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Abstract—In this paper, an approach based on multiple esti-
mator systems (MESs) for the estimation of biophysical parame-
ters from remotely sensed data is proposed. The rationale behind
the proposed approach is to exploit the peculiarities of an ensemble
of different estimators in order to improve the robustness (and in
some cases the accuracy) of the estimation process. The proposed
MESs can be implemented in two conceptually different ways.
One extends the use of an approach previously proposed in the
regression literature to the estimation of biophysical parameters
from remote sensing data. This approach integrates the estimates
obtained from the different regression algorithms making up
the ensemble by a direct linear combination (combination-based
approach). The other consists of a novel approach that provides
as output the estimate obtained by the regression algorithm
(included in the ensemble) characterized by the highest expected
accuracy in the region of the feature space associated with the
considered pattern (selection-based approach). This estimator is
identified based on a proper partition of the feature space. The
effectiveness of the proposed approach has been assessed on the
problem of estimating water quality parameters from multispec-
tral remote sensing data. In particular, the presented MES-based
approach has been evaluated by considering different operational
conditions where the single estimators included in the ensemble
are: 1) based on the same or on different regression methods; 2)
characterized by different tradeoffs between correlated errors and
accuracy of the estimates; 3) trained on samples affected or not by
measurement errors. In the definition of the ensemble particular
attention is devoted to support vector machines (SVMs), which are
a promising approach to the solution of regression problems. In
particular, a detailed experimental analysis on the effectiveness of
SVMs for solving the considered estimation problem is presented.
The experimental results point out that the SVM method is effec-
tive and that the proposed MES approach is capable of increasing
both the robustness and accuracy of the estimation process.

Index Terms—Biophysical parameters, estimation, multilayer
perceptron (MLP) neural networks, multiple estimator systems,
radial basis function (RBF) neural networks, regression, remote
sensing, support vector machines (SVMs).

1. INTRODUCTION

N THE last years, the remote sensing community has de-
voted particular attention to the estimation of biophysical
parameters via the analysis of remote sensing data. Quantita-
tive analysis of these parameters can be useful in several ap-
plication domains. For example, at present, a widely investi-

Manuscript received January 22, 2004; revised October 1, 2004. This work
was supported by the Italian Space Agency.

The authors are with the Department of Information and Communication
Technologies, University of Trento, 38050 Trento, Italy (e-mail: lorenzo.
bruzzone @ing.unitn.it; melgani @dit.unitn.it).

Digital Object Identifier 10.1109/TGRS.2004.839818

gated application is the estimation of biomass concentration in
forest areas. Such estimates allow to better understand the tem-
poral dynamics of activities of reforestation, afforestation, and
deforestation over a defined period of time at a global scale
[1]. Another important application is the assessment of the soil
moisture content, which represents a key parameter in environ-
mental studies characterized by the soil-vegetation—atmosphere
trilogy. This estimation task can be accomplished with synthetic
aperture radar (SAR) data [2]. Assessments of the ozone and
NO, concentrations (at a global scale) by analysis of satellite
data are other important applications of regression techniques.
In fact, ozone concentration is of primary importance for the
impact it has on the earth’s environment [3], while NOy con-
centrations provide valuable information to monitor the pollu-
tion in the atmosphere due to industry or extended forest fires
[4]. Another particularly interesting and widely studied estima-
tion problem is the analysis of water quality using multispectral
remote sensing sensors. The estimation of water quality param-
eters, such as concentrations of optically active parameters (i.e.,
chlorophyll, suspended sediments, and yellow matter) is of great
importance for the monitoring of the ocean and lake ecosystems
[5]-[10]. However, these are only a few examples of the wide
range of possible applications in which the estimation of bio-
physical parameters from remote sensing images plays a funda-
mental role.

From a methodological viewpoint, for some kinds of biophys-
ical parameters, it is common to define parametric model-based
estimation algorithms [11]. These algorithms rely on a specific
model that relates the studied biophysical parameter to mea-
sures acquired by the selected satellite sensor. Two different ap-
proaches can be considered. One consists of adopting a prede-
fined direct model of the estimated biophysical parameter and
inverting it on the basis of the available measurements. In this
case, the model usually depends on several variables that re-
quire the knowledge of additional information about the ana-
lyzed scene (e.g., atmospheric conditions, sun angle, etc.). The
other approach is based on the use of simple regression methods,
which relate the investigated biophysical parameter to available
measures according to interpolation techniques applied to a set
of training samples (pairs of in sifu concentrations and received
radiances) [9], [12]. In this case, the regression process is condi-
tioned to the type of interpolation function adopted (e.g., linear,
polynomial, etc.). However, in general, it is reasonable to ex-
pect that a significant number of biophysical parameters are
characterized by more complex relationships with the consid-
ered remote sensing data. For instance, when costal waters are
considered in water quality estimation problems, the presence
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of organic detritus and inorganic sediments strongly affects the
linearity of water spectral characteristics. The optical behavior
of such waters makes the relationship between parameter con-
centration and reflected radiance highly nonlinear. As a conse-
quence, it is difficult to define both accurate direct models as-
sociated with the investigated parameter and proper nonlinear
regression functions. In these situations, the use of nonlinear
regression techniques based on machine-learning methodolo-
gies can represent an effective approach to the solution of es-
timation problems. In particular, artificial neural networks are
a promising tool for an accurate assessment of biophysical pa-
rameter concentrations. In [13], it was proved that a multilayer
perceptron (MLP) neural network with two layers of weights
and sigmoidal activation functions can approximate any non-
linear functional relationship (mapping) with an arbitrary accu-
racy, provided that enough hidden neurons are available. This
justifies the success of this particular class of neural networks in
numerous fields of application of regression problems. In [14],
it was found that an MLP (with one hidden layer having only
two hidden nodes) applied to the three visible Landsat The-
matic Mapper channels can model the problem of estimation
of the concentrations of optically active water constituents with
higher accuracy than what can be obtained by multiple regres-
sion analysis. In [15], the effectiveness of MLPs to determine
phytoplankton components (such as the chlorophyll concentra-
tion and absorption of pigmented matter) was investigated. The
authors found that MLPs achieved higher accuracies with re-
spect to reference empirical band-ratio algorithms developed
for the dataset they used in the experiments. Another interesting
class of learning-by-example model is based on the radial basis
function (RBF) neural networks. As opposed to MLPs, which
perform a nonlinear combination of the output of hidden nodes,
the RBFs derive estimations according to a linear combination
of the output of a set of radial basis functions (generally of the
Gaussian type). These functions are associated with the hidden
units of the network and their parameters are derived in the
training phase of the neural estimator. A generalized RBF neural
network trained using the regression tree and forward-selection
techniques was proposed in [16] for retrieving optically active
sea-water parameters. In [17], a comparison between the MLP
and RBF neural networks for the analysis of sea water revealed
that the MLPs outperform the RBFs, providing a slight increase
in estimation accuracy. However, despite their potential effec-
tiveness, MLP and RBF neural networks present three main
drawbacks: 1) they require addressing the problem of designing
the best neural architecture, which often results in a complex,
time-consuming task; 2) they can easily overfit the training data
used to represent the considered regression problem (this can
be particularly critical in presence of in situ measurements af-
fected by some degree of uncertainty); 3) their variables do not
apparently exhibit any explicit relation with physical parame-
ters characterizing the estimation process.

