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A Detail-Preserving Scale-Driven Approach to
Change Detection in Multitemporal SAR Images
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Abstract—This paper presents a novel approach to change
detection in multitemporal synthetic aperture radar (SAR) im-
ages. The proposed approach exploits a wavelet-based multiscale
decomposition of the log-ratio image (obtained by a comparison
of the original multitemporal data) aimed at achieving different
scales (levels) of representation of the change signal. Each scale is
characterized by a different tradeoff between speckle reduction
and preservation of geometrical details. For each pixel, a subset of
reliable scales is identified on the basis of a local statistic measure
applied to scale-dependent log-ratio images. The final change-
detection result is obtained according to an adaptive scale-driven
fusion algorithm. Experimental results obtained on multitemporal
SAR images acquired by the ERS-1 satellite confirm the effective-
ness of the proposed approach.

Index Terms—Change detection, image analysis, multiscale
image decomposition, remote sensing, synthetic aperture radar
(SAR).

I. INTRODUCTION

CHANGE detection is a process that analyzes a pair of
remote sensing images acquired on the same geograph-

ical area at different times in order to identify changes that
may have occurred between the considered acquisition dates.
Change-detection techniques have been used successfully in
many applications, such as environmental monitoring [1], study
on land-use/land-cover dynamics [2], analysis of forest or veg-
etation changes [3], [4], damage assessment [5], agricultural
surveys [6], and analysis of urban changes [7], [8].

In recent years, several change-detection techniques have
been proposed in the remote sensing literature for the analysis
of images acquired by passive sensors. Less attention has been
devoted to change detection in synthetic aperture radar (SAR)
images. This is mainly due to the intrinsic complexity of SAR
data, which require both an intensive preprocessing phase and
the development of effective data analysis techniques capable
of dealing with multiplicative speckle noise. Because of these
two issues, end-users are less interested in SAR data for op-
erational change-detection applications. However, despite the
complexity of data processing, SAR sensors have important
properties at the operational level, since they are capable of
acquiring data in all weather conditions and are not affected by
cloud cover or different sunlight conditions (see [9] for greater
details on the importance and the properties of SAR data in
change detection).
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In the literature, usually unsupervised change detection in
SAR images is based on a three-step procedure [9]: 1) pre-
processing; 2) pixel-by-pixel comparison of two images; and
3) image thresholding. The aim of preprocessing is to increase
the SNR of the considered images (by reducing noisy speckle
components), while preserving sufficient spatial details. Many
adaptive filters for speckle reduction have been proposed, e.g.,
the Frost [10], Lee [11], Kuan [12], Gamma Map [13], [14], and
Gamma WMAP [15] (i.e., the Gamma MAP filter applied in the
wavelet domain) filters. Despite their spatial adaptive character-
istic, which tends to preserve the signal’s high-frequency infor-
mation, filter applications often give the desired speckle reduc-
tion but also an undesired degradation of the geometrical details
of the investigated scene. Pixel-by-pixel comparison is carried
out according to a ratio (or a log-ratio) operator in such a way
as to take into account the multiplicative model of the speckle.
The decision threshold can be selected either with a manual
trial-and-error procedure (according to the desired tradeoff be-
tween false and missed alarms) or with automatic techniques
(e.g., by analyzing the statistical distribution of the ratio image,
by fixing the desired false alarm probability [4], [16], or fol-
lowing a Bayesian minimum error decision rule [9]).

Depending on the kind of preprocessing applied to the
multitemporal images, these techniques can achieve different
tradeoffs between detail preservation and accuracy in the repre-
sentation of homogeneous areas in change-detection maps. But
these are contrasting properties, in other words high accuracy in
homogeneous areas usually requires an intensive despeckling
phase, which in turn degrades the geometrical details in the
SAR images. This is due both to the filter’s smoothing effect
and to the removal of the speckle’s informative components
(which is related to the coherence properties of the SAR signal).

In order to address the above limitations of standard methods,
in this paper we propose a scale-driven, adaptive approach to
change detection in multitemporal SAR images. This is based:
1) on a multiscale decomposition of the log-ratio image; 2) on
a selection of the reliable scales for each pixel (i.e., the scales
at which the considered pixel can be represented without border
problems) according to an adaptive analysis of its local statis-
tics; and 3) on a scale-driven combination of the selected scales.
In greater detail, we propose to perform the scale-driven com-
bination by investigating three different strategies: a) fusion at
the decision level by an “optimal” scale selection; b) fusion at
the decision level of all reliable scales; and c) fusion at the fea-
ture level of all reliable scales. The rationale of the proposed
method is to exploit only high-resolution levels in the analysis
of the expected edge (or detail) pixels and to use also low-reso-
lution levels in the processing of pixels in homogeneous areas.
The proposed method thus exhibits both a high sensitivity to
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Fig. 1. General scheme of the proposed approach.

geometrical details (e.g., the borders of changed areas are well
preserved) and a high robustness to noisy speckle components
in homogeneous areas. Experimental results carried out on mul-
titemporal European Remote Sensing 1 (ERS-1) satellite im-
ages from Canada confirm the effectiveness of the proposed
scale-driven approach.

