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Abstract—In this paper, we propose a context-sensitive tech-
nique for unsupervised change detection in multitemporal remote
sensing images. This technique is based on a modified Hopfield
neural network architecture designed to model spatial correlation
between neighboring pixels of the difference image produced by
comparing images acquired on the same area at different times.
Each spatial position in the considered scene is represented by
a neuron in the Hopfield network that is connected only to its
neighboring units. These connections model the spatial correlation
between neighboring pixels and are associated with a context-
sensitive energy function that represents the overall status of
the network. Change detection maps are obtained by iteratively
updating the output status of the neurons until a minimum of
the energy function is reached and the network assumes a sta-
ble state. A simple heuristic thresholding procedure is presented
and adopted for initializing the network. The proposed change
detection technique is unsupervised and distribution free. Experi-
mental results carried out on two multispectral and multitemporal
remote sensing images confirm the effectiveness of the proposed
technique.

Index Terms—Change detection, context-sensitive image analy-
sis, Hopfield neural network, multitemporal images, remote sens-
ing, thresholding.

I. INTRODUCTION

IN REMOTE sensing applications, change detection is the
process aimed at identifying differences in the state of a

land cover by analyzing a pair of images acquired on the
same geographical area at different times [1], [2]. Such a
problem plays an important role in many different domains
like studies on land use/land cover dynamic [3], monitoring
shifting cultivations [4], burned areas identification [5], analysis
of deforestation processes [6], [7], assessment of vegetation
changes [8], and monitoring of urban growth [9]. Since all of
these applications usually require an analysis of large areas,
development of completely automatic and unsupervised change
detection techniques is of high relevance to reduce the time
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effort required by manual image analysis and to produce ob-
jective change detection maps.

In the literature, the most widely used unsupervised change
detection techniques are based on a three-step procedure [1],
namely 1) preprocessing, 2) pixel-by-pixel comparison of two
multitemporal images, and 3) image analysis. The aim of
the preprocessing step is to make the considered images as
comparable as possible and includes operations like coreg-
istration, radiometric and geometric corrections, and noise
reduction. The comparison step aims at producing a further
image, where differences between the two considered acqui-
sitions are highlighted. Different mathematical operators can
be adopted to perform image comparison. When dealing with
optical images, the most widely used operator is the differ-
ence. This operator can be applied to: 1) a single spectral
band (univariate image differencing) [1], [10], [11]; 2) multiple
spectral bands [change vector analysis (CVA)] [1], [12]; and
3) vegetation indexes (vegetation index differencing) [1], [13]
or other linear (e.g., tasseled cap transformation [10]) or nonlin-
ear combinations of spectral bands. Each choice gives rise to a
different technique. Among these, the most popular is the CVA
that computes the difference image as the magnitude of spectral
change vectors obtained for each pair of corresponding pixels
by vector subtraction. Once image comparison is performed,
the change detection process can be carried out adopting either
context-insensitive or context-sensitive procedures. The most
widely used context-insensitive analysis techniques are based
on image thresholding. The decision threshold can be selected
either with a manual trial-and-error procedure (according to a
desired tradeoff between false and missed alarms) or with auto-
matic techniques (e.g., by analyzing the statistical distribution
of the image obtained after comparison, by fixing the desired
false alarm probability, or following a Bayesian minimum error
decision rule [12]). The mentioned thresholding procedures do
not take into account the spatial correlation between neighbor-
ing pixels in the decision process, i.e., they implicitly assume
that the image has an impulsive autocorrelation function. To
overcome this limitation of neglecting the interpixel class de-
pendence, a context-sensitive change detection procedure based
on Markov random field (MRF) has been proposed in [12].

The aforementioned context-sensitive and context-
insensitive automatic approaches to change detection require
the selection of a proper model for the statistical distributions
of changed and unchanged pixels. To obtain an unsupervised
estimation of the parameters of the statistical models
describing the class distributions, techniques based on the
Expectation–Maximization (EM) algorithm can be used [14].
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In change detection problems of remote sensing images, the
EM algorithm has been formulated under different assumptions
for class distributions, i.e., Gaussian [12], generalized Gaussian
[15], and mixture of Gaussians [16].

To overcome the limitations imposed by the need of selecting
a statistical model for change and no-change class distributions,
in this paper, we propose an unsupervised and context-sensitive
change detection technique, which is distribution free. The
presented algorithm automatically detects the changes in the
difference image using the collective computational ability of
a Hopfield-type neural network [17]. The specific architecture
of the Hopfield network used in this paper considers contextual
information from the neighborhood of each pixel to generate an
accurate change detection map. In the presented architecture,
each neuron corresponds to a pixel of the difference image and
is connected to all the neurons in the neighborhood. Given an
initial state, the status of each neuron is modified iteratively.
When the network reaches a stable state (local minimum of
its energy function), the difference image is classified into
two classes (neurons having ON (+1) status represent the
changed pixels and those having OFF (−1) status represent
the unchanged pixels). The major advantages of the proposed
technique are listed as follows: 1) it is distribution free (both the
proposed initialization strategy of the network and the energy
function adopted are not based on any specific parametric
model for the distributions of classes); 2) it properly exploits
the spatiocontextual information making the change detection
process robust to isolated noisy patterns (the procedure for
updating the status of the neurons is regularized by the informa-
tion included in the neighborhood); 3) it is completely unsuper-
vised (the proposed initialization strategy does not require any
a priori information); and 4) unlike the technique proposed in
[12], it does not require manual setting of any input parameter.