A primary goal to achieve in the design of an estimation
methodology, especially when the estimation process is car-
ried out at a large geographical scale, is robustness, which is
closely related to reliability of results. This is of particular im-
portance when learning-based systems (such as artificial neural
networks) are used for parameter estimation, since usually it is
not possible to completely validate the learning phase of the

network by relating explicitly the estimated network parame-
ters to a physical model of the studied phenomenon. However,
this goal is difficult to achieve with a single estimator. An al-
ternative approach is to fuse the estimates obtained with an en-
semble of regression algorithms, in order to exploit synergeti-
cally estimators with different characteristics. If the ensemble
is properly designed, this results in more reliable final estimates
(higher robustness) than those obtained with a single regression
technique. It is worth noting that the goal of the fusion is not to
outperform the single estimators but to obtain accuracies com-
parable to that of the best single estimator. In the remote sensing
literature, no attention at all has been devoted to the use of en-
sembles of estimation algorithms, and it has also been rather
neglected by the general regression literature. Among the few
proposed methods, three linear-based combination approaches
deserve to be cited. One is the definition of a framework for
fusing multiple estimators where each estimator is trained with
a different subset of the available samples. Then, the optimal
linear combination is defined using a cross-validation method
to derive the fusion weights [18], [19]. The other approach con-
sists of finding the optimal combination weights by bootstrap
sampling (Monte Carlo simulation). The authors reported re-
sults in which the bootstrap-based combination technique pro-
vided smaller model errors than classical averaging. In the third
approach [20], the weights are regularized by means of the prin-
cipal components regression, which leads to a decomposition
of the original regression models into a new set of independent
components. The most significant components are retained to
deduce the weights for the original regression models by inverse
mapping. This approach proved the most robust with respect to
other conventional weight estimation techniques based on least
squares and gradient descent procedures. It is worth noting that
although ensemble methods have been scarcely considered in
the context of regression problems, they have been studied ex-
tensively in the pattern recognition literature for the solution of
challenging classification problems [21]-[24]. In this context,
multiple classifier systems proved robust and accurate in many
different remote sensing application domains, such as the classi-
fication of multisource data [25] and the updating of land-cover
maps without support of ground-truth information [26].

In this paper, we present a novel approach to biophysical
parameter estimation based on multiple estimator systems
(MESs). Two different methodologies are considered for de-
signing the MESs.

One extends the use of an approach proposed previously in
the regression literature to the estimation of biophysical pa-
rameters from remote sensing data. This approach integrates
the estimates obtained from the different regression algorithms
making up the ensemble by a direct linear combination (combi-
nation-based approach). The linear combination can be accom-
plished with two different strategies: one is based on an unsuper-
vised average operation, while the other carries out a weighted
averaging after determining (in a supervised way) the weights
to be assigned to each member of the ensemble.

The other methodology consists of a novel approach that pro-
vides as output the estimate obtained by the regression algo-
rithm (included in the ensemble) characterized by the highest
expected accuracy in the region of the feature space associated
with the considered pattern (selection-based approach). This ap-
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proach is inspired by the idea that different optimal estimators
can be associated with different regions of the input feature
space. An accurate partition of this space in decision regions
(each associated with the expected most accurate single regres-
sion algorithm) can be carried out according to two different
strategies. One exploits the concept of local accuracy measured
on each single estimator, while the other exploits all the training
samples available to infer the best partition of the feature space
based on a global measure applied to the entire feature space.

A further interesting issue addressed in this paper is related to
the choice of the estimation algorithms used for the definition of
the ensemble. In particular, we present a detailed assessment of
the effectiveness of a promising estimation approach based on
support vector machines (SVMs) [27]. The choice to investigate
the performances of SVMs in the context of biophysical param-
eter estimation is motivated by three main reasons: 1) the effec-
tiveness of this approach in terms of accuracy and generaliza-
tion capability (recently proved in numerous general regression
applications [28]—[32]); 2) the limited effort required for archi-
tecture design (i.e., SVMs require the definition of few control
parameters); 3) the possibility of solving the learning problem
according to linearly constrained quadratic programming (QP)
methods, which do not suffer from the problem of local minima.
It is worth noting that a recent work has shown the effective-
ness of such regression approach (as an alternative to MLPs)
for the estimation of oceanic chlorophyll concentration [33]. In
this paper, we propose to investigate further the performances
of SVMs from different viewpoints including: 1) the influence
of the kernel type in the SVM regression task; 2) the stability
to the parameter settings; and 3) the sensitivity to the available
number of training samples.

The proposed MES was applied to the problem of estimating
water quality parameters. In particular, simulated data from
the multispectral Medium Resolution Imaging Spectrometer
(MERIS) sensor [mounted onboard the Environmental Satellite
(Envisat)] related to the presence of chlorophyll in sea-water
were considered [16]. It is worth noting that the use of these
simulated data is particularly attractive for the purposes of this
paper, since they do not only make it possible to assess the
robustness and accuracy of the proposed regression system in
a precise quantitative way, but also provide important hints on
the effectiveness of the proposed system in estimating water
quality parameters from the recently launched MERIS sensor.

The rest of this paper is organized in four sections. Section II
presents the proposed multiple estimator system implemented
with different combination-based and selection-based strate-
gies. Section III describes the regression methodology based on
SVMs, which is used to design each estimator of the ensemble.
Section IV deals with the experimental phase of the work. Fi-
nally, Section V summarizes the material presented, discusses
the results, and draws the conclusions of this paper.

II. PROPOSED MULTIPLE ESTIMATOR SYSTEM

A. Problem Formulation

Let us consider a set of NV training samples (in situ mea-
surements) x; (i = 1,2,...,N) represented in the d-di-
mensional feature space R?. Let us assume that a target
yi € R (1 = 1,2,...,N) is associated with each vector x;,
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Fig. 1. General block diagram of the proposed MES.

where y; is a real value representing the concentration of the
considered biophysical parameter. Let us consider a set of T'
estimators f;(x) (¢ = 1,2,...,T) trained independently on
the available training samples. It is worth noting that the 7'
estimators can be based on the same regression method (with
different parameter values) or on different methods. As depicted
in Fig. 1, the problem is to define a combination strategy ®{}
such that the resulting estimate F'(x) (obtained after fusing the
different single estimators) for a given unknown sample x is
given by
F(X):(I){.fl(X)7.f2(X)7...,fT(X)}. (1)
As stated in the introduction, we propose to design the
combination strategy according to two different conceptual
approaches. One extends to the remote sensing data analysis
a method previously proposed in the regression literature, in
which the final estimate is computed by a linear combination
of the estimates obtained by the different single estimators
(combination-based approach). The other approach consists of
a novel method that derives the final estimate by selecting the
output (estimate) of the “best single estimator” according to
a strategy that defines a proper partition of the feature space
(selection-based approach).

B. Combination-Based Approach

In this approach, two combination strategies are considered:
the average combination strategy and the weighted combination
strategy.

1) Average Combination Strategy: ACS is a simple unsuper-
vised strategy in which the combination is based on the average
operator. The rationale behind this strategy is that, from a sta-
tistical viewpoint, the different estimators can be considered as
different random processes that model the same (biophysical)
parameter. Optimal estimation based on first-order statistics can
be obtained by a classical average operation. Accordingly, for a
given sample x, the resulting estimate F'(x) can be written as

P = 3 filx). @
=1

Theory and experiments show that the average operator is ef-
fective if all estimators are unbiased and incur in uncorrelated
errors with similar variances or, in general, when all the single
estimators exhibit similar accuracies [18], [34].
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2) Weighted Combination Strategy: By contrast with the
ACS approach, WCS is a supervised combination strategy. The
idea of WCS is to exploit available prior knowledge about the
data (in situ measurements) in order to derive a weighted linear
combination of the outputs of the estimators. Thanks to the as-
signment of a weight to each estimator, the linear combination
model can be tuned in order to optimize the robustness of the
estimation process. It is worth noting that ACS is a particular
case of WCS in which all estimators have the same weight.
Similarly to what is done in the pattern classification context
with the Hybrid Consensus Theory [35], [36], the weight asso-
ciated with each estimator can be seen as a “reliability factor”
and each estimator can be considered a different information
source. Reliability factors represent a way of expressing the de-
gree of confidence of each information source and of weighting
its influence in the combination process accordingly. The final
estimate provided in output from WCS is given by

F(x) = Z Bifi(x) 3)

where [(3; represents the reliability factor (weight) assigned to
the sth estimator.

The problem in WCS is the determination of weight values.
This problem can be addressed in different ways. A simple so-
lution (which is widely used in the literature) is based on the
minimum square error (MSE) pseudoinverse technique [37]. It
consists in solving the following system of N linear equations
with 7" unknown variables (N > T'):

fi(x1)  fa(x1) fr(x1) B Y1
fl(Xz) f2(X2) fT(X2) B2 _ | Y2
fixn) Rlxw) o o) Laed Lgy

sTF-B=Y. 4

The estimate of the optimal weight vector ﬁ* is given by the
following equation based on the pseudoinverse F of the matrix
F:

3 - F.F) F.Y=F".V 5)
It is worth noting that more complex alternative methods could
be used for estimating [_3* (e.g., see [20]).

