4 shows the true classification
map for the Rome dataset 1999 and the test results obtained
by the classifiers (average of 10 realizations) along with the
classification maps for all of them. Several conclusions can
be obtained. First, SVDD offers very good results since rather
than building a separating hyperplane “urban”/“nonurban,” the
method tries to model the “urban” class accurately. Second, the

standard Gaussian classifier fails due to the fact that the data
do not fit the assumed distribution. The mixture of Gaussian
classifier improves the results obtained by the Gaussian clas-
sifier, but its accuracies are slightly worse than those provided
by the SVDD. Furthermore, the KnnDD classifier produces the
worst results, suggesting that data lie in much more complex
underlying subspace than that detected locally through neigh-
bors. Visually, results offered by the SVDD method are much
better than the rest of classifiers, yielding more homogeneous
areas and lower number of false detections.

VI. DISCUSSION AND CONCLUSION

This paper has addressed the problem of supervised classifi-
cation of remote sensing images in the presence of incomplete
(nonexhaustive) training sets. The analysis has been carried
out according to two different objectives: 1) description and
recognition of a specific land-cover class by using single-
class classifiers and 2) solution of multiclass problems with
single-class classifiers integrated in a classification architecture
capable to properly consider the lack of training information
for some land-cover classes. In this framework we introduced
the SVDD technique in multiclass detection problems with
incomplete datasets and analyzed its effectiveness compared to
other one-class standard techniques.

The experimental part of this paper has been conducted on
different data sets. First, we have tested the different techniques
by using synthetic data, to show their behavior when dealing
with typical (but controlled) probability distribution models
adopted in remote sensing problems which include mixtures of
two Gaussians, and of Gaussian and logarithmic distributions.
Second, we have analyzed these methods by considering two
hyperspectral and one multisensor data sets. These last exper-
iments have been carried out in order to: 1) test the ability of
different techniques in modeling and recognizing a single class
and 2) analyze the effectiveness of the combination of different
one-class classifiers for solving multiclass problems.

An important conclusion of this paper, which is derived from
all the experimental results obtained, is that one-class domain
description classifiers represent a very promising methodology
in the presence of incomplete training knowledge, allowing
a flexible adaptation of the classification architecture to the
available information. In our experiments, owing to their re-
jection properties, these classifiers provided good classification
accuracies in problems associated with both the recognition of
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Fig. 4. True thematic map for the Rome dataset (1999). (Middle) Obtained classifications for the Rome dataset (1999). In classification maps, white pixels
represent the class “nonurban,” black pixels are “unknown class,” and gray pixels are “urban.” (Bottom) Kappa coefficient and overall accuracy (average results
over ten realizations) with Gaussian domain description (GDD), mixture of Gaussians (MoGDD), k-NN domain description (KnnDD), and SVDD.

a single-class and the recognition of a subset of the unknown
complete set of classes characterizing a given study area.

Concerning the accuracy obtained from the single classi-
fication techniques, the SVDD classifier provided very good
results, with significant improvement of the classification ac-
curacy with respect to other well-established one-class tech-
niques, particularly on the multisensor data set. This is in
agreement with what was expected, given the distribution-
free property of this method, which is particularly suitable to
address problems in which data acquired by different sensors do
not allow a rigid parametric modeling of the class distributions.
SVDD proved effective also in addressing hyperspectral image
classification, yielding the highest classification accuracy in
most of the cases. This proves the robustness of this kernel-
based method to deal with hyperdimensional feature spaces.
The accuracy of the SVDD classifier is obtained at the ex-
pense of a relatively high computational cost since a quadratic
programming problem containing as many restrictions as the
available training samples must be solved. However, this does
not constitute a critical issue in our case for two reasons:
first, only the training phase is computationally demanding as
the classification function is based on a sparse model (few
SVs are typically selected to characterize the domain); and
second, only two free parameters (kernel function parameter,
if any, and the fraction rejection ratio) must be tuned. Another
good property inferred from the proposed multiclass strategy
is that it is not mandatory to retrain the scheme if an ad-
ditional class comes to the scene, as occurs in the majority
of inductive global domain description classification schemes
like SVMs.

With regard to the behavior of the other analyzed methods,
as expected, Gaussian and mixture of Gaussian domain descrip-
tion classifiers obtained good results when dealing with data
that can be reasonably modeled with Gaussian distributions. In
these situations (which include also hyperspectral data sets),
the use of Gaussian-like classifiers results in classification
accuracies similar (or in few cases slightly better) than those
provided by the SVDD technique. In general, the mixture of
Gaussian domain description method can improve the results
obtained by the more simple Gaussian domain description
classifier. However, we should take into account that an im-
portant drawback of the mixture of Gaussian method is the
relatively high number of free parameters to adjust compared

with other methods (i.e., the number of Gaussians to mix
both for target and outlier classes, and the shape of the data
used to estimate the covariance matrices). In addition, the
computational time associated with the training of a mixture of
Gaussian classifier can be twofold that of a simple Gaussian
classifier. Regarding the k-NN domain description classifier,
in spite of its distribution-free properties, poor accuracies are
obtained, particularly in high-dimensional spaces or when data
lie in a complex subspace. Also, it is worth stressing here that
k-NN classifiers do not perform any learning task but, rather, a
memorization process, and thus, the training phase is very fast
(only comparison of a sample to its neighbors is performed), but
the time required from the operational test phase dramatically
increases.

Finally, considering all the obtained results, we can conclude
that, in general, the SVDD classifier (and the multiclass scheme
proposed here) provides better results than the rest of the
methods, in presence of incomplete training data. These results
are particularly noticeable in complex environments such as
high-dimensional data and multisource data.
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