To assess the effectiveness of the presented technique, we
considered two real multitemporal remote sensing data sets and
compared the results provided by the proposed technique with
those obtained by reference methods published in the literature.

This paper is organized as follows: Section II provides a
brief description of the Hopfield neural network. Section III
describes the proposed change detection technique. The data
sets used in the experiments and the obtained results are
described in Section IV. Finally, in Section V, conclusions
are drawn.

II. BACKGROUND: HOPFIELD NEURAL NETWORKS

A Hopfield neural network consists of a set of neurons (or
units). The output of each neuron is fed back to each of the other
units in the network, as illustrated in Fig. 1. There is no self-
feedback loop, and the synaptic weights are symmetric [18].
Hopfield defined the energy function of the network by using
the network architecture, i.e., the number of neurons, their out-
put functions, threshold values, connection between neurons,
and the strength of the connections [19]. Thus, the energy
function represents the complete status of the network. Hopfield
has also shown that, at each iteration of the processing of the
network, the energy value decreases and the network reaches a
stable state when its energy value reaches a minimum [20], [21].
Since there are interactions among all the units, the collective
property inherently reduces the computational complexity.

Fig. 1. Example of a Hopfield network consisting of three neurons. Neurons
are represented by circles, and connected lines between neurons show that the
output of each neuron is fed back to other neurons.

The input Ui to the generic ith neuron comes from two
sources, namely 1) input Vj from other units (to which it is
connected) and 2) external input bias Ii, which is a fixed bias
applied externally to the unit i. Thus, the total input to a neuron
i is given by

Ui =
n∑

j=1,j �=i

WijVj + Ii (1)

where the weight Wij represents the synaptic interconnection
strength from neuron j to neuron i, and n is the total number
of units in the network. The connection strengths are assumed
to be symmetric, i.e., Wij = Wji. The output Vi of neuron i is
defined as

Vi = g(Ui) (2)

where g(·) is an activation function. There are two types of
Hopfield models (i.e., discrete and continuous), which differ on
the output values a neuron can take.

A. Discrete Model

In the discrete model, neurons are bipolar, i.e., the output Vi

of neuron i is either +1 or −1. In this model, the activation
function g(·) is defined according to the following threshold
function:

Vi = g(Ui) =
{

+1, if Ui ≥ θi

−1, if Ui < θi
(3)

where θi is the predefined threshold of neuron i. The energy
function E of the discrete model is given by [20]

E = −
n∑

i=1

n∑
j=1,i �=j

WijViVj −
n∑

i=1

IiVi +
n∑

i=1

θiVi. (4)
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The change of energy ∆E due to a change of output state of the
neuron i equal to ∆Vi is

∆E = −

 n∑

j=1,i �=j

WijVj + Ii − θi


∆Vi = −[Ui − θi]∆Vi.

(5)

If ∆Vi is positive (i.e., the state of the neuron i is changed
from −1 to +1), then from (3) we can see that the bracketed
quantity in (5) is also positive, making ∆E negative. When ∆Vi

is negative (i.e., the state of the neuron i is changed from +1 to
−1), then from (3) we can see that the bracketed quantity in
(5) is also negative. Thus, any change in E according to (3) is
negative. Since E is bounded, the time required by the system
to reach convergence is associated to a motion in the state space
that seeks out minima of E and stops at such points.

B. Continuous Model

In this model, the output of a neuron is continuous [21] and
can assume any real value between [−1,+1]. In the continuous
model, the activation function g(·) must satisfy the following
conditions: 1) it is a monotonic nondecreasing function and
2) g−1(·) exists.

A typical choice of the function g(·) is

g(Ui) =
2

1 + e−φi(Ui−τ)
− 1 (6)

where the parameter τ controls the shifting of the sigmoidal
function g(·) along the abscissa, and φi determines the steep-
ness (gain) of neuron i. The value of g(Ui) lies in [−1,+1] and
is equal to 0 at Ui = τ . The energy function E of the continuous
model is given by [21]

E=−
n∑

i=1

n∑
j=1,i �=j

WijViVj−
n∑

i=1

IiVi+
n∑

i=1

1
Ri

Vi∫
0

g−1(Vi)dV.

