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Abstract—In this paper, an approach to reducing the effects of
registration noise in unsupervised change detection is proposed.
The approach is formulated in the framework of the change vector
analysis (CVA) technique. It is composed of two main phases. The
first phase aims at estimating in an adaptive way (given the spe-
cific pair of images considered) the registration-noise distribution
in the magnitude-direction domain of the difference vectors. The
second phase exploits the estimated distribution to define an effec-
tive decision strategy to be applied to the difference image. Such
a strategy allows one to perform change detection by significantly
reducing the effects of registration noise. Experimental results ob-
tained on simulated and real multitemporal datasets confirm the
effectiveness of the proposed approach.

Index Terms—Change detection, change vector analysis, image
registration, multitemporal images, nonparametric adaptive
estimation, registration noise, remote sensing, unsupervised
techniques.

I. INTRODUCTION

T HE GROWING interest in environmental monitoring,
in particular, in detecting changes that have occurred

on the earth’s surface, makes it crucial to develop effective
unsupervised change-detection techniques for the analysis
of multitemporal remote sensing images [1]–[4]. However, a
major problem in the development of such unsupervised tech-
niques is that several sources of noise may significantly affect
the change-detection process. Among these sources of noise,
it is worth mentioning those dependent on different conditions
at the two considered acquisition times, like atmospheric
differences, differences in vegetational phenology, differences
in the shadows present in the images, etc. [1], [5]. For these
reasons, the development of effective automatic unsupervised
change-detection techniques is a challenging task.

The most widely used unsupervised change-detection tech-
niques involve a pixel-by-pixel comparison of two multispec-
tral remote sensing images acquired at the same area at different
times [1]–[3]. Consequently, in order to perform change detec-
tion accurately, it is mandatory to apply a preliminary coreg-
istration process to multitemporal images so that pixels in the
same positions on the two images correspond to the same area
on the ground. Many papers have been published in the literature
concerning the development of registration algorithms for mul-
titemporal and/or multisensor remote sensing images [6]–[8].
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However, although complex registration procedures have been
devised, generally, in remote sensing applications, it is not pos-
sible to obtain a perfect alignment of multitemporal images.
This mainly depends on the fact that the presence of local de-
fects in the geometries of the acquired images (e.g., due to ir-
regular movements of the acquisition platform) does not allow
one to achieve a perfect alignment, even by applying sophisti-
cated geometrical transformations to the images. Consequently,
when multitemporal images are compared, the residual misreg-
istration results in an additional and very critical source of noise,
which is called “registration noise” [5], [9]. Generally, it is dif-
ficult to reduce the effects of registration noise because they
depend on several significant factors (e.g., the stability of the
acquisition platform, the structure of the considered scene, the
spatial resolution of the sensor used, etc.). This prevents one
from formulating an analytical model of this noise and, conse-
quently, from defining effective processing algorithms.

Even though in the literature special attention has been
given to the development of advanced registration techniques
[6]–[8], less attention has been devoted to devising approaches
aimed at reducing the effects of the residual misalignment
in the change-detection process. In [10], the capabilities of
two heuristic approaches to reducing registration-noise effects
are compared. In particular, an image smoothing technique
and an adaptive filtering method are presented. In [11], a
change-detection algorithm robust to registration noise is
proposed that allows the detection of land-cover changes by
exploiting the information available in multispectral remote
sensing images. Such an algorithm uses the spectral bands
where investigated changes are not visible in order to identify
the effects of registration noise on the specific scene analyzed
and to reduce them in spectral channels where changes can be
detected. In [12] and [13], a modeling approach is introduced
that assumes that misregistration effects are locally uniform and
can be estimated and compensated for by analyzing the spatial
brightness gradients. Although all the above approaches may
be effective under different operating conditions, they are based
on empirical observations or on general image-processing
methods. A major theoretical issue that limits the development
of effective change-detection approaches robust to registration
noise is the lack of suitable models (or analysis procedures)
capable of accurately describing the distribution of this noise.

