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Abstract—This letter introduces the -Huber loss function in the
support vector regression (SVR) formulation for the estimation
of biophysical parameters extracted from remotely sensed data.
This cost function can handle the different types of noise contained
in the dataset. The method is successfully compared to other cost
functions in the SVR framework, neural networks and classical
bio-optical models for the particular case of the estimation of ocean
chlorophyll concentration from satellite remote sensing data. The
proposed model provides more accurate, less biased, and improved
robust estimation results on the considered case study, especially
significant when few in situ measurements are available.

Index Terms—Biophysical parameter estimation, Medium
Resolution Imaging Spectrometer (MERIS), ocean chlorophyll
concentration, regression, robust cost function, Sea-viewing Wide
Field-of-view Sensor (SeaWiFS)/SeaWiFS Bio-Optical Algorithm
Mini-Workshop, support vector machine (SVM).

I. INTRODUCTION

I N REMOTE sensing data analysis, the estimation of bio-
physical parameters is of special relevance in order to un-

derstand better the environment dynamics at local and global
scales [1]. For instance, remotely sensed images can be used to
estimate crop yield, defoliation, biomass, leaf area index, water
content, yellow substance, pollution, and chlorophyll concentra-
tion. In order to relate the image acquired by the satellite sensor
to biophysical parameters, model-based estimation algorithms
are commonly used. Two different approaches can be consid-
ered. In physical modeling, predefined direct models of the es-
timated biophysical parameters are adopted. These models are
designed to account for all parameters affecting the radiometric
characteristics of the remote sensing data, such as atmospheric
conditions, sun angle, sensor gain and offset, and viewing ge-
ometry. In empirical modeling, regression techniques are com-
monly developed. These techniques relate the remotely sensed
data with the investigated biophysical parameter according to
interpolation methods applied over a training set constituted by
pairs of in situ measurements and collected radiances.
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The simplification assumptions intrinsic to physical models
and the complexity of the inversion process (e.g., large number
of variables and physical processes, and complex mathematical
formulations) resulted in an increased interest in the use of
empirical models. Many different empirical models have been
proposed in the literature (e.g., linear, exponential, polynomial),
but these models are often too simple to capture the relation-
ships between remote sensing measurements and investigated
biophysical parameters, and also to encode in a set of param-
eters the spatio-temporal variability of the related processes.
For these reasons, recently nonlinear regression techniques
based on neural networks have been introduced in the remote
sensing literature [2]. Different models and architectures of
neural networks have been considered for the estimation of
biophysical parameters [2]–[5]. However, despite their po-
tential effectiveness, neural networks present some important
drawbacks: 1) design and implementation often results in a
complex, time-consuming task; 2) following the minimization
of the empirical risk, rather than the structural risk, can lead
to overfitting the training data; and 3) performance can be
degraded when working with low-sized datasets. A promising
alternative to neural networks are the support vector machines
(SVMs) [6], [7], which alleviate the aforementioned problems
of neural networks [5], [8]–[10]. The support vector regression
(SVR) is the SVM implementation for regression and function
approximation [7], which has yielded good results in estimating
biophysical parameters [8]–[10].

Despite the good performance shown by the standard SVR, a
main problem still remains. Standard SVR exploits a fixed-cost
function, which implicitly assumes a specific density model for
the errors (or residuals), independently of their statistical na-
ture. This is not appropriate when working with data containing
uncertainty and different kinds of noise, as occurs in many re-
mote sensing problems. In order to address the aforementioned
problem, in this letter, we propose to include the robust -Huber
cost function (presented in [11]) into the standard SVR formu-
lation. This loss function has the advantage that it can properly
take into account different kinds of noise, and proved effective in
terms of accuracy and robustness to noise in SVM-based system
identification [12].

II. ROBUST -HUBER SUPPORT VECTOR REGRESSION

A. SVR Method With Standard -Insensitive Cost Function

Let us first recall the standard formulation of the SVR
method. Given a labeled training dataset

, where and , the SVR methodology
first maps the input data to a higher dimensional (possibly
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Fig. 1. Scheme for the SVR. Samples in the original input space are first mapped to a kernel feature space through���, and a linear regression is performed there. All
samples outside a fixed tube of size " are penalized, and become support vectors (double-circled symbols). Penalization is carried out by applying a cost function.
(a) Vapnik’s "-insensitive cost function. (b) "-Huber cost function proposed in this letter.

infinite) kernel feature space by means of a nonlinear mapping
and then solves a linear model there

(1)

where are the estimations of , is a weight vector in the
feature space, and is the bias term in the regression (see Fig. 1).
The samples generated by the underlying system are assumed to
follow an additive noise model , where are
the committed errors (or residuals) by the model.