(7)

The function E is a Lyapunov function, and Ri is the total
input impedance of the amplifier realizing a neuron i. It can
be shown that when neurons are updated according to (6), any
change in E is negative. The last term in (7) is the energy loss
term, which becomes zero at the high gain region. If the gain of
the function becomes infinitely large (i.e., the sigmoidal non-
linearity approaches the idealized hard-limiting form), the last
term will become negligibly small. In the limiting case, when
φi = ∞ for all i, the maxima and minima of the continuous
model become identical to those of the corresponding discrete
Hopfield model. In this case, the energy function is simply
defined by

E = −
n∑

i=1

n∑
j=1,i �=j

WijViVj −
n∑

i=1

IiVi (8)

where the output state of each neuron is ±1. Therefore, the only
stable points of the very high-gain continuous deterministic

Fig. 2. Second-order topological network. Each neuron in the network is
connected only to its eight neighbors. Neurons are represented by circles, and
lines represent connections between neurons.

Hopfield model correspond to the stable points of the discrete
stochastic Hopfield model [18].

III. PROPOSED CHANGE DETECTION TECHNIQUE

BASED ON A MODIFIED HOPFIELD NEURAL

NETWORK ARCHITECTURE

A. Description of the Network Architecture

Let us consider two coregistered and radiometrically cor-
rected multispectral images X1 and X2 of size p× q, acquired
over the same area at different times T1 and T2, and let
D = {lmn, 1 ≤ m ≤ p, 1 ≤ n ≤ q} be the difference image
obtained by applying the CVA technique to X1 and X2. To use
Hopfield networks for solving the change detection problem,
we assign to each spatial position (m,n) ∈ D a neuron of the
network. The spatial correlation between neighboring pixels is
modeled by defining the spatial neighborhood systems N of
order d, for a given spatial position (m,n) as Nd

mn ={(m,n)+
(u, v), (u, v) ∈ Nd}. The neuron in position (m,n) is con-
nected to its neighboring units included in Nd. According to the
value of d, the neighborhood system assumes different config-
urations. Here, only the first- and second-order neighborhood
systems have been considered, i.e., N1 = {(±1, 0), (0,±1)}
and N2 = {(±1, 0), (0,±1), (1,±1), (−1,±1)}. Fig. 2 depicts
a second-order (N2) topological network. Let Wmn,uv be
the connection strength between the (m,n)th and (u, v)th
neurons. We assume that Wmn,uv = 1 if (u, v) ∈ Nd

mn;
otherwise, Wmn,uv = 0. Hence, the presented architecture can
be seen as a modified version of the Hopfield network [17]
in which the connection strength to all neurons outside the
neighborhood (Nd) is zero. As each neuron is connected only
to its neighboring units, the output of a neuron depends only on
its neighboring elements. In this way, the network architecture
is intrinsically able to model and properly consider the spatio-
contextual information of each pixel.
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Fig. 3. Behavior of the activation function defined in [−1, +1], assuming
r = 2.

From (6), we note that the output Vmn for the neuron at
position (m,n) is given by

Vmn = lim
Umn→∞

g(Umn) = +1

Vmn = lim
Umn→−∞

g(Umn) = −1.

Thus, the domain of Umn is (−∞,+∞). To simplify the prob-
lem, here we use the generalized fuzzy S-function [17], [22]
defined over a finite domain as input/output transfer function
(activation function). The form of the S-function is given as
follows:

Vmn = g(Umn) =




−1, Umn ≤ a

2r
{

(Umn−a)
(c−a)

}r

− 1, a ≤ Umn < b

1 − 2r
{

(c−Umn)
(c−a)

}r

, b ≤ Umn ≤ c

1, Umn ≥ c
(9)

where r ≥ 2, and b = (a + c)/2. In this case, g(Umn) lies in
[−1,+1] with g(Umn) = 0 at Umn = b. The domain of Umn

is [a, c]. The value of r tunes the sharpness (steepness) of the
function. If the number of neighbors is eight, the input value to
a neuron lies in [−9,+9], i.e., a = −9, and c = 9. However, for
quick convergence, one can use the domain of Umn in [−1,+1]
and an activation function g(·) (which is shown in Fig. 3) is
defined as follows:

Vmn = g(Umn) =




−1, Umn ≤ −1
(Umn + 1)r − 1, −1 ≤ Umn ≤ 0
1 − (1 − Umn)r, 0 ≤ Umn ≤ 1
1, Umn ≥ 1.

(10)

B. Definition of the Energy Function for Change Detection

The aim of the presented neural architecture is to separate
changed pixels from unchanged pixels in D. To accomplish this
task, we should define the energy function of the network in
such a manner that when the network reaches the stable state
the changed regions are clearly separated from the unchanged

areas. The basic idea exploited in the proposed approach is in-
spired by the energy function of the Hopfield model formulated
for object background classification in [17].