In this paper, we focus our attention on the problem of re-
ducing registration noise in change detection, and address the
aforementioned issue with an adaptive unsupervised technique.
Due to the complexity of representing the registration noise by
using a general model, we propose to estimate it adaptively
in each specific scene to be analyzed; to this end, we suggest
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(a) (b)

Fig. 1. Schematic representation of the difference vector associated with the pixelx(i; j). (a) Space of the original spectral channels. (b) Magnitude–Direction
(M–D) space.

adopting a nonparametric approach. Then, the estimated reg-
istration-noise distribution is used to define an effective local
decision strategy to produce an accurate change-detection map.
Experiments carried out on both a simulated and a real dataset
confirm the effectiveness of the presented method.

The paper is organized into six sections. Section II deals
with the problem formulation. Section III describes the pro-
posed adaptive approach to reducing registration-noise effects.
Section IV presents a simple but effective strategy capable of
exploiting contextual information in the process of generating
the change-detection map. Experimental results are reported in
Section V. Finally, in Section VI, a discussion is provided and
conclusions are drawn.

II. PROBLEM FORMULATION

Let and be two multispectral remote sensing images
(of size ) acquired at the same geographical area at
two different times. Let represent a generic pixel with
position coordinates . Let and denote the
feature vectors associated with the pixel in and ,
respectively. We assume that the two images have been coreg-
istered by using standard techniques in order to minimize the
mean square error computed on a set of ground control points
(GCPs) [1], [14], [15]. We also assume that a residual misreg-
istration between the two images is present (this is a typical sit-
uation in remote sensing problems). The objective of the pro-
posed approach is to perform unsupervised change detection
by reducing as much as possible the errors due to the residual
misregistration.

In the development of the approach, we make the assumption
that the residual registration noise can be modeled as a transla-
tional effect between the two analyzed images. This represents
a simplification, as compared with some real cases in which ro-
tational and scaling effects may be present (especially if images
acquired from different angles of view or by different sensors
are considered). However, this assumption is reasonable if the
analysis concerns image subwindows whose sizes are chosen
such that the rotational and scaling effects of registration can

Fig. 2. Representation of the quantized M–D space. The quantization has been
carried out in a uniform way into cells of size� �� .

be neglected as respect to translational effects. Unfortunately,
it is not possible to definea priori such sizes as they depend
on the images considered; consequently, they should be specif-
ically evaluated on the particular pair of images to be analyzed.
It is worth noting that the aim of our approach is to characterize
the registration noise from a statistical point of view as, even
in the case of small subwindows of the entire images, it is not
realistic to assume a perfect uniformity of the properties of the
residual misalignment.

The proposed approach is presented in the framework of the
well-known and widely used change vector analysis (CVA)
technique [1]–[3]. This technique performs change detection by
differencing the feature vectors of pixels with the same spatial
coordinates in the two considered images. Letrepresent the
difference image obtained by applying the CVA to the images

and . Let denote the spectral change vector
associated with the pixel in the difference image, i.e.,

(1)

Let denote the magnitude of the difference vector
. It follows that unchanged pixels show small gray-level

values in the magnitude of the difference vector, whereas
changed pixels present rather large values. Consequently, the
change-detection map is obtained by thresholding the value
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Fig. 3. Schematic representation of the different macrocellsz 2 Z (h = 1; . . . ; 8) associated with the cells in the M–D space when the contextual strategy
is adopted. The macrocells are considered in order to exploit the contextual information in the aforesaid space.

according to a predefined threshold . In some
applications, the direction of the difference vector is
also exploited to discriminate among different kinds of changes.

For simplicity, we present the proposed method under the as-
sumption that the CVA technique is applied to only two spectral
channels of the considered multispectral images. This results
in difference vectors that have only two components. Conse-
quently, each vector can be represented in a two-dimensional
(2-D) space described by its magnitude and an angle (ranging
from to ) that indicates its direction (we call this space
“M–D space”) (see Fig. 1). If more spectral channels are used, a
higher dimensional space must be defined, since the directions
of the difference vectors then require more angular coordinates
to be represented. However, it is straightforward to extend the
proposed method to a higher dimensional case.

III. PROPOSEDAPPROACHROBUST TOREGISTRATIONNOISE

The proposed approach is composed of two phases. In the first
phase, the distribution of registration noise in the M–D space is
estimated for the specific scene of interest considered. In the
second phase, the estimated distribution is used to define a local
adaptive decision strategy for carrying out change detection in
accordance with the registration-noise distribution.