An interesting property of WCS is that, if proper values of
the reliability factors are used, the combination of the estimates
obtained from the different single estimators is less sensitive to
their respective bias and variance than in the ACS strategy.

C. Selection-Based Approach

In this approach, we propose to analyze the accuracy of each
single estimator included in the MES in different portions of
the d-dimensional feature space. This is equivalent to making
a partition of the d-dimensional feature space, in which each
point is associated with the estimator of the ensemble that pro-
vides the minimum estimation error (Fig. 2). In other words, the
MES behaves like an ideal selector of the most accurate estimate
achieved by the set of available estimators. In this way, it is pos-
sible to better exploit the peculiarities of the different estimators

A
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Estimator 3 .
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Fig. 2. Example of partition of a two-dimensional input feature space for
an ensemble made up of four estimators (selection-based approach). Each
decision region indicates the regression algorithm (included in the ensemble)
that provides the expected most accurate estimation of the considered
biophysical parameter in the corresponding portion of the feature space.
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Fig. 3. Block diagram representing the training procedure of a MES
implemented through the proposed selection-based approach. The expected
best estimator FE(x;) among the set of single estimators is identified according
to the minimum value of the absolute error. This information is exploited
to supervise the selection module in learning the optimal partition of the
d-dimensional feature space.

in order to increase the robustness (and possibly the accuracy)
of the estimation process in the entire feature space.

From an operative viewpoint, the selection-based approach
can be applied according to the use of the prior knowledge con-
tained in the available in sifu measurements. It consists of two
phases: the training phase and the estimation phase. As depicted
in Fig. 3, the training phase includes the identification (among
the set of available single estimators) of the expected best single
estimator £/(x) for each point x of the feature space. The op-
timal partition of the d-dimensional feature space in a set of re-
gions is obtained according to the analysis of the training sam-
plesx; (¢ = 1,2,...,N), each being assigned to a single given
estimator. The aim of the selection module is to model such an
optimal partition in the best possible way. In our case, the con-
cept of optimality is expressed in terms of minimum absolute
error (MAE)

A

E(x;) = ajgnlinT{|fk(Xi) —yil}- (6)

1Ly

It is worth noting that any other monotonic error function (e.g.,
the minimum square error) could be adopted. However, this
would not change the obtained partition as the result of the
“min” operator is not affected by monotonic functions. During
the estimation phase, each unknown sample x € R? (for which
the true value of the investigated biophysical parameter is not
known a priori) is given as input to the selector (classifier),
which provides as output the estimate E(x) € {1,2,...,T}
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of the most accurate estimator for the considered sample. The
estimate F'(x) resulting from the MES can be written as

F(x) = fﬁ;(m)(x)- @)

We propose two strategies of selection, which exploit prior
knowledge in different ways: the local selection strategy and the
global selection strategy.

1) Local Selection Strategy (LSS): This strategy is based on
the concept of local accuracy of each single estimator in the
d-dimensional feature space. It is worth noting that this concept
was previously introduced in the framework of multiple classi-
fier systems [38]. We propose to extend this concept to the case
of the estimation problem, taking the peculiarities of this spe-
cific task into account.

The measure of local accuracy is based on the analysis of the
effectiveness of different estimators in the area of the feature
space surrounding the considered sample. This analysis can be
accomplished by partitioning the feature space according to the
behavior of the estimators on the training samples in a neigh-
borhood of each point of the feature space. In other words, the
identification of the best single estimator for a given unknown
sample x € R? is obtained by analyzing the optimal estima-
tors for the training samples nearest to x (it is worth noting that,
in order to avoid overfitting, the training samples used in this
phase should be different from the ones used in the learning of
the single regression algorithms included in the ensemble). The
LSS strategy can be implemented according to the K -nearest
neighbors nonparametric estimation method, which results in
the well-known K -nearest neighbors dgcision rule [37]. In our
problem of selecting the best estimator £/(x) of the ensemble for
the unknown sample x, this rule is equivalent to the following
maximization:

E(x) = argmax {K;(x)} (8)
i=1,2,...,T
where K;(x) stands for the number of training samples among
the K nearest ones to the sample x that are assigned to the 2th
estimator (class). K;(x) (i = 1,2,...,T) must satisfy the fol-
lowing condition:

Z Ki(x) =K. ©)

For small values of K, the LSS provides a detailed partition
of the feature space but, at the same time, it is subject to high
sensitivity to noise (isolated training samples) involving a de-
crease in estimation reliability (robustness).

2) Global Selection Strategy (GSS): By contrast with the
LSS, the GSS exploits the entire training set to partition the
d-dimensional feature space among the 7" estimators included
in the ensemble. All the training samples contribute to defining
the model that approximates the regions of the feature space to
which the single estimators are assigned. Compared to the LSS,
this results in a smoother partition of the feature space that in-
volves lower sensitivity to local variations of the MAE criterion
adopted to identify the best single estimator. Since the distri-
bution of the patterns in the portions of the feature space that
should be associated with different estimators is not known a
priori, nonparametric partition (classification) approaches must
be adopted. In particular, we propose to use RBF neural net-
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Fig. 4. Typical architecture of a selection module based on RBF neural
networks.

works trained with the technique described in [39]. The choice
of this kind of classifier is motivated by the high classifica-
tion accuracies it can obtain with an acceptable processing time.
The typical architecture of an RBF neural network is depicted
in Fig. 4. In particular, when applied to our partition problem,
this neural architecture provides a set of outputs Z;(x) (i =
1,2,...,T) that can be written as

’

M
Zi(x) = > wmi®m(x) + b; (10)
m=1

where M is the number of hidden neurons, w,,; represents the
weight of the connection between the mth hidden and the th
output neurons, b; stands for the bias associated with the ith
output, and ., (-) refers to the kernel function associated to the
mith hidden neuron. The selection of the best estimator £(x) of
the ensemble for the unknown sample x is carried out according
to the common winner-takes-all decision rule, i.e.,

E(X) = argma); {Z:(x)}. (11)

1=1,2,...,

In brief, the training procedure adopted for the considered
RBF neural network deals with the estimation of both the
kernel-function parameters and the weights and biases asso-
ciated with the hidden and output neurons, respectively. The
kernel-function parameters include the kernel center and width,
which are computed by applying the k-means clustering algo-
rithm separately to each class. This results in a reduced effect of
the problem of mixed clusters (i.e., clusters shared by different
classes) with respect to the standard case, in which the k-means
clustering algorithm is applied simultaneously to all classes
[39]. The training of the output layer consists in estimating the
weights and the bias that characterize the links of each output
neuron. For each output neuron, this task is accomplished by
formulating the estimation problem as a linear system of NV
equations with M + 1 unknown variables (N > M + 1) which
is solved according to the MSE pseudoinverse technique. For
more details, we refer the reader to [39].

III. DESIGN OF THE ENSEMBLE OF ESTIMATORS

The MES requires the definition of an ensemble of different
estimation algorithms. Such an ensemble can be designed by
using the same regression method with different parameter set-
tings (i.e., different architectures in the case of neural regres-
sion techniques) or according to different estimation methods.
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In this paper, we considered both approaches, with a particular
attention to the first one. Such an attention is strengthened by
the interest in analyzing in greater detail the effectiveness of
the approach based on SVMs for the estimation of biophysical
parameters.

In the next subsection, the basics related to SVMs as a regres-
sion tool are briefly recalled.