Let us consider the energy function defined in (4) that has
three parts: The first part models the local field (or feedback),
whereas the second and third parts correspond to the input bias
Ii and the threshold value θi of each neuron in the network,
respectively. In terms of images, the first part can be seen as
the impact of the gray values of the neighboring pixels on the
energy function, whereas the second and the third parts can be
attributed to the gray value of the pixel under consideration.
Let us assume, without loss of generality, that the output value
of each neuron lies in [−1,+1]. Then, the energy function can
be defined in the following way: if the output of a neuron
at position (m,n) is +1, then it corresponds to a pixel that
belongs to the changed area, whereas if the output is −1, then
it corresponds to a pixel that belongs to the unchanged area.
Thus, the threshold between the changed and unchanged pixels
can logically be taken as 0 [i.e., θmn = 0 ∀(m,n)]. This helps
us to omit the third part of the energy expression [see (4)]. Each
neuron at position (m,n) has an input bias Imn, which can be
set proportional to the actual gray value of the corresponding
pixel. If the gray value of a pixel is high (low), the correspond-
ing intensity value of the scene is expected to be high (low).
The input bias value is taken in the range [−1,+1]. If a neuron
has a very high positive bias (close to +1) or very high negative
bias (close to −1), then it is very likely that in the stable state
the output will be +1 or −1, respectively. Thus, the product
ImnVmn should contribute less toward the total energy value,
and the second part of the energy expression may be written as

−
p∑

m=1

q∑
n=1

ImnVmn.

Depending on the nonimpulsive autocorrelation function of
the difference image D, we can assume that the gray value of
a pixel is highly influenced by the gray values of its neigh-
boring pixels. Thus, if a pixel belongs to a changed region,
the probability that its neighboring pixels belong to the same
region is very high. This suggests that if a pair of adjacent
pixels have similar output values, then the energy contribution
of this pair of pixels to the overall energy function should be
relatively small. If the gray values of two adjacent pixels (m,n)
and (u, v) are given by Vmn and Vuv , then a reasonable choice
for the contribution of each of these pairs to the overall energy
function is −Wmn,uvVmnVuv . Thus, taking into account the
contribution of all pixels, the total energy can be written as

−
p∑

m=1

q∑
n=1

∑
(u,v)∈Nd

mn

Wmn,uvVmnVuv

= −
p∑

m=1

q∑
n=1


 ∑

(u,v)∈Nd
mn

Wmn,uvVuv


Vmn

= −
p∑

m=1

q∑
n=1

hmnVmn (11)
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where hmn is termed as the local field and models the neigh-
borhood information of each pixel of D in the energy function.
On the basis of the aforementioned analysis, the expression of
the energy function can be written as

E=−
p∑

m=1

q∑
n=1

∑
(u,v)∈Nd

mn

Wmn,uvVmnVuv−
p∑

m=1

q∑
n=1

ImnVmn.

(12)

The minimization of (12) results in a stable state of the
network in which changed areas are separated from unchanged
ones. The energy function in (12) can be minimized by both the
discrete and the continuous models.

In the case of the discrete model, both the initial external
input bias Imn and the input Umn to a neuron are taken as +1
if the gray value of the corresponding pixel of D is greater than
a specific global initialization threshold value t; otherwise, they
have a value of −1. As the threshold t is used to set the initial
value of each neuron, we call it initialization threshold (note
that this initialization threshold t and the threshold θi defined in
Section II-A are different). Here, the status updating rule is the
same as in (3) with the threshold value θmn = 0 ∀(m,n).

In the case of the continuous model, both the initial exter-
nal input bias and the input to a neuron at position (m,n)
are proportional to (lmn/t) − 1 (if (lmn/t) − 1 > 1 then the
value +1 is used for initializing the corresponding neuron).
The activation function defined in (10) is used to update the
status of the network iteratively, until the network reaches
the stable state. When the network reaches the stable state,
we consider the value of the gain parameter r = ∞ (i.e., the
sigmoidal nonlinearity approaches the idealized hard-limiting
form) and update the network. This makes the continuous
model behave like a discrete model; thus, at the stable state,
the energy value of the network can be expressed according
to (12).

For both the discrete and the continuous models, at each
iteration itr, the external input bias Imn(itr) of the neuron at
position (m,n) updates its value by taking the output value
Vmn(itr − 1) of the previous iteration. When the network
begins to update its state, the energy value is gradually reduced
until the minimum (stable state) is reached. Convergence is
reached when (dVmn)/dt = 0 ∀(m,n) [21], i.e., if for each
neuron it holds that ∆Vmn = Vmn(itr − 1) − Vmn(itr) = 0.

C. Proposed Technique for a Proper Initialization
of the Network

In the literature [17], the initialization of the neurons of
a Hopfield network is usually carried out in a very simple
way, i.e., if L is the maximum gray value of the considered
image, the global initialization threshold t is fixed to L/2. In
the discrete case, the neurons are initialized to +1 if the gray
value of the corresponding pixel is greater than the initialization
threshold value (L/2); otherwise, the neurons take the value
of −1. In the continuous case, a linear transform function
like 2(lmn/L) − 1 is used to initialize the units in the range
[−1,+1]. In our change detection problem, this is not a valid
approach because there is no direct relation between the optimal
initialization threshold value t0 (which should be related to the

Fig. 4. Behavior of the energy value versus the initialization threshold value.
The automatically detected (by the proposed heuristic approach) threshold
value t1 is close to the optimal threshold value t0.

minimum error in classifying changed and unchanged pixels
of D) and the maximum gray value of D. To obtain a proper
initialization threshold value, a possible strategy is to adopt
any of the pixel-based automatic threshold selection procedures
proposed in the change detection literature [12]. However, to
have a distribution-free initialization strategy (which is not
based on an explicit model of the distributions of changed and
unchanged classes), in the proposed technique, we exploit the
following simple heuristic procedure.

