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Automatic Spectral Rule-Based Preliminary Mapping
of Calibrated Landsat TM and ETM+ Images
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Abstract—Based on purely spectral-domain prior knowledge
taken from the remote sensing (RS) literature, an original spectral
(fuzzy) rule-based per-pixel classifier is proposed. Requiring no
training and supervision to run, the proposed spectral rule-based
system is suitable for the preliminary classification (primal sketch,
in the Marr sense) of Landsat-5 Thematic Mapper and Landsat-7
Enhanced Thematic Mapper Plus images calibrated into planetary
reflectance (albedo) and at-satellite temperature. The classification
system consists of a modular hierarchical top-down processing
structure, which is adaptive to image statistics, computationally
efficient, and easy to modify, augment, or scale to other sen-
sors’ spectral properties, like those of the Advanced Spaceborne
Thermal Emission and Reflection Radiometer and of the Satellite
Pour l’Observation de la Terre (SPOT-4 and -5). As output, the
proposed system detects a set of meaningful and reliable fuzzy
spectral layers (strata) consistent (in terms of one-to-one or many-
to-one relationships) with land cover classes found in levels I and
II of the U.S. Geological Survey classification scheme. Although
kernel spectral categories (e.g., strong vegetation) are detected
without requiring any reference sample, their symbolic meaning
is intermediate between those (low) of clusters and segments and
those (high) of land cover classes (e.g., forest). This means that
the application domain of the kernel spectral strata is by no
means alternative to RS data clustering, image segmentation, and
land cover classification. Rather, prior knowledge-based kernel
spectral categories are naturally suitable for driving stratified ap-
plication-specific classification, clustering, or segmentation of RS
imagery that could involve training and supervision. The efficacy
and robustness of the proposed rule-based system are tested in two
operational RS image classification problems.

Index Terms—Data clustering, fuzzy rule, fuzzy set (FS), gener-
alization capability, image classification, image color analysis, im-
age segmentation, one-class classifier, prior knowledge, remotely
sensed imagery, spectral information, supervised and unsuper-
vised learning from finite data.

I. INTRODUCTION

THE EXTRACTION of kernel image information layers
from multispectral (MS) remote sensing (RS) images is a
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well-known problem in the RS literature [1]–[8]. In [1], kernel
image information layers are defined as those reliably extracted
from RS imagery by means of: 1) domain-specific (e.g., spec-
tral, geometric, textural, semantic, and contextual) prior knowl-
edge and 2) unsupervised (e.g., automatic and data-driven)
image processing techniques. This definition implies that kernel
image information layers employ no inductive learning-by-
example mechanism, i.e., they require no target class sample.

This paper presents an original modular hierarchical top-
down spectral rule-based per-pixel classifier capable of detect-
ing a set of kernel spectral (color) layers (strata or categories)
in a calibrated Landsat-5 Thematic Mapper (TM) and Landsat-
7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery.
In the proposed system, kernel spectral rules are designed to
mimic well-known spectral signatures of target land covers
taken from the RS literature. It is important to stress that,
on the one hand, the degree of user supervision required to
detect spectral rule-based kernel categories is the same as
unsupervised data clustering and far inferior to reference sam-
ple selection required by supervised classifiers. On the other
hand, the symbolic meaning (level of abstraction) of kernel
spectral categories (e.g., strong vegetation) is intermediate
between those (low) of clusters (say, nth cluster) and segments
(say, mth segment) and those (high) of land cover (informa-
tional) classes (e.g., forest). This implies that the application
domain of a kernel spectral category detection system is not
an alternative to data clustering, image segmentation, and land
cover classification. Rather, all these approaches are comple-
mentary in nature. Relevant design and implementation
characteristics of the proposed classifier based on prior spectral
knowledge are summarized below.

1) Pattern recognition is based exclusively on well-known
spectral signatures of target land covers taken from the
RS literature and adopted as (fuzzy) data templates. This
implies the following.
a) The classification system is pixel-based (context-

insensitive) and purely spectral, i.e., in feature space,
it employs no size, shape, location, texture, and se-
mantic information but spectral (color) information
exclusively. As a consequence, the proposed mapping
system is also computationally efficient.

b) Each pixel data vector consists of an MS (chro-
matic) data vector component plus a scalar brightness
[panchromatic (PAN)] variable.

c) Because no reference data set of examples is assumed
to be available, the mapping system employs no su-
pervised data learning mechanism to generate new
spectral rules dynamically.

2) The proposed system maps each pixel data vector into a
finite set of discrete spectral (color) categories (i.e., types,
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TABLE I
SPECTRAL REGIONS AND ATMOSPHERIC WINDOWS COMPARED WITH

THE LANDSAT-5 TM, LANDSAT-7 ETM+, SPOT-5 HIGH RESOLUTION

GEOMETRIC INSTRUMENT, AND ASTER CHARACTERISTICS [9].
LEGEND—∗: FOR LANDSAT-7, BAND 6 IS PROVIDED IN BOTH

HIGH AND LOW GAIN, WHICH IS IDENTIFIED AS BANDS

TM61 AND TM62, RESPECTIVELY

labels, and strata), which are called kernel spectral types
or spectral candidate areas.

3) To detect kernel spectral categories (fuzzy) decision rules,
combine several sources of (either crisp or fuzzy, de-
pending on the implementation) spectral evidence. In
particular:
a) Each (fuzzy) decision rule is a logical expression of

fuzzy sets (FSs).
b) Each (fuzzy) decision rule is designed to mimic a

well-known spectral signature of a target land cover
in different portions of the electromagnetic spectrum.

c) FSs provide a complete grid partition of the purely
spectral feature space.

4) FSs are adaptive to image statistics, i.e., the proposed
system of rules employs unsupervised data learning
mechanisms.

5) In the proposed implementation, kernel spectral cate-
gories are:
a) conceived for Landsat-5 TM and 7 ETM+ imagery

calibrated into planetary reflectance (albedo) and at-
satellite temperature [10];

b) scalable to other existing medium- to high-resolution
spaceborne optical sensors sensitive to MS and PAN
portions of the electromagnetic spectrum, such as
the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) and Systeme Pour
l’Observation de la Terre (SPOT-4 and SPOT-5) (refer
to Table I, where some acronyms adopted in the rest
of this paper are introduced, and see Fig. 1);

c) capable of replacing and/or extending the set of kernel
categories implemented in the alternative rule-based

Fig. 1. Spectral resolution characteristics of ASTER, which is mounted
onboard the Terra platform, in comparison with atmospheric windows and
Landsat-7 ETM+ spectral resolution characteristics (downloaded from [12]).
The ASTER instrument consists of three separate instrument subsystems,
namely: 1) visible and near infrared (VNIR); 2) shortwave infrared (SWIR);
and the 3) thermal infrared (TIR).

approaches, such as [1] (namely, water, roads, vegeta-
tion, nonvegetation, and ambiguous);

d) mutually exclusive and totally exhaustive [11];
e) consistent (in terms of one-to-one or many-to-one re-

lationships) with the set of land cover classes adopted
by levels I and II of the U.S. Geological Survey
(USGS) land cover classification scheme (refer to
Fig. 2, where the land cover hierarchy adopted in this
paper is depicted).

6) The output product of the proposed image mapping
system is a discrete map consisting of kernel spectral
strata. As already observed by Nagao and Matsuyama
[2, p. 30], this output map is equivalent to a primal
sketch or a preliminary map. In the Marr sense, a primal
sketch of an input image “explicitly reveals information
about geometrical distribution and organization of color
(intensity) changes” [12, p. 37].1

The proposed kernel spectral category detection system can
be considered of current interest to a large segment of RS
readership owing to its potential application domain, which is
threefold.

1) In recent years, the launch of (very) high resolution
(VHR) spaceborne MS scanners has meant that, for many
applications, purely supervised analysis is no longer fea-
sible. Surface areas to be analyzed are large and het-
erogeneous, and it is often impractical, impossible, or
too expensive to collect sufficient training samples to
estimate the statistics of every target class within the
area of interest. To overcome the limitations of purely
supervised classification of an RS imagery, two-stage
hybrid learning systems are recommended [2], [9, p. 185],
[14]. In a hybrid data learning framework, a two-
stage cascade of the proposed spectral knowledge-based
first stage with stratified image enhancement, clustering,

1Marr, who stood against the incorporation of syntactic and semantic knowl-
edge about the structure of a scene into the early stages of visual processing
[13], proposes a famous representational framework for deriving shape infor-
mation from images. It consists of a hierarchy of a primal sketch (or preliminary
map), a two-and-a-half-dimensional (2.5-D) sketch, and a three-dimensional
(3-D) model representation. In recent years, a widely accepted interpretation of
the image understanding problem conceives the high-level semantic processing
stage as provided with feedback mechanisms capable of passing on to the low-
level signal processing stage some goal-oriented symbolic information, e.g.,
information based on semantic and contextual (neighboring) rules, which are
useful in refining the initial (general-purpose) segmentation [1], [2].
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Fig. 2. Land cover hierarchy adopted in this work. Kernel spectral categories
(i.e., types, layers, and strata) detected by the proposed spectral knowledge-
based system are related to land cover (informational) classes in terms of one-
to-one or many-to-one relationships (refer to text).

segmentation, or classification second-stage algorithms is
straightforward. In particular:
a) A kernel spectral map can facilitate the work of a

human photointepreter (supervisor) in locating and
selecting regions of interest (ROIs) in an input RS
picture provided with little or no ground truth informa-
tion. Selected ROIs can provide target class examples
to either plug-in (e.g., maximum likelihood) or in-
ductive learning classifiers [e.g., multilayer perceptron
(MLP)] [15], [16].

b) Some authors strongly discourage exploitation of
state-of-the-art RS image topographic correction
methods where a single non-Lambertian surface re-
flectance model (in which the reflectance depends
on both observation and incident angles) is applied
image-wide, although this model depends on surface
roughness and is class-specific. To overcome this
problem, the land cover type of each pixel should
be known in advance [17]. If a kernel spectral map
is generated from an RS image before a topographic
normalization takes place, it is important to remember
that a single stratum of the kernel spectral map may
gather pixels belonging to two or more land cover
classes as their differences in class-specific spectral
signatures are counterbalanced by changes in illumi-
nation conditions (e.g., coniferous forests in illumi-
nated areas and deciduous forests located in shadow
areas are likely to be captured by the same kernel
spectral layer). In this context, multiple independent
stratified (i.e., layer-specific) topographic corrections
(each one is potentially capable of exploiting an

ad hoc non-Lambertian behavior) seem better suited
for compensating differences in solar illumination due
to the irregular shape of the terrain. In other words,
within each spectral map layer, similar planetary re-
flectance values are expected to be easier to project
onto separate portions of a flat-normalized reflectance
space due to differences in class labels exclusively.

c) First-stage kernel spectral strata detection can re-
duce the image domain subjected to second-stage
clustering/segmentation/classification algorithms. In
particular:

i) Stratified clustering or data quantization2 or prin-
cipal component analysis makes the unsupervised
data analysis problem easier to solve. For example,
in [1], boundaries of water regions are improved
with a clustering technique.

ii) Stratified segmentation (also refer to Section III-
G3 below) makes the image segmentation prob-
lem easier to solve. In general, it is well known
that general-purpose segmentation is less ef-
fective than category-oriented knowledge-driven
segmentation [1].

iii) Stratified classification (also refer to Section III-
G2 below) makes the supervised data classification
problem easier to solve. For example, in [1], the
vegetation spectral category detected by a spectral
rule-based system is further partitioned into clear-
cut, deciduous, and evergreen forest types by an
induced classifier.