A. Regression With SVMs

Let us refer to the estimation problem defined in Section II.
In the e-SVM regression approach introduced in [27], the goal
is to find a function f(x) that has at most £ deviation from the
desired targets y; and, at the same time, is as smooth as pos-
sible. This is obtained by mapping the data from the original
d-dimensional domain to a higher dimensional feature space,
ie., ®(x) € RY (d' > d), both in order to increase the flatness
of the function and to approximate it in a linear way as follows:

f(x)=w" - ®d(x) + b*. (12)
The optimal linear function in the higher dimensional feature
space is the one that minimizes a cost function, which expresses
a combination of two criteria: Euclidean norm minimization
(which is equivalent to maximizing flatness) and error mini-
mization. The cost function is defined as

N
V.6 = sl +OY G +€). a3

=1

This cost function minimization is subject to the following
constraints:

yi — (W O(x;) +b) <e + & ;
{(W¢(X1)+b)_yzgf+£j7 L—1,2,7N (14)

and

&, & >0, (15)
where the ¢ and &’s are the so-called slack variables intro-
duced to account for samples that do not lie in the e-deviation
tube. Constant C' represents a regularization parameter that al-
lows to tune the tradeoff between the flatness of the function
f(x) and the value up to which deviations larger than  are ac-
cepted. The formulation of the error function is equivalent to
dealing with a so-called e-insensitive loss function ||, typically

defined as
0,
|£|5 - { |6| —¢,

where ¢ represents the deviation with respect to the desired
target. This means that the differences between the targets
and the estimated values are tolerated inside the e-tube (error
smallest than ¢), while a linear penalty is assigned to estimates
lying outside the e-insensitive tube (see the example reported
in Fig. 5).

The above optimization problem can be reformulated through
a Lagrange functional. The Lagrange multipliers can be found
by a dual optimization leading to a QP solution [40], [41]. The

if|6] <e

otherwise (16)

)

1Gle

> X

Fig. 5. Example of e-insensitive tube and error function used in the
SVM-based regression technique.

final result is a function of the data conveniently expressed in
the original (lower) dimensional feature space as

Fx) = (i = af) K(xi,%) +b° a7

i€S

where K(-,) is a kernel function. S is the subset of indices
(¢ = 1,2,...,N) corresponding to the nonzero Lagrange
multipliers «; or «’s. The Lagrange multipliers weight each
training sample according to its importance in determining a
solution. The training samples associated to nonzero weights
are called support vectors. In S, margin support vectors that
lie within the e-insensitive tube and nonmargin support vectors
that correspond to errors coexist. The kernel K (-, ) must satisfy
the condition imposed by the Mercer’s theorem so that it can
correspond to some type of inner product in the transformed
(higher) dimensional feature space [27]. Examples of common
kernels that fulfill Mercer’s condition are the polynomial kernel
functions and the Gaussian radial basis functions.

An important aspect to be pointed out is the intrinsic good
generalization capability of SVMs, which stems from the selec-
tion of the hyperplane that maximizes the flatness of the consid-
ered function in the transformed d’-dimensional feature space.
In other words, the obtained solution minimizes the structural
risk, i.e., it optimizes the tradeoff between the quality of ap-
proximation function of the given data and the complexity of the
approximating function [27]. In a biophysical parameter esti-
mation context, this maximum margin solution allows to obtain
estimates that properly deal with the variability and uncertainty
often associated with the few in situ measurements available.

We refer the reader to [27], [40], and [41] for greater detail
on the SVM estimation theory.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

The proposed MES was assessed using a set of synthetic
multispectral data that simulate the spectral behavior of the
chlorophyll concentration in the subsurface coastal waters.
The data simulate the first eight channels (412-681 [nm])
of MERIS mounted onboard the European Space Agency’s
Envisat satellite launched on March 2002. These channels are
the most useful for sea color applications and, in particular, for
the analysis of chlorophyll concentration. For greater details
on the simulation procedure adopted to generate these data, we
refer the reader to [16]. It is worth recalling that the MERIS
sensor is a passive imaging spectrometer with 15 spectral bands
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TABLE 1
BEST MSE VALUES ON THE TEST SET AND COMPUTATIONAL TIME
EXHIBITED BY SVMS AND MLPS WITH TWO HIDDEN LAYERS

ESTIMATION BEST
METHOD MSE TIME [s]
SVM-Linear (C=500) 0.0262 4747
SVM_-Polynomial (Order=3, C=40) 0.0013 3707
SVM-RBF (y=0.2; C=1000) 0.0041 1743
MLP (5%5) 0.0013 6228
MLP (10x10) 0.0021 11124

(programmable in width and position within the visible and
near-infrared range) and a ground spatial resolution of 300 m.
The primary mission of MERIS is the measurement of sea color
in the oceans and coastal areas in order to monitor the ocean
carbon cycle and the thermal regime of the upper ocean, and
manage coastal zones and fisheries.

In our experiments, the total number of available samples
(pairs of in situ concentrations and received radiances) is equal
to 5000. The range of variation of the chlorophyll concentra-
tion is from 0.02-25 mg/m®. In order to make smoother the
multidimensional function to be approximated, both concentra-
tion and simulated radiance values were converted to the loga-
rithmic scale. The samples, defined in an eight-dimensional fea-
ture space, were divided into three sets: two training sets (each
made up of 500 samples), and a test set (with 4000 samples).
The first training set was used for the learning of the single es-
timators of the ensemble, while the second was necessary to
train the different combination/selection supervised strategies
proposed for the MES (i.e., the WCS, LSS, and GSS). It is worth
noting that most samples were included in the test set to obtain
small-size training sets with numbers of samples comparable to
those typically available in operational applications of remote
sensing image regression. Assessment of the effectiveness of
the single SVM estimators and the MES was carried out based
on the samples of the test set by computing different validation
criteria, such as the MSE, MAE, and the minimum and max-
imum values of the absolute error. For the sake of brevity, in this
paper, we report the results in terms of MSE, which represents
the most commonly used validation criterion (the other results
confirm the conclusions obtained by analyzing the behavior of
the MSE).

B. Results Obtained With SVM Estimators

As stated in Section III, the choice of this kind of estimator is
motivated by the interest in a detailed and complete assessment
of the effectiveness of the SVM regression approach when ap-
plied to the biophysical parameter estimation problem. In par-
ticular, we considered three different kinds of SVMs: a linear
SVM (SVM-Linear) (which corresponds to an SVM without
kernel transformation), a nonlinear SVM with polynomial ker-
nels (SVM-Polynomial), and a nonlinear SVM with Gaussian
radial basis functions (SVM-RBF). This allowed us to evaluate
the influence of the kernel type in the SVM regression process,
and to obtain useful indications for choosing the estimators ap-
propriate to implement the different scenarios defined to eval-
uate the robustness of the MES.

For the three SVM-based regression techniques, it was nec-
essary to derive the value of the regularization parameter C,
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Fig. 6. Scatterplot of the best estimate of the chlorophyll concentration versus
the true concentration Log(CL) obtained on the test set by (a) SVM-Linear
estimator (C' = 500), (b) SVM-Polynomial estimator (Order = 3; C' = 40),
and (c) SVM-RBF estimator (y = 0.2; C' = 1000).

since data are not ideally contained in the e-insensitive tube
(e was fixed to a value of 0.001). By contrast with the linear
SVM, the nonlinear SVMs required the determination of addi-
tional parameters, i.e., the order of the polynomial and the ~y
parameter for the SVM-Polynomial and the SVM-RBF, respec-
tively. Concerning the SVM-polynomial, on the one hand, by
increasing the order of polynomial kernels we can obtain more
accurate regression potentialities. On the other hand, the gen-
eralization capabilities of the estimator decrease. This becomes
critical in operational situations where the number of training
samples is very limited and a high polynomial degree is consid-
ered (large number of coefficients to estimate). The « parameter
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TABLE 1I
ANALYSIS OF THE STABILITY OF THE MSE AND OF THE COMPUTATIONAL TIME VERSUS THE SETTING OF THE PARAMETERS
OF THE CONSIDERED SVM REGRESSION TECHNIQUE (WITH DIFFERENT KERNEL FUNCTIONS)

ESTIMATION PARAMETER MSE AVERAGE
METHOD RANGE Average | Std. Deviation TIME [s]

SVM-Linear Ce [1,1000] 0.0310 0.0069 804

SVM-Polynomial |C e [1,1000]; Order=2 0.0038 0.0019 9114

SVM-Polynomial |C e [1,1000]; Order=3 0.0017 0.0005 5660

SVM-Polynomial |C e [1,1000]; Order=4 0.0031 0.0013 5769

SVM-RBF Ce[1,1000]; y=1 0.0258 0.0080 3005

SVM-RBF ye [0.05.2]; C=1000 0.0149 0.0120 2241
of the SVM-RBF is related to the width of the Gaussian radial 0.04 [ SVM-Linar —a— SVM-Polynomial —a— SVV-REF
basis kernels, and consequently, tunes the smoothing of the ap- '
proximating function. 0.035