From (12), we can see that the energy value is minimum
when Vmn are either all +1 or all −1 ∀(m,n), i.e., the whole
output image belongs either to changed or unchanged areas. In
the proposed procedure, we first compute the energy at conver-
gence for various threshold values (see Fig. 4). By analyzing
the behavior of this graph, one can see that initially the energy
increases with initialization threshold as the number of regions
(changed and unchanged) increases. After a certain threshold
value, the energy decreases as the number of regions decreases
(some unchanged regions are merged together). After that, the
energy does not change significantly by increasing the threshold
value, i.e., changed and unchanged regions are not significantly
altered by the specific range of values considered. We expect
that this stable behavior of the energy function is reached
around the optimal initialization threshold t0 (see Fig. 4). If
the threshold value increases more, the energy changes slowly
and reaches a minimum when the whole output image belongs
to the class of unchanged areas. By observing this general
behavior, we propose a heuristic technique that generates the
smallest convex curve E1(·) containing the energy curve E(·)
using a concavity analysis algorithm [23], and exploiting these
two curves, we derive an initialization threshold t1, which is
close to the optimal one. The proposed technique is described
in Table I.

Each neuron in the network is initialized by considering this
automatically derived initialization threshold value t1. When
the network reaches a stable state, it implicitly generates a
change detection map.
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TABLE I
ALGORITHM FOR AUTOMATICALLY DERIVING

THE INITIALIZATION THRESHOLD

IV. EXPERIMENTAL RESULTS

A. Description of the Experiments

In our experiments, we used two different data sets related to
two areas in Mexico and Italy. Four change detection maps were
generated for each data set by using four different Hopfield
network models (i.e., the maps were produced by the discrete
and continuous Hopfield models considering first- and second-
order neighborhoods). In the continuous model, the activation
function defined in (10) was used for updating the status of
the network setting r = 2 to have a moderate steepness. It is
worth noting that the change detection process is less sensitive
to variations of r. On the basis of these results, two different
experiments were carried out to test the validity of the proposed
technique.

The first experiment aims at evaluating the effectiveness
of both the proposed technique and the related initialization
algorithm (see Section III-C). To this end, the optimal initial-
ization threshold value t0 was computed by a manual trial-
and-error procedure, i.e., generating the change detection map
by initializing the network with different threshold values and
computing the corresponding overall change detection error by
using the available reference map. The optimal initialization
threshold value t0 corresponds to the minimum overall error.
This value and the related error were compared with the value
of the initialization threshold t1 obtained automatically by
the proposed approach and the corresponding overall change
detection error, respectively.

The second experiment compares the results provided by the
proposed technique with the best possible accuracies obtained
both manually and with a context-sensitive change detection
technique published in the literature [12]. This experiment
is aimed at assessing the effectiveness of the proposed tech-
nique in terms of change detection error by comparing it with

Fig. 5. Images of Mexico. (a) Band 4 of the Landsat ETM+ image acquired in
April 2000, (b) band 4 of the Landsat ETM+ image acquired in May 2002,
(c) corresponding difference image generated by CVA technique, and
(d) reference map of the changed area.

the result obtained by a manual trial-and-error thresholding
(MTET) technique. This technique generates a minimum error
change detection map under the hypothesis of spatial indepen-
dence among pixels by finding an optimal decision threshold
for D. The optimal decision threshold is obtained by perform-
ing a nonautomatic evaluation of the change detection errors
versus all possible values of the decision threshold. To prove the
effectiveness of the proposed technique, we also compared the
change detection error obtained by the proposed approach with
that resulting by using the automatic context-sensitive change
detection technique presented in [12]. This technique is based
on the combined use of the EM algorithm and MRF (we refer
to it as EM+MRF technique). Comparisons were carried out
in terms of both overall change detection error and number
of false alarms (i.e., unchanged pixels identified as changed
ones) and missed alarms (i.e., changed pixels categorized as un-
changed ones).

B. Experimental Results on Mexico Data Set

The first data set used in the experiments is made up of
two multispectral images acquired by the Landsat Enhanced
Thematic Mapper Plus (ETM+) sensor of the Landsat-7 satellite
in an area of Mexico in April 2000 and May 2002. From the
entire available Landsat scene, a section of 512 × 512 pixels
has been selected as test site. As an example of the images used,
Fig. 5(a) and (b) shows channel 4 of the 2000 and 2002 im-
ages, respectively. Between the two aforementioned acquisition
dates, a fire destroyed a large portion of the vegetation in the
considered region. To be able to make a quantitative evaluation
of the effectiveness of the proposed approach, a reference map
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TABLE II
CHANGE DETECTION RESULTS OBTAINED BY THE PROPOSED

APPROACH (CONSIDERING FOUR DIFFERENT NETWORK MODELS)
INITIALIZED BY THE OPTIMAL INITIALIZATION THRESHOLD t0

AND THE AUTOMATICALLY DERIVED INITIALIZATION

THRESHOLD t1 (BAND 4, MEXICO DATA SET)

was manually defined [see Fig. 5(d)] according to a detailed
visual analysis of both the available multitemporal images and
the difference image [see Fig. 5(c)]. Different color composites
of the aforementioned images were used to highlight all the
portions of the changed area in the best possible way. This pro-
cedure resulted in a reference map containing 25 599 changed
and 236 545 unchanged pixels. Experiments were carried out to
produce, in an automatic way, a change detection map as similar
as possible to the reference map that represents the best result
obtainable with a time-consuming manual procedure.