2) A kernel spectral map can be employed to mask out
clouds and snow areas from an input raw image. For
example, in an unsupervised change detector [18], a pair
of cloud-free input scenes of the same area is required.

3) A mutually exclusive and totally exhaustive preliminary
map can provide a quick-look type of classification prod-
uct (baseline map) capable of characterizing the quality of
pictures in RS image databases. This may be useful in:
a) minimizing purchased risks resulting from cloudy

weather (traditionally, usability of raw picture data is
parameterized by a synthetic visibility ratio) as well
as undesired land surface phenomena (e.g. flooding
and drought);

b) querying a content-based image database retrieval
system;

c) providing an expert photointerpreter with a pre-
liminary spectral map more reliable (it simultaneously
exploits all spectral bands at hand) and more accurate
than the traditional photointerpretation of an unlabeled
false-color raw image composition in a 3-D color
space [19].

The rest of this paper is organized as follows. In Section II,
keywords and definitions are introduced. In Section III, the
novel spectral rule-based system is proposed. In Section IV,
to highlight its degree of novelty, the proposed approach is
compared against the related rule-based classifiers presented

2As (predictive) vector quantizers are also used for (non predictive) data
clustering [21, p. 177] a typical choice for data clustering is to employ a vector
quantization algorithm (i.e., one capable of minimizing a mean square error),
such as the standard Hard C-Means [22].
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in the RS literature in recent years. In Section V, experimental
results are presented and discussed. In Section VI, conclusions
are reported.

II. KEYWORDS AND DEFINITIONS

Inspired by Marr’s works in computer vision [13], the central
concept of primal sketch or preliminary map of an MS image,
which is introduced in Section I and adopted in the rest of
this paper, is defined as follows. “A preliminary map of an
MS image consists of a discrete set of strata (layers, types,
either mutually exclusive or overlapping in part) providing
explicit information about the spatial distribution of pixels fea-
turing similarities in multispectral values before any supervised
learning-from-data analysis takes place.” This definition yields
two important corollaries.

1) By definition, this preliminary mapping is generated
from either learning-by-rule systems, which are based on
a priori knowledge, or unsupervised learning-by-example
methods [20], [21]. As a consequence, the output product
of a traditional data clustering or image segmentation
algorithm falls in the class of preliminary maps or primal
sketches of an input MS image [22]–[26]. Vice versa, the
output product of a supervised classifier (e.g., a plug-in
maximum-likelihood classifier and a supervised inductive
learning MLP), which is known as classification (i.e.,
thematic and informational) map consisting of land cover
classes, is not a preliminary map of an input MS image.

2) By definition, this preliminary mapping is independent
of the symbolic meaning associated with the spectral
strata, which may be equal to 0. For example, neither
data clustering nor general-purpose image segmentation
algorithms provide their informational primitives (clus-
ters and segments, respectively) with any symbolic (se-
mantic) meaning (e.g., in general, clusters and segments
are identified by numbers).

A taxonomy of the several sources of a priori knowledge
capable of providing information useful in generating a prelim-
inary map of an RS image can be as follows [2]:

1) prior knowledge about acquisition conditions (e.g., date,
altitude, weather conditions, and sun elevation);

2) prior knowledge about the target surface area (e.g., refer-
ence maps and ground survey sample data);

3) prior knowledge about the intrinsic attributes of a target
object such as:
a) geometrical/spatial attributes, e.g., shape, size, orien-

tation, and location;
b) topological attributes, e.g., connectivity;
c) spectral (chromatic) properties (this is the kind of

a priori knowledge that is extracted from RS literature
and employed in this paper);

d) PAN (chromatic) properties;
e) textural properties [27].
These attributes can be employed in the light of the
compactness hypothesis, which is the basis for object
recognition [28]. It states that similar objects are close
in their representations.

4) prior knowledge about topological (e.g., adjacency, inclu-
sion, and intersection), contextual (neighboring), and/or
semantic relationships (constraints) among image ob-

jects. For example, a small vegetation segment sur-
rounded by a built-up area in the preliminary map can
be further recognized as belonging to an urban context in
the land cover map generated by the high-level processing
stage [1].

In the traditional field of artificial intelligence [20], [21],
prior knowledge-based systems of decision rules consist of a set
of simultaneous premises (conditions on scalar input variables)
and an output consequence (action), e.g.,

IF (temperature is low) and (pressure is high)

THEN (ignition value is 0.7). (1)

Let us identify premises with Ar,n, r = 1, . . . , R, where
R is the number of rules, with n = 1, . . . , N , where N is
the input space dimensionality, and consequences as Br,m,
r = 1, . . . , R,m ∈ {1,M}, where M is the output space di-
mensionality. Let us focus our attention on rules that com-
bine premises by logical AND operators. Thus, a decision rule
becomes

IF

(
N⋂

n=1

Ar,n

)
THEN (Br,m). (2)

By definition, an FS is an ordered pair FS(xn)L =
{(xn, µL(xn)|xn ∈ R, n ∈ {1, N}}, where a membership
function (MF) µL(xn), which is associated with a (e.g., lin-
guistic) label L, maps the scalar input space R to the bounded
nonnegative real membership space [0, 1]. In this case, the
IF–THEN rule is termed fuzzy [29]. If a membership space
contains only two points, i.e., 0 and 1, then the decision is not
fuzzy. In this case, it is instead termed hard or crisp. A typical
choice of a fuzzy MF is the one-dimensional (1-D) Gaussian
function.

By definition, given an N -dimensional feature space, the IF
part of a fuzzy rule consists of a logical AND combination of
one up to N 1-D FSs, which is equivalent to one N -dimensional
rule patch (activation domain), i.e., there is one rule patch per
fuzzy rule [see Fig. 3(a) and (b)] [30], [31].

III. PROPOSED APPROACH

This section aims at providing the reader with sufficient
information for the implementation to be reproduced. In partic-
ular, it describes the implemented spectral rule-based Landsat
TM and ETM+ image mapping system in terms of:

1) feature extraction;
2) automatic valley detection in a bimodal distribution to

implement feature space adaptive grid partitioning;
3) feature space adaptive grid partitioning, i.e., FS computa-

tion in feature space;
4) rule-based system architecture, which is sketched in

Fig. 4 as a top-down prior knowledge-based classifier
consisting of a first- and second-level processing of kernel
spectral categories. In particular:
a) The first-level computation of kernel spectral types

consists of:
i) Kernel spectral (fuzzy) rules, which are generated

from spectral reflectance curves extracted from
the RS literature (see Fig. 5) and partitioned into
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Fig. 3. (a) Example of irregular but complete grid partitioning of a
2-D feature space provided by a fuzzy rule-based system whose number of
fuzzy rules (rule patches) is five. The rule-based classifier proposed in this paper
pursues irregular but complete grid partitioning. It employs a fixed (application-
independent) number of rules, whereas the size of rule patches (activation
domain) is data-driven. (b) Example of scatter partitioning of a 2-D input space,
where the number and location of the IF parts of the fuzzy rules (rule patches)
are adaptive (data-driven, problem-specific). In this case, there are five fuzzy
rules whose rule patches cover a selected portion of input space where input
data samples, which are represented as black dots, are likely to fall.

Fig. 4. Two-stage spectral rule-based system architecture. Landsat bands
TM1-TM5 and TM7 are meant to be calibrated into planetary reflectance values
(albedo), band TM6 into at-satellite temperature.

different portions of the electromagnetic spectrum.
Kernel (fuzzy) spectral rules are implemented as
logical expressions of scalar (numerical) variables
combined with relational operators (e.g., ≥) and
logical operators (e.g., logical AND). Scalar vari-
ables are the Landsat bands TM1–TM5 and TM7
calibrated into planetary reflectance values (refer to
acronyms adopted in Table I). It is noteworthy that
band TM6, which is calibrated into at-satellite tem-
perature values, is not considered at this stage [10].

ii) Feature extraction and FS computation starting
from a calibrated TM1–TM7 feature space.

The first-level processing is flat, i.e., nonhierarchical,
as spectral rules and fuzzy sets can be computed in
parallel. Spectral rules are listed explicitly in this
paper to allow implementation to be reproduced.

Fig. 5. Spectral reflectance curves for green vegetation, light and dark soils,
and clear and turbid water (taken from [9, p. 276]).

b) Unlike the flat first-level processing, the second-level
processing of kernel spectral categories consists of a
hierarchy of logical expressions of binary variables.
These binary variables are the outputs of spectral rules
and FSs computed at first-level processing. Logical
operators (e.g., logical AND) are employed at this
stage exclusively. Sixty-seven spectral categories are
listed explicitly in this paper to allow implementation
to be reproduced.

5) cascade of kernel spectral category detection with strat-
ified (i.e., category-, class-, or application domain-
specific) classification, clustering, or segmentation.

For the sake of simplicity (e.g., to reduce the computa-
tion time of an operational rule-based system), crisp spectral
rules (i.e., rules whose membership space is binary, refer to
Section II) rather than fuzzy spectral rules are proposed
hereafter. It is noteworthy that a fuzzy extension of a crisp
decision rule set is straightforward, by way of commer-
cial image processing software toolboxes, by means of the
following [32]–[34].

1) Input feature normalization step, e.g., implemented
as a mathematical S-MF [32] µsn(xn) = S(xn,
Minn,Maxn) ∈ [0, 1], which is controlled by a pair
of feature-dependent bandwidth parameters Minn and
Maxn (refer further to Table III), with input variable
xn ∈ X = {x1, . . . , xN}, X ⊆ RN , where X is an
N -dimensional input space of real values (also refer
to Section II). This input feature normalization step
transforms a measurement space, which is, in general,
unbounded and provided with nonhomogeneous physical
units, into a homogeneous membership space equivalent
to a unit hypercube.

2) A fuzzy logical OR operator by maximum, which is
identified as ∪, to replace any binary logical OR operator.

3) A fuzzy logical AND operator by minimum, which is
identified as ∩, to replace any binary logical and operator.

4) A mathematical Z-MF µzi(xi)=1−S(xi,Mini,Maxi),
µzi(xi) ∈ [0, 1] equivalent to the inverse S-MF trans-
form, in place of any binary logical NOT operator.
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A. Feature Extraction

Input features (also called spectral data primitives or ele-
mentary spectral bands) of the proposed rule-based RS image
mapping system are the seven bands of the Landsat imagery,
i.e., TM1–TM7 (refer to Table I and Fig. 4), which is cali-
brated into planetary reflectance values. Spectral data primitives
TM1–TM7 are employed to extract seven spectral features
capable of capturing image-independent properties of the spec-
tral signatures of the target land cover classes. In particular,
extracted features are computed as either linear combinations
of elementary spectral bands or ratios between spectral data
primitives acquired in different (in general, adjacent) portions
of the electromagnetic spectrum (where band ratios provide a
discrete approximation of estimating the first derivative of a
continuous spectral signature at different positions across the
electromagnetic wavelength domain). The extracted spectral
features are listed hereinafter (also refer to Table I).