Several experiments were carried out in order to identify em- 0.03 .\\
pirically (on the basis of the test samples) the best parameter(s) \/“\,“
associated with each of the three considered types of SVM (see 0.025
Table I). As expected, the linear SVM proved the least effective  § ¢.02
among the three kernel types considered. The smallest MSE \
value found for the linear SVM was equal to 0.0262 (C' = 500). ~ %9'®
This confirms that the linear regression often does not meet 0.01
user’s accuracy requirements. By contrast, with the nonlinear : \ \\.\
SVMs, one order of magnitude was gained in terms of MSE. In 0.005 \'\‘\.‘:
greater detail, the smallest MSEs obtained by the SVM-Polyno- 0
. T 50 100 200 300 400 500
mial and by the SVM-RBF were 0.0013 (C' = 40; third-order N L
. R umber of Training Samples

polynomial) and 0.0041 (C' = 1000; v = 0.2), respectively. In
Fig. 6, the scatterplots of the output of the different SVM-based  Fig. 7. Best MSE values obtained on the test set from the three considered

regression techniques (SVM-Linear, SVM-Polynomial and
SVM-RBF) illustrate graphically the accuracy of the obtained
estimates of the chlorophyll concentration over the whole range
of variation considered in the simulation (i.e., [—2, +2] in
the logarithmic scale). Such plots show clearly the very good
estimation accuracies achieved by the nonlinear SVMs (and
in particular the SVM-Polynomial) with respect to the linear
SVM estimator. For the latter, one can observe higher devia-
tions of the estimates from the true values of the chlorophyll
concentration, which lead to strong over- and underestimations
of the considered biophysical parameter [see Fig. 6(a)]. The
better accuracies of the SVM-Polynomial with respect to the
SVM-RBF can be motivated by the higher fitting flexibility of
the polynomial kernel with respect to the symmetric Gaussian
kernel. However, the higher number of parameters it requires
results in a computationally more demanding training process
(see Tables I and II).

For the sake of comparison, we also trained two multilayer
perceptron neural networks characterized by two hidden layers
with 5-5 and 10-10 neurons, respectively. The MSE obtained
on the test samples and the computational time are reported in
Table 1. These results confirm that SVMs are a good alterna-
tive to the well-established neural regression method based on
MLPs, since they achieve a very similar accuracy with (in av-
erage) a lower computational time.

In order to assess the sensitivity of each SVM-based estimator
to the parameter settings, we derived some statistics by looking
at the MSE and at the computational time as random realiza-
tions obtained varying the parameters in a predefined range of
values. The results reported in Table II confirm the superiority
of the nonlinear SVM based on polynomial kernels in terms of

SVM-based estimators versus the number of training samples used.

TABLE III
MSE YIELDED ON THE TEST SET IN THE FIRST TWO CONSIDERED
EXPERIMENTS BY THE THREE SINGLE ESTIMATORS INCLUDED IN
THE ENSEMBLE AND THE FOUR DESCRIBED MES STRATEGIES.
THE BEST THEORETICAL ESTIMATION THAT CAN BE
ACHIEVED BY THE SELECTION-BASED STRATEGY
(ORACLE) IS ALSO GIVEN FOR COMPARISON

Estimation
Method

Mean square error (MSE)

Experiment 1 Experiment 2

SVM-Linear SVM-Polynomial
Estimator 1 (C=500) (Order =2 ; C=1000)
0.0262 0.0018

SVM-Polynomial SVM-Polynomial

Estimator 2| (Order =3 ; C=40) (Order =3 ; C=40)

0.0013 0.0013
SVM-RBF SVM-Polynomial

Estimator 3| (y=0.2;C=1000) (Order=4;C=10)
0.0041 0.0014
ACS 0.0052 0.0011
WCS 0.0015 0.0012
LSS 0.0025 0.0013
GSS 0.0017 0.0013
Oracle 0.0008 0.0005

average MSE and stability (it provided the lowest standard devi-
ations) even though it proved to be the most computationally de-
manding. It is worth noting that nonlinear SVMs based both on
the polynomial and the RBF kernels seem to be more sensitive
to the choice of the polynomial order and kernel width value -,
respectively, than to the regularization parameter C. The linear
SVM showed the worst average MSE (equal to 0.0310), since a
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Fig. 8. Best possible (optimal) association between training patterns and estimators included in the ensemble in the bidimensional input feature space defined by
channels 1 and 8 (represented in logarithmic scale). (a) Experiment 1. (b) Experiment 2. (c) Experiment 3. (d) Experiment 4. (e) Experiment 5. The description of
the estimators is provided in Table III for Experiments 1 and 2 and in Table V for Experiments 3-5.

linear kernel applied to a nonlinear estimation problem involves
a large number of error samples lying outside the e-insensitive
tube. This significantly decreases the effectiveness of the regu-
larization mechanism implemented in the SVM approach to take
into account the presence of error samples.

Finally, to provide a complete assessment of the perfor-
mances of the SVM regression approach, we analyzed its
sensitivity to the number of samples used in the training phase.
We generated different training sets by decreasing the number
of training samples starting from 500 down to 50 samples. For

each set, we trained the three different SVM-based regression
techniques (SVM-Linear, SVM-Polynomial and SVM-RBF)
until the lowest possible MSE value was reached (empirically)
on the test set. Fig. 7 depicts the behavior of the MSE versus
the number of training samples for each kernel type. From 500
to 50 training samples, the ranges of variation of the MSE were
[0.0262, 0.0347], [0.0013, 0.0092], and [0.0041, 0.0189] for
the SVM-Linear, the SVM-Polynomial, and the SVM-RBF,
respectively. These results clearly confirm the superiority of
the SVM-Polynomial over the two other techniques. In addi-
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tion, they point out the low sensitivity of SVMs (in particular
of the SVM-Polynomial) to the number of training samples
used in the learning phase. This is explained by the fact that,
by exploiting a margin-based “geometrical” criterion, SVMs
define the best solution (i.e., the one that maximizes the fitting
of the considered function) by using only a specific subset
of the available training samples (i.e., the support vectors).
Accordingly, even if few training samples (but representative
enough) are used, the SVMs are capable of providing a good
approximation of the function to be modeled.

C. Results Obtained With the Proposed Multiple
Estimator Systems

Let us now consider the proposed MESs. Five experiments
were carried out to assess the effectiveness of the MESs in dif-
ferent operational conditions where the single estimators in-
cluded in the ensemble are: 1) based on the same or on different
regression methods; 2) characterized by different tradeoffs be-
tween correlation of errors and estimation accuracy; 3) trained
on samples affected or not by measurement errors.

The first group of experiments refers to two scenarios where
the same regression method (which is based on SVMs) is used
for all the members of the ensemble. In particular, in the first
experiment, in order to assess the robustness of the MES, the
ensemble included a “poor” estimator and two “good” estima-
tors. The second experiment aimed at studying the ability of the
MES to exploit the information present in the ensemble even in
presence of correlated estimators.

The second group of experiments represents three different
scenarios in which the estimators included in the ensembles are
designed by adopting two different regression methods based on
SVMs and MLPs. In particular, in the third experiment, the en-
semble was composed of two SVM-based and two MLP-based
estimators. The fourth and fifth experiments were carried out to
assess the robustness of the MES to the problem of measure-
ment errors. To this end, the four estimators adopted in the third
experiment were learnt on a training set partially corrupted by
measurement errors (with different proportions for the fourth
and fifth experiments).

In order to quantify the measure of diversity between mem-
bers of an ensemble, similarly to what done in [42] for the com-
bination of ensembles of classifiers, we propose to use a pair-
wise correlation coefficient of errors defined as follows:

; Fon(5) = 93] - (o) — 3]
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where p,,, is the correlation coefficient (defined in the range
[—1, 1]) between the mth and nth estimators of the ensemble
and S stands for the number of test samples. A zero value of
the coefficient indicates that the two estimators are uncorrelated,
whereas values equal to +1 and — 1 point out that the estimators

incur in completely correlated errors. The global correlation co-
efficient p can thus be approximated by a simple averaging of
the pairwise correlation coefficients, i.e.,
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The five experiments carried out are described in detail in the
following subsections.