In the following, both phases are described in greater detail.

A. Adaptive and Nonparametric Estimation of the Distribution
of Registration Noise in the M–D Space

This first phase aims to perform a nonparametric estimation
of the registration-noise distribution in the M–D space. For
this purpose, a single-date image (e.g., let us choose) of
the considered multitemporal dataset is artificially misreg-
istered to itself in several different ways. In particular, a set

of misregistered images is
generated for different misregistration values in the horizontal
and vertical directions. Let (with ranging
from to and ranging from to ,
both by a predefined step) be the set of misregistration
values chosen to misregister . In order to consider values
of and equal to fractions of pixels, the image is
oversampled by using the discrete Fourier transform (DFT).
After the shifting obtained by working in the Fourier domain,

the image is resampled in order to resize it according to its
original dimensions.

The CVA technique is applied to the original and misregis-
tered images (i.e., and , with ), and the dis-
tributions of the resulting difference vectors in the M–D space
are analyzed. It is worth noting that the values of the magni-
tudes of the difference vectors depend on the dynamics of the
images and , whereas the angles describing the directions
of such vectors range from to . The analysis is carried out
by quantizing the M–D space into uniform cells of size

(see Fig. 2). Let be the set
of cells obtained by the quantization process, and let
be the number of pixels contained in the cellwhen the dif-
ference vectors are generated for a shift (i.e., misregistration) of

pixels. In this situation, the distribution of the dif-
ference vectors in the M–D space depends only on the registra-
tion noise (as we are comparing an image with a misregistered
copy of itself). It is worth noting that if , then
all the pixels are located in the origin of the 2-D M–D space. On
the basis of the value , an estimate of the probability

of having a pixel affected by registration noise in
the cell , given the misregistration of pixels, can be
obtained by the following equation:

(2)

This probability can be estimated for all the quanti-
zation cells considered and for all the misregistration values

selected. Then, from such probabilities, different
strategies can be derived to approximate the global probability

of having pixels affected by registration noise in the quan-
tization cell ( ) and, hence, the global density

of the distribution of registration noise in the M–D space.
In the following, we propose three different strategies: 1) the
mean-based strategy; 2) the maximum-based strategy; 3) the
correlation-based strategy.

1) Mean-Based Strategy:The mean-based strategy models
the local registration-noise distribution in the M–D space on the
basis of a global analysis of obtained for all the
misregistration values considered. In particular,
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(a) (b) (c)

Fig. 4. Simulated dataset utilized in the experiments. (a) Spectral channel 3 of the imageX . (b) Spectral channel 3 of the imageX obtained by inserting
simulated changes inX . (c) Map of the areas with simulated changes.

TABLE I
CHANGE-DETECTION RESULTSPROVIDED BY THE STANDARD CVA TECHNIQUE ON THEDIFFERENTSIMULATED DATASETSCONSIDERED

the rationale for this strategy consists in modeling the registra-
tion noise in each quantization cell with the mean of the noise
resulting from the pairs of misregistration values considered in
the set . Consequently, this strategy estimates the registration
noise in each cell via the following equation:

(3)

This simple strategy exhibits the drawback of modeling the av-
erage effects of the registration noise in the M–D space without
considering the actual direction of the residual misalignment.
As a consequence, it may result in a raw estimate of the regis-
tration-noise effects.

2) Maximum-Based Strategy:This strategy is similar to the
previous one, except for the average operator, which is replaced
with the maximum operator. In particular, the rationale for this
strategy consists in modeling the registration noise in each quan-
tization cell with the maximum possible noise resulting from
the pairs of misregistration values considered in the set, i.e.,
with the noisiest situation that may occur in each cell as a con-
sequence of the residual misalignment

(4)

As is the case with the mean-based strategy, this technique has
the drawback of modeling the effects of the registration noise
in the M–D space without trying to identify the actual average

direction of the residual misalignment. However, the maximum-
based strategy assumes the noisiest situation for each cell. As a
consequence, this strategy may involve an overestimate of the
actual registration-noise effects.

