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Abstract

This paper addresses the supervised classification of remote-sensing images in problems characterized by relatively small-size training
sets with respect to the input feature space and the number of classifier parameters (ill-posed classification problems). An ensemble-dri-
ven approach based on the k-nearest neighbor (k-NN) classification technique is proposed. This approach effectively exploits semilabeled
samples (i.e., original unlabeled samples labeled by the classification process) to increase the accuracy of the classification process. Exper-
imental results obtained on ill-posed classification problems confirm the effectiveness of the proposed approach, which significantly
increases both the accuracy and the reliability of classification maps.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years the development of remote-sensing tech-
nology has made it possible to greatly enhance our ability
to monitor and manage natural resources and the environ-
ment. This technological improvement, together with the
development of advanced automatic and supervised classi-
fication techniques, resulted in the possibility to produce
reliable and accurate land-cover maps on a regular basis.
However, one of the most critical problems relating to
the supervised classification of remote-sensing images lies
in the definition of a training set of proper size for an accu-
rate learning of classifier parameters. Since the collection of
ground-reference data is an expensive and complex task, in
many cases the number of training samples is insufficient
for a proper learning of classification systems. This results
in ill-posed (or poorly-posed) classification problems (Jack-
son and Landgrebe, 2002; Baraldi et al., 2005) (also called
small-size training set problems or problems affected by the
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Hughes phenomenon (Hughes, 1968; Shahshahani and
Landgrede, 1994)), which involve classifiers with poor
generalization capabilities. This issue is particularly critical
when multisensor/multisource data sets or hyperspectral
images are considered, because due to the intrinsic high
dimension of the feature space, it is impossible to meet
the requirements on the necessary number of training
samples.

One possible way of addressing ill-posed classification
problems is to include unlabeled (or semilabeled) samples
in the training set. Though the positive effect of these pat-
terns cannot be guaranteed, several theoretical (Shahshah-
ani and Landgrede, 1994; Blum and Mitchell, 1998) and
practical (Tadjudin and Landgrebe, 1996; Bennett and
Demiriz, 1998; Fardanesh and Ersoy, 1998; Fung and
Mangasarian, 1999; Joachims, 1999; Cohen et al., 2003;
Kemp et al., 2003; Dundar and Landgrebe, 2004; Chi
and Bruzzone, 2005) studies that have been carried out in
the context of different applications (e.g. text classification
(Blum and Mitchell, 1998), computer vision (Cohen et al.,
2003), remote-sensing (Shahshahani and Landgrede, 1994;
Jackson and Landgrebe, 2002; Chi and Bruzzone, 2005)
show the validity and effectiveness of this kind of approach.
At this point, it is important to mention the works relating
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to the joint use of the expectation–maximization (EM)
algorithm (Moon, 1996) with unlabeled samples to increase
the reliability and the accuracy of the estimation of the sta-
tistical class distribution both in parametric (Shahshahani
and Landgrede, 1994; Jackson and Landgrebe, 2002) and
semiparametric (Blum and Mitchell, 1998; Cohen et al.,
2003) classifiers. However, the use of unlabeled and semila-
beled samples to solve ill-posed classification problems is
not only limited to methods based on the EM algorithm.
Other specific approaches based on nonparametric tech-
niques (e.g., neural networks (Fardanesh and Ersoy,
1998), kernel classifiers (Dundar and Landgrebe, 2004),
support vector machines (Bennett and Demiriz, 1998; Fung
and Mangasarian, 1999; Joachims, 1999), and tree-based
classifiers (Tadjudin and Landgrebe, 1996; Kemp et al.,
2003) have been proposed in the pattern recognition litera-
ture to address this issue. Nonetheless, their application to
remote-sensing problems is very limited at present.

In this paper, extending and reinforcing the work pre-
sented in (Chi and Bruzzone, 2005), we proposed a novel
ensemble-driven approach based on the joint use of labeled
and semilabeled samples for solving ill-posed classification
problems. For the dual objective of developing a nonpara-
metric method capable of dealing with multisensor/
multisource data and studying the problem in the context
of a well-established statistical classifier, we developed
our approach through the well-known k-nearest neighbor
(k-NN) technique. We chose this technique on account of
the simplicity of this basic approach and its intrinsic
inability to address ill-posed problems (which is due to
the fact that it adopts local-based estimation procedure
that significantly suffers from the very small number of
available training samples). In this way, it is possible to
assess the effectiveness of the proposed ensemble-driven
method in a very critical condition. It is worth noting that
this choice is different and complementary to the one con-
sidered in (Chi and Bruzzone, 2005), in which a multilayer
perceptron neural network (MLPNN) classification algo-
rithm (based on a global estimation procedure) was consid-
ered. The novelties of the proposed approach lie in the
following:

(i) It defines an effective scheme for generating hybrid
training sets1 by the joint use of both labeled (train-
ing) and semilabeled samples;

(ii) It develops an ensemble-driven strategy for the
proper exploitation of different classifiers based on
semilabeled samples. This strategy (in proper
assumptions) is capable of improving significantly
the classification accuracy and stability in ill-posed
problems;

(iii) It uses the k-NN classifier to address ill-posed classi-
fication problems.
1 A hybrid training set is defined in this paper as a set that includes both
original training samples and semilabeled samples.
In order to assess the effectiveness of the proposed ap-
proach, simulated ill-posed classification problems have
been defined using multispectral Landsat Thematic
Mapper images acquired on the Trentino area (Italy). Ex-
perimental results confirm that the presented method is
capable of increasing both the accuracy and robustness
of classification in ill-posed problems.

This paper is organized in four sections. In Section 2, the
proposed ensemble-driven approach based on the k-NN
technique is presented. Section 3 describes the data set used
in the experiments and the results obtained by the proposed
approach. Finally, Section 4 draws the conclusions of this
work.

2. Ensemble-driven k-NN approach to ill-posed

classification problems

2.1. k-nearest neighbor technique

The k-nearest neighbor technique is one of the simplest
statistical nonparametric classifiers that have been studied
extensively from both the theoretical and the practical
point of view. This algorithm classifies each pattern based
on the labels of the k closest training samples. This process
can be modeled as a local estimation of the conditional
posterior probabilities of classes based on the relative
frequency of the class labels in a neighborhood (defined
by the k closest training samples).

Let X be a d-dimensional feature vector, and X =
{x1, . . . ,xC} the set of C land-cover classes that character-
ize the considered problem. Let T be a training set made up
of B labeled samples. Given the pattern Xi, the k-NN esti-
mate P

_
ðxjjX iÞ of the conditional posterior probability

P(xjjXi) is obtained according to the analysis of the labels
of the k samples (included in the training set T) closest to Xi

(which define the neighbor Ni). The classification rule can
be written as

X i 2 xm if and only if

xm ¼ argmax
xj2X

P
_
ðxjjX Þ

n o

¼ argmax
xj2X

number of patterns 2 xj in Ni

k

� �
ð1Þ

It is worth noting that the k-NN technique is intrinsically
unsuitable to address ill-posed classification problems.
However, in this paper, we analyze the proposed (general)
approach in the context of this technique in order to assess
its performance with a critical (though theoretically well
established) classifier.

2.2. Ensemble-driven approach

One of the main problems relating to the use of semila-
beled samples in the classification task lies in the risk of
defining a ‘‘negative-feedback’’ loop, in which semilabeled
patterns degrade the ‘‘knowledge’’ available to the classifier
and consequently decrease classification accuracy (Jackson
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and Landgrebe, 2002). This risk is strongly related to the
probability of including misclassified semilabeled samples
in the hybrid training set, which, in turn, depends both
on the reliability of the few training samples available
and on the selection process of semilabeled samples. How-
ever, in the considered framework, information about the
classification accuracy for each selected semilabeled sample
is not available. Consequently, in order both to mitigate
the possible negative effect of misclassified semilabeled
samples and to reduce the probability of degrading the
accuracy of the classification system, the proposed ap-
proach is defined in the context of an ensemble strategy.

The architecture of the proposed system is shown in
Fig. 1, where T n

sl refers to the subset of randomly selected
semilabeled samples for the nth classifier, and To is the ori-
ginal small-size training set.

In the initial phase, only original labeled samples in-
cluded in To are used to classify unlabeled patterns (k-
NN0 classifier). Subsequently several subsets of semilabeled
samples are randomly selected from the classification maps
obtained by applying the k-NN technique to the original
image. In particular, two different steps are carried out:

(1) Individual classifiers to be included in the ensemble
are generated using randomly selected semilabeled
samples;

(2) Classifier results are combined to produce a final
classification map.