The paper is organized into five sections. The next section
introduces the problem formulation and the basics of the pro-
posed approach. Section III presents the proposed approach and
focuses on its principal steps: i.e., 1) multiresolution decompo-
sition; 2) adaptive scale identification; and 3) scale-driven fu-
sion. Experimental results obtained on real multitemporal SAR
data are reported in Section IV. Finally, conclusions are drawn
in Section V.

II. PROBLEM FORMULATION AND ARCHITECTURE

OF THE PROPOSED TECHNIQUE

Let us consider the two coregistered intensity SAR images,
and

, of size , acquired over
the same area at different times and . Let
be the set of classes associated with changed and unchanged
pixels. As shown in Fig. 1, the proposed approach is made up
of four blocks aimed at the following: 1) image comparison;
2) multiresolution decomposition; 3) adaptive scale identifica-
tion based on the local statistics computed at different resolution
levels; and 4) generation of the final change-detection map ac-
cording to an adaptive scale-driven fusion.

The first step of the proposed change-detection technique
consists of a pixel-by-pixel image comparison. According to the
literature [9], [17]–[19], the comparison is carried out by a ratio
operator to reduce the effects of speckle in the resulting image
and for the measured signal to be independent of the absolute
intensity value of the considered pixel in the multitemporal
images [18], [19]. Let (where the subscript stands for

ratio) be the obtained “ratio image.” To enhance low-intensity
pixels, the ratio image is usually expressed in a logarithmic
scale, resulting in the log-ratio image

(1)

where stands for natural-logarithm. With this operation the
distribution of the two classes of interest ( and ) in the ratio
image can be made more symmetrical and the residual multi-
plicative speckle noise can be transformed in an additive noise
component [9].1

The second step of the proposed method aims at building
a multiscale representation of the change information in the
considered test site. The desired scale-dependent representation
can be obtained by applying different methods to the data, e.g.,
Laplacian/Gaussian pyramid decomposition [20], wavelet trans-
form [21], [22], recursively upsampled bicubic filter [23], etc.
Given the computational cost and the assumption of the addi-
tive noise model required by the above techniques, we chose to
apply the multiresolution decomposition process to the log-ratio
image , instead of decomposing the two original images

and separately. At the same time this allows a reduction
in computational cost and satisfies the additive noise model hy-
pothesis. The selection of the most appropriate multiresolution
technique is related to the statistical behaviors of and will
be discussed in the next section. The multiresolution decompo-
sition step produces a set of images

where the superscript indicates the
resolution level. As we shall consider a dyadic decomposition
process, the scale corresponding to each resolution level is
given by . In our notation, the output at resolution level 0
corresponds to the original image, i.e., . For
ranging from 0 to , the obtained images are distinguished
by different tradeoffs between spatial-detail preservation and
speckle reduction. In particular, images with a low value of
are strongly affected by speckle, but they are characterized by a
large amount of geometrical detail, whereas images identified
by a high value of show significant speckle reduction and
contain degraded geometrical details (high frequencies are
smoothed out).

In the third step, local and global statistics are evaluated for
each pixel at different resolution levels. At each resolution level
and for each spatial position, by comparing the local and global
statistical behaviors it is possible to identify adaptively whether
the considered scale is reliable for the analyzed pixel.

The selected scales are used to drive the fourth step, which
consists of the generation of the change-detection map ac-
cording to a scale-driven fusion. In this paper, three different
scale-driven combination strategies are proposed and investi-
gated. Two perform fusion at the decision level, while the third
performs it at the feature level. Fusion at the decision level can
either be based on “optimal” scale selection or on the use of
all reliable scales; fusion at the feature level is carried out by
analyzing all reliable scales.

1It is worth noting that the residual multiplicative speckle noise is expected
to be particularly high in portions of the ratio image associated with changed
areas on the ground.
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Fig. 2. Block scheme of the stationary wavelet decomposition of the log-ratio
image XXX .