An analysis of the behaviors of the histogram of multitempo-
ral images did not reveal any significant difference due to light
and atmospheric conditions at the acquisition dates. Therefore,
no radiometric correction algorithms were applied. The 2002
image was registered on the 2000 one using 12 ground control
points. The procedure led to a residual average misregistration
error on ground control points of about 0.3 pixels.

First of all, we performed some trials to determine the most
effective spectral bands for detecting the burned area in the
considered data set. On the basis of the results of these trials, we
found that band 4 is very effective to locate the burned area, and
that band 5 also contains some information about the burned
regions. Hence, we generated two difference images using the
CVA technique: one is obtained by considering only spectral
band 4, whereas the other is generated by considering spectral
bands 4 and 5. In this way, we generated two different data sets
(with different information) on which the effectiveness of the
proposed technique was assessed.
1) Experimental Results on the Difference Image Generated

by Band 4: To assess the validity of the proposed initialization
technique, in the first experiment, a comparison was carried out
between the optimal initialization threshold t0 (which was de-
rived manually) and the initialization threshold t1 obtained by
the proposed approach. Taking four different types of Hopfield
network model (discrete and continuous with first- and second-
order neighborhoods), the initialization of each architecture
was carried out by considering the aforementioned initialization
threshold values. Table II reports the obtained change detection
results. From an analysis of the table, one can deduce that the
proposed initialization technique provided accurate initializa-
tion threshold values as the automatically derived value t1 is
always close to the manually derived optimal value t0. Fig. 6
shows the behavior of the energy value versus the initializa-
tion threshold value for continuous Hopfield model with first-

Fig. 6. Behavior of the energy value versus the initialization threshold value
(continuous Hopfield model with first-order neighborhood) for band 4, Mexico
data set. The initialization threshold value detected by the proposed approach
is pointed out by an arrow.

TABLE III
OVERALL ERROR, MISSED ALARMS, AND FALSE ALARMS RESULTING

FROM THE PROPOSED CONTEXT-BASED TECHNIQUE (WITH

FIRST-ORDER CONTINUOUS MODEL), THE MTET TECHNIQUE,
AND THE CONTEXT-SENSITIVE TECHNIQUE BASED ON EM

ALGORITHM AND MRF (BAND 4, MEXICO DATA SET)

order neighborhood. It also shows the automatically derived
threshold value t1 (31), which is very close to the manually
derived optimal threshold value t0 (34). It is worth noting that
the overall change detection errors obtained by initializing the
network considering t1 are close to the errors yielded by the
optimal initialization threshold t0. In particular, by consider-
ing the best architecture (first-order continuous model), the
proposed technique resulted in an overall change detection
error equal to 2817 pixels, which is close to the optimal one
(2589 pixels).

In the second experiment, the change detection map pro-
duced by the proposed approach was compared with the change
detection maps produced by the MTET procedure and the
context-sensitive EM+MRF technique (see [12]). Table III
shows that the overall error obtained by the proposed method
is much smaller than the overall error incurred by the context-
insensitive MTET technique. Concerning the error typology,
by considering the best architecture, the proposed technique
resulted in 660 missed alarms and 2157 false alarms, whereas
the MTET procedure involved 2404 missed alarms and 2187
false alarms. For a better understanding of the behavior of the
different methods, Fig. 7 depicts the change detection maps
produced by them. A visual comparison points out that the pro-
posed approach, due to a proper exploitation of the contextual
information, generates a more smooth change detection map
compared to the MTET procedure. Table III also presents the
best change detection results obtained by the context-sensitive
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Fig. 7. Change detection maps obtained for the band 4 data set related to the
Mexico area by using (a) the MTET technique and (b) the proposed technique
(first-order continuous model).