1) Brightness (Bright): Perceived luminance [35]. In line
with [2], it is computed as a weighted combination of
bands TM1–TM5 and TM7.

2) Visible (Vis) reflectance is the estimated reflectance in
the visible portion of the electromagnetic spectrum. It
linearly combines bands TM1–TM3 that are individu-
ally unfeasible for being employed in land cover dis-
crimination due to their typically small range and high
correlation.

3) Near-infrared (NIR) reflectance is the estimated re-
flectance in the NIR portion of the electromagnetic
spectrum.

4) Middle infrared (MIR) reflectance is the estimated re-
flectance in the MIR portion of the electromagnetic
spectrum.

5) Thermal infrared (IR) reflectance is the estimated re-
flectance in the TIR portion of the electromagnetic
spectrum.

6) Normalized difference vegetation index (NDVI), which is
aimed at reducing MS measurements to a single value for
predicting and assessing vegetation characteristics such
as species, leaf area, stress, and biomass. It should be
insensitive to shadow areas [2], [36].

7) Normalized difference bare soil index (NDBSI), which
is aimed at enhancing bare soil areas, fallow lands, and
vegetation with marked background response. This single
value should be useful for predicting and assessing bare
soil characteristics such as roughness, moisture content,
amount of organic matter, and relative percentages of
clay, silt, and sand [37].

8) Normalized difference snow index (NDSI), which is
aimed at discriminating snow/ice from all remaining
surface classes, including clouds and cold and highly
reflective barren land [38].

9) Band MIR/TIR composite (MIRTIR), which is aimed at
mitigating well-known difficulties in separating thin and
warm clouds from ice areas and cold and highly reflective
barren land [38].

1) Estimated Reflectance Variables Bright, Vis, NIR, MIR,
TIR, and MIRTIR: Because atmospheric (Rayleigh) scattering
of light decreases with wavelength, gray level differences be-
tween shadow and nonshadow areas become especially relevant

in the R, NIR, and MIR bands. To enhance this difference,
the brightness expression, adapted from [2], is the weighted
average of the calibrated TM data bands 1–5 (TM1–TM5) and
7 (TM7), i.e.,

Bright = (1/8) ∗ (TM1 + TM2 + 2. ∗ TM3 + 2. ∗ TM4
+ TM5 + TM7), Bright ∈ [0, 1]. (3)

Feature Vis combines calibrated TM data bands 1–3
(TM1–TM3) as the average of channels R, G, and B, i.e.,

Vis = (1/3) ∗ (TM1 + TM2 + TM3), Vis ∈ [0, 1]. (4)

Feature NIR is equivalent to the calibrated TM channel 4
(TM4), i.e.,

NIR = TM4, NIR ∈ [0, 1]. (5)

Feature MIR1 and MIR2 are equivalent to the calibrated TM
channels 5 (TM5) and 7 (TM7), respectively, i.e.,

MIR1 = TM5, MIR1 ∈ [0, 1] (6)

and

MIR2 = TM7, MIR2 ∈ [0, 1]. (7)

Although they both belong to the MIR portion of the
electromagnetic spectrum (refer to Table I) and tend to be
strongly correlated, channels TM5 and TM7 are dealt with
separately. In fact, despite their high correlation and similar
variance, their means are quite different. For example, in a
test image adopted in the experimental session (see Fig. 8 in
Section V), Corr(TM5, TM7) = 0.96, where Mean(TM5) =
44.6, StanDev(TM5) = 19.8, whereas Mean(TM7) = 27.8,
StanDev(TM7) = 19.0. In general, clouds and snow/ice are
highly reflective in any portion of the electromagnetic spec-
trum, except in MIR, where snow is slightly reflective.

Feature TIR is currently computed as the calibrated low-gain
TM channel 6-2 (TM62) in Kelvin degrees, i.e.,

TIR = TM62, TIR ≥ 0 K. (8)

In general, clouds tend to be colder (e.g., below 300 K; refer
to Section III-C) and feature higher reflectance at the 1700-nm
wavelength (equivalent to channel TM5; refer to Table I)
than cold and highly reflective barren land. To enhance this
difference in spectral behaviors, a well-known TM band 5/6
composite specifically developed for cloud detection is [38]

MIRTIR = (1 − MIR1) ∗ TIR, MIRTIR ≥ 0. (9)

2) Surface Type Indexes NDVI, NDBSI, and NDSI: To ex-
ploit the differences in the reflectance patterns of green vegeta-
tion from other objects’ spectral signatures, vegetation indexes
are based on ratios or linear combinations of spectral responses
in specific portions of the electromagnetic spectrum. For exam-
ple, a well-known NDVI is computed from TM data bands 3
(TM3) and 4 (TM4) as [36]

NDVI = (TM4 − TM3)/(TM4 + TM3 + 0.001)

NDVI ∈ [−1, 1]. (10)
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Important properties of NDVI are the following.

1) Within the same leaf-on (leaf-off) season, NDVI is
scarcely affected by the time of acquisition.

2) In line with the ratio vegetation index RVI = TM4/TM3,
which is adopted in [2], NDVI is useful in extracting
vegetation regions even when they are in shadow.

3) NDVI per se is unable to highlight subtle differences in
canopy density [37]. Based on our experience, condition
NDVI > 0.35 is a strong (necessary, but not sufficient)
indication of the presence of vegetated areas.

4) According to [36], where two indexes are considered
equivalent if the decision made on the basis of one index
could have been made equally well on the basis of the
other index, NDVI is equivalent to NDVI and to the
transformed vegetation index TVI = (NDVI + 0.5)1/2

for decision making. In contrast with [2], we prefer NDVI
to RVI due to its finite range of change, which makes it
more intuitive to use, and to its many references in the
existing literature.

Similar to the concept of NDVI, the original NDBSI pro-
posed in this paper is computed from TM data bands 4 (TM4)
and 5 (TM5) according to the following equation:

NDBSI = (TM5 − TM4)/(TM5 + TM4 + 0.001),

NDBSI ∈ [−1, 1]. (11)

In general, condition NDBSI > −0.20 is a strong (necessary,
but not sufficient) indication of the presence of bare soil areas.
As far as our knowledge goes, this bare soil index is an original
adaptation of the normalized difference bare soil index “BIO”
found in [37] and is defined as

BIO = [(TM5 + TM3) − (TM4 + TM1)] / [(TM5 + TM3)

+ (TM4 + TM1)] , BIO ∈ [−1, 1]. (12)

It is noteworthy that in a test image adopted in the exper-
imental session (see Fig. 8 in Section V), standardized ver-
sions of variables NDBSI, NDVI, and BIO (i.e., standard
variables featuring zero mean and unit variance, which
makes their dynamics comparable) provide the follow-
ing statistics: Corr(NDBSI, NDVI) = −0.56. First eigenvalue
(NDBSI, NDVI) = 75% of the total variance (equal to the sum
of the main diagonal of the covariance matrix). Corr(BIO,
NDVI) = −0.69. First eigenvalue(NDBSI, NDVI) = 84% of
the total variance.

These results are consistent with a theoretical analysis of
(10)–(12). They show that NDBSI and NDVI are inversely but
less correlated than BIO and NDVI.

Features NDVI and NDBSI provide two estimates (i.e.,
ratios and derivatives) of the spectral phenomena occurring
in different portions of the electromagnetic spectrum. In our
experiments (refer to Section V below), these two estimates
provide complementary sources of evidence for separating veg-
etation from nonvegetation kernel categories with a high level
of confidence, e.g., if [(NDVI is high) and (NDBSI is low)] then
vegetation is very likely to occur.

To enhance the difference between the typical spectral
signatures of snow/ice from other objects’ spectral signatures

TABLE II
TASSELED CAP COEFFICIENTS FOR LANDSAT-7 ETM+ PLANETARY

REFLECTANCE (TAKEN FROM [40])

(including clouds and bare soil), a well-known normalized
difference snow index is [38]

NDSI = (TM2 − TM5)/(TM2 + TM5 + 0.001)

NDSI ∈ [−1, 1]. (13)

This NDSI expression exploits the peculiar property of snow
being (in general) brighter than the vegetation and bare soil in
the visible portion of the electromagnetic spectrum and (much)
darker than the clouds at the 1700-nm wavelength (equivalent to
channel TM5; refer to Table I). Starting from this prior spectral
knowledge, our system replaces band TM2 in (13) with feature
Vis [see (4)]. Thus, (13) becomes

NDSI = (Vis − TM5)/(Vis + TM5 + 0.001),

NDSI ∈ [−1, 1]. (14)

Based on our experience, condition NDSI > 0.50 is a strong
(necessary, but not sufficient) indication of the presence of snow
areas.

Suitable for detecting built-up areas, a normalized difference
index accounting for the blue-band component in built-up areas
and barren land (NDBBBI) may be defined as

NDBBBI = (TM1 − TM5)/(TM1 + TM5 + 0.001),

NDBBBI ∈ [−1, 1]

which would be highly correlated with NDSI. Thus, in our
system, NDBBBI = NDSI.

It is noteworthy that extraction of features NDVI, NDBSI,
and NDSI based on (10), (11), and (14) may also hold for
SPOT-5 HRG and ASTER images (refer to Table I). On the
contrary, features NDBSI and NDSI cannot be extracted from a
very high spatial resolution satellite imagery such as Quickbird
and Ikonos, where no spectral band is acquired in the MIR
portion of the electromagnetic spectrum.

To summarize, the proposed rule-based classification of
Landsat imagery is expected to lose much of its efficacy in
partitioning vegetation from nonvegetation kernel categories
when it is (down-)scaled to the spectral resolution character-
izing VHR optical images like those of Quickbird and Ikonos.
This theoretical expectation is confirmed by some preliminary
experiments conducted on Ikonos imagery by the authors of this
paper. It is also supported by experimental results gathered from
the existing literature (e.g., in [39], coca plantations in tropical
forest areas can be directly identified in single-date SPOT-4
imagery, but cannot be directly detected in single-date VHR
pan-sharpened four-band Ikonos imagery).
3) Relationships Between Extracted Features and Tasseled

Cap Transformation: It is noteworthy that the set of extracted
features Bright, NDVI, and NDSI appear to be highly correlated
to the first three components, which are termed brightness,
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Fig. 6. Typical bimodal distribution, featuring a large peak and a long tail
(taken from [18]).

greenness, and wetness, of a tasseled cap transformation based
on Landsat-7 images calibrated into planetary reflectance val-
ues (refer to Table II) [40]. In the work by Huang et al., the
first three tasseled cap transformation components account for
over 97% of the cumulative spectral variance of the individual
scenes employed to optimize the tasseled cap transformation
coefficients.