III. PROPOSED ADAPTIVE SCALE-DRIVEN

CHANGE-DETECTION TECHNIQUE

In this section, we focus on the novel aspects of the proposed
change-detection approach. In particular, we present in detail
the techniques for the following: 1) obtaining a multiresolu-
tion decomposition of the log-ratio image; 2) adaptively iden-
tifying the scales to be considered in the analysis of each pixel;
and 3) producing the final change-detection map according to a
scale-driven fusion strategy.

A. Multiresolution Decomposition of the Log-Ratio Image

As mentioned in the previous section, our aim is to handle
the information at different scales (resolution levels) in order to
improve both geometrical detail preservation and accuracy in
homogeneous areas in the final change-detection map. Images
included in the set are computed by adopting a multires-
olution decomposition process of the log-ratio image .
In the SAR literature [15], [24]–[28], image multiresolution
representation has been applied extensively to image denoising.
Here, a decomposition based on the two-dimensional discrete
stationary wavelet transform (2D-SWT) has been adopted, as
in our image analysis framework it has a few advantages (as
described in the following) over the standard discrete wavelet
transform (DWT) [29]. As the log-ratio operation transforms
the SAR signal multiplicative model into an additive noise
model, SWT can be applied to without any additional
processing. By applying SWT to the log-ratio image instead of
working separately on the two images and the compu-
tational time of the proposed change-detection technique can
be halved. 2D-SWT applies appropriate level-dependent high-
and low-pass filters with impulse response and ,

, respectively, to the considered signal
at each resolution level. A one-step wavelet decomposition is
based on both level-dependent high- and low-pass filtering,
first along rows and then along columns in order to produce
four different images at the next scale. After each convolution
step, unlike DWT, SWT avoids downsampling the filtered
signals. Thus, according to the scheme in Fig. 2, the image

is decomposed into four images of the same size as the
original. In particular, decomposition produces: 1) a lower
resolution version of image , which is called the
approximation subband, and contains low spatial frequencies
both in the horizontal and the vertical direction at resolution

level 1; and 2) three high-frequency images ,
and , which correspond to the horizontal, vertical, and
diagonal detail subbands at resolution level 1, respectively.
Note that, superscripts LL, LH, HL, and HH specify the order
in which high- and low-pass filters have been applied
to obtain the considered subband.

Multiresolution decomposition is obtained by recursively ap-
plying the described procedure to the approximation subband

obtained at each scale . Thus, the outputs at a generic
resolution level can be expressed analytically as follows:

(2)

where is the length of the wavelet filters at resolution level .
At each decomposition step, the length of the impulse response
of both high- and low-pass filters is upsampled by a factor 2.
Thus, filter coefficients for computing subbands at resolution
level can be obtained by applying a dilation operation
to the filter coefficients used to compute level . In particular,

zeros are inserted between the filter coefficients used to
compute subbands at the lower resolution level [29]. This al-
lows a reduction in the bandwidth of the filters by a factor two
between subsequent resolution levels.

Filter coefficients of the first decomposition step for
depend on the selected wavelet family and on the length of the
chosen wavelet filter. According to an analysis of the literature
[26], [30], we selected the Daubechies wavelet family and set
the filter length to 8. Dubechies of order 4 low-pass filter proto-
type impulse response is given by the following coefficient set:

The finite impulse response of the high-pass filter for the de-
composition step is obtained by satisfying the properties of the
quadrature mirror filters. This is done by reversing the order of
the low-pass decomposition filter coefficient and by changing
the sign of the even indexed coefficients [31].

In order to adopt the proposed multiresolution fusion strate-
gies, one should return to the original image domain. This
is done by applying the two-dimensional inverse stationary
wavelet transform (2D-ISWT) at each computed resolution
level independently. For further detail about the stationary
wavelet transform, the reader is referred to [29].

In order to obtain the desired image set (where each
image contains information at a different resolution level), for
each resolution level a one step inverse stationary wavelet trans-
form is applied in the reconstruction phase as many times as in
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the decomposition phase. The reconstruction process can be per-
formed by applying the 2D-ISWT: 1) either to the approxima-
tion and thresholded detail subbands at the considered level (this
is usually done in wavelet-based speckle filters [27]); or 2) only
to the approximation subbands at each resolution level.2 Since
the change-detection phase considers all the different levels, all
the geometrical detail is in even when detail coefficients
at a particular scale are neglected (in other words, the details
removed at a certain resolution level are recovered at a higher
level without removing them from the decision process). For this
reason, in this paper for simplicity we focus on the solution that
only considers the approximation subbands in the reconstruc-
tion phase (it is worth noting that empirical experiments on real
data have confirmed that details subband elimination does not
affect the change-detection accuracy provided by the proposed
approach). Once all resolution levels have been brought back to
the image domain, the desired multiscale sequence of images

is complete and each element in
has the same size as the original image.