The SVR minimizes a cost function of the committed errors,
, which is usually regularized using the squared norm of

the model coefficients in order to provide smoother solutions
and enhanced generalization capabilities

(2)

In the standard SVR formulation, one commonly uses Vapnik’s
-insensitive cost function, in which errors lower than are

not penalized [see Fig. 1(a)], and all further deviations should
incur in a linear penalization, given by

(3)

However, this cost function results in a biased estimator when
is combined with a regularization term [13]. Therefore, in many
applications, its use can lead to suboptimal results [6], [7]. In
addition, from a maximum-likelihood viewpoint, using a fixed-
cost function implies assuming a specific density model for the
residuals, which usually is not a good option in remote sensing
estimation applications (cf. Section I).

B. Proposed Robust -Huber-SVR

The latter problem can be alleviated by considering the
loss function originally presented in [11], which is defined
as follows:

(4)

where , is the insensitive parameter, and and
tune the tradeoff between the -norm regularization of the

coefficients and the losses [Fig. 1(b)].

Note that (4) represents a (slightly) modified Vapnik’s -in-
sensitive cost function when is small enough, and Huber’s cost
function when [6]. Hence, we refer to this robust cost func-
tion as the -Huber loss function. In this cost function, there are
three different regions, allowing us to deal with different kinds
of possible situations. The -insensitive region does not penalize
errors lower than . The quadratic cost region takes into account
the observation noise with the -norm in this zone (which is ap-
propriate for Gaussian processes). The linear cost zone limits the
effect of outliers on the model parameter estimation.

By including (4) into (2), the estimation of the SVR coeffi-
cients can be stated as the minimization of

(5)

with respect to , , and ,1 constrained to

(6)

(7)

(8)
where and are slack variables introduced to deal with per-
mitted positive or negative errors, respectively (see Fig. 1). In
this formulation, and are the sets of samples for which
losses are required to have a quadratic and a linear cost, respec-
tively. Note that these sets are not static during the optimization
procedure but updated at each iteration.

The procedure for solving this problem is analogous to the
one used for optimizing the standard SVR (for full details see
[13]). We first procede to include linear restrictions (6)–(8) into
(5) by means of Lagrange multipliers , associated to
each sample

(9)

1Hereafter, f� g and f� g will be denoted with f� g for the sake of no-
tation simplicity. The same notation will be used with Lagrange multipliers
f� g and f� g.
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which is constrained to , , . Now (9) has to be
minimized with regard to primal variables ( , , and ) and
maximized with regard to the Lagrange multipliers ( and

). Therefore, by making zero the gradient of with respect
to the primal variables, we obtain the following conditions:

(10)

(11)

if

if
(12)

If constraints (10)–(12) are included in the Lagrange functional
(9) in order to remove the primal variables, the dual problem

is then obtained, and it corresponds to

(13)

constrained to and to (11) where

, , and represents the
kernel matrix satisfying Mercer’s
condition [14].

It is straightforward to demonstrate that the dual problem is
equivalent to

(14)

where is a unitary vector and is the identity
matrix. Note that the only difference with the standard -SVR
formulation is that the term is added to the diagonal of the
kernel matrix . Full theoretical insight on the effect
of in the solution can be obtained from [11]. The optimiza-
tion of (14) constitutes a quadratic programming (QP) problem
whose final solution then becomes

(15)

where only the training examples whose corresponding La-
grange multipliers are nonzero count in the solution and are
called support vectors (SVs).

C. Model Development

The solution of a (nonlinear) SVR is obtained by taking the
dot product in kernel-generated spaces [see (15)]. Some kernels

are available in the literature. Nevertheless, in this work, we
restrict ourselves to the use of the radial basis function (RBF)
kernel, , due to theo-
retical [7], [15] and computational convenience. We followed a

nonexhaustive iterative search strategy to select the free param-
eters , , and . Basically, at each iteration ( iterations), a
sequential search on every parameter domain is performed by
splitting the range of the parameter in linearly or logarith-
mically equally spaced points. Values of and
exhibited good performance in our simulations.