1) Experiment 1: Ensemble With a “Poor” Estimator: This
experiment is designed to study the robustness of the MES when
the ensemble includes a “poor” estimator (i.e., an estimator with
a relatively high MSE value). This is a realistic situation in op-
erational applications because the number of in situ samples is
often insufficient to guarantee that the evaluation of the effec-
tiveness of the estimator carried out on the test samples is rep-
resentative of the true MSE on all considered data. It is worth
noting that this situation is particularly critical when only one
regression algorithm is used to solve the estimation problem. In
order to obtain an ensemble with this characteristic, we consid-
ered a set of three different kinds of estimators (SVM-Linear,
SVM-Polynomial, and SVM-RBF). Each kind of SVM-based
estimator was trained to reach its best accuracy (i.e., the lowest
MSE value) on the test samples. The optimization of the estima-
tors on the test set allowed to create a condition where high dif-
ferences in accuracy characterize the estimators included in the
ensemble. The MSEs characterizing the set of single estimators
were very different, since an order of magnitude separates the
MSE achieved by the SVM-Linear from those obtained by the
nonlinear SVMs (see Table III). Accordingly, the poor estimator
of the considered ensemble is represented by the SVM-Linear
estimator. The value of the correlation coefficient p on the test
samples was found equal to 0.416, indicating thus a relatively
weak correlation among the errors incurred by the three mem-
bers of the ensemble due to the consistent difference of accuracy
between them.

Once the different single estimators were trained using the
first training set, we applied the learning phase to the three in-
vestigated supervised strategies (WCS, LSS, and GSS) based
on the samples of the second training set. Concerning the WCS,
the values of the three weights defining the linear combina-
tion among the outputs of the SVM-Linear, SVM-Polynomial
and SVM-RBF were determined automatically by means of an
MSE pseudoinverse technique (see Section 1I-B2). Differently,
the training phase of the two selection-based strategies consisted
of defining an effective partition of the feature space according
to the minimization of the MAE. In order to better understand
the complexity of the problem, Fig. 8(a) shows the best pos-
sible association between training patterns and estimators in-
cluded in the ensemble in the bidimensional feature space de-
fined by channels 1 and 8 (these channels were chosen as they
represented the least correlated spectral bands among the eight
available ones). This optimal association (which is equivalent
to an “oracle”) was obtained by a manual supervised analysis
of the outputs of the estimators included in the ensemble for the
training patterns. In other words, it represents the target-parti-
tion that the two strategies LSS and GSS will attempt to model
during their learning phase. From the figure, one can make two
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considerations. The first is related to the SVM-Linear estimator,
which clearly appears to be an unreliable source of informa-
tion throughout almost the entire bidimensional feature sub-
space (only few local partitions of the feature space were as-
signed to this estimator). The second observation concerns the
two nonlinear SVM estimators of the ensemble. The partition
of the feature space is: 1) dominated by the SVM-Polynomial
(since it is the most accurate in the ensemble); 2) in spite of the
fact that the feature space is characterized by some large ho-
mogeneous regions assigned to the same estimator, the partition
seems fragmented/localized, in particular in the central region
of the feature space. This second point can be explained by the
fact that the high estimation accuracy reached by the two non-
linear estimators renders their estimation error functions more
similar, without a dominant behavior of one on the other over
the entire feature space. Accordingly, the selection of the best of
them depends on the specific portion of the feature space con-
sidered and is therefore localized. On the basis of the samples of
the second training set, the optimal value of nearest neighbors
for the LSS was K = 1 and the optimal number of hidden nodes
in the Radial Basis Functions neural network [39] for the GSS
was found equal to 20. It is worth underlining that the computa-
tional time required by all the three supervised MES strategies
was very short.

Table III reports the results achieved by the different strate-
gies on the considered 4000 test samples. Despite the presence
of a poor estimator in the ensemble, the three supervised MES
strategies (WCS, LSS, and GSS) proved very robust since they
allowed to maintain a final accuracy comparable to that reached
by the best single estimator (SVM-Polynomial) included in the
pool of regression algorithms. This means that the MES is ef-
fective in reducing the effects of the unpredictable presence of
a poor estimator in the ensemble. This important property is
explained by the fact that the supervised MESs are capable of
discriminating between the most and the least reliable informa-
tion sources by properly assigning weights (combination-based
strategy) or regions of the input feature space (selection-based
strategy) to each estimator.! In greater detail, the best strategy
was the WCS, which reduced the MSE achieved by the best
and the worst single estimators, respectively, by a factor of 0.87
(which means a slight increase in the MSE) and 17.47. As ex-
pected, a situation in which the accuracies of the single esti-
mators of the ensemble are not balanced strongly penalizes the
ACS. Nonetheless, it is worth underlining that the ACS pro-
vided far more accurate estimates than the worst single estimator
(SVM-Linear) of the ensemble, and that it is characterized by an
MSE of the same order of magnitude as that provided by the best
single estimator (SVM-Polynomial).

The lower bound (oracle) achievable by the two selection-
based strategies on the test samples is also reported in Table III.
This bound is useful to understand the capability of the LSS and
GSS strategies in capturing the best estimate available in the
ensemble. It is computed by selecting the best single estimator

1Tt is worth noting that, in this experiment, all the members of the ensemble
were optimized on the test samples (i.e., they represent the best possible estima-
tors with each kind of kernel on the test set) whereas the MES strategies were
not optimized on these samples. This penalized the MES approach with respect
to single estimators.

169

TABLE IV
(a) B1IAS AND (b) VARIANCE OF THE ESTIMATION ERRORS OBTAINED ON THE
TEST SET BY THE THREE CONSIDERED SINGLE ESTIMATORS AND THE FOUR
DESCRIBED MES STRATEGIES FOR THE FIRST TWO REPORTED EXPERIMENTS.
THE BEST THEORETICAL ESTIMATION THAT CAN BE ACHIEVED BY THE
SELECTION-BASED STRATEGY (ORACLE) IS ALSO GIVEN FOR COMPARISON

a
Estimation Error bias
Method Experiment 1 Experiment 2
Estimator 1 -0.0300 -0.0072
Estimator 2 -0.0058 -0.0058
Estimator 3 -0.0090 -0.0022
ACS -0.0149 -0.0051
WCS -0.0049 -0.0062
LSS -0.0088 -0.0062
GSS -0.0073 -0.0068
Oracle -0.0046 -0.0034
b
Estimation Error variance
Method

Experiment 1 Experiment 2

Estimator 1 0.0253 0.0017
Estimator 2 0.0013 0.0013
Estimator 3 0.0040 0.0014
ACS 0.0049 0.0011
WCS 0.0014 0.0012
LSS 0.0024 0.0013
GSS 0.0016 0.0013
Oracle 0.0008 0.0005

for each sample of the test set, using the prior knowledge on
the errors incurred by each member of the ensemble. In this
experiment, it clearly appears that the LSS and GSS did not
reach the best achievable performances (MSE = 0.0025 and
0.0017, respectively, against 0.0008 for the oracle) due to the
relative complexity of the selection task [Fig. 8(a)].

Finally, we analyzed the performances of the different esti-
mation strategies by comparing the bias and variance of their
estimation error on the test samples (see Table IV). These
values motivate the MSE obtained by the ACS, which is higher
than that exhibited by the WCS. In particular, one can observe
that the three different single estimators of the ensemble are
relatively biased (—0.0300, —0.0058, and —0.0090) and have
different variances (0.0253, 0.0013, and 0.0040). Accordingly,
they do not meet the theoretical conditions required by the
unsupervised linear average operator [18], [34]. Nonetheless,
the supervised linear WCS decreased the variance and the MSE
of the final estimate with respect to the ACS (0.0014 against
0.0049, and 0.0015 against 0.0052 for the variance and the
MSE, respectively), as it explicitly considers the reliability
information of each member of the ensemble. This information
is useful to give less weight to unreliable estimators (like Esti-
mator 1, which is characterized by the highest bias and variance
values) and, accordingly, to attenuate the problem of the biases
and disparities between the variances of the single estimators.
The results also show that the selection-based approach only
partially overcomes the constraint on the biases and variances
of the single estimators, providing performances that are better
than the ACS but slightly worse with respect to the WCS.
This different tradeoff depends on the fact that it is not based
on a direct combination of the estimates yielded by all the
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estimators, but on a selection-based mechanism that identifies
the expected best available estimate.