It is important to point out that unlike DWT, SWT avoids
decimating. Thus, this multiresolution decomposition strategy
“fills in the gaps” caused by the decimation step in the standard
wavelet transform [29]. In particular, the SWT decomposition
preserves translation invariance and allows avoiding aliasing
effects during synthesis without providing high-frequency
components.

B. Adaptive Scale Identification

Based on the obtained set of multiscale images
, we must identify reliable scales for each con-

sidered spatial position in order to drive the next fusion stage
with this information. By using this information we can obtain
change-detection maps characterized by high accuracy in ho-
mogeneous and border areas.

Reliable scales are selected according to whether the consid-
ered pixel belongs to a border or a homogeneous area at different
scales. It is worth noting that the information at low-resolution
levels is not reliable for pixels belonging to the border area, be-
cause at those scales details and edge information has been re-
moved from the decomposition process. Thus, a generic scale
is reliable for a given pixel, if the pixel at this scale is not in a
border region or if it does not represent a geometrical detail.

To define whether a pixel belongs to a border or a homo-
geneous area at a given scale , we propose to use a multi-
scale local coefficient of variation LCV , as typically done
in adaptive speckle denoising algorithms [28], [32]. This allows
to better handle any residual multiplicative noise that may still
be present in the scale selection process after rationing.3 As the
coefficient of variation cannot be computed on the multiresolu-
tion log-ratio image sequence, the analysis is applied to the mul-

2It is worth noting that the approximation subband contains low frequencies in
both horizontal and vertical directions. It represents the input image at a coarser
scale and contains most informative components, whereas detail subbands con-
tain information related to high frequencies (i.e., both geometrical detail infor-
mation and noise components) each in a preferred direction. According to this
observation, it is easy to understand how proper thresholding of detail coeffi-
cients allows noise reduction [27].

3An alternative choice could be to use the standard deviation computed on
the log-ratio image. However, in this way we would neglect possible residual
effects of the multiplicative noise component.

tiresolution ratio image sequence, which can easily be obtained
from the former by inverting the logarithm operation. Further-
more, it should be mentioned that by working on the multireso-
lution ratio sequence we can design a homogeneity test capable
of identifying border regions (or details) and no-border regions
related to the presence of changes on the ground. This is dif-
ferent from applying the same test to the original images (which
would result in identifying border and no-border regions with
respect to the original scene but not with respect to the change
signal).

The LCV is defined as

LCV (3)

where and are the local standard deviation and
the local mean, respectively, computed for the spatial position

at resolution level , on a moving
window of a user-defined size. A window size that is too small
reduces the reliability of the local statistical parameters, while
windows that are too large decrease in sensitivity to identify ge-
ometrical details. Thus, the selected size should be a tradeoff
between the above properties. Thanks to the normalization op-
eration defined in (3), we can adapt the standard deviation to the
multiplicative speckle model. This coefficient is a measure of
the scene heterogeneity [32]: low values correspond to homo-
geneous areas, while high values refer to heterogeneous areas
(e.g., border areas and point targets). To separate the homoge-
neous from the heterogeneous regions, a threshold value must
be defined. In a homogeneous region the degree of homogeneity
can be expressed in relation to the global coefficient of variation
CV of the considered image at resolution level , which is

defined as

CV (4)

where and are the mean and the standard deviation com-
puted over a homogeneous region at resolution level ,

. Homogeneous regions at each scale can be
defined as those regions that satisfy the following condition:

LCV CV (5)

In greater detail, a resolution level is said
to be reliable for a given pixel if (5) is satisfied for all resolution
levels . Thus, for the pixel , the set
of images with reliable scale is defined as

with
(6)

where is the level with the lowest resolution (identified by
the highest value of ), such that the pixel can be represented
without any border problems and therefore it satisfies the defi-
nition of reliable scale showed in (5) (note that the value of
is pixel dependent).

It is worth noting that, if the scene contains different kinds
of changes with different radiometry (e.g., with increasing and
decreasing radiometry), the above analysis should be applied to
the normalized ratio image (rather than to the standard
ratio image ) defined as

(7)
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This makes the identification of border areas independent of the
order with which the images are considered in the ratio, thus al-
lowing all changed areas (independently of the related radiom-
etry) to play a similar role in the definition of border pixels.