These steps are described in the following:
Step 1: Selection of semilabeled samples and ensemble

design.
Fig. 1. Block scheme of the proposed ensem
We propose to define many different subsets of semila-
beled samples T n

sl ðn ¼ 1; 2; . . . ;N � 1Þ (according to a ran-
dom procedure) and then to insert them in the original
training set. This results in N � 1 classifiers to be consid-
ered in the ensemble, which exploits N � 1 different hybrid
training sets together with k-NN0. In greater detail, the
hybrid training set of the nth classifier of the ensemble is
derived as:

T n
h ¼ T o [ T n

sl ð2Þ

It is worth noting that the hybrid training sets T n
h ðn ¼

1; 2; . . . ;N � 1Þ used for the different members of the
ensemble are defined according to an iterative procedure,
i.e., the subset T n

sl of semilabeled samples given as input
to the k-NNn is selected according to the classification re-
sults obtained from the k-NNn�1 classifier. In other words,
unlike in Shahshahani and Landgrede, 1994, Jackson and
Landgrebe, 2002, at each iteration we discard the semila-
beled samples included in the hybrid training set defined
at the previous iteration. This is possible thanks to the spe-
cific ensemble-based architecture considered, and it results
in the following two main advantages: (i) it avoids the pos-
sible accumulation of wrong information conveyed from
misclassified semilabeled samples; (ii) it exploits the infor-
mation present in the whole considered image.

A critical parameter to consider in defining the hybrid
training sets concerns the choice of the proportions be-
tween original training patterns and semilabeled samples.
On the one hand, the use of a small number of semilabeled
samples may require a very large number of classifiers to be
included in the ensemble to increase classification accuracy.
On the other hand, if the number of semilabeled samples is
ble-driven k-NN classification approach.



Table 1
Distribution of training and test patterns in the seven considered simulated
ill-posed classification problems

Land-
cover
classes

Number
of test
pixels

Number of training pixels

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

Conifers 1155 3 7 10 15 18 38 75
Trees 681 2 5 8 10 12 25 51
Grass 336 2 5 6 8 10 19 39
Water 84 1 1 1 1 2 3 6
Urban 104 1 1 2 2 3 5 10
Rocks 113 1 1 3 4 5 10 19

Overall 2473 10 20 30 40 50 100 200
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too large, it may give rise to a less controlled and con-
strained process, and consequently a degraded accuracy
would be produced by the classifiers (if the error rate asso-
ciated with the selected semilabeled samples is high). In the
proposed approach, in order to reduce the possible nega-
tive effects involved by wrongly classified semilabeled sam-
ples, the hybrid training set of each classifier is defined
considering a balanced number of semilabeled samples
and original training patterns. As regards the selection of
the semilabeled samples, the following conditions should
be satisfied at each iteration:

(1) They should not belong to the original training set.
(2) They should have a uniform spatial distribution (in

order to obtain a good spatial representation of the
class distribution in the entire analyzed image).

(3) They should be highly reliable (classification labels
associated with high values of the estimated local
conditional posterior probability should be selected).

It is worth noting that when considering semilabeled
samples, thanks to the greater number of resulting training
samples, it is possible to increase the values of k in the
k-NN classifiers and therefore to improve the reliability
of the estimation and classification tasks. In our approach,
the k value is automatically set according to the following
empirical rule:

k ¼
m; if m is odd

m� 1; if m is even

(
m ¼ 1

2
ðnmax þ nminÞ1=2 ð3Þ

where nmax, nmin are the numbers of samples of the majority
and minority classes, respectively.

Step 2: Combination rule.

Once the ensemble of classifiers is defined, the final clas-
sification map can be obtained according to any standard
combination rule. In particular, since few training samples
are available, we propose to consider only unsupervised
combination strategies, such as the majority voting scheme
(Bauer and Kohavi, 1999). This scheme associates the
generic pattern Xi to the class xj if the majority of the N

classifiers included in the ensemble decides for that class.
It is worth noting that the iterative random selection of

semilabeled samples results in different hybrid training sets,
which define significantly different classifiers. These classifi-
ers are expected to incur in uncorrelated errors, thus satis-
fying a mandatory condition to obtain an effective multiple
classifier system.

Another important remark concerns the relationship be-
tween the proposed method and bagging (Breiman, 1996).
In our method, as in bagging, we define different bootstraps
of the training set and exploit an ensemble-based architec-
ture. However, unlike bagging, the hybrid training sets
defined in the proposed approach are based on the use of
semilabeled samples, which drive the definition of each
member of the ensemble to reduce the small-size training
problem.
3. Experimental results

In this section, the experimental results obtained by the
proposed ensemble-driven approach are given. The consid-
ered data set is made up of a Landsat 5 Thematic Mapper
image acquired on the Trentino area (northern Italy). For
this data set, a large number of labeled samples were col-
lected from ground-reference data. The labeled samples
were divided into a training set and a test set. In order to
simulate ill-posed classification problems, sub-sampling
(with different rates) was applied to the training set. In
greater detail, from 4549 original patterns, 10, 20, 30, 40,
50, 100 and 200 labeled samples were randomly selected
(see Table 1), while maintaining as much as possible the
prior class probabilities of the entire training set (with the
constraint of having at least one sample for each class).
In all data sets seven features and six land-cover classes
were considered in the analysis. Hence, we are clearly deal-
ing with an ill-posed complex classification problem (e.g.,
when the size of the training set is 10, 20, 30 and 40, the
minority class has only one training pattern).