3) Correlation-Based Strategy:Unlike the previous two
strategies, the correlation-based technique aims at estimating
the pair of misregistration values that are statistically
best suited to characterizing the considered subwindow of the
analyzed multitemporal images (the terms “statistically best
suited” is used to recall that it is not realistic to assume the same
misregistration value for all the pixels of a subwindow). Then
this strategy carries out the estimation of the registration-noise
distribution on the basis of such values. A possible approach
to estimating the value of misregistration lies in evaluating the
residual misregistration computed at the GCPs that fall into the
considered subwindow after the registration phase. However, it
is well known that this estimate is usually inaccurate, and does
not represent the real situation in the whole subwindow of the
image considered. For this reason, we propose an alternative
method that consists in comparing (in the M–D space) the
difference-vector distributions in the considered multitemporal
images with the distributions of the difference vectors obtained
by applying the CVA technique to the images and (with

). (It is worth stressing that the difference vectors
obtained by applying the CVA technique to the images
and represent the registration noises estimated for different
misregistration values, as we are comparing one image with
itself.) To this end, the difference image is considered, and
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the probability that a pixel of the difference image
may be contained in the cell is estimated by the following
equation:

(5)

where is the number of difference vectors in the cell.
Then, the correlation between the quantized rep-
resentation of the global distribution of the difference vectors

and each conditional registration-noise density distribu-
tion is computed as follows:

(6)

where , and are the mean values and
the variances of and , respectively, for the

quantization cells. The pair of misregistration values
that maximizes the correlation function

is considered as an estimate of the true , i.e.,

(7)

Consequently, we can write

(8)

B. Decision Strategy for Producing the Change-Detection Map

Let us now focus our attention on the distribution of
the difference vectors making up the difference imagein the
M–D space. This distribution can be analyzed by comparing it
with the registration-noise distribution estimated in the previous
phase. The analysis is carried out separately for each quantiza-
tion cell. From the knowledge of , it is possible to derive
a local decision strategy that allows one to detect changed areas
by taking into account the registration noise. (The term “local”
refers to the fact that the decision strategy can cope with the
different characteristics of the registration noise in the different
cells of the M–D space.) Let us consider a generic pixel
in the difference image, and let us assume that the difference
vector of the pixel lies in the cell . The pixel is associ-
ated with changed or unchanged areas according to the decision
rule as in (9) (shown at the bottom of the page), where
is a parameter that tunes the tolerance to registration noise. As
compared with the standard CVA technique (according to which
only the magnitude of the difference vector is usually consid-
ered to make the final decision), the decision rule (9) also ana-
lyzes the probability that the difference vector considered may

be related to registration noise. If the probability of having reg-
istration noise is high as compared to the probability of having
difference vectors in a given cell for the specific images con-
sidered, the corresponding pixel is considered to be affected by
registration noise and is labeled as unchanged. The threshold
and the parametercan be jointly optimized in order to obtain
a specific tradeoff between false and missed alarms. It is worth
noting that the ability of the proposed approach to explicitly deal
with the effects of registration noise (which usually involve large
number of false alarms) allows the optimal decision threshold

(i.e., the threshold that minimizes the overall change-detec-
tion error) to be lower than the threshold used by the standard
CVA technique. This may also result in a decrease in the number
of missed alarms, as compared with the CVA technique.

The uniform quantization adopted for the M–D space may
affect the results of the proposed technique. This is due to the
fact that a small amount of noise affecting a difference vector
may make it move from one cell to another. In order to reduce
the effects of this phenomenon, one can use strategies capable of
exploiting the contextual information contained in neighboring
quantization cells in the M–D space. In the next section, a simple
and effective strategy that can cope with this issue is described.