C. Scale-Driven Fusion

Once the set has been defined for each spatial position,
it is possible to derive the final change-detection map according
to a proper scale-driven fusion strategy. In this paper we propose
and investigate three possible strategies: 1) fusion at the decision
level by an “optimal” scale selection (FDL-OSS); 2) fusion at
the decision level on all reliable scales (i.e., scales included in

) (FDL-ARS); and 3) fusion at the feature level on all re-
liable scales (FFL-ARS).

For each pixel, the fusion at the decision level by an “op-
timal” scale selection (FDL-OSS) strategy only considers the
reliable level with the lowest resolution, i.e., the “optimal”
resolution level . The rationale of this strategy is that the
reliable level with the lowest resolution presents an “optimal”
tradeoff between speckle reduction and detail preservation for
the considered pixel. In greater detail, each scale-dependent
image in the set is analyzed independently in order to
discriminate between the two classes and associated
with change and no-change classes, respectively. The de-
sired partitioning for the generic scale can be obtained by
thresholding . It is worth noting that since the threshold
value is scale dependent, given the set of images

, we should determine (either
automatically [9], [33], [34] or manually) a set of threshold
values . Regardless of the
threshold-selection method adopted, a sequence of change-de-
tection maps is obtained
from the images in . A
generic pixel in the final change-detection map is
assigned to the class it belongs to in the map
computed at its optimal selected scale , i.e.,

with and (8)

The accuracy of the resulting change-detection map depends
both on the accuracy of the maps in the multiresolution sequence
and on the effectiveness of the procedure adopted to select the
optimal resolution level. Both aspects are affected by the amount
of residual noise in .

To make the decision process more robust to noise, we pro-
pose an alternative approach that considers all reliable change-
detection maps (with respect to the scale of the pixel) and ap-
plies a fusion at decision level rule (FDL-ARS). For each pixel,
the set
of the related reliable multiresolution labels is considered. Each
label in can be seen as a decision of a member of
a pool of experts. Thus, the pixel is assigned to the class that
obtains the highest number of votes. In actual fact, the final
change-detection map is computed by applying at each spa-
tial position a majority voting rule to the set . The
class that receives the largest number of votes ,

Fig. 3. Images of the Saskatchewan province, Canada, used in the
experiments. (a) Image acquired from the ERS-1 SAR sensor in July 1995.
(b) Image acquired from the ERS-1 SAR sensor in October 1995. (c) Analyzed
log-ratio image.

, represents the final decision for the considered input pat-
tern, i.e.,

(9)

The main disadvantage of the FDL-ARS strategy is that it
only considers the final classification of each pixel at different
reliable scales. A better exploitation of the information in the
multiresolution sequence can be obtained by considering
a fusion at feature-level strategy (FFL-ARS). In order to accom-
plish the fusion process at different scales, a new set of images

is computed by aver-
aging all possible sequential combinations of images in ,
i.e.,

(10)

where the superscript identifies the highest scale included in
the average operation. When low values of are considered,
the image contains a large amount both of geometrical
details and of speckle components, whereas when increases,
the image contains a smaller amount both of geometrical
details and of speckle components. A pixel in position is
assigned to the class obtained by applying a standard thresh-
olding procedure to the image , , computed
by averaging on the reliable scales selected for that spatial po-
sition, i.e.,

if

if
(11)
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Fig. 4. Multiscale image sequence obtained by applying the wavelet decomposition procedure to the log-ratio imageX = fXXX ; . . . ;XXX g.

where is the decision threshold optimized (either automati-
cally [9], [33], [34] or manually) for the considered image .
The latter strategy is expected to be capable of exploiting also
the information component in the speckle, as it considers all the
high frequencies in the decision process. It is worth noting that
in the FFL-ARS strategy, as the information present at a given
scale is also contained in all images with , in the
fusion process the components characterizing the optimal scale

(and the scales closer to the optimal one) are implicitly as-
sociated with greater weights than those associated with other
considered levels. This seems reasonable, given the importance
of these components for the analyzed spatial position.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

The dataset used in the experiments is made up of two SAR
images acquired by the ERS-1 SAR sensor (C-band and VV-po-
larization) in the province of Saskatchewan (Canada) before
(July 1) and after (October 14) the 1995 fire season. The two

considered images are characterized by a geometrical resolu-
tion of 25 [m] in both directions and by a nominal number of
looks equal to 5. The selected test site [see Fig. 3(a) and (b)] is
a section (350 350 pixels) of the entire available scene. A fire
caused by a lightning event destroyed a large portion of the veg-
etation in the considered area between the two aforementioned
dates.

The two multilook intensity images were geocoded using the
digital elevation model (DEM) GTOPO30; no speckle reduction
algorithms were applied to the images. The log-ratio image was
computed from the above data according to (1).

