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A Semilabeled-Sample-Driven Bagging Technique
for I11-Posed Classification Problems

Mingmin Chi and Lorenzo Bruzzone, Senior Member, IEEE

Abstract—In this letter, a semilabeled-sample-driven bootstrap
aggregating (bagging) technique based on a co-inference (inductive
and transductive) framework is proposed for addressing ill-posed
classification problems. The novelties of the proposed technique lie
in: 1) the definition of a general classification strategy for ill-posed
problems by the joint use of training and semilabeled samples (i.e.,
original unlabeled samples labeled by the classification process);
and 2) the design of an effective bagging method (driven by semi-
labeled samples) for a proper exploitation of different classifiers
based on bootstrapped hybrid training sets. Although the proposed
technique is general and can be applied to any classification algo-
rithm, in this letter multilayer perceptron neural networks (MLPs)
are used to develop the basic classifier of the proposed architecture.
In this context, a novel cost function for the training of MLPs is
defined, which properly considers the contribution of semilabeled
samples in the learning of each member of the ensemble. The exper-
imental results, which are obtained on different ill-posed classifica-
tion problems, confirm the effectiveness of the proposed technique.

Index Terms—Bagging, ill-posed classification problems, mul-
tiple classifier systems, remote sensing images, semilabeled sam-
ples, supervised classification.

1. INTRODUCTION

NE OF THE most challenging issues in the supervised

classification of remote sensing images lies in the solution
of “ill-posed” problems [1], [2]. These problems are character-
ized by the availability of small-size training sets with respect
to the high-dimensional input feature space and/or the large
number of parameters in the classifier model. Since the collec-
tion of ground-reference data in real-world applications is an
expensive and time-consuming task, in many cases the number
of training samples is not sufficient for a proper learning of the
classification system. This is particularly critical when consid-
ering multisensor and multisource datasets or hyperspectral im-
ages, because due to the intrinsic large dimension of the feature
space, it is not possible to meet the requirements on the neces-
sary number of training samples.

According to the remote sensing literature, one possible way
of addressing ill-posed classification problems is to include
semilabeled samples (i.e., samples that were originally unla-
beled and were later labeled by the classification process) in the
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training set by using specific iterative procedures [3]-[5]. Nev-
ertheless, the use of semilabeled samples does not guarantee
good performance, since the resulting accuracy is strongly af-
fected by the accuracy of selected semilabeled samples. In this
context, in order to increase the reliability of the transductive
process, we propose to use a proper ensemble method based on
bagging (short for bootstrap aggregating, proposed by Breiman
[6]). In the standard bagging algorithm, many subsets made
up of M samples are resampled from the original training set
to generate an ensemble of base classifiers to be included in
the multiple classifier system. However, in ill-posed problems,
standard bagging cannot be used directly because it is difficult
to resample the available small-size original training set to
derive classifiers to be included in the ensemble.

In this letter, we present a novel semilabeled-sample-driven
bagging technique developed in the context of a co-inference
process (induction and transduction) for solving ill-posed clas-
sification problems. The novelties of the proposed technique lie
in the following:

* The definition of a general ensemble-based architecture
for ill-posed problems by the joint use of training and
semilabeled samples.

* The design of an effective bagging method (driven by
semilabeled samples) for a proper definition of different
classifiers based on bootstrapped hybrid sets.

Although the proposed approach is general (i.e., classifier in-
dependent), it is developed in this letter using multilayer per-
ceptron neural networks (MLPs) [7], [8]. In this context, a cost
function for the training of MLPs is defined, which properly
considers the contribution of semilabeled samples (associated
with the transductive process) in the learning of each member
of the ensemble.

In order to assess the effectiveness of the proposed technique,
many simulated ill-posed classification problems have been de-
fined using multispectral Landsat Thematic Mapper images ac-
quired on the Trentino area (Italy). Experimental results confirm
the capabilities of the presented method to increase both the ac-
curacy and the robustness of the classification in small-size clas-
sification problems.