IV. CONTEXTUAL ANALYSIS OF THE M–D SPACE

As pointed out in the previous section, the uniform quantiza-
tion adopted for the M–D space may decrease the effectiveness
of the proposed technique. In order to mitigate this drawback,
in the following a simple strategy is described that exploits the
contextual information contained in neighboring quantization
cells in the M–D space. The basic idea of this strategy is to an-
alyze the contextual information whenever an ambiguous situa-
tion is detected, i.e., the value of the probability is close
to the value of the probability . The contextual informa-
tion is exploited by merging pairs of neighboring cells and es-
timating the probabilities of having both registration noise and
difference vectors (derived from the analysis of multitemporal
images) in these new “macrocells.” In greater detail, the deci-
sion rule (9) can be rewritten as in (10) (shown at the bottom
of the next page), where and (with and

) are two parameters that identify critical un-
certainty situations in which the values and are
very close to each other, and hence (9) is not appropriate to a
reliable final decision. In the case of uncertainty, the celland
its eight neighboring cells are considered (instead of the single
cell ) and eight macrocells are derived, as shown in Fig. 3. Let

be the set of macrocells obtained by this
strategy. It is worth noting that the original cell is included
in each one of the macrocells . The prob-
ability of having registration noise and
the probability of having difference vectors in each

change if and

no change if or
(9)
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one of the macrocells are estimated. For each macrocell
contained in , the decision rule (11) (shown at the bottom of
the page) is used, where the parameter tunes
the tolerance to registration noise in the context-based decision.
Equation (11) is applied to all the eight macrocells
associated with ; then the pixel is labeled as changed
or unchanged according to a simple majority rule.

V. EXPERIMENTAL RESULTS

In order to assess the effectiveness of the proposed method,
experiments were carried out on two different typologies of re-
mote sensing datasets, i.e., simulated and real multitemporal
datasets.

A. Simulated Dataset

The simulated dataset was obtained by the procedure de-
scribed in the following. A multispectral image acquired by
the Daedalus 1268 Airborne Thematic Mapper (ATM) multi-
spectral scanner was used as a reference image. In particular, a
section (250 350 pixels) of a scene acquired in an agricultural
area near the village of Feltwell, U.K., was selected [see
Fig. 4(a)]. (For greater details on this dataset, see [16].) For
simplicity, only two spectral channels were considered (i.e.,
channels 3 and 5 were selected). This image was assumed to
be the image (i.e., the image acquired at time). The
image was obtained by inserting some simulated changes
in [see Fig. 4(b) and (c)]. At this point, the image was
misregistered to the image . In particular, different pairs of
simulated multitemporal images with different misregistration
values were generated [i.e., (1, 1) (0.5, 1.5) (1.5., 1.5) (1,
2), and (2, 2)]. It is worth noting that these misregistration
values are realistic, especially considering that, in real cases,
misregistration offsets outside the GCPs may be significantly
higher than the ones measured in GCPs themselves.

The standard CVA technique was applied to the different
pairs of images generated. A manual trial-and-error procedure
was adopted in order to find the optimal threshold ,
i.e., the threshold that minimizes the overall change-detection
error. Table I gives the change-detection errors on the different
datasets. As one can see, the registration noise affecting the
difference image results in a large number of change-detection
errors (in particular, a large number of false alarms).

At this point, the proposed technique was applied to the im-
ages and of the considered simulated datasets (also in
this case, different experiments were carried out for the dif-
ferent misregistration values considered). As described in the
methodological part, the first step in the proposed approach con-
sists in estimating the distribution of registration noise in the
M–D space. In the set , we considered different misregistra-
tion values , with and ranging from to (by
a step of 0.25 pixels). The performances of all the estimation
strategies (i.e., the mean-based, maximum-based, and correla-
tion-based strategies) were evaluated. Several trials were car-
ried out by using different values of the parameters required by
the proposed approach. In particular, the tolerance parameters

ranged in (under the obvious constraint
); the parameter was set equal to the mean of

the interval . Concerning the size of the quantization
cells, it should be chosen on the basis of the specific dataset ana-
lyzed by considering the dimensions of the images and the struc-
ture of the scene. On the one hand, this size should be selected
sufficiently small to have a precise quantization of the M–D
space. On the other hand, it should be sufficiently large to esti-
mate the probabilities in a reliable way. In our experiments, ac-
cording to the results of a preliminary analysis, the dimensions