In order to be able to make a quantitative evaluation of the
effectiveness of the proposed approach, a reference map was de-
fined manually [see Fig. 5(b)]. To this end, we used the available
ground-truth information provided by the Canadian Forest Ser-
vice (CFS) and by the fire agencies of the individual Canadian
provinces. Ground truth information is coded in a vector format
and includes information about fires (e.g., geographical coordi-
nates, final size, cause, etc.) occurred from 1981 to 1995 and
greater than 200 ha in final size. CFS ground truth was used for
a rough localization of the burned areas as it shows a medium



BOVOLO AND BRUZZONE: CHANGE DETECTION IN MULTITEMPORAL SAR IMAGES 2969

TABLE I
OVERALL ERROR, FALSE ALARMS, AND MISSED ALARMS (IN NUMBER OF PIXELS AND PERCENTAGE)

RESULTING FROM THE PROPOSED ADAPTIVE SCALE-DRIVEN FUSION APPROACHES

Fig. 5. (a) Change-detection map obtained for the considered dataset using the
FFL-ARS strategy on all reliable scales. (b) Reference map of the changed area
used in the experiment.

geometrical resolution. An accurate identification of the bound-
aries of the burned areas was obtained from a detailed visual
analysis of the two original five-look intensity images [Fig. 3(a)
and (b)], the ratio image and the log-ratio image [Fig. 3(c)] car-
ried out accurately in cooperation with experts in SAR-image
interpretation. In particular, different color composites of the
above-mentioned images were used to highlight all the portions
of the changed areas in the best possible way. It is worth noting
that no despeckling or wavelet based analysis was applied to the
images exploited to generate the reference map for this process
to be as independent as possible of the methods adopted in the
proposed change-detection technique. In generating the refer-
ence map, the irregularities of the edges of the burned areas were
faithfully reproduced in order to be able to make an accurate as-
sessment of the effectiveness of the proposed change-detection
approach. At the end of the process, the obtained reference map
contained 101 219 unchanged pixels and 21 281 changed pixels.
Our goal was to obtain, with the proposed automatic technique,
a change-detection map as similar as possible to the reference
map obtained according to the aforementioned time-consuming
manual process driven with ground truth information and by ex-
perts in SAR image interpretation.

B. Results

Several experiments were carried out to assess the effec-
tiveness of the proposed change-detection technique (which is
based on scale-driven fusion strategies) with respect to classical
methods (which are based on thresholding of the log-ratio
image).

In all trials involving image thresholding, the optimal
threshold value was obtained according to a manual
trial-and-error procedure. In greater detail, (among all possible
values) we selected for each image the threshold value that
showed the minimum overall error in the change-detection map

compared to the reference map. Thanks to this it was possible to
evaluate the optimal performance of the proposed methodology
without any bias due to human operator subjectivity or to the
fact that the selection was made by an automatic thresholding
algorithm. However, any type of automatic threshold-selection
technique can be used with this technique (see [9] for more
details about automatic thresholding of the log-ratio image).
As the described procedure is independently optimized for
each considered image, it leads to different threshold values
in each case. Performance assessment was accomplished both
quantitatively (in terms of overall errors, false and missed
alarms) and qualitatively (according to a visual comparison of
the produced change-detection maps with reference data).

In order to apply the three proposed scale-driven fusion
strategies (see Section III), the log-ratio image was first
decomposed into seven resolution levels by applying the
Daubechies-4 wavelet transform. Each computed approxi-
mation subband was used to construct different scales, i.e.,

(see Fig. 4). In order to avoid
distortions introduced along image borders by the SWT,
the multiresolution wavelet decomposition was applied to a
log-ratio image larger than 350 350 pixels in the accuracy
assessment phase. It is worth noting that the full-resolution
original image was discarded from the analyzed
set, since it was affected by a strong speckle noise. In particular,
empirical experiments pointed out that when is used on
this dataset the accuracy of the proposed change-detection
technique gets degraded. Nevertheless, in the general case,
resolution level 0 can also be considered and should not be dis-
carded a priori. A number of trials were carried out to identify
the optimal window size to compute the local coefficient of
variation LCV used to detect detail pixels (e.g., border) at
different resolution levels. The optimal size (i.e., the one that
gives the minimum overall error) was selected for all analyzed
strategies (see Table I).