This letter is organized in four sections. In Section II, the
proposed semilabeled-sample-driven bagging approach is pre-
sented. Section III describes the dataset used in the experiments
and the results obtained with the proposed approach. Finally,
Section I'V draws the conclusions of this work and discusses fu-
ture developments.
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Block scheme of the proposed bagging approach driven by semilabeled

II. PROPOSED SEMILABELED-SAMPLE-DRIVEN BAGGING
APPROACH TO ILL-POSED PROBLEMS

A. Notation and Problem Definition

Let X be a d-dimensional feature vector, and 2 =
{wi,ws,...,w.} be the set of ¢ land-cover classes that
characterize the considered problem. Let 7" be a training set
made up of N labeled samples. Given the pattern X, we
can define a procedure for using the training set 7' to form
a classifier p(X,T). As in the bagging algorithm, B subsets
TP(b = 0,...,B — 1) of M bootstrapped samples are gener-
ated, and a classifier (X, T?) is built from each subset T°. A
final classification is obtained by an ensemble rule to achieve a
better (more accurate and reliable) classification result than the
single classifier p(X,T), i.e.,

X € wm,wm € 4,
if and only if w,,=arg max {the number of [<p(X T :wi] ,
w; €N
b=0,...,B—1}. (1)

However, in small-size training set classification, there are no
enough training samples to be bootstrapped; hence, the standard
bagging algorithm cannot be directly exploited to solve ill-posed
classification problems. Nevertheless, semilabeled samples can
be considered similar to labeled samples to some extent and
be included in the subsets of bootstrapped samples to derive
corresponding base classifiers.

B. Semilabeled-Sample-Driven Bagging Technique

In the proposed approach, training sets exploited in individual
base classifiers (excluding the initial classifier) are bootstrapped
by the use both of all the training samples and of a subset of
semilabeled patterns (in order to mitigate the problem of the
small-size training set). For this reason, we define these sets as
“hybrid training sets.” The architecture of the proposed system
is shown in Fig. 1, where T4(b = 1,..., B — 1) refers to the
subset of semilabeled samples injected in the hybrid training set
T;lf (which also includes the small-size original training set T)
used for the bth classifier o(X,17}).

TABLE 1
DISTRIBUTION OF TRAINING AND TEST PATTERNS IN THE SIX SIMULATED
ILL-POSED CLASSIFICATION PROBLEMS CONSIDERED

Land-cover Number of test Number of training pixels

classes pixels Set 1 Set 2 Set 3 Setd Set5 Set 6

Conifers 1155 3 7 10 15 18 38
Trees 681 2 5 8 10 12 25
Grass 336 2 5 6 8 10 19
Water 84 1 1 1 1 2 3
Urban 104 1 1 2 2 3 5
Rocks 113 1 1 3 4 5 10
Overall 2473 10 20 30 40 50 100

The proposed architecture includes an initial classifier
©(X,T?), which only exploits the training set 7° to generate
the initial classification map (according to a standard inductive
process). In this way, a “pseudolabel” is assigned to each
unlabeled sample according to a parametric (or nonparametric)
algorithm. Thus unlabeled samples become semilabeled, since
the class label information is partially obtained. Then, the
generic bth classifier o(X,7T}) of the architecture is defined by
selecting a subset of semilabeled samples from the classifica-
tion map of the previous classifier (this represents a transductive
process), i.e., the bth hybrid training set is defined as

T) =T° U Th. )

This transductive process is iterated until the desired number
of classifiers included in the ensemble is obtained. Fi-
nally, like in standard bagging, all the classification maps
(Map®, Map?, ... ,Map®~!) are integrated by an ensemble
rule to obtain the final classification map. A key issue in the
proposed approach is the strategy adopted to generate the
subset T, of semilabeled samples. In order to obtain samples
representing the true class distribution in the whole image, a
random selection strategy (based on a uniform spatial distri-
bution) is applied to select semilabeled samples included in
T4 according to the classification results obtained from the
classifier (X, TP™1).

One of the main problems in the use of semilabeled samples
is the risk of defining a negative iterative mechanism, in which
unlabeled samples (transductive process) degrade the inductive
learning of the classifiers. The negative mechanism may happen
if the accuracy of the supervised classifier at the first iteration
is below a given threshold. Nonetheless, if the accuracy is suffi-
ciently high, the probability that this event should occur is small.
This probability is decreased in the case of an ensemble of clas-
sifiers, since the ensemble proves to be robust to the presence
of weak classifiers.! The following additional strategies can be
used to mitigate the above drawback further:

1) exploiting the “confidence” associated with the classifica-
tion label of each pixel to generate the semilabeled sample
pool depending on the reliability of classification results
(a proper threshold value on the confidence can be set);

2) using a weighing scheme in the classification algorithm,
where the confidence of semilabeled samples is consid-
ered explicitly in the transductive learning process of the
classifiers.