Further evidence of the conceptual relationship between the
aforementioned features Bright and NDVI with the first two
components of a tasseled cap transformation for very high
spatial resolution Ikonos MS images (where no MIR channel
exists) can be found in [41]. In this work by Horne, the first two
components account for over 98% of the spectral variance of
the individual scenes employed to estimate the transformation
coefficients.

To summarize, based on the existing literature dealing with
tasseled cap transformations of RS images acquired from differ-
ent optical sensors, the aforementioned features Bright, NDVI,
and NDSI appear to provide an effective spectral space dimen-
sionality reduction irrespective (to some degree) of the sensor
at hand. However, as one of its original contributions (see
succeeding sections), this paper points out that the detection
of kernel spectral strata in spaceborne MS imagery becomes
more effective when features Bright, NDVI, and NDSI are
combined with additional features such as NDBSI, Vis, NIR,
MIR1, MIR2, TIR, and MIRTIR (defined in Sections III-A1
and III-A2).

B. Automatic Valley Detection in a Bimodal Distribution

In the proposed rule-based classifier, the input feature space
is grid-partitioned into FSs whose activation domains (rule
patches) are data-driven (i.e., FSs are adaptive to image statis-
tics) [see Fig. 3(a)]. In particular, the objective of this section
is to investigate an unsupervised data learning (automatic)
procedure capable of modeling a scalar (1-D) variable dis-
tribution, namely a first-order histogram of a typical image-
driven scalar variable (e.g., NDVI), as a combination of two
or three MFs (e.g., corresponding to linguistic variables “low,”
“medium,” and “high”). For example, Fig. 6 shows a typi-
cal histogram of a generic image variable, say, MIR1. This
histogram is approximately bimodal and characterized by a
right tail heavier than the left tail (positive skewness). Unfor-
tunately, the histogram’s valley detection algorithms proposed

Fig. 7. Unimodal distribution properly partitioned into two qualitative high
and low parts by the proposed histogram’s valley detection technique.

in existing literature, e.g., in [2], are not robust to changes in
a user-defined regularization parameter describing the width
of irregular (local) peaks or valleys. To overcome this lim-
itation, the automatic expectation–maximization (EM)-based
two-Gaussian mixture density estimator (which is guaranteed
to reach convergence) combined with a Bayesian thresholding
criterion, which is taken from [18], is adopted to split into two
a sample distribution assumed to be bimodal. It is noteworthy
that even when the input histogram is unimodal, the proposed
approach is capable of providing a correct solution (partition
into two qualitative high and low parts) (see Fig. 7). In other
words, the selected approach is robust against possible changes
in the shape (number of modes, from one to two) of the input
histogram.

C. Cloud Cover Assessment

In [38], a well-known automatic cloud cover assessment
(ACCA) approach, which is suitable for dealing with the large
cloud and land surface variability characterizing calibrated
Landsat-7 ETM+ scenes, is proposed. The algorithm handles
the cloud population in each scene uniquely by examining the
image data twice. Pass one processing is designed to capture
clouds and only clouds, i.e., errors of commission must be
minimized, whereas errors of omission are accepted. Six differ-
ent filters are used to isolate clouds and to eliminate cloudless
areas and problem land surface features such as snow and sand.
Three category classes result from pass one processing, namely,
clouds, nonclouds, and an ambiguous group that is revisited in
pass two, which is based on a thermal analysis of band TIR
exclusively.

Filters adopted in pass one of ACCA, altogether with their
adaptations exploited in this paper, are described below.

Filter 1: Band TM3, which is interpreted as brightness, is
thresholded at 0.08. Pixels that exceed this thresh-
old are passed to filter 2. In our approach, band
TM3 is replaced by features Bright, Vis, NIR,
MIR1, and MIR2, whose distinct thresholds have
to be passed independently on a pixel basis.

Filter 2: NDSI, which is implemented as (13), is thresh-
olded at 0.7. Pixels above this threshold are clas-
sified as snow (nonclouds), whereas pixels below
this threshold are passed to filter 3. In our ap-
proach, (13) is replaced by (14), which is thresh-
olded at 0.5.
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TABLE III
LINGUISTIC LABELS ASSIGNED TO FUZZY SETS PROVIDING A COMPLETE

PARTITION OF A FEATURE SPACE CONSISTING OF SCALAR VARIABLES

BRIGHT, VIS, NIR, MIR1, MIR2, TIR, MIRTIR, NDSI, NDBBBI,
NDVI, AND NDBSI DEFINED IN SECTION III-A

Filter 3: Band TIR is thresholded at 300 K (27 ◦C), which is
a realistic cloud temperature maximum. All pixels
with a temperature value below this threshold are
passed to filter 4.

Filter 4: Band TM5/TM6 composite, which is imple-
mented as the aforementioned feature MIRTIR
[refer to (9)]. Sensitivity analysis demonstrated
that a threshold setting of 225 works optimally.
Pixel values above this threshold are labeled am-
biguous in the cloud mask and are revisited in pass
two. Pixels that fall below this threshold are passed
to filter 5.

Filter 5: Band TM4/TM3 ratio, which is known as RVI
(refer to Section III-A2). RVI results in higher
values for vegetation than for other scene features,
including clouds. A threshold setting of 2.0 is
used. Pixels that exceed this threshold are labeled
ambiguous and are revisited in pass two. Pixels
with ratios below this threshold are passed to filter
6. In our testing cloud examples, this filter shows a
large range of values, i.e., its discrimination utility
appears minor. As a consequence, it is omitted in
our approach.

Filter 6: Band TM4/TM5 ratio, which is inversely related
to NDBSI [refer to (11)]. Rocks and sand tend to
exhibit higher reflectance in band 5 than in band
4, whereas the reverse is true for clouds. A thresh-
old setting of 1.0 is reported to work effectively
in eliminating highly reflective rocks and sands
in desert landscapes. Pixels that fall below this
threshold are labeled ambiguous and are revisited
in pass two. Pixels with ratios that exceed this
threshold are finally considered as belonging to
clouds (either cold or warm). In our testing cloud
cases, this filter shows a large range of values, i.e.,
its discriminating capability appears negligible. As
a consequence, it is omitted in our approach.

In ACCA, pass two processing is engaged if and only if
the following three conditions hold: 1) band TM4/TM5 ratio
is greater than 0.5 (the image lacks highly illuminated rocks
or sand); 2) colder cloud population exceeds 0.4% of the
scene (pass two is not required if the scene is cloud-free);
3) mean temperature for the cloud class is less than 295 K
(commission errors probably occurred if the mean temperature
is this warm). In our approach, pass two is omitted.

D. First-Level Processing of Kernel Spectral Categories—
Step A: Feature Space Adaptive Grid Partitioning

In line with the first-level processing of kernel spectral
categories depicted in Fig. 4, Table III reports linguistic labels
assigned to FSs (refer to Section II) whose rule patches (activa-
tion domains) provide an irregular but complete grid partition of
an input (measurement) space consisting of features Bright, Vis,
NIR, MIR1, MIR2, TIR, MIRTIR, NDVI, NDBSI, and NDSI
(refer to Sections III-A1 and III-A2).

For the sake of simplicity, in the system implementation
proposed below, FSs are rather implemented as crisp MFs
(i.e., FSs employ a binary membership space; refer to Sec-
tion II) whose activation domains are mutually exclusive and
totally exhaustive. In particular, in each row in Table III, three
FSs (whose fuzzy granules are, say, high, medium, and low)
provide a complete nonoverlapping grid partition of a scalar
variable.

Binary activation domains, where a scalar variable is parti-
tioned into two sets, are adaptive to image statistics based on the
automatic valley detection algorithm proposed in Section III-B.

Let us provide an example where (crisp) rule patches asso-
ciated with linguistic variables low, medium, and high are
automatically located through domain [−1, 1] of the scalar
variable NDVI. Starting from the NDVI distribution, the
valley detection algorithm presented in Section III-B selects an
adaptive Bayesian threshold identified as NDVITH. The acti-
vation domain of the membership function associated with
linguistic variable High is defined as the range (NDVITH, 1].
The activation domain of the membership function associated
with linguistic variable Medium is defined as [NDVITL,
NDVITH], where the (fuzzy) low NDVI threshold, identified
as NDVITL, is heuristically estimated as NDVITL = TOV ∗
(NDVITH−min(NDVI))+min(NDVI)=[0.80 ∗ (NDVITH−
min(NDVI)) + min(NDVI), where tolerance value TOV =
0.80 (80%). In other words, as a rule of thumb, a tolerance
of 20% below the crisp NDVITH value is associated with
linguistic variable Medium. For example, if NDVITH
∈ [−1, 1] is set to 0.70 by the valley detection algorithm, then
(0.80 ∗ (NDVITH − min(NDVI))) + min(NDVI) = (0.80 ∗
1.7 − 1) = 0.36. Thus, the activation domains of fuzzy sets
LNDVI, MNDVI, and HNDVI become equal to [−1, 0.36),
[0.36, 0.70], and (0.70, 1], respectively (see Table III). The
activation domain of linguistic variable Low is defined as range
[−1, NDVITL). Thus,

if (NDVI > NDVITH) then (HNDVI holds true)
else if ((NDVI ≥ NDVITL)) and (NDVI ≤ NDVITH))

then (MNDVI holds true)
else (LNDVI holds true).

If NDBSIT ∈ [−1, 1] is set to 0.00 by the automatic valley
detection algorithm, then (0.85∗ (NDBSIT−min(NDBSI))) +
min(NDBSI) = −0.15. Thus, the NDBSI activation domains
of FSs LNDBSI, MNDBSI, and HNDBSI become equal to
[−1,−0.15), [−0.15, 0.00], and (0.00, 1], respectively (see
Table III).

It is worthwhile to note that interesting image-invariant
properties seem to emerge from our preliminary analysis of
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TABLE IV
LOGICAL EXPRESSIONS IMPLEMENTING FIRST-LEVEL

KERNEL SPECTRAL RULES

a statistically meaningful sample set of distributions of the
whole set of calibrated features Bright, Vis, NIR, MIR1, MIR2,
TIR, MIRTIR, NDVI, NDBSI, and NDSI. These invariant
properties are in line with the existing literature and/or are
supported by physical/theoretical considerations. For example,
condition “if (NDVI > 0.70) then HNDVI holds true” appears
as a strong (necessary, but not sufficient) indication of the pres-
ence of the vegetated areas [36], [37]. Analogously, condition
“if (NDBSI > 0.10) then HNDBSI holds true” appears as a
strong (necessary, but not sufficient) indication of the presence
of the barren land [9]. Once proved to be image independent,
fixed thresholding of any input feature into two/three FSs
(e.g., high, medium, and low) would increase the ease of use
and decrease the computation time of the proposed automatic
system of rules. To fulfill our objective of providing sufficient
information for the implementation to be reproduced, the whole
set of image-independent thresholds currently adopted in our
crisp implementation of the proposed fuzzy rule-based system
is reported in Table III.