Table I summarizes the quantitative results obtained with
the different fusion strategies proposed. As can be seen from
the analysis of the overall error, the FFL-ARS strategy gave
the lowest error, i.e., 5557 pixels, while the FDL-ARS strategy
gave 6223, and the FDL-OSS strategy 7603 (the highest overall
error). As expected, by including all the reliable scales in the
fusion phase it was possible to improve the change-detection
accuracy compared to a single “optimal” scale. In greater detail,
the FFL-ARS strategy gave the lowest false and missed alarms,
decreasing their values by 1610 and 436 pixels, respectively,
compared to the FDL-OSS strategy. This is because on the
one hand the FDL-OSS procedure is penalized both by the
change-detection accuracy at a single resolution level (which is
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TABLE II
OVERALL ERROR, FALSE ALARMS, AND MISSED ALARMS (IN NUMBER OF PIXELS AND PERCENTAGE)

RESULTING FROM CLASSICAL CHANGE-DETECTION APPROACHES

significantly affected by noise when fine scales are considered)
and by residual errors in identifying the optimal scale of a given
pixel; on the other hand, because the use of the entire subset of
reliable scales allows a better exploitation of the information at
the highest resolution levels of the multiresolution sequence in
the change-detection process. It is worth noting that FFL-ARS
outperformed FDL-ARS also in terms of false (2181 versus
2695) and missed (3376 versus 3528) alarms. This is mainly
due to its ability to better handle all the information in the
scale-dependent images before the decision process. This leads
to a more accurate recognition of critical pixels (i.e., pixels
that are very close to the boundary between the changed and
unchanged classes on the log-ratio image), that exploit the joint
consideration of all the information present at the different
scales in the decision process. For a better understanding of
the results achieved, we made a visual analysis of the obtained
change-detection maps. Fig. 5(a) shows the change-detection
map obtained with the FFL-ARS strategy (which proved to be
the most accurate), while Fig. 5(b) is the reference map. As can
be seen, the considered strategy produced a change-detection
map that was very similar to the reference map. In particular,
the change-detection map obtained with the proposed approach
shows good properties both in terms of detail preservation and
in terms of high accuracy in homogeneous areas.

In order to assess the effectiveness of the proposed
scale-driven change-detection approach, the results obtained
with the FFL-ARS strategy were compared with those obtained
with a classical change-detection algorithm. In particular, we
computed a change-detection map by an optimal (in the sense
of minimum error) thresholding of the log-ratio image obtained
after despeckling with the adaptive enhanced Lee filter [32].
The enhanced Lee filter was applied to the two original images
(since a multiplicative speckle model is required). Several trials
were carried out while varying the window size, in order to
find the value that leads to the minimum overall error. The best
result for the considered test site (see Table II) was obtained
with a 7 7 window size. The thresholding operation gave an
overall error of 8053 pixels. This value is significantly higher
than the overall error obtained with the FFL-ARS strategy (i.e.,
5557). In addition the proposed scale-driven fusion technique
also decreased both the false (2181 versus 3725) and the missed
alarms (3376 versus 4328) compared to the considered classical
procedure. From a visual analysis of Fig. 6(a) and Fig. 5(a)
and (b), it is clear that the change-detection map obtained after
the Lee-based despeckling procedure significantly reduces the
geometrical detail content in the final change-detection map
compared to that obtained with the FFL-ARS approach. This
is mainly due to the use of the filter, which not only results

Fig. 6. Change-detection maps obtained for the considered dataset by optimal
manual thresholding of the log-ratio image after the despeckling with (a) the
Lee-enhanced filter and (b) the DWT-based technique.

in a significant smoothing of the images but also strongly
reduces the information component present in the speckle.
Similar results and considerations both from a quantitative and
qualitative point of view were obtained by filtering the image
with the Gamma MAP filter (compare Tables I and II).

To better understand the extent of the validity of the pro-
posed scale-driven method, we also analyzed the effectiveness
of classical thresholding of the log-ratio image after denoising
with a recently proposed more advanced despeckling proce-
dure. In particular, we investigated a discrete wavelet transform
based denoising [27], [35] technique (not used previously in
change-detection problems). This technique achieves noise
reduction in three steps: 1) image decomposition (DWT); 2)
thresholding of wavelet coefficients; and 3) image reconstruc-
tion by inverse wavelet transformation (IDWT) [27], [35]. It is
worth noting that also this procedure is based on the multiscale
decomposition of the images. We can, therefore, better evaluate
the effectiveness of the scale-driven procedure in exploiting
the multiscale information obtained with the DWT decompo-
sition. Wavelet based denoising was applied to the log-ratio
image since an additive speckle model is required. Several
trials were carried out varying the wavelet-coefficient de-
noising algorithm while keeping the type of wavelet fixed, i.e.,
Daubechies-4 (the same used for multilevel decomposition).
The best result (see Table II) was obtained by a soft thresholding
of the detail coefficients according to the universal threshold