TABLE IV
CHANGE DETECTION RESULTS OBTAINED BY THE PROPOSED

APPROACH (CONSIDERING FOUR DIFFERENT NETWORK MODELS)
INITIALIZED BY THE OPTIMAL INITIALIZATION THRESHOLD t0

AND THE AUTOMATICALLY DERIVED INITIALIZATION

THRESHOLD t1 (BANDS 4 AND 5, MEXICO DATA SET)

EM+MRF technique, when the parameter β of MRF [12] was
set to 1.5 (this value was defined manually and corresponds to
the minimum possible error). From the table, one can see that
the overall change detection error obtained by the proposed
technique is smaller than the minimum error yielded by the
EM+MRF technique. In particular, when adopting the first-
order continuous model, the number of missed alarms decreases
from 946 to 660, and the number of false alarms decreases
from 2257 to 2157. In addition, the proposed technique does
not require the optimization of the parameter β, thus, resulting
in a more practical tool for operational applications.
2) Experimental Results on the Difference Image Generated

by Bands 4 and 5: Concerning the first experiment, Table IV
shows the optimal (t0) and the automatically derived (t1)
initialization thresholds and the corresponding change detection
results obtained using the four considered network architec-
tures. From an analysis of these results, it is also possible
to observe that in this case the threshold value t1 (which is
automatically derived by the proposed initialization technique)
is close to the manually derived optimal threshold value t0.
Fig. 8 depicts the behavior of the energy value versus the
initialization threshold value for the discrete Hopfield model
with second-order neighborhood [it also shows the automati-
cally derived threshold value t1 (39), which is very close to
the manually derived optimal threshold value t0 (43)]. From
the table, it is observed that the overall change detection errors
obtained by initializing the network with t1 are very close to

Fig. 8. Behavior of the energy value versus the initialization threshold value
(discrete Hopfield model with second-order neighborhood) for bands 4 and 5,
Mexico data set. The initialization threshold value detected by the proposed
approach is pointed out by an arrow.

TABLE V
OVERALL ERROR, MISSED ALARMS, AND FALSE ALARMS RESULTING

FROM THE PROPOSED CONTEXT-BASED TECHNIQUE (WITH

SECOND-ORDER DISCRETE MODEL), THE MTET TECHNIQUE,
AND THE CONTEXT-SENSITIVE TECHNIQUE BASED ON EM

ALGORITHM AND MRF (BANDS 4 AND 5, MEXICO DATA SET)

the optimum results obtained with t0. As an example, consider
the second-order discrete network model where the proposed
technique resulted in an overall error of 3355 pixels, whereas
the minimum overall error was equal to 3253 pixels.

The results obtained in the second experiment (see Table V)
confirm the validity of the presented context-based technique.
In particular, considering any of the four network models,
the overall change detection error was reduced, as compared
with the one incurred when using the manual optimal context-
insensitive MTET technique. For example, for the second-order
discrete network architecture, the overall error obtained with
the proposed context-based technique was equal to 3355 pixels,
whereas the error yielded by the MTET technique was equal
to 7136 pixels. In greater detail, the number of missed alarms
decreased from 4006 to 1351, and the number of false alarms
was reduced from 3130 to 2004. Fig. 9 shows the change detec-
tion maps produced by the two techniques. A comparison be-
tween these two maps points out the capability of the proposed
method to exploit the spatiocontextual information for reducing
the noise present in the maps. The proposed technique pro-
vided an overall accuracy comparable with that yielded by the
context-sensitive EM+MRF technique (with the optimal value
of the parameter β equal to 1.1). Concerning the error typology,
the EM+MRF approach increased the missed alarms from
1351 pixels to 1866 pixels, whereas the false alarms are reduced
from 2004 pixels to 898 pixels, decreasing the overall error
from 3355 to 2764 pixels.
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Fig. 9. Change detection maps obtained for the bands 4 and 5 data set related
to the Mexico area by using (a) the MTET technique and (b) the proposed
technique (second-order discrete model).

Fig. 10. Images of Sardinia Island, Italy. (a) Band 4 of the Landsat TM image
acquired in September 1995, (b) band 4 of the Landsat TM image acquired in
July 1996, (c) difference image generated by CVA technique using bands 1, 2,
4, and 5, and (d) reference map of the changed area.

C. Experimental Results on the Sardinia Island Data Set

The second data set used in the experiments was made up
of two multispectral images acquired by the Landsat Thematic
Mapper (TM) sensor of the Landsat-5 satellite in September
1995 and July 1996. The test site is a section (412 ×
300 pixels) of a scene including Lake Mulargia on the Island of
Sardinia (Italy). Between the two aforementioned acquisition
dates, the water level in the lake increased (see the lower
central part of the image). Fig. 10(a) and (b) shows channel
4 of the 1995 and 1996 images. As done for the Mexico data
set, also in this case, a reference map was manually defined
[see Fig. 10(d)] according to a detailed visual analysis of
both the available multitemporal images and the difference
image [see Fig. 10(c)]. At the end, 7480 changed and 116 120
unchanged pixels were identified. As histograms did not show
any significant difference, no radiometric correction algorithms
were applied to the multitemporal images. The images were
coregistered with 12 ground control points resulting in an

TABLE VI
CHANGE DETECTION RESULTS OBTAINED BY THE PROPOSED

APPROACH (CONSIDERING FOUR DIFFERENT NETWORK MODELS)
INITIALIZED BY THE OPTIMAL INITIALIZATION THRESHOLD t0

AND THE AUTOMATICALLY DERIVED INITIALIZATION

THRESHOLD t1 (SARDINIA ISLAND DATA SET)

Fig. 11. Behavior of the energy value versus the initialization threshold value
(continuous Hopfield model with first-order neighborhood) for Sardinia Island
data set. The initialization threshold value detected by the proposed approach
is pointed out by an arrow.

average residual misregistration error of about 0.2 pixels on the
ground control points.