To assess the effectiveness of the proposed ensemble-
driven approach, we considered test samples as unlabeled
patterns, so that after classification semilabeled samples
were randomly extracted from them. Three trials were
carried out for each training set (with different sizes) and
then the average overall accuracies were computed.

In the experiments, when the number of training sam-
ples was less than or equal to 50, k was set to 1 for the ini-
tial classifier, given the very limited number of training
patterns available (only one for minority classes). In the
following iterations, the k value was automatically set
according to (3) (see Section 2). For the generic nth classi-
fier included in the ensemble (n = 1, . . . ,N � 1), the subsets
T n

sl of semilabeled samples were extracted from the test
samples classified by k-NNn�1 (these patterns were selected
taking into account the constraints described in Section 2).
A number of semilabeled samples that was double of that
of the original training samples was included in each hybrid
training set.

Fig. 2(a) shows the behavior of overall classification
accuracy versus the number of classifiers included in the
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Fig. 2. (a) Overall classification accuracy (average on three trials) versus
the number of classifiers included in the ensemble for different considered
simulated data sets (the upper bound refers to overall accuracy with the
original training set made up of 4549 samples) and (b) comparisons
between initial accuracy (obtained by k-NN0 on the initial training set)
and the accuracy obtained by the proposed approach using 25 classifiers
versus the number of initial training samples.

2 On the one hand, if very few semilabeled samples are used, the
approach requires the definition of ensembles made up of a very large
number of classifiers for reaching convergence (this affects the complexity
of the system design phase). On the other hand, if a large number of
semilabeled samples are used, the risk of defining a negative feedback
mechanism increases significantly (the stability of the method decreases).
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ensemble for the different simulated datasets. For compar-
ison purposes, the upper bound of the accuracy on the test
set (obtained using all 4549 training patterns originally
available) is also given. On analyzing the diagram, one
can observe that in general the proposed ensemble-driven
approach significantly increased overall classification accu-
racy. If we consider the best case (i.e., set 2 defined by 20
training patterns), overall accuracy obtained on the test
set using only the initial labeled samples was 63.12%, while
the accuracy provided by the ensemble with 25 k-NN clas-
sifiers was 78.34% (accuracy sharply increased by 15.22%).
More in general, on analyzing Fig. 2(b) (which reports
overall accuracy versus the number of initial training sam-
ples for the standard k-NN0 classifier and the proposed
approach), we can observe a different behavior of the
proposed approach for training sets of a different size. In
greater detail, in all simulated data sets the presented
method increased classification accuracy. However, this
increase is not significant in the two extreme cases (i.e.,
set 1 and set 7 which are respectively made up of 10 and
200 original training samples). For set 1 (which led to an
increase in accuracy of 4.80%), this depends on the fact
that the number of original training samples is too small
to let the ensemble capture the complexity of the classifica-
tion problem. In set 7 (which produced an increase in accu-
racy of 1.55%), the reason is that 200 training samples are
already sufficient for a reasonably good modeling of the
classification problem. For all other cases, a significant
improvement in the classification result was achieved with
the proposed approach, which increased overall accuracy
over a range between 5.9% and 15.22%. It is worth noting
that the accuracy provided by the ensemble increased also
when a significant amount of misclassified semilabeled
samples were included in the hybrid training sets. This
was possible thanks: (i) to the defined selection strategy
(which avoids accumulating wrong information conveyed
from misclassified semilabeled samples); and (ii) to the
diversity of the classifiers achieved by the adopted random
bootstrapping process.

Two more interesting observations can be made from an
analysis of Fig. 2(a): (i) as expected, on increasing the num-
ber of initial training samples, the number of classifiers to
be included in the ensemble to obtain the convergence of
overall accuracy decreases (from more than 30 classifiers
with 20 training patterns to three classification algorithms
with 200 samples); and (ii) different numbers of initial
training samples result in different overall accuracy values
at convergence. Concerning the former, in general the def-
inition of the number of classifiers needed to reach conver-
gence is a complex problem, which depends on the initial
classification accuracy, the size of the initial training set
and the number of randomly selected semilabeled samples
included in each hybrid training set. (It is worth noting that
the number of selected semilabeled samples affects not
only the convergence rate, but also the accuracy and stabil-
ity of the method).2 As regards the latter, it shows that the
proposed approach cannot recover information that is not
present in the original training set; it can only mitigate the
effect of the small number of training samples by exploiting
the structural regularized distributions of classes (and of
the related patterns) in the feature space.