and of the quantization cells ranged from 40 to 120
and from 40 to 60, respectively. The best results obtained by the
proposed method are given in Table II(a) and (b). In particular,
these tables show the results obtained by optimizing the param-
eters required by the proposed approach according to two dif-
ferent criteria. The results presented in Table II(a) were obtained
according to the first criterion, i.e., by optimizing the parame-
ters so that the overall change-detection error was minimized.
Table II(b) gives the results yielded by the second criterion, i.e.,
optimizing the parameters according to a different tradeoff be-
tween false and missed alarms. In greater detail, in the latter
case, the parameters were selected in order to decrease both
missed and false alarms (with respect to the case of the standard
CVA technique) and not to minimize the overall change-detec-
tion error. All the proposed strategies resulted in significant re-
ductions in false alarms, as respect to the standard CVA. For
example, in the case where the parameters were optimized to
minimize the total change-detection error, the 632 false alarms
incurred by the CVA in the dataset generated by a misalign-
ment of (2, 2) pixels were reduced to 316, 372, and 347 false
alarms by the proposed maximum-based, mean-based, and cor-

change if and

no change if or
(10)

change if and

no change if or
(11)
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TABLE II
BEST CHANGE-DETECTION RESULTS PROVIDED BY THE PROPOSEDTECHNIQUE ON THEDIFFERENT SIMULATED DATASETS CONSIDERED.

(a) MINIMUM -ERRORCASE. (b) EXAMPLE OF A DIFFERENTTRADEOFFBETWEEN FALSE AND MISSEDALARMS

(a)

(b)

relation-based strategies, respectively. Furthermore, when a dif-
ferent tradeoff between false and missed alarms was considered
[see Table II(b)], reductions in the numbers of missed alarms
were also observed. This is a consequence of the possibility of
adopting a threshold lower than the optimal CVA threshold

resulting from the reduction in the false alarms in-
duced by registration noise. A comparison of the different ty-
pologies of errors incurred by the different strategies shows that,
as expected, the maximum-based strategy turns out to be the
most effective in reducing false alarms. This strategy was also
the most effective in obtaining a good trade-off between false
and missed alarms (both decreased, as compared with the CVA
technique).

In order to assess the robustness of the proposed approach,
the means and the standard deviations of the change-detection
errors incurred by the three proposed strategies in the different
trials with different values of the required parameters (i.e., the
dimensions and of the quantized cells, and the toler-
ance parameters) were evaluated. The results obtained by both
considering and not considering the contextual information in
the quantized M–D space are given in Table III(a) and (b), re-

spectively. By analyzing the average values, it is possible to ob-
serve that, also in this case, all the proposed strategies resulted in
reductions in false alarms, as compared with the standard CVA.
Concerning the robustness of the proposed approach, a compar-
ison of the results given in Table III(a) and (b) points out that
the contextual analysis of the M–D space: 1) generally results
in a slight increase in the average change-detection accuracy;
2) exhibits a significantly stabler behavior versus the choice of
the different values of the parameters required by the proposed
approach.

Fig. 5(a) and (b) shows the best change-detection maps (i.e.,
the ones that minimize the total change-detection errors) ob-
tained by the standard CVA technique and the proposed ap-
proach with the maximum strategy, respectively, for the dataset
generated by a misalignment of (2, 2) pixels (where the effects
of the misalignment are more evident). A qualitative analysis
of such figures confirms the effectiveness of the proposed ap-
proach in sharply reducing the effects of registration noise, as
compared with the CVA technique. This is particularly evident
at the field boundaries. In addition, it can be observed that, even
though a portion of the changed field in the upper right corner
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TABLE III
AVERAGE CHANGE-DETECTION ERRORSPROVIDED BY THE PROPOSEDTECHNIQUES ON THEDIFFERENT SIMULATED DATASET CONSIDERED.

(a) STANDARD ANALYSIS OF THE QUANTIZED M–D SPACE. (b) CONTEXTUAL ANALYSIS OF THE QUANTIZED M–D SPACE

(a)

(b)

(a) (b)

Fig. 5. Change-detection maps obtained on the simulated dataset generated by
a misalignment of (2, 2) pixels by (a) the standard CVA technique and (b) the
proposed approach with the maximum strategy.

of the image was not correctly detected, the proposed approach,
unlike the standard CVA technique, was able to detect a signifi-
cant area corresponding to the changed field in the center of the
image.