E. First-Level Processing of Kernel Spectral Categories—
Step B: Nonhierarchical Computation of Kernel Spectral Rules

In line with the first-level processing of the kernel spec-
tral categories depicted in Fig. 4, Table IV reports the ker-
nel spectral (fuzzy) rules (identified by suffix SR) currently
implemented in the proposed system. As reported earlier in
this text, kernel spectral rules are generated from well-known
spectral signatures adopted as (fuzzy) templates in different
portions of the electromagnetic spectrum (see Fig. 5). Each
kernel spectral rule is implemented as a logical expression of
scalar (numerical) variables combined with relational operators
(e.g., ≥) and logical operators (e.g., logical AND). By definition,
scalar variables are the Landsat bands TM1–TM5 and TM7
exclusively (i.e., excluding band TM6), which are calibrated
into planetary reflectance values. In Table IV, two arbitrary
spectral tolerance values, which are identified as TV1 > TV2,
are currently adopted to mimic fuzzy spectral rules. For ex-
ample, if TV1 is set equal to 0.7 (refer to Section III-C), then
TV2 may be set to 0.5. Thus, given a generic numeric variable
X , products (TV1 ∗ X) and (TV2 ∗ X) correspond to values
(X − 30% of X = 70% of X) and (X − 50% of X = 50% of
X), respectively.

Let us highlight the rationale in Table IV. As an example,
the implemented vegetation spectral rule V_SR is compared
with the prior spectral knowledge available in the form of the
vegetation spectral signature shown in Fig. 5. In Table IV,
V_SR is defined as

V_SR =(TM2 ≥ (0.5 ∗ TM1)) and (TM2 ≥ (0.7 ∗ TM3))

and (TM3 < (0.7 ∗ TM4))

and (TM4 > max{TM1, TM2, TM3})
and (TM5 < (0.7 ∗ TM4)) and (TM5≥(0.7 ∗ TM3))

and (TM7 < (0.7 ∗ TM5)).

Exploiting the acronyms of spectral regions (namely, B, G,
R, NIR, MIR, and TIR) introduced in Table I, the lexical
explanation of V_SR is stated as follows: V_SR is satisfied if
(G is not much “smaller” than B) and (G ≥ R, unless a “small”
degree of tolerance) and (R is “definitely smaller” than NIR)
and (NIR > Visible) and (MIR1 is “definitely smaller” than
NIR) and (MIR1 ≥ R, unless a “small” degree of tolerance) and
(MIR2 is “definitely smaller” than MIR1). This fuzzy spectral
rule is consistent with Fig. 5.

Let us also compare the vegetation spectral rule V_SR
with the rangeland spectral rule R_SR, which is defined in
Table IV as

R_SR =(TM2 ≥ (0.5 ∗ TM1)) and (TM2 ≥ (0.7 ∗ TM3))

and (TM3 < (0.7 ∗ TM4))

and (TM4 > max{TM1, TM2, TM3})
and (TM4 ≥ (0.7 ∗ TM5)) and (TM5≥(0.7 ∗ TM4))

and (TM5 > max{TM1, TM2, TM3})
and (TM7 < (0.7 ∗ max{TM4, TM5})
and (TM5 ≥ TM7).
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The lexical explanation of R_SR is stated as follows: R_SR
is satisfied if (G is not much “smaller” than B) and (G ≥ R,
unless a “small” degree of tolerance) and (R is “definitely
smaller” than NIR) and (NIR > Visible) and (NIR and MIR1
are “similar”) and (MIR1 > Visible) and (MIR2 is “definitely
smaller” than the maximum between NIR and MIR1) and
(MIR1 ≥ MIR2). It is worth noting that according to the im-
plementation of fuzzy spectral rules R_SR and V_SR previ-
ously proposed, the intersection between R_SR and V_SR is
always null, the former rule requiring (TM5 ≥ (0.7 ∗ TM4)),
the latter (TM5 < (0.7 ∗ TM4)). Spectral rules BBC_SR and
V_SR are disjunctive too, the former rule requiring condition
(TM5 ≥ (0.7 ∗ TM4)), the latter asking for (TM5 < (0.7 ∗
TM4)). Spectral rules SHV_SR and SHB_SR are disjunctive
too (refer to Table IV).

F. Second-Level Processing of Kernel Spectral Categories:
Hierarchy of Logical Functions

Unlike the flat first-level processing where kernel (fuzzy)
spectral rules can be computed in parallel, the second-level
processing of kernel spectral categories is a hierarchy of logical
functions combining logical (Boolean) variables with logical
operators (e.g., logical AND). These second-level input logi-
cal variables are the output of the kernel spectral rules and the
FSs computed at first-level processing.

Table V provides a description of the implemented hierarchy
of kernel spectral categories (i.e., types and strata), which are
also called spectral candidate areas [2]. In its current imple-
mentation, the proposed system computes 67 kernel spectral
categories, including category “unknown.” Of the 67 spectral
categories, 46 are leaves of the decision tree, identified by suffix
LSC. The remaining kernel spectral categories, which are not
leaves of the decision tree, are identified by suffix SC.

Intersections between the three FSs (i.e., high, medium, and
low) detected along the two 1-D indexes NDVI and NDBSI
(refer to Section III-D) generate nine rule patches provided with
an intuitive symbolic meaning (as NDVI increases with vegeta-
tion, whereas NDBSI increases with built-up areas and barren
land). As a function of these nine rule patches, Table VI shows
the distribution across the decision space of the implemented
kernel spectral categories described in detail in Table V.

Table VII provides the hierarchical set of logical expressions
capable of generating the complete list of 67 kernel spectral
categories described in Table V. This hierarchy of logical
expressions is equivalent to an ordered sequence of the so-
called hierarchical sublevels (HSLs), where each HSL consists
of logical expressions eligible for being computed in parallel.
To summarize, second-level kernel spectral categories are func-
tions of first-level kernel spectral rules (refer to Table IV) and
FSs defined in Table III, as well as second-level kernel spectral
categories computed at lower HSLs. It is noteworthy that kernel
spectral categories defined in Table VII are exhaustive and
mutually exclusive.

G. Stratified Classification/Clustering/Segmentation in
Cascade to Spectral Rule-Based Preliminary Mapping

It is well known that purely supervised (e.g., MLP-based)
image classification approaches may be replaced by hybrid

learning classification systems to better deal with the inherent
spectral and spatial variability of RS imagery (see Sections I
and II). Our aim is to investigate a cascade of a prior spectral
knowledge-based preliminary mapping first stage with stratified
(i.e., category-, class-, or application domain-specific) classifi-
cation, clustering, or segmentation second-stage algorithms.

In general, the degree of complexity of a stratified classifica-
tion/clustering/segmentation problem decreases monotonically
with the symbolic meaning associated with informational strata.
In other words, the degree of complexity of a stratified data
analysis is expected to be (greatly) inferior to the analysis of
the whole data set. An obvious advantage is that stratified data
analysis may be conducted by simpler architectures (featuring
fewer free parameters), which are easier to use and more
capable of generalizing well [20]–[22].

Some comments on the proposed two-stage hybrid data
learning approach, with special emphasis on stratified classi-
fication and segmentation, are provided below.
1) Stratified Multiple-Class Reference Sample Selection:

Qualitative assessment (by an expert photointerpreter) of the
quality of a preliminary map generated from the proposed
spectral knowledge-based system should reveal that kernel
spectral categories (i.e., types, layers, and strata) are consistent
(in terms of one-to-one or many-to-one relationships) with land
cover (informational) classes. For example, evergreen forest
land (equivalent to USGS land cover 42) tends to be captured by
spectral map categories AV_SC and SHV_LSC. In other words,
kernel spectral layers AV_SC and SHV_LSC may be adopted
as masks to ease detection and selection of reference samples
belonging to, say, a land cover class identified as “evergreen
forest.” Additional reference samples belonging to other land
covers of interest can be localized and selected at this stage by
means of image masks (strata) generated by any combination
of kernel spectral categories.

To summarize, reference samples selected by expert photoin-
terpreters starting from first-stage kernel spectral strata may
be employed to train second-stage supervised data learning
classification algorithms (see Section I). In the framework of
a bidirectional interaction between low- and high-level image
processing (refer to Section I), detected land cover classes may
be passed back on to the low-level processing stage to refine
initial image mapping results, e.g., to reduce the extension of
the EmptySU_LSC kernel spectral layer (refer to Table VII).
2) One-Class Classifiers and Outlier Detection: Let us con-

sider a very common situation where a single target land cover
falls in one (or more) kernel spectral category (categories)
according to a one-category-to-one-class or many-categories-
to-one-class relationship. For example, land cover class “dark
pine trees” tends to be captured by spectral information layer
AV_SC (see also Table V). In this circumstance, a stratified
one-class classifier should: 1) be trained by a reference data
set extracted according to Section III-G-1 and 2) the one-class
classifier should be run on a specific subset (stratum) of the
image plane.

It is well known that any inductive learning classification
requires as output, along with the classification index of a data
input, a measure of confidence in this decision, or a refusal to
make a decision if: 1) the data point lies in the overlapping
region of two or more classes or 2) if it is found to come from
a complete new class. The latter problem is known as novelty
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TABLE V
LIST OF 67 KERNEL SPECTRAL CATEGORIES (TYPES, STRATA, OR

CANDIDATE AREAS, WHICH ARE IDENTIFIED BY SUFFIX SC),
INCLUDING 46 LEAVES OF THE DECISION TREE

(IDENTIFIED BY SUFFIX LSC)



BARALDI et al.: AUTOMATIC SPECTRAL RULE-BASED MAPPING OF LANDSAT TM AND ETM+ IMAGES 2575

TABLE V
(Continued.) LIST OF 67 KERNEL SPECTRAL CATEGORIES (TYPES, STRATA,

OR CANDIDATE AREAS, WHICH ARE IDENTIFIED BY SUFFIX SC),
INCLUDING 46 LEAVES OF THE DECISION TREE

(IDENTIFIED BY SUFFIX LSC)

TABLE VI
KERNEL SPECTRAL CATEGORIES AS A COMBINATION OF FUZZY SETS

HIGH, MEDIUM, AND LOW DETECTED ALONG SCALAR VARIABLES

NDVI AND NDBSI. (DARK SHADING) RULE PATCHES MAINLY

INVOLVED WITH RANGELAND. (UNSHADED) RULE PATCHES

MAINLY INVOLVED WITH BARREN LAND AND BUILT-UP

AREAS. (LIGHT SHADING) RULE PATCHES MAINLY

INVOLVED WITH VEGETATION

detection, outlier detection, dissimilarity representation, or fault
detection [54], [55]. If the target objects should be distinguished
from the outlier objects, but only the information of the target
class is assumed to be available although nothing is known
about the outlier class, then the outlier detection problem is also
known as one-class classification (OCC) [56], [57].

A typical approach to an OCC design in feature space is by
describing the domain of the class in terms of typical input
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TABLE VII
SECOND-LEVEL PROCESSING OF KERNEL SPECTRAL CATEGORIES.