III. EXPERIMENTAL RESULTS

In this section, we compare three types of loss-based SVRs:
1) the standard -insensitive SVR ( -SVR); 2) the squared loss
SVR; and 3) the proposed -Huber-SVR. In addition, we include
results obtained with neural networks and classical empirical
models. We benchmark models in terms of accuracy and bias
of the estimations, and robustness when low number of training
samples are available in two different datasets related to the es-
timation of chlorophyll concentration. However, these are only
examples of applications, as the proposed methodology is gen-
eral and can be applied to any kind of estimation problem.

A. Data Description

Performance is illustrated in the particular problem of mod-
eling the nonlinear relationship between chlorophyll concentra-
tion and marine reflectance. This is a specially well-suited case
study because chlorophyll concentration measurements are sub-
ject to high levels of uncertainty depending on: 1) the difficulties
in ground-truth data acquisition; 2) the complexity to obtain a
precise geometrical association between in situ measurements
and satellite-derived data, which is mainly due to the time mis-
match between the acquired image and the recorded measure-
ments (e.g., critical for coastal water monitoring); and 3) the
noise that affects the acquisition phase. In this work, we use the
following two different datasets for illustration purposes.

1) The first dataset simulates data acquired by the Medium
Resolution Imaging Spectrometer (MERIS) onboard Envisat
(MERIS dataset), and in particular the spectral behavior of
chlorophyll concentration, , in the subsurface waters. We
selected the eight channels in the visible range (412–681 [nm]),
following the work in [16]. The range of variation of the chloro-
phyll concentration is from 0.02–25 mg/m . The data were
generated according to a fixed (noise-free) model, and thus
uncertainty is not encountered. The total number of samples
(pairs of in situ concentrations and received radiances) available
for our experiments was equal to 5000. These samples were
randomly divided into three sets: a training set (500 samples)
used to build the model, a validation set (500 samples) used to
select the best combination of free parameters, and a test set
(4000 samples) used to assess the accuracy of the estimator.

2) The second dataset (SeaBAM) [17], [18] gathers 919
in situ measurements of chlorophyll concentration around the
U.S. and Europe related to five different multispectral remote
sensing reflectance that correspond to some of the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) wavelengths (412,
443, 490, 510, and 555 nm). The chlorophyll concentration
values span an interval between 0.019 and 32.787 mg/m . The
available data were randomly split into three sets: 230 samples
for training, 230 samples for validation, and the remaining 459
samples for testing the performance. Note that with this parti-
tion, we intentionally generate a more difficult problem than
the one considered in [9], in which no validation set was used
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TABLE I
MEAN ERROR, ROOT MEAN-SQUARED ERROR, MEAN ABSOLUTE ERROR,

AND CORRELATION COEFFICIENT (r) OF MODELS IN THE TEST SET

and hence the model was trained using a richer (459 samples)
training set.In both cases, we transformed the concentration
data logarithmically, , according to [16].
Hereafter, units of all accuracy and bias measurements are
referred to mg/m instead of mg/m .

B. Model Accuracy and Comparison

Table I presents results in the test set for all SVR models
and datasets. For comparison purposes, we include results
obtained with a feedforward neural network trained with
backpropagation (NN-BP) for both datasets. In the case of
the SeaBAM dataset, we also include results with the models
Morel-1, Morel-3, and CalCOFI two-band (cubic and linear),
as they performed best among a set of 15 empirical estimation
models of the Cl-a concentration in [17], and results from the
-SVR obtained in [9]. We show the following measures for

the prediction errors: mean error (ME) as a measure of bias; the
root mean-square error (RMSE) and the mean absolute error
(ABSE) as a measure of accuracy, and the correlation coeffi-
cient between the desired output and the output offered by
the models as a measure of fit. From Table I, one can observe
that the proposed technique is more accurate (RMSE, ABSE)
and unbiased (ME) than the rest of the models, specially in
the MERIS data. All the models achieved high values of the
correlation coefficient. We did a one-way analysis of variance
(ANOVA) to compare the means of the three models. For the
MERIS data, appreciable numerical (see Table I) and statistical
differences between -Huber-SVR and the rest of the models
were observed for both bias ( , ) and accuracy
( , ). For the SeaBAM dataset, the proposed
method showed an improved numerical performance even if
no statistical differences were observed in bias ( ,

) or accuracy ( , ). Similar results
are obtained to those previously reported in [9], but we used
half of the training samples (this is particularly interesting
considering the few in situ measures usually available in real
biophysical parameter estimation problems).