Similar experiments as described in Section IV-A were car-
ried out on this data set to further prove the validity of the pre-
sented technique. To this end, we applied the CVA technique to
spectral bands 1, 2, 4, and 5 of the two multispectral images, as
preliminary experiments show that the above channels contain
useful information on the changes in water level.

Also in this case, in the first experiment, we considered
four Hopfield network architectures. The initialization of each
architecture was carried out by considering both the manually
derived optimal threshold t0 and the automatically derived
threshold t1. The corresponding change detection results are
reported in Table VI. By analyzing the results displayed in
the table, one can deduce that, also in this case, the proposed
initialization technique provided a threshold value t1 that is
very close to the optimal initialization threshold t0. Fig. 11
shows the behavior of the energy value versus the initialization
threshold value for continuous Hopfield model with first-order
neighborhood. By considering this architecture, the proposed
technique incurred an overall error of 1515 pixels, which is
equal to that of the optimal one (as t0).
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TABLE VII
OVERALL ERROR, MISSED ALARMS, AND FALSE ALARMS RESULTING

FROM THE PROPOSED CONTEXT-BASED TECHNIQUE (WITH

FIRST-ORDER CONTINUOUS MODEL), THE MTET TECHNIQUE,
AND THE CONTEXT-SENSITIVE TECHNIQUE BASED ON EM

ALGORITHM AND MRF (SARDINIA ISLAND DATA SET)

Fig. 12. Change detection maps obtained for the Sardinia Island data set
by using (a) the MTET technique and (b) the proposed technique (first-order
continuous model).

By analyzing the results of the second experiment shown in
Table VII, one can conclude that the overall change detection
error obtained by the proposed context-sensitive technique is
slightly better than the overall error produced by the MTET
procedure. In particular, the overall change detection error
obtained with the proposed technique is equal to 1932 pixels
in the worst case (considering the second-order discrete model)
and equal to 1515 pixels in the best case (considering the
first-order continuous model). This error should be compared
with an overall error of 1890 pixels produced by the MTET
technique. Fig. 12 shows the change detection maps produced
by the two techniques for visual comparison. Table VII shows
that the proposed context-sensitive technique provided better
accuracy than the best result yielded by the context-sensitive
EM+MRF technique. Considering the first-order continuous
network architecture, the proposed context-sensitive approach
incurred an overall error equal to 1515 pixels (1060 missed
alarms and 455 false alarms), whereas the overall error for the
context-sensitive EM+MRF approach was equal to 1700 pixels
(592 missed alarms and 1108 false alarms).

V. DISCUSSION AND CONCLUSION

In this paper, an unsupervised and automatic context-
sensitive technique for change detection in multitemporal im-
ages has been proposed. The technique models the spatial
correlation between neighboring pixels in the difference image
by using a Hopfield neural network implemented according to
a specific architecture, where connections between neurons are
properly defined. In greater detail, the architecture of the net-
work represents the difference image structure by associating
a neuron to each pixel; this allows to easily define the spatial
neighborhood of each neuron and, accordingly, to properly
define the weights of the connections among different units
(pixels). On the basis of this architecture, an energy function

associated with the state of the network is defined that models
the information present in both the radiance of the difference
image pixels and the spatial context of each unit. The state of
the network is initialized according to a simple thresholding of
the difference image; the threshold value is derived according
to a heuristic yet effective threshold selection procedure.

The presented technique shows the following advantages
with respect to the reference context-sensitive method based
on EM and MRF (EM+MRF) model presented in [12]: 1) it
is distribution free, i.e., it does not require any explicit as-
sumption on the statistical model of the distributions of classes
of changed and unchanged pixels and 2) it does not require
the setting of any input parameter (except the definition of
the neighborhood order, like in MRF) and, thus, is completely
automatic (the EM+MRF technique requires the definition of
the regularization parameter that tunes the effect of the spatial
context information in the energy function to be optimized).
The main disadvantage of the presented method is related to the
second advantage, i.e., it consists of the fact that, in the current
implementation, it is not possible to tune the influence of the
spatial context information in the minimization of the energy
function. However, this is a reasonable drawback considering
the important advantage of having no parameters to set as input
to the algorithm.

Experimental results obtained on different real multitemporal
data sets confirm the effectiveness of the proposed approach,
which significantly outperforms the standard optimal-manual
context-insensitive technique and provides an overall change
detection error comparable (in some cases, slightly smaller;
in other cases, slightly higher) to the one achieved with the
context-sensitive EM+MRF technique.

As a final remark, it is worth noting that, as the considered
Hopfield architecture has a small number of connections (each
neuron is connected only to its neighboring neurons and not to
all the neurons in the network), the proposed method is quite
fast (the convergence is reached in less than 60 iterations).
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