B. Real Dataset

The second dataset consisted of two multispectral images
(414 326 pixels) acquired by the Landsat-5 Thematic Mapper
(TM) sensor on the Island of Elba, Italy, in August 1992 (image

) and September 1994 (image ) [see Fig. 6(a) and (b)].
Two wildfires (one occurred in 1993 and the other in 1994)
destroyed part of the vegetation between the two acquisition
dates. The available ground-truth information about the burnt
areas was used to prepare a “reference map” for a quantitative
evaluation of the change-detection results [see Fig. 6(c)]. The
two images were coregistered using ten GCPs corresponding to
points easily recognizable on both images. A root mean square
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(a)

(b)

(c)

Fig. 6. Real dataset utilized in the experiments. (a) Channel 4 of the TM image
acquired in August 1992. (b) Channel 4 of the TM image acquired in September
1994. (c) Ground-truth map of the changed areas.

error of 0.49 was obtained. It is worth noting that the consid-
ered change-detection problem results in a challenging task due
to: 1) the presence of registration noise and 2) the fact that the
second image was acquired a long time after the 1993 fire event,
and consequently, this burnt area is partially covered by the new
vegetation that grew in the meanwhile. The standard CVA tech-
nique was applied to spectral channels 4 and 7 of the images

and . A manual trial-and-error procedure was adopted to
determine the optimal threshold , i.e., the threshold

TABLE IV
CHANGE-DETECTIONRESULTSPROVIDED BY THE STANDARD CVA TECHNIQUE

ON THE REAL DATASET CONSIDERED

TABLE V
CHANGE-DETECTION RESULTSPROVIDED BY THE PROPOSEDAPPROACH ON

THE REAL DATASET CONSIDERED(THE ANALYSIS HAS BEEN CARRIED

OUT BY CONSIDERING THECONTEXTUAL INFORMATION IN THE

QUANTIZED M–D SPACE)

that minimizes the overall change-detection error. Table IV
gives the change-detection errors incurred with such an optimal
threshold. As one can see, the registration noise affecting the
difference image induced a large number of change-detection
errors (in particular, a large number of false alarms). At this
point, the proposed technique was applied. On the basis of
the results obtained on the simulated dataset, the analysis of
the quantized M–D space was carried out considering the
contextual information. The dimensions of the quantization
cells, the parameter , and the parameter were set
equal to 40 40, , and , respectively. The parameter

was fixed equal to the mean of the interval .
The change-detection errors incurred by the three proposed
strategies are presented in Table V. As one can see, also in this
case the proposed approach resulted in a significant decrease in
the number of change-detection errors (i.e., from 4596 errors
incurred by the standard CVA technique to 3934, 4066, and
3881 errors incurred by the maximum-based, mean-based, and
correlation-based strategies, respectively). In greater detail,
significant reductions were observed both in false alarms (i.e.,
from 1340 incurred by the standard CVA technique to 737,
1087, and 797 incurred by the maximum-based, mean-based,
and correlation-based strategies, respectively) and in missed
alarms (i.e., from 3256 incurred by the standard CVA technique
to 3197, 2979, and 3084 incurred by the maximum-based,
mean-based, and correlation-based strategies, respectively). On
the one hand, the decrease in false alarms directly derives from
the ability of the proposed approach to cope with the effects of
registration noise. On the other hand, the reduction in missed
alarms depends on the fact that a threshold lower than the one
used for the CVA (i.e., ) was adopted. In particular, the
optimal threshold for the standard CVA technique was
found to be 44, whereas a threshold equal to 42 was used
for the proposed approach. The analysis of Table V reveals that
the maximum-based strategy turned out to be the most effective
in reducing false alarms, whereas the correlation-based strategy
allowed the best tradeoff between false and missed alarms, thus
minimizing the overall change-detection error.
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(a)

(b)

Fig. 7. Change-detection maps obtained by (a) the standard CVA technique
and (b) the proposed approach with the correlation strategy.

Fig. 7(a) and (b) shows the best change-detection maps ob-
tained by the standard CVA technique and the proposed ap-
proach with the correlation strategy, respectively. A qualitative
analysis of such maps confirms the effectiveness of the proposed
method in sharply reducing the effects of registration noise, as
compared with the CVA technique. In particular, the reduction
in registration noise is mainly evident along the coastline. In
addition, some parts of the eastern burnt area that were missed
by the CVA technique were correctly classified by the proposed
approach.