HIERARCHY OF LOGICAL EXPRESSIONS GENERATING A SET

OF KERNEL SPECTRAL TYPES THAT ARE TOTALLY

EXHAUSTIVE AND MUTUALLY EXCLUSIVE

samples, i.e., an ideal OCC designed in feature space should
not respond to data points that lie far away from the boundary
of its training data set. This inductive learning principle is also
known as strict generalization [58]. In strict generalization, a
traditional probability density function (pdf) estimation of the
training data would allow us to consider as outliers all the
testing samples that fall in input regions with low density.
Unfortunately, due to the curse of dimensionality, traditional
pdf estimation requires a number of samples (growing expo-
nentially with input space dimensionality N ) that soon becomes
prohibitive (as N becomes greater than 10, e.g., in hyperspec-
tral data) to avoid the majority of the histogram bins being
empty [15]. Thus, an efficient OCC tries to determine in feature
space a minimal volume hypersphere around the reference
data based on a small (reduced) number of selected prototype
objects [56].

Traditionally, a good OCC should have a large fraction
of true positive (TP), which is proportional to the so-called
sensitivity, and a small fraction of false positive (FP), which
is tantamount to saying a large fraction of true negative (TN),
which is proportional to the so-called specificity, where TN +
FP = total negative samples. The dependency of TP as a func-
tion of FP is typically shown in a so-called receiver operating
characteristic (ROC) curve where: 1) any increase in sensitivity
causes a decrease in specificity and 2) the closer the curve
follows the left-hand border and then the top border of the ROC
space, the more accurate the test is [59].
3) Stratified Segmentation Versus Category-Oriented

Knowledge-Driven Segmentation: In the image-processing
literature, image segmentation techniques are divided into:
1) general-purpose segmentation approaches and 2) category-
oriented knowledge-driven algorithms [1]. In general-purpose
segmentation techniques, there is a loose or no relationship
between the adopted segmentation criteria and domain-specific
prior knowledge about target classes. In this case, if the quality
of the segmentation map is poor, it may be difficult for a
user to recover from segmentation errors. As a consequence,
general-purpose segmentation approaches are not very useful
in practice.

To avoid this limitation, i.e., to obtain more robust and re-
liable segmentation solutions, category-oriented segmentation
algorithms are developed. In this case, spectral and spatial prior
knowledge-based constraints concerning a target land cover
(e.g., roads [60]) are integrated into the segmentation criteria
(constraints).

It is noteworthy that a two-stage hybrid data learning frame-
work consisting of a cascade between a kernel spectral category
detection first stage and a stratified image segmentation second
stage [which was proposed as a potential application domain
of the novel spectral rule-based system (refer to Section I,
point 1.c.ii)] is similar, but not equivalent, to a highly recom-
mended single-stage knowledge-driven segmentation approach.
In particular, the former two-stage cascade approach does not
require integration of any spectral or spatial domain-specific
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TABLE VIII
MAIN CHARACTERISTICS OF SOME RULE-BASED CLASSIFIERS FOUND IN

THE RS LITERATURE COMPARED TO THE PROPOSED SPECTRAL

KNOWLEDGE-BASED SYSTEM

knowledge about a target land cover (e.g., roads) into the image
segmentation algorithm (as in [60], for example). In other
words, rather than employing the entire RS image as input, a
general-purpose segmentation algorithm should be run sepa-
rately on different image strata where the segmentation problem
has been made easier to solve by exploiting spectral prior
knowledge.

IV. DEGREE OF NOVELTY OF THE PROPOSED

RULE-BASED SYSTEM

To assess its potential degree of novelty, the spectral
knowledge-based fuzzy classifier proposed in Section III is
compared against several rule-based classifiers published in
the RS literature in recent years. In particular, Table VIII
compares alternative rule-based systems based on their relevant
design properties. Some of these salient functional properties
are discussed below.

A. Pixel- Versus Object-Based Systems of Rules

It is worth noting that unlike the purely spectral context-
insensitive nature of the proposed system of rules (refer to
Section I), well-known fuzzy decision rule-based classifiers,
either found in the RS literature (e.g., [1] and [2]) or
implemented in commercial image-classification software
toolboxes in recent years (e.g., [34], whose advent has actually
fostered new interest in RS image segmentation methods),
apply decision rules to homogeneous image object primitives
rather than pixels. Both rule-based approaches, whether pixel-
or object-based, have intrinsic advantages and limitations,
which are summarized below.

A well-known drawback of purely supervised context-
insensitive classification approaches is that they are often
unable to account for the large spectral and structural het-
erogeneity (clutter) of RS imagery (in particular, VHR RS
imagery; refer to Section I, point 1.c.iii). As a consequence,
their thematic maps can be affected by the so-called salt-and-
pepper classification noise effects, i.e., these thematic maps
tend to lack spatial coherence.

To circumvent this problem, a common RS practice is
to detect homogeneous image object primitives (segments)
prior to classification (e.g., see [1], [2], and [34]). Un-
fortunately, image segmentation, like any low-level signal-
processing task, is inherently ill-posed, i.e., there is no single
goal for image segmentation/edge detection algorithms as is
the case of data clustering. Although well known in existing
literature (e.g., refer to [22]–[26]), the problem of segmen-
tation ill-posedness is rather ignored in RS common prac-
tice. Beside its inherent ill-posedness, additional potential
limitations of an image segmentation stage prior to classi-
fication are a heavy computational load, large memory oc-
cupation, and complex maintenance of a segment property
table [2].

Due to its capability of effectively combining multiple
sources of fuzzy spectral evidence, the proposed pixel-based
system of rules is not affected by the salt-and-pepper classifi-
cation noise effects, i.e., it tends to generate no artifact while
preserving spatial coherence (see Section V). This implies
that the proposed image classifier requires no input image
segmentation preprocessing stage, which is equivalent to an
intrinsically ill-posed edge-preserving low-pass image filter. To
summarize, the proposed rule-based classification approach is
expected to preserve genuine but small image details while
reducing computation time and the number of arbitrary user-
defined free parameters required by the alternative segment-
based fuzzy classifiers (e.g., [34]).

B. Class of Rule-Based Systems Detecting Kernel Image
Information Layers

Table VIII reveals that the proposed approach belongs to the
same class of systems presented in [1]–[3]. In particular, the
proposed system appears to be capable of replacing/augmenting
the kernel information extraction modules designed for Landsat
TM imagery and presented in [1] and [3]. Despite being devel-
oped for satellite data rather than aerial imagery, the proposed
rule-based classifier is also suitable for providing new spectral
rules to the kernel region extraction stage designed for aerial
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image interpretation in [2]. To summarize, our paper addresses
the problem of kernel spectral surface type detection in a way
that appears to be new and of interest to the RS readership.

V. EXPERIMENTAL RESULTS

The efficacy of the proposed spectral rule-based system,
whether employed as standalone or in cascade with a stratified
classification (refer to points 1.a and 1.c in Section I), and
its robustness to changes in the input data set are tested in
two realistic RS image classification problems where Landsat-5
TM and 7 ETM+ imagery depicting extended surface areas are
provided with little or no ground truth knowledge.

It is worthwhile to recall that any classification overall ac-
curacy (OA) (precision) probability estimate pOA ∈ [0, 1] is a
random variable (sample statistic) with a confidence interval
(error tolerance) associated with it, i.e., it is a function of the
specific training and testing sets being used [22]. Based on the
assumption that reference samples are independent and identi-
cally distributed (which does not strictly hold in our case due to
spatial autocorrelation between neighboring pixels), confidence
interval (error tolerance) δ associated with probability estimate
pOA is computed according to [22]

δ =

√
(1.96)2 · pOA · (1 − pOA)

RF
(15)

where RF is the cardinality of the reference data set at hand.
For each ith class simultaneously involved in the classification
process, with i = 1, . . . , L, where L is the total number of
classes, it is possible to prove that (refer to [45, p. 294])

δi =

√
χ2

(1,1−α/L) · pOA,i · (1 − pOA,i)

RFi
, i = 1, . . . , L

(16)

where α is the desired level of significance, i.e., the risk that
the actual error is larger than δi (e.g., α = 0.01), 1 − α is the
level of confidence (e.g., 0.99), and χ2

1,1−α/L is the upper (1 −
α)/L ∗ 100th percentile of the chi-square distribution with one
degree of freedom. For example, if L equals 4 or 5, then the
upper (0.99)/L ∗ 100th percentile of the chi-square distribution
is χ2

(1,0.25) = 0.102.

A. Landsat-7 ETM+

By means of RS imagery and geospatial metrics combined
with other available geo information, forest/nonforest binary
classification maps are planned to be generated from Landsat-
5 TM scenes acquired in the late 1980s and Landsat-7 ETM+
scenes acquired around the year 2000.3 In this binary clas-
sification framework, the proposed prior spectral knowledge-
based system of rules is tested to provide a preliminary binary
partition of the input Landsat imagery into vegetation and
nonvegetation surface types, which is in line with the first
hierarchical level of the land cover classification scheme shown
in Fig. 2. This initial classification binary partition would allow

3The European Union (EU) Joint Research Centre-INFOREST biodiversity
action aims at assessing forest types and their spatial changes over several
decades at a pan-European scale [42], [43].

further detection of forest areas within the vegetated image
layer exclusively (i.e., by ignoring nonvegetated image areas).

In our experiment, first, an orthorectified Landsat scene is
extracted from the Global Land Cover Facility (GLCF) Landsat
ETM+ data set [61]. The selected scene (path/raw: 191/30,
acquired on August 3, 2001), which is 6999 × 8065 pixels in
size, depicts an area located in central Italy (Marche region).
Although the ETM+ MS bands (1–5 and 7) are radiometrically
calibrated into planetary reflectance, the thermal band ETM+
62 is calibrated into at-satellite temperature of the viewed
Earth-atmosphere system based on equations reported on the
Landsat-7 Handbook [10], whose calibration parameters are
extracted from the scene’s metafile. The image calibration
result is shown in Fig. 8, which depicts a false color compo-
sition (i.e., R: TM5, G: TM4, and B: TM1) of the selected
Landsat-7 ETM+ image. In Fig. 8, vegetated areas appear
bright green (including forest areas and crop fields), water
bodies appear dark and light blue, whereas nonvegetated land
(including ploughed agricultural fields, urban areas, and barren
land) looks pink-lilac. Finally, the spectral rule-based map,
which is shown in Fig. 9, is generated from the orthorectified
calibrated Landsat scene shown in Fig. 8. In Fig. 9, spectral
types of interest are depicted in pseudocolors according to the
following legend: vegetated candidate areas (namely, SV_SC,
AV_SC, WV_SC, SSR_SC, ASR_SC, SHR_LSC, AHR_LSC,
DR_LSC, SHV_LSC, WE_LSC, and WR_LSC) are in different
shades of green (from bright to dark), water bodies are dark
(WASH_SC) and light blue (TWA_LSC, TWASHSN_SNC),
whereas barren land and built-up candidate areas (namely,
BBB_SC, SBB_SC, ABB_SC, DBB_SC, and SHB_LSC; see
below for more details) are in brown and gray shades.
1) Qualitative Map Assessment: For the sake of simplicity,

let us focus our visual analysis on a small subset of Figs. 8
and 9, which are shown in Figs. 10 and 11, respectively,
which are 400 × 300 pixels in size. In Fig. 10, forest areas
appear in different shades of (false color) green due to the
changing illumination conditions and the nonstationary surface
type properties. In Fig. 11, most forest areas are classified as
SV_SC (bright green), with the exception of forests located on
the steepest shadow slopes or along the transitional boundaries
between forest and nonforest areas (where mixed pixels occur),
which are assigned to spectral types AV_SC (dark green)
and SHV_LSC (very dark green). In line with the theoretical
expectations, the vegetation detection system seems to be rather
insensitive to shadow areas.