An easy way to show results graphically is to plot predicted
versus observed representations. A plot of the best model for
the -Huber-SVR on the test set is shown in Fig. 2 (left). In
the same figure, we also show the predicted values against the
residuals for this model [Fig. 2 (right)]. These goodness-of-fit

Fig. 2. Performance of the "-Huber-SVR in the test set. (Top row) (a) Pre-
dicted versus observed concentrations and (b) predicted versus residuals for the
MERIS data. (Bottom row) (c) Predicted versus observed concentrations and
(d) predicted versus residuals for the SeaBAM data. The solid line represents
the line of identity, and the dotted one is the regression line.

graphics confirm the good predictive performance of the model.
Excellent coefficient of determination ( for MERIS
and for SeaBAM, test set) and unbiased estimations
(Slope CI , intercept CI

) or errors are observed. This is an important issue in this
problem, in which unbiased estimations are desirable.

C. Model Flexibility and Uncertainty

In addition to model accuracy demonstrated in the previous
section, the -Huber cost function provides some relevant infor-
mation about the reliability of the available data, which is ex-
tremely important when dealing with uncertainty. Fig. 3 shows
the histograms for obtained residuals with the -Huber-SVR
model. In the case where no uncertainty is present in data
(MERIS data, synthetic data generated according to a physical
model), one can see that the parameter covers a wide range
of residuals and mainly penalizes them with a squared loss
function, assuming that they belong mainly to a Gaussian
distribution, and that the (small) tails in the residuals distri-
bution are penalized linearly, assuming that (few) outliers are
present in the dataset. Note that the data we are dealing with
holds an inherent normal nature [16]. When working with
uncertainty in the data (SeaBAM dataset, real data including
several amounts and noise sources), the algorithm adapts itself
to provide tighter -pairs to accommodate the underlying
noise distributions. These histograms are plotted using the test
data, which confirms that models have captured the underlying
nature of noise from a reduced dataset, and can extrapolate this
knowledge to an independent dataset.

D. Model Robustness to Reduced Datasets

An important problem when designing an estimation study
is the number of the available in situ measurements available,
which is often scarce. In this experiment, we test the capabilities
of the models to deal with low-sized datasets. Fig. 4 shows the
behavior of the RMSE versus the number of training samples
in the SeaBAM data. We show the average value among 100
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Fig. 3. Histograms of obtained residuals with the proposed "-Huber-SVR
model for (a) the MERIS and (b) SeaBAM datasets.

Fig. 4. Evolution of the RMSE in the test SeaBAM set as a function of the
number of training samples.

different trials with different random sample selection, which
represents a good confidence interval for the least measured test
RMSE. The gain of the proposed algorithm is noticeable, ob-
taining an average improvement of 8.5% to 13% in RMSE with
respect to the other models. This effect is especially significant
when working with very reduced training sets, when an average
gain of 16.67% in RMSE is obtained with respect to the standard
-SVR method in the extreme case of using only ten training

samples. It is also worth noting that the NN-BP model closely
follows the -Loss SVR, as they use the same (quadratic) cost
function. However, the use of -loss ( -SVR) is optimal under
the maximum-likelihood estimation theory, and more appro-
priate when a priori knowledge about noise content is not avail-
able. The standard -SVR uses a cost function for the resid-
uals and hence it becomes theoretically more robust than models
using the squared cost function. However, further improvements
are obtained with the proposed -Huber-SVR, which can deal
efficiently with different noise sources simultaneously.

We can conclude that when the number of available samples
is low and samples are affected by uncertainty factors, the ver-
satility to accommodate different noise models to the available
data makes -Huber-SVR an efficient and robust model.

IV. CONCLUSION

A robust -Huber SVR technique has been presented for the
estimation of biophysical parameters extracted from remotely
sensed data. The good performance obtained in the experiments

reported in this letter (related to the estimation of chlorophyll
concentration in sea water) confirm the effectiveness of the pro-
posed approach.

Our future work is tied to: 1) extend the test of the proposed
general method to other applications of biophysical parameter
estimation; and 2) improve estimation results by including the
-Huber-SVR model in multiple estimator systems.
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