2) Experiment 2: Ensemble With Correlated Estimators:
The second experiment was aimed at assessing the effective-
ness of an ensemble made up of correlated estimators. To this
end, we defined a set of three SVM estimators with the same
kernel model (SVM-Polynomial) by changing the polynomial
order (second, third, and fourth-order) that controls the fitting
flexibility. It is worth underlining that the limited number of
training samples (500) penalizes high-order polynomials. This
is confirmed by the obtained results, in which the MSE on the
test set slightly increases by moving from a third-order to a
fourth-order polynomial (see Table III). As expected, the fact
that the three estimators are based on the same type of kernel
function and have high and very similar accuracies increased
the global correlation coefficient to 0.616.

In the MES training phase, it was found empirically that
for the LSS the best K value was 3, whereas for the GSS the
optimal number of hidden nodes in the RBF-based selector
was 30. Fig. 8(b) confirms what was partially observed in
Experiment 1, i.e., estimators with comparable high accuracies
result in similar error functions, without a dominant behavior
of one on the other over the entire feature space. This involves
a strong fragmentation of the optimal partition of the feature
space, which is difficult to model with the selection-based
approach. This is confirmed by the experimental results, which
show that, in spite of the fact that the LSS and GSS strategies
proved satisfactorily robust (i.e., they provided MSE values
lower than those of the worst estimator of the ensemble),
they were not capable of reducing the MSE value of the final
estimate (0.0013) with respect to that of the best estimator of
the ensemble (0.0013). Since the MSE value obtained by the
oracle (lower bound achievable for the considered ensemble
of estimators) was lower (0.0005) than those of LSS and
GSS, we can conclude that from a theoretical viewpoint the
selection-based strategy can improve the estimation accuracy
also in this case, but the considered strategies could not fully
exploit the available information to model the complexity of
the selection process. By contrast, in such a situation (char-
acterized by accurate and correlated single estimators), the
combination-based approach (CBA) proved to be the most
effective. In particular, the best MSE value was yielded by the
ACS, which resulted in a reduction of the MSE obtained by
the best and the worst single estimators by a factor of 1.18 and
1.64, respectively (see Table III). This is motivated by the fact
that the three estimators are almost unbiased and have very
similar variances (see Table IV).

3) Experiment 3: Ensemble With Different Regression
Methods: The third experiment was carried out in order to
assess the effectiveness of the MES with an ensemble com-
posed of estimators based on different regression methods.
This setup, which is widely adopted in the context of multiple
classifier systems, allows one to define members of the en-
semble characterized by significantly uncorrelated estimation
errors. In particular, we designed an ensemble composed of
two SVM-based and two MLP-based estimators exhibiting
comparable accuracies (see Table V). The global correlation
coefficient characterizing this ensemble is equal to 0.555.

TABLE V
MSE YIELDED ON THE TEST SET IN THE LAST THREE CONSIDERED
EXPERIMENTS BY THE FOUR SINGLE ESTIMATORS INCLUDED IN THE
ENSEMBLE AND THE FOUR DESCRIBED MES STRATEGIES. THE
BEST THEORETICAL ESTIMATION THAT CAN BE
ACHIEVED BY THE SELECTION-BASED STRATEGY
(ORACLE) IS ALSO GIVEN FOR COMPARISON

Estimation
Method

Mean square error (VISE)

Experiment 3 Experiment 4 Experiment 5

SVM-Polynomial SVM-Polynomial SVM-Polynomial
Estimator 1| (Order =2 ; C=1000)( (Order =2 ; C=1000)| (Order =2 ; C=1000)
0.0018 0.0024 0.0947
SVM-Polynomial SVM-Polynomial SVM-Polynomial
(Order=3;C=40) | (Order=3;C=40) | (Order=3;C=40)

Estimator 2

0.0013 0.0014 0.0120
- MLP (5x5) MLP (5x5) MLP (5x5)
Estimator 3 0.0013 0.0156 0.0751
. MLP (10x10) MLP (10x10) MLP (10x10)
Estimator 4 0.0021 0.0205 0.0814
ACS 0.0011 0.0059 0.0395
WCS 0.0011 0.0077 0.1260
LSS 0.0012 0.0014 0.0127
GSS 0.0014 0.0073 0.0216
Oracle 0.0004 0.0007 0.0047

In the learning phase of the MES, the best parameter values
empirically derived (on the basis of the second training set) for
the LSS and GSS were K = 17 and 60 hidden nodes, respec-
tively. Fig. 8(c) confirms what was expected from the previous
experiment (Experiment 2), i.e., accurate and comparable single
estimator accuracies result in a high risk of local fragmentation
of the feature space in randomly distributed small decision re-
gions. This effect renders particularly difficult the task of mod-
eling the various decision boundaries.

In general, in this experiment, the MSE, the estimation error
bias and variance achieved by the different MES strategies are
very similar to those obtained in the second experiment (see
Tables V and VI). This was expected for two main reasons: 1)
the single estimators in the two ensembles are characterized by
similar and high accuracies; and 2) the global correlation coef-
ficients of the two ensembles are similar. All the four strategies
provided accuracies very close to that exhibited from the best
single estimator and, in most cases, slightly better. This confirms
the capability of the MES to enhance the robustness of the esti-
mation task. In greater detail, the best strategies were the ACS
and WCS, which reduced the MSE obtained by the best and
the worst single estimators by a factor of 1.18 and 1.91, respec-
tively (see Table V). This confirms the fact that, in an ensemble
characterized by accurate and moderately uncorrelated estima-
tors, the combination-based approach is more attractive than the
selection-based approach thanks to its effectiveness and lower
computational complexity.

4) Experiments 4 and 5: Robustness to Measurement Errors:
In order to complete the experimental analysis of the proposed
MES approach, we carried out two other experiments (Exper-
iments 4 and 5) to evaluate the robustness of the MES to the
problem of measurement errors. Such a problem is typical in re-
gression applications (e.g., estimation of chlorophyll concentra-
tions in subsurface waters) in which the time between the in situ
measurements and the remote sensing data acquisition may re-
sult in changes in the concentrations of the analyzed parameter.
Another possible motivation of measurement errors is related
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TABLE VI
(a) BIAS AND (a) VARIANCE OF THE ESTIMATION ERRORS OBTAINED ON THE
TEST SET BY THE FOUR CONSIDERED SINGLE ESTIMATORS AND THE
FOUR DESCRIBED MES STRATEGIES FOR THE LAST THREE REPORTED
EXPERIMENTS. THE BEST THEORETICAL ESTIMATION THAT CAN BE
ACHIEVED BY THE SELECTION-BASED STRATEGY (ORACLE) IS
ALSO GIVEN FOR COMPARISON

a
Estimation Error bias
Method Experiment 3| Experiment 4| Experiment 5
Estimator 1 -0.0073 -0.0173 -0.0872
Estimator 2 -0.0058 0.0100 -0.0387
Estimator 3 -0.0023 -0.1086 -0.2400
Estimator 4 0.0051 -0.1285 -0.2534
ACS -0.0026 -0.0648 -0.1552
WCS -0.0043 -0.0728 -0.3242
LSS -0.0069 -0.0100 -0.0412
GSS -0.0054 -0.0510 -0.0686
Oracle -0.0026 -0.0100 -0.0245
b
Estimation Error variance
Method Experiment 3| Experiment 4| Experiment 5
Estimator 1 0.0017 0.0021 0.0871
Estimator 2 0.0013 0.0013 0.0105
Estimator 3 0.0013 0.0038 0.0175
Estimator 4 0.0021 0.0040 0.0172
ACS 0.0011 0.0017 0.0154
WCS 0.0011 0.0024 0.0209
LSS 0.0012 0.0013 0.0110
GSS 0.0014 0.0047 0.0169
Oracle 0.0004 0.0006 0.0041

to the low spatial resolution of several remote sensors (e.g., the
MERIS sensor with 300 m), which makes it difficult an accurate
in situ assessment of the investigated parameter over the entire
ground-projected instantaneous field of view.