1Tt is worth noting that we expect classifiers based on different semilabeled
samples to result both in different overall accuracies and in quite uncorrelated
classification errors. This latter property increases the reliability of the multiple
classifier system.
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considered (upper bound refers to overall accuracy with the original training set made up of 4549 samples). (b) Gap of accuracy between the standard supervised
classifier (obtained by standard MLP, on the initial training set) and the proposed approach (applied using 17 classifiers) versus the size of original training sets.

Once classifier members included in the ensemble are de-
fined, as in standard bagging the final classification map can be
achieved following any standard combination rule (e.g., the ma-
jority voting scheme [6]).

C. Semilabeled-Sample-Driven Bagging With MLPs

In this study, we used a distribution-free technique based on
multilayer-perceptron neural networks as the base classification
algorithm to define the multiple classifier system (for greater
details on MLPs, the reader can refer to [7]). This choice is
motivated by the ability of MLPs to deal with any kind of re-
mote sensing datasets (multisource, multisensor, etc.) without
any constraint on the model of data distribution. However, it is
worth noting that any classification technique can be used in the
proposed architecture.

MLPs usually are trained using the error backpropagation
(EBP) learning algorithm [7] applied to a proper cost function.
The most widely used cost function in the standard inductive
process is the MSE, which is given by

Nir

MSE(W) = % YD (tii—05)’

j=1i=1

3

where Ny, is the total number of training patterns, c¢ is the
number of classes, t;; and o;; represent the target and the
network output for the jth training sample of the ith class,
respectively, and W is the set of all the weights of the network.
This procedure is used at the first iteration of the proposed
method. After the initial classification, semilabeled samples
are introduced in the training phases of all the other members
of the ensemble. To this purpose, the following modified cost
function is defined:

Ny ¢ Na ¢
1 1 2
MSE" (W) = 3 YN (=0’ + 3 YD (%) db
j=14=1 j=11i=1
b=1,....B—1. 4

where Ny is the total number of randomly selected semilabeled
patterns, t’j’»i and o’j’»i represent the target and the network output
of the considered semilabeled pattern in the bth MLP classifier,
respectively. q;? is a weight value for the given semilabeled pat-
tern (which represents the reliability of the label of the jth semi-
labeled pattern in the bth classifier). Its value can be derived di-
rectly from the output of the (b — 1)th MLP neural network and
can be considered an estimation (optimized according to a min-
imum square error criterion) of the conditional posterior proba-
bility p(w;|X) to have the label w; given the jth pattern [8].

III. EXPERIMENTAL RESULTS

This section reports the experimental results obtained by the
proposed semilabeled-sample-driven bagging technique. The
dataset considered is made up of a Landsat-5 Thematic Mapper
image acquired on the Trentino area (northern Italy). For this
dataset, a large number of labeled samples were collected
from ground-reference data. The labeled samples were divided
into a training set and a test set. In order to simulate ill-posed
classification problems, subsampling (with different rates) was
applied to the training set. In greater detail, from 4549 original
training patterns, 10, 20, 30, 40, 50, and 100 training samples
were randomly selected (see Table I) by maintaining as far as
possible the prior probabilities of classes of the whole training
set (with the constraint of having at least one sample for each
class). In all datasets, seven features and six land-cover classes
were considered in the analysis. Hence, we are clearly in the
presence of an ill-posed complex classification problem (e.g.,
when the size of the training set is 10, 20, 30, and 40, the
minority class has only one training pattern).

In order to assess the effectiveness of the proposed semi-
labeled-sample-driven bagging approach, we considered the
2473 test samples as unlabeled patterns, so that after classifi-
cation semilabeled samples are randomly extracted from them.
Three trials were carried out for each training set (with different
sizes), and then the average overall accuracy was computed.
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TABLE 11
OVERALL ACCURACIES OBTAINED BY A STANDARD CLASSIFIER AND
BY THE PROPOSED APPROACH WITH THE DIFFERENT SIZES OF
ORIGINAL TRAINING SETS

. Overall Accuracy (%)
Technique
Setl Set2 Set3 Setd Set5 Set6
Standard | 70.56 | 73.64 | 83.87 | 87.99 | 90.27 | 91.87
Proposed 74.39 | 83.64 | 91.05 | 92.61 | 93.15 | 94.16

In all experiments, a three-layer neural network architecture
with seven input units and six output units was used as the
base classifier for the proposed bagging approach. Considering
the small-size training set, few hidden units (i.e., 2, 3, and
4 for different-size training sets) were used in the proposed
architecture in order to avoid overfitting. Although this leads
to weak classifiers, we expect an ensemble made up of many
weak classifiers (which, being based on different semilabeled
samples, are expected to incur in uncorrelated errors) to provide
sufficiently high classification accuracies. In all trials, twice as
many semilabeled samples (whose estimated conditional pos-
terior probabilities were greater than 0.85) as training samples
were randomly selected for defining the hybrid training sets.
The weights q;? in (4) were set to the values of the conditional
posterior probabilities estimated from the MLP classifier.