Figs. 12 and Fig. 13 show a larger subset of Figs. 8 and
Fig. 9, respectively, which are 1200 × 1200 pixels in size.
It is worthwhile to note that the pixels of Fig. 12, belonging
to land cover classes whose within-class spectral variability is
large, such as urban areas and agricultural land, are mapped
into kernel spectral categories whose spatial coherence remains
high in Fig. 13. This appears as a relevant advantage of the
proposed per-pixel prior knowledge-based classifier over the
traditional pixel-based inductive learning mapping systems that
are typically affected by the salt-and-pepper classification noise
effects (see Section VI-A).
2) Quantitative Map Assessment: Starting from the output

map consisting of kernel spectral types shown in Fig. 9, a veg-
etation/nonvegetation binary map is obtained by aggregating
spectral types as described in Table IX. According to this binary
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Fig. 8. Orthorectified and calibrated Landsat-7 ETM+ image (in false colors,
RGB = bands 541) of the test area located in central Italy. Acquisition date:
August 3, 2001. Image size: 6999 × 8065 pixels.

Fig. 9. Spectral rule-based system’s output map generated from the ETM+
scene shown in Fig. 8. Vegetated surface types are in different shades of green,
water bodies are in dark and light blue, and barren land and built-up candidate
areas are brown and gray, respectively (for more details, refer to text).

image partition, 68% of the whole Landsat scene belongs to the
vegetation candidate area (identified as V) and 31.5% belongs
to the nonvegetatation surface type (identified as NV). Only a
small image percentage (0.5%, which belongs to spectral type
SU) is assigned to class unknown.

The accuracy of the vegetation/nonvegetation binary classi-
fication is assessed by means of a reference data set consisting
of 500 testing samples located by means of a simple random
sampling technique (i.e., where each pixel has an equal and an

Fig. 10. Subset (400 × 300 pixels in size) of the Landsat-7 ETM+ false color
composition image (R: TM5, G: TM4, B: TM1) shown in Fig. 8.

Fig. 11. Subset (400 × 300 pixels in size) of the spectral knowledge-based
map shown in Fig. 9. Forest covers are classified as SV_SC (bright green),
AV_SC (dark green), and SHV_LSC (very dark green). Pastures belong to the
vegetated spectral type ASR_SC (okra). Bare soils belong to the nonvegetated
spectral type BBB_SC (light brown).

independent chance of being selected; refer to [11]) on a mosaic
of 46 PAN orthophotos acquired at 1-m resolution during the
Agea flight campaign in 1998, covering a surface area of
approximately 2000 km2, which is approximately equivalent
to a 28.5-m resolution Landsat image of 1200 × 2000 pixels.
These 500 random reference samples are labeled by means
of a hierarchical visual analysis of the 28.5-m resolution MS
Landsat ETM+ scene at hand in cascade to the 1-m resolution
PAN orthophotos as described below (refer to Fig. 14).

First, 1-m resolution reference points are partitioned into
pure-forest/agricultural fields’ samples by means of a visual
interpretation of the orthophotos based on the FAO-FRA2000
forest definition, such that ambiguous forest samples are ex-
cluded at this stage [44]. Second, 1-m resolution reference
points are mapped onto the 28.5-m resolution Landsat color
scene. Finally, the 28.5-m resolution reference data set is
stratified into vegetation and nonvegetation pixels based on a
visual analysis of the Landsat imagery. This visual analysis
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Fig. 12. Subset (1200 × 1200 pixels in size) of the Landsat-7 ETM+ false
color composition image (R: TM5, G: TM4, B: TM1) shown in Fig. 8.

assigns 49 samples at 28.5-m resolution out of the 278 forest
reference examples at 1-m resolution to class nonvegetation
due to forest boundary effects in the coarse-resolution Landsat
scene. Analogously, the 217 agricultural land reference samples
are partitioned into 28.5-m resolution vegetated or ploughed
agricultural land samples. As a result, the final testing sample
set comprises 398 vegetated samples and 102 nonvegetated
samples at 28.5-m spatial resolution.

Table X shows the distribution of reference samples among
spectral types, where dark table cells correspond to misclassi-
fication occurrences (namely, three vegetated and six nonveg-
etated samples are wrongly mapped). Class-specific mapping
accuracies, the classification OA and the Kappa coefficient,
are reported in Table XI, where classification error tolerance
estimates are computed according to (15) and (16) [11].

To summarize, based on both qualitative and quantitative
results acquired over extended surface areas (namely, classi-
fication results are validated quantitatively across an area of
2000 km2, whereas qualitative validation by visual inspection
holds for the whole Landsat scene covering 45 000 km2),
the tested spectral rule-based V/NV binary classification
of a single-date Landsat imagery calibrated into planetary
reflectance is considered accurate (e.g., OA equals 98.2% ±
0.0%) and robust against the presence of shadow areas and large
within-class spectral variations. Such a first-stage preliminary
V/NV binary classification product can be input to a second-
stage forest area detector whose analysis focuses on the image
subset V exclusively, which accounts for, say, 70% of the whole
image area without requiring any user supervision.

B. Landsat-5 TM

A well-known strategy potentially capable of improving the
accuracy of a purely supervised (e.g., MLP) classification of
a very heterogeneous RS imagery (where reference data are

Fig. 13. Subset (1200 × 1200 pixels in size) of the spectral knowledge-based
map shown in Fig. 9. Forest covers and agricultural fields are classified as
SV_SC (bright green), AV_SC (dark green), or SHV_LSC (very dark green).
Nonvegetated surfaces belong to the spectral type BBB_SC (light brown),
whereas urban areas belong to spectral categories SBB_SC (dark gray) or
ABB_SC (light gray).

TABLE IX
VEGETATION/NONVEGETATION BINARY AGGREGATION

OF SPECTRAL SURFACE TYPES

Fig. 14. Hierarchical classification of a reference data set based on a visual
analysis of a 28.5-m-resolution MS Landsat ETM+ image in cascade to 1-m-
resolution PAN orthophotos.

difficult, tedious, or expensive to gather and, as a consequence,
the unrepresentative sample problem is likely to occur [22])
is to employ two-stage hybrid data mapping techniques (see
Section III-G). In line with this consideration, this section
reports on a first-stage unsupervised kernel spectral strata
detection system employed in cascade with a second-stage
supervised MLP network classifier.
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TABLE X
DISTRIBUTIONS OF TEST SAMPLES AMONG SPECTRAL

SURFACE TYPES. DARK TABLE CELLS CORRESPOND TO

MISLABELED SAMPLE OCCURRENCES

TABLE XI
ACCURACIES OF THE SPECTRAL-RULE BASED

VEGETATION/NONVEGETATION BINARY CLASSIFICATION

The Landslide Early Warning (LEWIS) project (EU Con-
tract EVG1-2001-00055) is considered a typical case of a
poorly posed RS data classification problem. The goal of this
project is to combine in-field information with multitemporal
RS spaceborne image-understanding techniques to generate
periodic “early warning maps” (updatable susceptibility maps)
of landslide-prone areas where land cover/land use changes
may lead to a decrease in slope stability. Two dates (spring and
autumn) of 30-m resolution Landsat TM imagery are collected
per year in the time period 1987–2000. Each pair of year-
specific images is potentially suitable for, first, discriminating
agricultural fields from forest areas and, second, barren land
from built-up land. Postclassification change information is ob-
tained by comparing different year-specific thematic maps. Nei-
ther ground truth information nor information about changes in
ground truth area is available. The exclusive source of reference
data is a single May 1997 panchromatic orthophoto featuring
a 1-m spatial resolution and covering a tiny portion (< 5%)
of the surface area of interest (centered on the village site of
Caramanico in southern Italy), which is depicted by the Landsat
TM images of the time series at hand (as an example, refer to
the May 1987 image shown in Fig. 15).

A first purely supervised multitemporal TM data classifica-
tion attempt conducted by nonexpert photointerpreters started
from a visual interpretation of the 1997 black-and-white or-
thophoto where four target classes are identified as follows
(refer to Table XII).

1) Arboreous. Due to difficulties in assessing different de-
grees of vegetation from panchromatic imagery, this class
is thought to be a combination of forest land (USGS 4)
plus rangeland featuring dense vegetation (USGS 3).

2) Agricultural land (USGS 2).

3) Urban or built-up land (USGS 1).
4) Barren land (USGS 7).
By means of additional time-consuming human supervision,

ROIs belonging to these four target classes and visually es-
timated as affected by no thematic change through time are
selected in the pair of Landsat images acquired for year 1987.
The inductive learning classifier selected for this experiment
is the very popular MLP network [15]. It is noteworthy that,
despite the fact that the definition of a rejection rate is a well-
known objective of any classification training phase in the RS
literature (e.g., refer to [9, p. 185]), in RS common practice,
MLP networks are often applied without any outlier detection
strategy, e.g., see [45]. This practice becomes acceptable if and
only if the adopted classification scheme is mutually exclusive
and totally exhaustive including class “unknown” [11], which
is rarely the case (refer to Section I).

In the purely supervised classification experiment at hand,
no outlier detection strategy is implemented. The selected MLP
network architecture consists of 12 input nodes (corresponding
to spectral channels in the stack of two TM images, excluding
thermal channels) and four output nodes. The MLP hidden
layer, which is selected by a model selection procedure, consists
of 24 nodes, which is in line with recommendations found in
[46]. To train and test the inductive learning MLP network,
a holdout reference data resampling method is adopted. In
particular, ROIs are randomly split into training and testing data
sets according to proportions approximately equal to 2/3 and
1/3, respectively, in line with RS common practice [22].

Training (learning) accuracies, testing (generalization) ac-
curacies, and error tolerances of the two-date four-class MLP
classification experiment for year 1987 are reported in
Table XII, where classification error tolerance estimates are
computed according to (15) and (16). In this experiment, the
training OA equals 93.6 ± 0.5% with a Kappa coefficient equal
to 0.87,4 whereas the testing OA is 86.5% ± 1.0% with a Kappa
coefficient equals 0.72.