In these experiments, we generated new training sets par-
tially corrupted by measurement errors with two different pro-
portions for the fourth and fifth experiments. This was done by
adding to the real target (expressed in the logarithmic scale) of
1/10 and 1/3 of the two training sets, for the fourth and fifth
experiments respectively, a uniform random noise defined in
the interval [—1, +1], while the test samples were kept un-
changed. For each trial, the four estimators used in the third
experiment were trained again with the same parameters on the
corresponding new first training set. As expected, their accuracy
decreased with increasing proportions (from O to 1/10 and 1/3)
of corrupted samples (see Table V). In greater detail, with 1/10
of noisy training samples, the MLP-based estimators resulted
in a significantly higher MSE (about one order of magnitude)
than the SVM-based estimators. This confirms the theoretically
expected good generalization capabilities of SVMs. The superi-
ority of SVMs was maintained also with a higher proportion of
noisy samples (i.e., 1/3). In this case, the best single estimator
was the SVM-Polynomial of third order (MSE = 0.0120) fol-
lowed by the MLP with 5 x 5 hidden neurons (0.0751), the MLP
with 10 x 10 hidden neurons (0.0814), and the SVM-Polyno-
mial of second order (0.0947). By analyzing Table VI, one can
observe that the relatively poor results of the MLP are explained
by the high bias values it introduces in the estimation process
due to the presence of perturbations in the real desired targets.

It is worth noting that the global correlation coefficients charac-
terizing the two ensembles in Experiments 4 and 5 were equal
to 0.524 and 0.491, respectively.

The three supervised fusion strategies (WCS, LSS, and GSS)
were learnt by exploiting the samples of the second training set
(which is also corrupted by noise). For the two selection-based
LSS and GSS strategies, the best parameter values were K =
19 and a number of hidden nodes equal to 30, respectively.
Fig. 8(d) and (e) depicts the optimal decision regions achievable
on the samples of the second training set (partially corrupted
by measurement errors). Since the test samples do not contain
any noise perturbation for simulating measurement uncertainty,
the target-partitions achieved by using the training samples in-
volve a distortion in the decision regions. Fig. 8(d) shows that
the most accurate single estimator of the ensemble (i.e., the
SVM-Polynomial of third order) dominated almost the whole
feature space, whereas Fig. 8(e) presents a slightly more bal-
anced partition among the estimators.

In general, despite the presence of training samples affected
by unreliable measurements of the chlorophyll concentration,
the MES strategies allowed to provide more robust perfor-
mances with respect to those achieved by the single estimators.
In greater detail, in Experiment 4, all the four strategies al-
lowed to overcome the strong sensibility to error measurements
exhibited by the MLP-based single estimators. The best MES
strategy was the LSS, which yielded the same accuracy of
the best single estimator (i.e., SVM-Polynomial of third order
with MSE = 0.0014). In Experiment 5, a similar behavior
can be observed, with the exception that the WCS strategy
failed completely in combining the estimates provided by the
members of the ensemble. This is motivated by the fact that
the pseudoinverse technique adopted to estimate the weights
associated with each estimator included in the ensemble is di-
rectly affected from the measurement errors (since it minimizes
the square error between the estimates and the targets partially
affected by noise). In such a situation, it is better to utilize the
simple ACS strategy that assigns the same weights to all the
members of the ensemble.

These experiments confirm that the MES represents a valid
solution to the problem of measurement errors, which can affect,
in an uncontrolled manner and with different degrees, single
estimation algorithms. In such a situation of high uncertainty in
the measurements, MESs, in general, and the LSS, in particular
(thanks to the concept of local accuracy) increase significantly
the robustness and the reliability of the estimation process.

V. DISCUSSION AND CONCLUSION

In this paper, a novel approach to the estimation of biophys-
ical parameters from remote sensing images based on a mul-
tiple estimator system has been presented. The MES aims at ex-
ploiting the peculiarities of an ensemble of different estimators
to improve the robustness (and in some cases the accuracy) of
the estimation process. Four different strategies to implement
the MES have been described. The four strategies differ from
each other for: 1) the fusion procedure; 2) their supervised or
unsupervised properties; and 3) the technique with which the
available prior information is exploited.
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The ensembles of estimators used in the experiments were
based on both support vector machines and multilayer percep-
tron neural networks. The detailed experimental analysis car-
ried out to evaluate the effectiveness of SVMs for biophysical
parameter estimation points out that: 1) they can provide estima-
tion accuracies very similar to what can be yielded by other ef-
fective neural regression methods like MLPs; 2) they exhibit low
sensitivity to the critical problem of the small number of training
samples available; 3) they intrinsically present very good gen-
eralization capabilities (confirmed by the experiments carried
out with simulated data affected by measurement errors); and
4) they require (in average) a lower computational cost than that
involved by the widely used MLPs. It is worth noting that the
second and third properties are very important in applications
like biophysical parameter estimation, in which the number of
in situ measurements available is often scarce and characterized
by significant uncertainty degrees.

In order to obtain a reliable and detailed assessment of the
effectiveness of the proposed MES, five experiments (with dif-
ferent ensembles of SVM and MLP estimators) were designed.
These experiments simulated different operational conditions,
in which members of the ensemble are: 1) based on the same or
on different regression methods; 2) characterized by different
tradeoffs between correlated errors and accuracy of the esti-
mates; 3) trained on samples affected or not by measurement
errors. The results of the first experiment confirm that, if an en-
semble with an unpredictable “poor” estimator is defined, the
MESs are capable of overcoming its effects, thus exhibiting sig-
nificant robustness. The second experiment points out the ability
of the MES to exploit the ensemble to slightly improve the esti-
mation accuracy even in presence of correlated estimators. The
third experiment underlines that the fusion of single estima-
tors based on different regression methods (in this case, SVMs
and MLPs) represents a valid way to enhance the robustness
of the estimation process. Finally, the fourth and fifth experi-
ments point out the robustness of MES to measurement errors
that often affect the quality of the few available training samples
in real situations.

In general, all the experimental results pointed out the ability
of the MESs to increase the robustness of the estimation process
since in most cases they provided MSE values very close to that
of the best estimator included in the ensemble.

Comparisons between the two considered fusion approaches
point out that, on the one hand, the selection-based approach
proved to be more effective than the combination-based ap-
proach in situations where data are corrupted by measurement
errors. This depends on its ability to properly exploit the dif-
ferent accuracies of the estimators included in the ensemble
in different portions of the input feature space. On the other
hand, the combination-based approach is more attractive
from the viewpoint of implementation simplicity. Concerning
comparisons among the specific fusion strategies presented,
one can distinguish two situations. If data are corrupted by
measurement errors, which is the most realistic situation, the
proposed LSS outperformed the GSS followed by the ACS and
the WCS. In absence of measurement errors, the best strategy
is the WCS with which competes the GSS followed by the
LSS and the ACS. However, only very slight differences can

be observed between them in this second situation by contrast
to the first one. From the analysis of the obtained results, as
expected from the theory, it turns out that the ACS is affected
by different values of the biases and variances of the single
estimators making up the ensemble. Concerning the WCS, it is
effective if the available training samples are characterized by
low measurement uncertainties; otherwise it fails completely
(see Experiment 5). A comparison between the MSE values
obtained by the two proposed selection-based strategies (LSS
and GSS) and the minimal achievable MSE (oracle) suggests
that future studies should be developed to define more complex
strategies capable of further increasing accuracy in the parti-
tions of the input feature space and, accordingly, the robustness
of the system. In particular, the selection-based approach could
be improved by considering: 1) an adaptive weighted selection
(instead of a crisp selection as done in the LSS and GSS) where
the weights are adapted according to the error committed by
each single estimator in any point of the space; 2) a rejection
mechanism to ensure that the system provides a reliable global
estimate by identifying regions of the feature space in which all
the single estimators are not enough accurate; and 3) a hybrid
system that fuses in a supervised way both the selection and
combination-based approaches.
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