It is worth noting that, despite the proposed approach al-
lowing one to significantly decrease the number of false alarms,
residual noise still affects the obtained change-detection map.
However, in the map produced by the proposed method, noisy
pixels are isolated, and consequently, can be easily removed by
using standard postprocessing techniques.

VI. DISCUSSION ANDCONCLUSION

In this paper, an adaptive approach aimed at reducing the
effects of registration noise in unsupervised change detection
has been presented. The results of several experiments carried
out on both a simulated and a real multitemporal dataset confirm
the effectiveness of the described approach, which provided a
much higher change-detection accuracy than the standard CVA
technique. Such accuracy mainly relies on the ability of the

proposed approach to reduce false alarms; however, a reduction
in the number of missed alarms was also observed. This is a
consequence of the possibility of adopting a thresholdlower
than the optimal CVA threshold , as one can reduce the
effects of registration noise. Three different adaptive strategies
havebeenproposed toestimate the distribution of the registration
noise present in the considered multitemporal images. In our
experiments, all the strategies allowed us to improve the change-
detection accuracy over that of the standard CVA technique. On
the one hand, given its properties, the maximum-based strategy
is recommended in the cases where false alarms induced by
misregistration may be particularly critical to the considered
application. On the other hand, the use of the correlation-based
strategy is suggested when missed alarms may be serious for
the specific problem addressed. Even though, from a general
point of view, the proposed approach results in a reduction in the
number of missed alarms, as compared with the standard CVA
technique, in some experiments, we observed that omission
errors may occur in areas where, as opposite, the standard CVA
technique performs well (as is the case with the upper-right
change polygon in the simulated dataset). In particular, such
omission errors are incurred when the difference vector
of a changed pixel is contained in a cellwhere the probability
of having registration noise is high, as compared with the
probability of having difference vectors. Two different reasons
can cause such a situation: 1) the quantization of the M–D space
is too rough, and consequently, the difference vectors of the
changed pixels are compared with registration noise having a
significantly different magnitude and direction; 2) registration
noise is overestimated. This behavior is more typical for the
maximum-based strategy (which, as already observed, may
involve an overestimation of registration noise) than for the
correlation-based and mean-based strategies.

It is worth noting that, among the aspects that affect regis-
tration noise, there are the heterogeneity and homogeneity of
the scene under analysis. In the case of scenes composed of
different homogeneous areas, registration noise mainly appears
along the boundaries of such areas, whereas, in the case of
images composed of heterogeneous areas, registration noise
has a more spread spatial distribution. Although the proposed
approach is intrinsically more suited to being applied to im-
ages with homogeneous areas, in most of the experiments we
carried out it turned out to be effective also on heterogeneous
areas.

Concerning the local decision strategy for deriving the
change-detection map, the approach that exploits contextual in-
formation in the M–D space proved useful mainly in decreasing
the dependence of the change-detection results on the values of
the input parameters required by the described method.

Concerning the computation time, the most time-demanding
task of the proposed algorithm is the generation of the set of mis-
registered images (mainly dependent on the application of the
DFT transform), the rest of the approach being very fast. How-
ever, in operating conditions, the fast Fourier transform (FFT)
can be used in place of the DFT, thus reducing the computa-
tional complexity.

As future developments of this work, we are exploring the
possibilities of: 1) using strategies different from the maximum-



BRUZZONE AND COSSU: ADAPTIVE APPROACH TO REDUCING REGISTRATION NOISE EFFECTS 2465

based, mean-based, and correlation-based ones to further in-
crease the accuracy in modeling the registration-noise effects
and 2) extending the proposed methodology for estimating the
registration-noise distribution in order to deal also with residual
rotational effects present in the coregistered images.

As a final remark, it should be stressed that, in this paper, we
have focused our attention only on the presence of registration
noise. However, as stated in the Introduction, other sources of
noise may affect the change-detection process. Therefore, when
critical sources of noise are present in the analyzed data, we
suggest that the proposed method should be applied together
with processing procedures aimed at reducing other undesired
noise effects.
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