On comparing the results obtained in this paper with
those yielded by the MLPNN based architecture presented
in (Chi and Bruzzone, 2005), interesting conclusions can be
drawn on the effectiveness of the proposed ensemble-driven
approach. In particular, in spite of the fact that the
MLPNN and k-NN classification techniques are based
on significantly different principles (the learning of the
MLPNN classifier is based on the minimization of a global
error function that depends on all the training samples,
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while the k-NN classifier accomplishes classification
according to a local analysis of a neighborhood of the pat-
tern to be analyzed in the feature space) and in spite also
of the fact that they provide different classification accura-
cies, the relative increase in accuracy obtained with the
proposed classification architecture is very similar (see
Fig. 3). In greater detail, as expected, even if the overall
accuracy of the k-NN was inferior to that of the MLPNN
(see Chi and Bruzzone, 2005) due to the very challenging
and critical ill-posed problem addressed (which is very
complex for the local-based estimation of the k-NN algo-
rithm), the increase in accuracy obtained with the proposed
ensemble-driven k-NN method was very similar to that ob-
tained with the ensemble-driven MLPNN technique. This
points out the validity of the general architecture of the
method, and confirms its robustness also in presence of
classifiers intrinsically unsuitable to address ill-posed classi-
fication problems.

It is worth noting that the use of a very small number of
unrepresentative training patterns may also establish a
‘‘negative feedback’’ loop, which may degrade the accuracy
of the proposed classification approach. However, we
expect such a situation to correspond to very poor initial
training sets, which cannot be used for any kind of reliable
supervised or semisupervised classification procedure (in
other words, it seems that in these cases the classification
problem cannot be solved with any supervised or semi-
supervised nonparametric approach).

4. Discussion and conclusions

In is paper, an ensemble-driven approach to the classifi-
cation of remote-sensing data in ill-posed problems has
been proposed, which extends and reinforces the work pre-
sented in (Chi and Bruzzone, 2005). In particular, an archi-
tecture made up of an ensemble of classifiers has been
presented. In this architecture classification algorithms
are developed in the context of the k-NN technique. Each
member of the ensemble is derived by exploiting the hybrid
training sets made up of a balanced number of labeled and
semilabeled training patterns. In greater detail, after an ini-
tial classification using the original training set alone, a
subset of semilabeled samples randomly selected from the
classification map is exploited to bootstrap a new hybrid
training set for the next classifier to be inserted in the
ensemble. This process is iterated until the desired number
of classifiers is included in the pool of classification algo-
rithms. Then, the final classification map is achieved by
combining the classification results provided by the mem-
bers of the ensemble according to an unsupervised majority
voting strategy. It is worth stressing that by exploiting
semilabeled samples, the proposed approach drives the def-
inition of the ensemble with an iterative inductive process
applied to initial training samples. Experimental results,
obtained on multispectral remote-sensing data (in the
context of simulated ill-posed classification problems)
confirmed the effectiveness of the proposed approach. In
particular, this approach sharply increased both the ac-
curacy and the stability of obtained classification results.
These results are consistent with those obtained on the
same data set with a completely different MLPNN based
method (see Chi and Bruzzone, 2005). This confirms the
validity of the proposed approach even further.

It is worth noting that unlike other ensemble methods
based on the re-sampling of training data distributions,
the proposed approach can be used with any parametric
and nonparametric classification technique without requir-
ing any specific constraint on the model of training data
distributions.

As a final remark, it is important to point out that the
performance of the proposed technique strongly depends
on the set of initial training samples available. If the train-
ing samples are noisy and not representative of the true
data distribution, the proposed technique may lead to
unsatisfactory results. However, this condition is intrinsi-
cally unavoidable when ill-posed classification problems
are considered. In order to better investigate this problem,
we plan to carry out an intensive experimental validation as
future developments of this work by simulating many
different initial training sets for each size and statistically
analyzing the probability to establish positive and nega-
tive feedbacks. In addition, special attention will be
devoted both to the selection of the most ‘‘reliable’’ classi-
fiers (based on semilabeled samples) to be included in the
ensemble and to the use of different nonparametric tech-
niques (e.g. support vector machines (Vapnik, 1999)) in
the context of the proposed architecture.
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