As expected based on theoretical considerations, the two-
date four-class supervised classification map generated by the
induced MLP classifier employing no rejection rate is clearly
affected by misclassification phenomena (namely, commission
errors), e.g., cloud and snow pixels clearly visible in the May
1987 image (see Fig. 15) are assigned to barren land and built-
up land, respectively. It is noteworthy that the removal of these
transient thematic classes (which may be absent from one or
more images of the multitemporal sequence) is not straight-
forward in a purely supervised multitemporal classification
framework [48].

The operational conclusion of this purely supervised multi-
temporal classification attempt is that, due to the absence of
ground truth data, complete and accurate classification of the
1987–2000 time series of Landsat-5 TM imagery is unafford-
able in practice.

As a realistic alternative to purely supervised classification,
the proposed system of prior knowledge-based rules is adopted
to compute a sequence of single-date kernel spectral maps

4Coefficient Kappa ∈ [−1, 1] is.such that: a) 0 < Kappa < 0.4 represents
poor agreement between mapping results and the reference data set, b) 0.4 <
Kappa < 0.8 represents moderate agreement, and c) 0.8 < Kappa < 1 repre-
sents strong agreement [11].
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Fig. 15. Calibrated Landsat-5 TM image (400 × 580 pixels), in false colors
(R: band 5, G: band 4, B: band 1). Depicted area: Abruzzi region, Italy.
Acquisition date: May 26, 1987.

TABLE XII
TWO-DATE FOUR-CLASS CLASSIFICATION PROBLEM. TRAINING AND

TESTING DATA SETS AND CLASSIFICATION ACCURACIES

from the input image time series without requiring any user
supervision. As an example of a single-date kernel spectral
map, let us consider the map in Fig. 16, which is generated
from the single-date May 1987 TM image shown in Fig. 15.
In Fig. 16, kernel spectral categories are depicted in line with
Fig. 9 (refer to Section V-A).

A visual (qualitative) comparison of Fig. 16 with the input
raw image shown in Fig. 15 reveals that transient classes, such
as snow, clouds, and shadow areas, which are easy to detect
visually, are labeled correctly. More fuzzy vegetation spectral
categories like SSR_SC, ASR_SC, SHR_LSC, AHR_LSC, and
DR_LSC are validated by means of a visual comparison of
Fig. 16 with the May 1997 orthophoto. Although based on qual-
itative evidence, our conclusion is that the spectral preliminary
map shown in Fig. 16 appears to be a viable source of reliable
ground truth information.

Supported by this conclusion, one more single-date kernel
spectral category map is extracted from the second Landsat
imagery of the 1987 input pair, namely, the raw image acquired
on September 1987. ROIs originally selected for the two-date
four-class purely supervised classification problem are now
revised to be consistent with the two single-date preliminary
spectral maps and with a visual assessment of the 1997 or-

Fig. 16. Single-date kernel spectral category map generated by the spectral
rule-based system from the calibrated May 1987 Landsat TM image shown in
Fig. 15. Kernel spectral categories are depicted in line with Fig. 9 (refer to
Section V-A for more details).

TABLE XIII
FIVE-CLASS SUPERVISED CLASSIFICATION PROBLEM. CLASSIFICATION

ACCURACIES AND ERROR TOLERANCE UPON TRAINING AND

TESTING DATA SETS

thophoto. Starting from spectral categories SSR_SC, ASR_SC,
SHR_LSC, AHR_LSC, and DR_LSC found in the pair of
single-date kernel spectral maps, ROIs belonging to a new class,
which is identified as class “rangeland,” are localized in the
input May–September 1987 raw image pair. Next, a new five-
class MLP classifier is trained based on the revised reference
data set. After training convergence is reached, the general-
ization capability of the five-class MLP network is assessed
according to a holdout reference data resampling method. In
this case, testing results are shown in Table XIII. A comparison
between Tables XII and XIII reveals that the five-class MLP
classification accuracy improves the four-class MLP classifica-
tion results with regard to three out of four classes. This obser-
vation confirms the utility of a hybrid learning strategy (in this
example, prior knowledge-based in cascade with supervised
data-driven) versus purely supervised learning strategies in a
real-world RS image data mapping problem (refer to Section I).

Despite quantitative results shown in Table XIII, the overall
(image-wide) mapping accuracy of the five-class output map
is poor due to the presence of FP samples as the adopted
classification scheme is not totally exhaustive (e.g., snow and
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cloud pixels are assigned to classes built-up and barren land,
respectively). To introduce a simple outlier detection strategy
(required to make any supervised RS data learning phase
effective; see [9, p. 185]), a so-called strict generalization is
pursued while ignoring the problem of input samples lying
on the overlapping region between two or more classes (refer
to Section III-G2). In particular, a sequence of simple one-
class classifiers (refer to Section III-G2) is implemented as
follows.

1) Cluster every class-specific training data set indepen-
dently (e.g., by means of a standard k-means clustering
algorithm).

2) For each class and every cluster belonging to that class,
compute the cluster’s standard deviation as the standard
deviation of the class-specific training samples falling in
the cluster’s Voronoi polyhedron (receptive field, equiva-
lent to the set of points in feature space whose Euclidean
distance from that cluster’s barycenter is minimum).

3) Exclude from further mapping (i.e., consider as outliers)
any input pattern that falls outside of a volume in input
space that wraps around each cluster’s barycenter ±q
standard deviations (typically, q equals 2 or 3).

In this application example, the outlier rejection free parame-
ter q is user-defined by means of a trial-and-error optimization
strategy. First, the temporal sequence of the single-date kernel
spectral maps is adopted as a quality ground truth data set. Sec-
ond, the rejection rate is adjusted until input samples belonging
to kernel spectral categories CL_SC, SNIC_SC, WASH_SC,
SHV_LSC, SHB_LSC, SHCL_LSC, TWASHSN_LSC, and
TWA_LSC, which are not represented in the (nonexhaustive)
target set of supervised classes (namely, “forest,” “agricultural
land,” “urban land,” “barren land,” and “rangeland”), are ef-
fectively rejected. The result of this outlier rejection strategy
is clearly visible in Fig. 17, where rejected input samples are
depicted in black (e.g., pixels belonging to kernel spectral types
clouds and snow are masked out effectively). In line with theory
(see Section III-G2), such a simple novelty detection strategy
reduces, but does not eliminate, misclassification occurrences
due to the presence of input samples lying on the overlapping
region between two or more classes (e.g., agricultural land is
overestimated against supervised classes forest and rangeland
according to kernel spectral categories adopted as the ground
truth data set).

VI. CONCLUSION

This paper presents an original prior spectral knowledge-
based context-insensitive (per-pixel) system of (either crisp or
fuzzy) decision rules designed for mapping calibrated Landsat
TM and ETM+ images into a discrete finite set of kernel
spectral categories.

The degree of user supervision required to detect kernel
spectral categories (which is null) is the same as unsupervised
data clustering and far inferior to reference sample selection
required by supervised data learning classifiers. The symbolic
meaning (level of abstraction) of kernel spectral categories is
intermediate between those of clusters and segments (which is
null) and that of land cover classes.

From a theoretical standpoint, in a two-stage hybrid data
learning framework suitable for dealing with the large spa-

Fig. 17. Two-date five-class purely supervised classification map generated by
an MLP classifier without rejection rate from two dates of Landsat-5 TM im-
agery acquired in May (see Fig. 15) and September 1987, followed by an outlier
rejection step. MLP detected classes are: forest land (bright green), agricultural
land (dark gray, clearly overstimated), built-up land (in light gray, erroneously
assigned to shadow areas), barren land (brown, erroneously assigned to clouds),
and rangeland (dark green). In cascade to purely supervised classification, a
strict generalization stage is employed to reject novel input patterns, which are
shown in black. In line with theoretical expectations, outliers mainly belong
to thematic classes not implemented in the adopted five-class classification
scheme, namely, snow, clouds, and shadow areas.

tial and spectral complexity characterizing RS imagery, the
proposed purely spectral mapping system can be conceived
as an unsupervised learning first stage (where no reference
sample is required) to be employed in cascade with stratified
(i.e., category-, class-, and application domain-specific) data
clustering, image segmentation, and classification second-stage
algorithms (exploiting context-sensitive mapping criteria such
as spatial, contextual, geometric, and textural properties of
target land cover classes).

The potential utility of the proposed rule-based system is
tested in two experiments where the classification of Landsat
imagery depicting extended surface areas is provided with little
or no ground truth knowledge. Both experiments prove that
kernel spectral maps can be considered a reliable source of prior
spectral knowledge useful in a variety of RS data understanding
applications such as vegetation/nonvegetation binary mapping,
stratified classification, and outlier detection.

Designed for calibrated Landsat imagery, the proposed sys-
tem of rules is easily scalable to other high and medium
spatial-resolution spaceborne optical sensors like SPOT-4 and
-5 (either one featuring no TIR channel) and ASTER.

Vice versa, the spectral resolution characterizing the very
popular VHR spaceborne optical sensors like Ikonos and
QuickBird, which feature neither MIR nor TIR channel, makes
the proposed spectral knowledge-based classification scheme
unable to provide a complete and reliable RS image binary
partition into the two basic kernel categories, i.e., vegetation
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and nonvegetation (refer to Fig. 2). This conclusion is supported
by the additional experimental results gathered from existing
literature [39]. It is also theoretically supported by well-
known vegetation-specific spectral properties requiring condi-
tions (Vis � NIR) and (NIR � MIR), which are equivalent to
conditions (NDVI is high) and (NDBSI is low) [which exclude
pixels belonging to class rangeland (refer to the proposed
system of rules)]. Two corollaries stem from this conclusion.

1) In a fully automatic spectral knowledge-based classifica-
tion framework, NDVI is clearly unable, both theoreti-
cally and experimentally, to guarantee a complete and
reliable vegetation/nonvegetation image partition as this
index alone is unfeasible to highlight subtle differences
in canopy density (like those characterizing the USGS
land cover class rangeland), as clearly acknowledged in
some existing RS literature (e.g., [37]). Irrespective of
the classification system at hand, binary discrimination
between classes vegetation and nonvegetation requires
at least a pair of indexes, e.g., NDVI and NDBSI, to
guarantee separability of these two land cover types in
feature space.

2) The spectral performance and radiometric requirements
(band centers and spectral widths) of the existing VHR
spaceborne optical sensors, which are supporting neither
MIR nor TIR bands, appear clearly unsuitable for sup-
porting fully automatic prior spectral knowledge-based
image classification systems. Rather, VHR data classifi-
cation systems must heavily rely upon supervised data
classification approaches based on (expensive, difficult to
gather) reference data sets.

A final remark regards recent experimental statistics gathered
in ongoing applications of the proposed prior knowledge-based
system. These statistics appear to indicate that thresholds in-
volved in the definition of FSs listed in Table III are invariant to
changes in the geographic position of the calibrated input image
(as anticipated in Section III-D). This important operational de-
velopment would further increase the usability of the proposed
system without decreasing its adaptivity to changing input
data sets.

Future developments of the proposed spectral rule-based
classifier will focus on stratified segmentation and classification
to extract cropland from vegetated candidate areas and bare soil
cropland from nonvegetated candidate areas based on geometric
properties such as segment compactness and straightness of
segment boundaries, in line with [2].
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