Fig. 2(a) shows the behavior of overall classification accu-
racy versus the number of classifiers included in the ensemble
for the different simulated datasets. For comparison purposes,
the upper bound of the accuracy on the test set (obtained using
all 4549 training patterns originally available) is also given. On
analyzing the diagram, it can be observed that in general the
proposed semilabeled-sample-driven bagging significantly in-
creased overall classification accuracy. If we consider the best
case (i.e., set 2 defined by 20 training patterns), overall accu-
racy obtained on the test set using only initial labeled samples
was 73.64%, while the accuracy provided by the ensemble with
17 MLP classifiers was 83.64% (the accuracy sharply increased
by 10%) (see Table II). More in general, on analyzing Fig. 2(b),
which reports the gap of the accuracy (between overall accu-
racy of the standard MLPy classifier and that of the proposed
approach) versus the size of original training sets, we can ob-
serve a different behavior of the proposed method for training
sets with different sizes. In greater detail, the presented method
increased the classification accuracy in all simulated datasets.
However, the improvement on overall accuracy is higher when
few training samples are considered (except for the case with
only ten samples). This is as expected, i.e., the proposed ap-
proach is more effective when the Hughes phenomenon [9] be-
comes more critical. As regards set 1 (which resulted in an in-
crease in accuracy of 3.83%), the small gain depends on the fact
that original training samples were too few. This cannot allow
the ensemble to capture and model the complexity of the classi-
fication problem. It is worth noting that in all cases, few classi-
fiers were sufficient to obtain the convergence in the classifica-
tion accuracy.

In order to analyze the influence of semilabeled samples
on classification results further, Fig. 3 shows class-by-class
user and producer accuracies obtained in set 2 (made up of 20
training samples). As can be seen, a significant improvement
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Fig. 3. Class-by-class user and producer accuracies versus the number of

classifiers included in the ensemble when the size of the original training set is
20. (a) Conifer class. (b) Tree class. (c) Grass class. (d) Water Class. (¢) Urban
class. (f) Rock class.

(in both user and producer accuracies) was obtained for all
classes except rock. The class with the highest improvement on
user accuracies is grass, where a sharp increase of 46.72% can
be seen. In all the other classes (with the exception of rock),
user and producer accuracies increase significantly in a range
of between 15% and 22%. This confirms the effectiveness of
the proposed technique.

IV. Di1SCUSSION AND CONCLUSION

A semilabeled-sample-driven bagging technique for the
classification of remote sensing data in small-size training
set problems has been proposed. In particular, an architecture
made up of an ensemble of classifiers has been presented,
whose members are defined according to different bootstrapped
hybrid training sets, made up of a balanced number of labeled
and semilabeled patterns. Unlike other methods, the proposed
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semilabeled-sample-driven methodology is based on a general
architecture where classifiers included in the ensemble can be
implemented with any kind of parametric or nonparametric
classification technique, without requiring any specific con-
straint on the model of training data distributions. Experimental
results obtained on multispectral remote sensing data (in the
context of simulated ill-posed classification problems) con-
firmed the effectiveness of the proposed approach. In particular,
this approach sharply increased both the accuracy and the
stability of the obtained classification results.

As afinal remark, it is worth pointing out that the use of a very
few number of unrepresentative training patterns may also lead
to a negative mechanism, which may degrade the accuracy of
the proposed classification technique. However, we expect this
situation to correspond to very poor initial training sets, which
cannot be used on any reliable supervised or semisupervised
classification procedure (in other words, in these extreme cases,
it seems that the classification problem cannot be solved with
any supervised or semisupervised nonparametric approach). In
order to investigate this problem further, as a future develop-
ments of this work we plan to carry out an intensive experi-
mental analysis on different datasets by simulating different ini-
tial training conditions with different numbers of training sam-
ples in order to estimate the probability of success of the pro-
posed approach statistically. In addition, special attention will
be devoted to the use of other classifiers to test the proposed
method, by considering more stable techniques intrinsically ro-
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bust to ill-posed problems (e.g., support vector machine classi-
fiers [10]).
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