, where is the image size and is the
estimated noise variance [35]. The soft thresholding procedure
sets detail coefficients that fall between and to zero, and
shrinks the module of coefficients that fall out of this interval
by a factor . The noise variance estimation was performed
by computing the variance of the diagonal-detail subband at
the first decomposition level. Given the above thresholding
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approach, we selected the number of decomposition levels that
resulted in the minimum change-detection overall error. This
minimum was reached with a six-level wavelet decomposition.
However, also in this case the obtained error (i.e., 7012 pixels)
was significantly higher than the overall error obtained with
the proposed approach based on the FFL-ARS strategy (i.e.,
5557 pixels). Moreover, the presented method performed better
also in terms of false and missed alarms, which were reduced
from 4243 to 3376, and from 2769 to 2181, respectively (see
Tables I and II). By analyzing Fig. 6(b), 5(a), and 5(b), it can be
seen that the change-detection map obtained by thresholding
the log-ratio image after applying the DWT-based denoising
algorithm preserves geometrical information well. Neverthe-
less, on observing the map in greater detail, it can be concluded
qualitatively that the spatial fidelity obtained with this proce-
dure is lower than that obtained with the proposed approach.
This is confirmed, for example, when we look at the right part
of the burned area [circles in Fig. 6(b)], where some highly
irregular areas saved from the fire are properly modeled by the
proposed technique, but smoothed out by the procedure based
on DWT denoising. This confirms the quantitative results and
thus the effectiveness of the proposed approach in exploiting
information from multilevel image decomposition.

It is worth noting that the improvement in performance
shown by the proposed approach was obtained without any
additional computational burden compared to the thresholding
procedure after wavelet denoising. In particular, both methods
require analysis and synthesis steps (though for different
purposes). The main difference between the two considered
techniques is the scale-driven combination step, which does not
increase the computational time required by the thresholding
of detail coefficients according to the standard wavelet-based
denoising procedure.

V. DISCUSSION AND CONCLUSION

In this paper, a novel adaptive scale-driven approach to
change detection in multitemporal SAR images has been
proposed. Unlike classical methods, this approach exploits
information at different scales (obtained by a wavelet-based
decomposition of the log-ratio image) in order to improve the
accuracy and geometric fidelity of the change-detection map.

Three different fusion strategies that exploit the subset of
reliable scales for each pixel have been proposed and tested:
1) fusion at the decision level by an optimal scale selection
(FDL-OSS); 2) fusion at the decision level of all reliable scales
(FDL-ARS); and 3) fusion at the feature level of all reliable
scales (FFL-ARS). As expected, a comparison among these
strategies showed that fusion at the feature level led to better
results than the other two procedures, in terms both of geomet-
rical detail preservation and accuracy in homogeneous areas.
This is due to a better intrinsic capability of this technique to
exploit the information present in all the reliable scales for the
analyzed spatial position, including the amount of information
present in the speckle.

Experimental results confirmed the effectiveness of the
proposed scale-driven approach with the FFL-ARS strategy on
the considered dataset. This approach outperformed a classical
change-detection technique based on the thresholding of the

log-ratio image after a proper despeckling based on the appli-
cation of the enhanced Lee filter and also of the Gamma filter.
In particular, change detection after despeckling resulted in
a higher overall error, more false alarms and missed alarms,
and significantly lower geometrical fidelity. In order to further
assess the validity of the proposed approach, the standard
technique based on the thresholding of the log-ratio image
was applied after a despeckling phase applied according to an
advanced DWT-based denoising procedure (which has not been
used previously in change-detection problems). The obtained
results suggest that the proposed approach performs slightly
better in terms of spatial fidelity and significantly increases the
overall accuracy of the change-detection map. This confirms
that on the considered dataset and for solving change-detection
problems, the scale-driven fusion strategy exploits the multi-
scale decomposition better than standard denoising methods.

As a final remark, it is worth noting that all experi-
mental results were carried out applying an optimal manual
trial-and-error threshold selection procedure, in order to avoid
any bias related to the selected automatic procedure in assessing
the effectiveness of both the proposed and standard techniques.
Nevertheless, this step can be performed adopting automatic
thresholding procedures [9], [36].

Future developments of this work are related to the applica-
tion of the proposed adaptive scale-driven approach to change
detection in very high-resolution SAR images. Furthermore, we
plan to extend the use of the scale-driven technique to change
detection in multiband and fully polarimetric SAR data.
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